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Abstract. We prove the existence of free boundary minimal annuli in-
side suitably convex subsets of three-dimensional Riemannian manifolds
with nonnegative Ricci curvature − including strictly convex domains
of the Euclidean space R3.

1. Introduction

1.1. Definitions and results. Let M be a compact three-dimensional
manifold with smooth boundary and g a Riemannian metric over M . We
say that a smooth compact surface Σ in M with ∂Σ ⊆ ∂M is free boundary
minimal with respect to the metric g whenever it has zero mean curvature,
and TΣ is orthogonal to T∂M at every point of ∂Σ.

Free boundary minimal surfaces are precisely the critical points of the
area functional for surfaces in M with boundary in ∂M . These surfaces
were already studied in the nineteenth century, notably with Schwarz’s work
on Gergonne’s problem (c.f., for example, [6]), and have since attracted
the interest of numerous mathematicians, including Courant [4], Lewy [15],
Meeks and Yau [17], Smyth [21], Nitsche [18], Ros [19], and Fraser and
Schoen [8, 9], to name but a few.

The problem of existence of free boundary minimal disks in domains of
R3 diffeomorphic to the three-ball was studied in the mid-eighties by Struwe
[22], using the α-pertubed method of Sacks-Uhlenbeck for parametric sur-
faces, and by Grüter and Jost [12], using several ingredients from geometric
measure theory, including the min-max theory of Almgren-Pitts. In par-
ticular, Grüter and Jost showed the existence of properly embedded free
boundary minimal disks inside strictly convex subsets of R3. In both cases,
the techniques used leave open the problem of existence of free boundary
minimal surfaces of non-trivial prescribed topology. We prove existence for
the case of annuli:

Theorem 1.1. If K ⊆ R3 is a compact, strictly convex subset of R3 with
smooth boundary, then there exists a properly embedded free boundary min-
imal annulus Σ in K.

Remark 1.2. In fact, the techniques of this paper also recover the result [12]
of Grüter and Jost (c.f. Remark 6.22).
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We actually prove a more general existence result for free boundary min-
imal annuli inside suitably convex subsets of three-manifolds with nonneg-
ative Ricci curvature, of which Theorem 1.1 is an immediate consequence.
Existence results for free boundary minimal surfaces in general Riemann-
ian manifolds have appeared in the literature before. Recently, in [16], us-
ing Almgren-Pitts’ min-max theory, Li proved a general existence result
for properly embedded free boundary minimal surfaces in arbitrary three-
manifolds with boundary. This result assumes no curvature conditions on
the boundary and, in addition, using recent ideas from [5] of De Lellis and
Pellandini, provides genus bounds for the resulting surfaces. In particular,
whenever the ambient manifold is diffeomorphic to the three-ball, Li’s result
implies the existence of an oriented free boundary minimal surface of genus
zero, but it gives no information on the number of connected components of
the boundary. We refer the interested reader to the introduction of [16] for
a discussion on other existence results for free boundary minimal surfaces.
Our general result can be stated as follows:

Theorem 1.3. If (M, g) is a smooth, compact, functionally strictly convex
Riemannian three-manifold of nonnegative Ricci curvature, then there exists
a properly embedded annulus Σ ⊆ M which is free boundary minimal with
respect to g.

We clarify the notion of convexity used here. (M, g) is said to be function-
ally strictly convex whenever there exists a smooth function f : M → [0, 1]
which is strictly convex with respect to the metric g and whose restriction
to ∂M is constant and equal to 1 (recall that f is said to be strictly convex
with respect to a given metric whenever its Hessian is everywhere positive
definite). Functional strict convexity may be thought of as a barrier condi-
tion in the sense of PDEs. In addition, if M is an open subset of R3 with
smooth boundary, and if δ is the Euclidean metric over R3, then (M, δ) is
functionally strictly convex if and only if it is strictly convex in the usual
sense. It follows that Theorem 1.1 is an immediate consequence of Theorem
1.3.

In more general manifolds, functional strict convexity trivially implies
strict convexity in the usual sense although the converse does not in gen-
eral hold. The interest of this concept follows from the observation (c.f.
Proposition 2.1, below) that the space of functionally strictly convex mani-
folds is connected, which is a necessary prerequisite for the degree theoretic
techniques of this paper to be applied. Although other connected spaces of
manifolds with locally strictly convex boundary can be constructed (using,
for example, [11]), we feel the condition of functional strict convexity is the
simplest.

