Math 103: One-Sided Limits of Functions

Ron Donagi

University of Pennsylvania
Tuesday September 19, 2012

Outline

Definition of Limit

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to x_{0}, we say f approaches the limit L as x approaches x_{0} and write:

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Definition of Limit

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to x_{0}, we say f approaches the limit L as x approaches x_{0} and write:

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Last time we saw
(1) Limit laws
(2) Theorems regarding polynomials and rational functions

- How to evaluate a limit if there is a zero in the denominator

The Sandwich Theorem

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near c and

$$
\begin{gathered}
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L \\
\text { then } \lim _{x \rightarrow c} g(x)=L
\end{gathered}
$$

The Sandwich Theorem

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near c and

$$
\begin{gathered}
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L \\
\text { then } \lim _{x \rightarrow c} g(x)=L
\end{gathered}
$$

Evaluate:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Definition of One-Sided Limit

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to c and greater than c, we say f approaches the rigth-hand limit L as x approaches c and write:
$\lim _{x \rightarrow c^{+}} f(x)=L$

Definition of One-Sided Limit

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to c and greater than c, we say f approaches the rigth-hand limit L as x approaches c and write: $\lim _{x \rightarrow c^{+}} f(x)=L$

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to c and less than c, we say f approaches the left-hand limit L as x approaches c and write:
$\lim _{x \rightarrow c^{-}} f(x)=L$

Theorem

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if

$$
\lim _{x \rightarrow c^{+}} f(x)=L \text { and } \lim _{x \rightarrow c^{-}} f(x)=L
$$

Theorem

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

