Math 103: Secants, Tangents and Derivatives

Ron Donagi

University of Pennsylvania

Tuesday, January 24, 2012

Outline

(1) Review

(2) Secant Lines and Tangent Lines

(3) Derivative

Limits Involving Infinity

(1) Limits as x approaches ∞ or $-\infty$.
(2) Limits at infinite discontinuities

- Horizontal asymptotes
- Vertical asymptotes

Horizontal asymptotes

Definition

A line $y=b$ is a horizontal asymptote of the graph of $y=f(x)$ if

$$
\lim _{x \rightarrow \infty} f(x)=b \text { or } \lim _{x \rightarrow-\infty} f(x)=b
$$

Horizontal asymptotes

Definition

A line $y=b$ is a horizontal asymptote of the graph of $y=f(x)$ if

$$
\lim _{x \rightarrow \infty} f(x)=b \text { or } \lim _{x \rightarrow-\infty} f(x)=b
$$

Example: Find the horizontal asymptotes of $y=\frac{x+1+\sin (x)}{x}$

Secant lines

Definition
 A line in the plane is a secant line to a circle if it meets the circle in exactly two points.

Definition

A line in the plane is a secant line to the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ if it meets the graph of $y=f(x)$ in at least two points.

Secant lines

Definition

A line in the plane is a secant line to a circle if it meets the circle in exactly two points.

Definition

A line in the plane is a secant line to the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ if it meets the graph of $y=f(x)$ in at least two points.

Find the secant line to $y=x^{3}-2 x+1$ between $x=0$ and $x=1$.

Tangent lines

Definition

A line in the plane is a tangent line to a circle if it meets the circle in exactly one point.

Tangent lines

Definition

A line in the plane is a tangent line to a circle if it meets the circle in exactly one point.

Definition

A line in the plane is a tangent line to the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ if it meets the graph of $y=f(x)$ in exactly one point locally and it "kisses" the graph at that point

Tangent lines

Definition

A line in the plane is a tangent line to a circle if it meets the circle in exactly one point.

Definition

A line in the plane is a tangent line to the graph of $\mathbf{y}=\mathbf{f}(\mathbf{x})$ if it meets the graph of $y=f(x)$ in exactly one point locally and it "kisses" the graph at that point
"kisses" $=$ (near the point of intersection the graph is completely contained to one side of the tangent line)

Since we don't have two points we need a new idea to find the slope of a tangent line.

Since we don't have two points we need a new idea to find the slope of a tangent line.
Find the slope of secant lines to $f(x)=\frac{1}{x}$ on the following intervals:
© $[2,4]$
(2) $[2,3]$

- $[2,2.5]$

Since we don't have two points we need a new idea to find the slope of a tangent line.
Find the slope of secant lines to $f(x)=\frac{1}{x}$ on the following intervals:
(- $[2,4]$
(2) $[2,3]$

- $[2,2.5]$
http://en.wikipedia.org/wiki/File:Sec2tan.gif

Since we don't have two points we need a new idea to find the slope of a tangent line.
Find the slope of secant lines to $f(x)=\frac{1}{x}$ on the following intervals:
(- $[2,4]$
(2) $[2,3]$

- $[2,2.5]$
http://en.wikipedia.org/wiki/File:Sec2tan.gif Tangent lines are the limits of secant lines

Tangent Lines

Definition

The tangent line to a curve $y=f(x)$ at a point (a,f(a)) is the line through $(a, f(a))$ with the slope

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Tangent Lines

Definition

The tangent line to a curve $y=f(x)$ at a point $(a, f(a))$ is the line through $(a, f(a))$ with the slope

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Find the slope of the line tangent to $y=\sin (x)$ at $x=0$.

Application: Instantaneous Velocity

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Application: Instantaneous Velocity

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

ExampleSuppose a penny is dropped from the top of DRL which is 19.6 meters high. The position of the penny in terms of hight above the street is given by $s(t)=19.6-4.9 t^{2}$. At what speed is the penny traveling when it hits the ground?

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notation.Other ways of writing the derivative of $y=f(x)$.

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The Sandwich Theorem

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near c and

$$
\begin{gathered}
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L \\
\text { then } \lim _{x \rightarrow c} g(x)=L
\end{gathered}
$$