1.2. Idea of the proof. Theorem 1.3 is proven using a differential topo-
logical technique inspired by the work [25] of White. We reason as follows.
Let Σ be a compact oriented surface with boundary. Let E be the space of
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equivalence classes [e] of embeddings e : Σ→M modulo reparametrisation.
Let (gx)x∈X be a smooth family of Riemannian metrics with positive Ricci
curvature parametrised by a compact, connected, finite-dimensional mani-
fold X (possibly with non-trivial boundary). Let Z(X) ⊆ X × E to be the
set of all pairs (x, [e]) such that e is free boundary minimal with respect
to gx, and let Π : Z(X) → X be the projection onto the first factor. Π is
trivially continuous, and, by the compactness result of [7], Π is proper.

If Z(X) were a finite-dimensional differential manifold with the same
dimension as X and if, moreover, Π were to map ∂Z(X) into ∂X, then it
would follow from classical differential topology (c.f. [13]) that Π would have
a well-defined Z2-valued mapping degree. If, in addition, both X and Z(X)
were shown to be orientable, then this degree could be taken to be integer-
valued. Furthermore, this mapping degree would be independent of X, and
since knowing Π−1(Y ) for any subset Y of X amounts to knowing the space
of free boundary minimal embeddings for any given metric, it would then
yield the sort of existence result that we require. We show that, although
Z(X) might not necessarily have the aforementioned properties, X may be

embedded into a higher dimensional manifold X̃ for which these properties
do indeed hold. The proof of Theorem 1.3 for metrics with positive Ricci
curvature follows by showing this degree to be non-zero when Σ is topologi-
cally an annulus. From it, by a perturbative analysis, we finish the proof to
include metrics with nonnegative Ricci curvature.

1.3. Overview of the paper. The reader familiar with the work [25] of
White will notice both similarities and differences to his approach. The key
observation in the current setting is that the Jacobi operator J := (Jh, Jθ),
which measures the perturbations of the mean curvature and of the bound-
ary angle resulting from a normal perturbation of the embedding, actually
defines a Fredholm mapping of Fredholm index zero (Proposition 2.19). This
brings free boundary problems within the scope of White’s analysis with
minimal technical modifications. We have nonetheless chosen to further
adapt White’s ideas in two respects, which, although not strictly necessary
in the current context, will be of use, we believe, for future applications.
First, we have chosen a non-variational approach, treating free boundary
minimal surfaces as zeroes vector fields over infinite-dimensional manifolds
rather than as critical points of functionals. This allows one to study not
only free boundary minimal surfaces (which are variational), but also other,
non-variational, notions of curvature such as, for example, extrinsic curva-
ture. Second, wheras White studies the problem by constructing infinite
dimensional Banach manifolds of solutions, we focus instead on finite di-
mensional sections of the solution space. This allows one to treat a larger
class of functionals over the solution space (such as, for example, the weakly
smooth functionals introduced by the third author in [20]). Finally, the ex-
plicit calculation of the degree carried out in Section 6 requires considerable
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modifications of White’s argument in order to adapt it to the very different
geometrical setting studied here.

The paper is structured as follows. We underline that we have preferred
to sacrifice brevity in the interests of clarity and of obtaining a relatively
self-contained text.

1.3.1. Section 2. We construct the framework to be used throughout the
paper. We introduce the space E of reparametrisation equivalence classes
of embeddings, e, of a given surface, Σ, into M such that e(∂Σ) ⊆ ∂M .
For any finite dimensional family, X := (gx)x∈X , of metrics, we define the
solution space Z(X) as outlined above, and we define Π : Z(X) −→ X to
be the projection onto the first factor. At this stage, we are only interested
in E and Z(X) as topological spaces with the obvious topologies: more
sophisticated structures will be introduced in Section 3. It follows that Π
is continuous and, by recent work of Fraser and Li [7], Π is also proper.
The formal construction of a Z-valued mapping degree of Π and its explicit
calculation in certain cases constitute the main aims of this paper.

The remainder of Section 2 is devoted to studying the infinitesimal theory
of extremal embeddings. In Section 2.2, we calculate the Jacobi operator
J := (Jh, Jθ) of an embedding, where Jh is the usual Jacobi operator of
mean curvature, and Jθ measures the perturbation of the boundary angle
arising from a normal perturbation of the embedding. In Section 2.3, we
calculate the perturbation operator P := (Ph,Pθ) of an embedding, which
measures the perturbations of mean curvature and of the boundary angle
arising from perturbations of the ambient metric. In Section 2.4 we review
the general theory of elliptic operators, and in Section 2.5 we show that J
defines a Fredholm mapping of Fredholm index zero. As indicated above,
this key observation allows us to extend the degree theory of [25] to the
current context with minimal technical difficulty.

