Math 103: Related Rates

Ron Donagi
University of Pennsylvania
Tuesday Feb 21, 2012

Outline

(1) Review

(2) Related Rates

Important Formulas from Last Time

(1) $\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
(2) $\frac{d}{d x}(\ln (x))=\frac{1}{x}$
(3) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(4) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
(6) $\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$

Related Rates is the most important application of calculus we have seen so far.

Example Air is being pumped into a spherical balloon so that its volume increases at a rate of $10 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$. How fast is the radius of the balloon increasing when the diameter is 4 cm ?

Example Air is being pumped into a spherical balloon so that its volume increases at a rate of $10 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$. How fast is the radius of the balloon increasing when the diameter is 4 cm ?

How To Approach These Problems

(0) Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.
(3) Write down what you are asked to find.

- Write an equation that relates the quantities.
- Differentiate with respect to t.
- Finish solving the problem. Remember units.

Example A water tank has the shape of an inverted circular cone with base radius 2 meters and a height of 3 meters. If the water is being pumped into the tank at a rate of $3 \frac{m^{3}}{m i n}$, find the rate at which the water level is rising when the water is 2 meters deep.

Example A water tank has the shape of an inverted circular cone with base radius 2 meters and a height of 3 meters. If the water is being pumped into the tank at a rate of $3 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$, find the rate at which the water level is rising when the water is 2 meters deep.

- Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.
- Write down what you are asked to find.
- Write an equation that relates the quantities.
- Differentiate with respect to t.
- Finish solving the problem. Remember units.

ExampleA ladder 6 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $.5 \frac{\mathrm{ft}}{\mathrm{sec}}$, how fast is the top of the ladder sliding when it is 1 ft above the ground?

ExampleA ladder 6 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $.5 \frac{\mathrm{ft}}{\mathrm{sec}}$, how fast is the top of the ladder sliding when it is 1 ft above the ground?
(1) Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.

- Write down what you are asked to find.
- Write an equation that relates the quantities.
- Differentiate with respect to t.
- Finish solving the problem. Remember units.

Example A round oil slick uniformly 0.1 cm thick is being fed by a leak in an off shore oil rig at a rate of $2 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$. Sea turtles have bad eyesight and only see the oil as it is nearly on top of them. If sea turtles swim at a rate of $1 \frac{\mathrm{~m}}{\mathrm{sec}}$ and begins swimming away from the slick as they see it approaching, how far away from the oil rig does a turtle need to be to avoid being overcome by the slick.

Example A round oil slick uniformly 0.1 cm thick is being fed by a leak in an off shore oil rig at a rate of $2 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$. Sea turtles have bad eyesight and only see the oil as it is nearly on top of them. If sea turtles swim at a rate of $1 \frac{\mathrm{~m}}{\mathrm{sec}}$ and begins swimming away from the slick as they see it approaching, how far away from the oil rig does a turtle need to be to avoid being overcome by the slick.

- Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.
- Write down what you are asked to find.
- Write an equation that relates the quantities.
- Differentiate with respect to t.
- Finish solving the problem. Remember units.

Example

A light house is located on small island 3 km away from the nearest point P on a straight shore line and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P.

Example

A light house is located on small island 3 km away from the nearest point P on a straight shore line and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P.
(1) Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.
(0 Write down what you are asked to find.

- Write an equation that relates the quantities.
- Differentiate with respect to t.
- Finish solving the problem. Remember units.

