Math 103: Derivatives of Inverse Functions and Logs

Ron Donagi

University of Pennsylvania

Thursday February 16, 2012

Ron Donagi (U Penn) Math 103: Derivatives of Inverse Functions at Thursday February 16, 2012

3

1/1

Outline

Suppose f(x) is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Suppose f(x) is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Exercise Find the slope of the tangent line to $y = x^2$ at (2,4) and find the slope of the tangent line to $y = \sqrt{(x)}$ at (4,2).

(*) *) *) *)

Derivatives of Inverse Functions and Logs

Properties of Logarithmic Functions

• If a > 1 and x, y > 0, then $log_a(xy) = log_a(x) + log_a(y)$.

ヨト・モヨト

Derivatives of Inverse Functions and Logs

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

Image: A matrix

E

Derivatives of Inverse Functions and Logs

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

• If a > 1 and x, y > 0, then $log_a(x^r) = (r)(log_a(x))$.

(*) *) *) *)

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

• If a > 1 and x, y > 0, then $log_a(x^r) = (r)(log_a(x))$. • $\frac{d}{dx}(ln(x)) = \frac{1}{x}$

Change of Base Formula

For any positive number $a \ (a \neq 0)$, we have

$$log_a(x) = rac{ln(x)}{ln(a)}$$

프 문 문 프 문

Image: Image:

Derivatives of Inverse Trig Functions

•
$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

Derivatives of Inverse Trig Functions

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$

1

イロト イポト イヨト イヨト

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$
• $\frac{d}{dx}(cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$
• $\frac{d}{dx}(cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$
• $\frac{d}{dx}(cot^{-1}(x)) = \frac{-1}{1+x^2}$

$$\begin{array}{l} \bullet \quad \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}} \\ \bullet \quad \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2} \\ \bullet \quad \frac{d}{dx}(\sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}} \\ \bullet \quad \frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}} \\ \bullet \quad \frac{d}{dx}(\cot^{-1}(x)) = \frac{-1}{1+x^2} \\ \bullet \quad \frac{d}{dx}(\csc^{-1}(x)) = \frac{-1}{|x|\sqrt{x^2-1}} \end{array}$$