1.3.2. Section 3. We introduce the local theory of extremal embeddings.
In Section 3.1 we introduce “graph charts” which map open subsets of E
homeomorphically onto open subsets of C∞(Σ). Viewing these charts as
coordinate charts, we treat E formally as an infinite dimensional manifold.
Within a given graph chart, we define the mean curvature and boundary
angle functionals, H and Θ respectively. The zero-set of the pair (H,Θ)
coincides over each chart with the solution space Z(X). This makes Z(X)
amenable to standard functional analytic techniques. In Section 3.2, we
review the theories of Hölder spaces and of smooth maps over Banach spaces.
In Section 3.3, we study the relationship between the functionals H and Θ
and the perturbation and Jacobi operators introduced in Sections 2.2 and
2.3.

It is important to note the care required in carrying out this construction
as, in contrast to the usual theory of differential manifolds, the transition
maps between graph charts are not smooth. Fortunately, this does not
present a serious problem in the current context, since it follows from elliptic
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regularity, as we shall see in Section 4, that the restrictions of the transition
maps to the solution space are indeed smooth, justifying the differential
manifold formalism used.

1.3.3. Section 4. We show how to extend X so that Z(X) carries the struc-
ture of a smooth compact oriented finite-dimensional differential manifold,
possibly with boundary. In Section 4.1, we extend X so that the functional
(H,Θ) defined over each chart in Section 3.1 has surjective derivative at
every point of Z(X). In Section 4.2, we use ellipticity together with the
standard theory of smooth functionals over Banach spaces to show that
Z(X) then restricts to a smooth, finite-dimensional submanifold of every
graph chart and that the transition maps are smooth, thus furnishing Z(X)
with the structure of a finite dimensional differential manifold. Finally, in
Section 4.3, we recall general results of functional analysis which allow us to
furnish Z(X) with a canonical orientation form, from which it immediately
follows that Π has a well-defined, integer-valued mapping degree, as desired.

1.3.4. Section 5. In order to calculate the mapping degree of Π, we should
count algebraically the number of extremal embeddings for some generic,
admissable metric g. The problem is that generic metrics are hard to find
explicitely. In particular, in the case at hand, the natural candidate, being
the Euclidean metric in a closed ball, is clearly not generic. Indeed, generic
metrics are characterised by having finitely many extremal embeddings all
of which are non-degenerate, but in the Euclidean case, the action of the
rotation group yields a non-trivial continuum of extremal embeddings out
of every extremal embedding.

In this section, we study the technique used to calculate the degree in the
case where the metric g admits non-degenerate families of free boundary
minimal embeddings. These are smooth families with the property that the
Jacobi operator of each element of the family has kernel of dimension equal
to that of the family itself. In Section 5.1, we show that if [e] lies in a non-
degenerate family, then for any infinitesimal perturbation δg of the metric,
there exists a (more or less) unique infinitesimal perturbation δe of e such
that the mean curvature of e + δe lies in a fixed, finite-dimensional space
which we identify with the cotangent space of the family at [e]. In Section
5.2, by perturbing the whole family we therefore obtain a smooth section of
the cotangent bundle of this family whose zeroes correspond to free bound-
ary minimal embeddings for the perturbed metric. In Sections 5.3 and 5.4,
we show moreover how to choose the metric perturbation in such a manner
that this section has non-degenerate zeroes, which in turn correspond to
free boundary minimal embeddings with non-degenerate Jacobi operators.
In short, upon perturbing the metric, we transform a non-degenerate family
into a finite set of non-degenerate free boundary minimal embeddings cor-
responding to the zeroes of a generic section of the cotangent space of this
family thus allowing us to determine its contribution to the degree.
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1.3.5. Section 6. We apply the degree theory to the current setting in order
to prove Theorem 1.3. Since, for topological reasons, the theory is developed
for metrics of positive Ricci curvature, in Section 6.1 we use perturbation
techniques to study rotationally symmetric free boundary minimal surfaces
inside closed, strictly convex, geodesic balls in the three-dimensional sphere
S3(t). In Sections 6.2 and 6.3, by determining the dimensions of the kernels
of the Jacobi operators of rotationally symmetric surfaces, we show that
they define non-degenerate families of free boundary minimal embeddings,
so that the results of Section 5 may be applied in order to calculate their
contribution to the mapping degree. In Section 6.4, we adapt White’s sym-
metry argument (c.f. [25]) to the current context, showing that even though
there may exist other extremal embeddings, their contribution to the map-
ping degree is zero. Finally, combining these results yields the mapping
degree and the proof Theorem 1.3.

1.4. Acknowledgements. The authors would like to thank Fernando Codá
Marques, Harold Rosenberg and Richard Schoen for interesting and useful
discussions. During the preparation of this work, the first author was partly
supported by the National Science Foundation grant DMS-0932078, while
in residence at the Mathematical Sciences Research Institute during the Fall
of 2013, the second author was partly supported by a CNPq post-doctoral
fellowship at the IMPA, Rio de Janeiro, and the third author was partly
supported by a FAPERJ post-doctoral fellowship also at the IMPA, Rio de
Janeiro.

2. The Global and Infinitesimal Theories

2.1. The solution space. Let M be a compact three-manifold with bound-
ary and let Σ be a compact surface with boundary. Throughout the sequel,
we will assume that all manifolds are smooth and oriented. We denote by
Ê the space of all proper embeddings e : Σ → M with the properties that
e(∂Σ) ⊆ ∂M and e(∂Σ) = e(Σ)∩∂M . We furnish this space with the topol-

ogy of C∞ convergence. We say that two embeddings e, e′ ∈ Ê are equivalent
whenever there exists an orientation-preserving diffeomorphism α : Σ → Σ
such that e′ = e ◦ α. We denote by E the space of equivalence classes [e] of

elements e of Ê furnished with the quotient topology.
A metric g over M is said to be admissable whenever it has positive Ricci

curvature and there exists a smooth function f : M → [0, 1] which is strictly
convex with respect to g and whose restriction to ∂M is constant and equal
to 1. The following observation is key to developing a degree theory for free
boundary minimal surfaces:

Proposition 2.1. The space of admissable metrics over M is connected.

Proof. Let g be an admissable metric over M . Since f is strictly convex,
it then follows that f has a unique global minimum in M . Let p0 ∈ M be
this minimum, and without loss of generality, assume that f(x0) = 0. For
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all ε > 0, we define Mε = f−1([0, ε]). Let χ ∈ C∞0 (M) be a nonnegative
function equal to 1 near p0, and let (Φt)t∈[0,∞[ be the gradient flow of the

vector field X by X = −(1−χ)∇f/‖∇f‖2. Upon choosing the support of χ
in a sufficiently small neighbourhood of p0, Φ1−ε maps M diffeomorphically
into Mε. In other words, (M, g) lies in the same connected component as
(Mε, g) for all ε > 0.

Let d : M → R be the distance in M to p0. Let r > 0 be such that the
closure of Br(p0) is contained in the interior of M and d2 is strictly convex
over this ball. For all t ∈ [0, 1], we define ft = (1− t)f + td2. If ε ∈]0, r2[ is
chosen such that f(x) > ε for all x ∈ ∂Br(p0). Then, for all t, f−1

t ([0, ε]) is
a strictly convex subset of M contained inside Br(p0). Now let (Φt)t∈[0,1] be

the gradient flow of the vector field Xt = −(1−χ)(∂tft)∇ft/‖∇ft‖2. Again,
upon choosing the support of χ in a sufficiently small neighbourhood of p0,
Φt maps Mε diffeomorphically into f−1

t ([0, ε]). In other words, (M, g) lies in
the same connected component as (B√ε(p0), g). Moreover, upon rescaling
g, we may suppose that ε = 1.

We now identify the tangent space to M at p0 with R3. Upon pulling back
through the exponential map, we view g as a metric over R3. For t ∈ [0, 1],
we define the metric gt by gt(x) = g(tx). Observe that g0 is the Euclidean
metric. Without loss of generality, we may suppose that the metric gt is
sufficiently close to the Euclidean metric that the function h := ‖x‖2 is
strictly convex with respect to this metric. Denote gt,s := e−2shgt and let
Rct,s be the Ricci-curvature tensor of this metric. Then:

∂

∂s

∣∣∣∣
s=0

Rct,s = (n− 2)Hessh+ ∆hgt.

Since h is strictly convex with respect to gt, and since gt has positive Ricci
curvature for t > 0, there exists ε > 0 such that for all (t, s) ∈ [0, 1] × [0, ε]
such that (t, s) 6= (0, 0), gt,s also has positive Ricci curvature. In particular,
(M, g) lies in the same connected component as (B1(0), g0,s), for all small s >
0, and the space of admissable metrics is therefore connected, as desired. �

With X a compact, finite-dimensional manifold possibly with non-trivial
boundary, let g : X × M → Sym+ TM be a smooth function with the
property that gx := g(x, ·) is an admissable metric for all x ∈ X. We
henceforth refer to the pair (X, g) simply by X. We define Z(X) ⊆ X × E
to be the set of all pairs (x, [e]) such that e is a free boundary minimal
embedding with respect to the metric gx. We describe Z(X) as the zero set
of a functional. Indeed, for (x, [e]) ∈ X×E we denote by N : Σ −→ TM the
unit normal vector field over e with respect to gx which is compatible with
the orientation and we denote by A : Σ −→ End(TΣ) and H : Σ −→ R the
corresponding shape operator and mean curvature respectively. That is, at
each point p ∈ Σ:

H = trA.
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We denote by ν the outward-pointing unit normal vector field over ∂M with
respect to gx, and we denote by Θ : ∂Σ −→ R the boundary angle that e(Σ)
makes with ∂M with respect to this metric. That is, at each p ∈ ∂Σ:

Θ = g (ν,N) .

Remark 2.2. The geometric quantities we have just defined depend on (x, e).
To avoid confusion, we often explicit this dependence in our notation by
writing Nx,e, Hx,e,Θx,e, etc.

We define the solution space Z(X) ⊆ X × E by:

Z(X) = {(x, [e]) ∈ X × E | Hx,e = 0, Θx,e = 0} ,
and we define Π : Z(X)→ X to be the projection onto the first factor. Since
both Hx,e and Θx,e are equivariant under reparametrisation, this definition
is consistent.

The main objective of this paper is to construct a Z-valued mapping de-
gree for the projection Π. A key element of this construction is the following
compactness result:

Theorem 2.3 (Fraser-Li [7]). Let (gm)m∈N be a sequence of metrics over
M of nonnegative Ricci curvature. Let (em)m∈N : Σ −→M be a sequence of
embeddings such that, for all m, em is a free boundary minimal embedding
with respect to the metric gm. If there exists a metric g∞ over M towards
which (gm)m∈N converges in the C∞ sense, and if ∂M is strictly convex with
respect to g∞, then there exists an embedding e∞ : Σ → M and a sequence
(αm)m∈N : Σ→ Σ of diffeomorphisms of Σ such that (em ◦ αm)m∈N subcon-
verges towards e∞ in the C∞ sense. In particular, e∞ is a free boundary
minimal embedding with respect to the metric g∞.

In our current framework, this is restated (in slightly weaker form) as follows:

Proposition 2.4. Let Π : X × E −→ X be the projection onto the first
factor. Then the restriction of Π to Z(X) is proper.

If Z(X) were a finite-dimensional differential manifold with boundary of
dimension equal to that of X and if, moreover, Π were to map ∂Z(X) into
∂X, then it would follow from classical differential topology that Π has a
well-defined Z2-valued mapping degree. Furthermore, this degree would be
independent of X, and if, in addition, both X and Z(X) were orientable,
then it could be taken to be integer-valued. The main objective of Sections
3 and 4 below is to show that although Z(X) does not necessarily have the
aforementioned properties, X may be embedded into a higher dimensional
manifold X̃ for which these properties actually hold. This is summarised in
Theorem 4.12 of Section 4. The existence result of Theorem 1.3 then follows
upon showing this degree to be non-zero in the case treated there. To this
end, we require in particular Theorem 5.15, which determines how smooth,
non-degenerate families of solutions contribute to the degree. Theorems
4.12 and 5.15 together constitute the main results of Sections 3, 4 and 5,
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and the first-time reader may skim the rest, passing directly to Section 6
after completing Section 2 without losing much understanding.

We devote the remainder of this section to studying the infinitesimal
theory of minimal embeddings with free boundary. Our goal is to prove
that the Jacobi operator J := (Jh, Jθ), which measures the perturbation of
mean curvature as well as the perturbation of the boundary angle resulting
from a normal perturbation of the embedding, defines a Fredholm mapping
of Fredholm index zero.

2.2. Jacobi operators. Given (x, [e]) ∈ Z(X), we denote by Jh : C∞(Σ)→
C∞(Σ) and by Jθ : C∞(Σ) → C∞(∂Σ) respectively the Jacobi operator of
mean curvature of e and the Jacobi operator of the boundary angle of e with
respect to gx. That is, Jh and Jθ are defined such that if f : (−δ, δ)×Σ −→M
is a smooth mapping with the properties that e = f(0, ·), et := f(t, ·) is an

embedding for all t, and ∂f
∂t

∣∣
t=0

= ϕN for some ϕ ∈ C∞(Σ), then

Jhϕ =
∂

∂t

∣∣∣∣
t=0

Hx,et , and Jθϕ =
∂

∂t

∣∣∣∣
t=0

Θx,et .

We denote by Ric the Ricci curvature tensor of gx and by ∆ the Laplacian
operator of e∗gx over Σ. We recall the second variation formula for the area:

Lemma 2.5. Given (x, [e]) ∈ Z(X), for all ϕ ∈ C∞(Σ):

Jhϕ = −∆ϕ−
(
Ric(N,N) + ‖A‖2

)
ϕ.

Remark 2.6. In particular, Jh is a second-order linear elliptic partial differ-
ential operator.

Let II denote the shape operator of ∂M with respect to gx and the outward
pointing normal ν. Since (x, [e]) ∈ Z(X), along the boundary points of Σ,
the vector N lies in the tangent space of ∂M , and we define κ : ∂Σ −→ R
by:

κ = II(N,N).

Moreover, the vector field ν ◦ e coincides with the conormal to e(∂Σ) inside
e(Σ) with respect to gx, and we therefore define the operator ∂ν : C∞(Σ) −→
C∞(∂Σ) to be the derivative in the direction of the vector field ν ◦ e. That
is, for all f ∈ C∞(Σ) and at each p ∈ ∂Σ:

∂νf = 〈e∗ν, df〉.

The following result is proven in [1]:

Proposition 2.7. Given (x, [e]) ∈ Z(X), for all ϕ ∈ C∞(Σ):

Jθϕ = κϕ ◦ ε− ∂νϕ,

where ε : ∂Σ→ Σ is the canonical embedding.
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Again, the geometric quantities we have just defined clearly depend on
(x, [e]). To avoid confusion, we often explicit this dependence in our nota-
tion. In particular, we denote Jx,e := (Jhx,e, J

θ
x,e), and we refer to Jx,e as the

Jacobi operator of [e] with respect to the metric gx.

2.3. Pertubation operators. For all (x, [e]) ∈ Z(X), we denote by Phx,e :

TxX → C∞(Σ) and by Pθx,e : TxX −→ C∞(∂Σ) respectively the perturbation
operator of mean curvature of e and the pertubation operator of the boundary
angle of e with respect to changes in the metric. That is, if ξ ∈ TxX, if
x : (−δ, δ) → X is a smooth curve such that x(0) = x and ẋ(0) = ξ, then
we define:

Phx,eξ =
∂

∂t

∣∣∣∣
t=0

Hxt,e, and Pθx,eϕ =
∂

∂t

∣∣∣∣
t=0

Θxt,e.

For all (x, [e]) ∈ Z(X), we denote Px,e :=
(
Phx,e,P

θ
x,e

)
, and we refer to Px,e

as the perturbation operator of e with respect to changes in the metric.
It turns out only to be necessary to consider conformal perturbations of

the ambient metric. Let g : (−δ, δ)×M → Sym+(TM) be a smooth family
of metrics. Denote gt := g(t, ·) for all t and g(0) = g. Let e : Σ → M be
an embedding and let N : Σ → TM be the normal vector field over e with
respect to g which is compatible with the orientation.

Proposition 2.8. If ġ(0) = ϕg for ϕ ∈ C∞(M), then:

∂

∂t

∣∣∣∣
t=0

Θgt,e = 0.

Proof. By definition, a perturbation of the metric which is conformal up to
order 1 leaves angles invariant up to order 1, and the result follows. �

The next proposition follows by direct calculation.

Proposition 2.9. If ġ(0) = ϕg for ϕ ∈ C∞(M), then:

∂

∂t

∣∣∣∣
t=0

Hgt,e = dϕ(N)− 1

2
ϕHg(0),e.

This yields the following surjectivity result:

Proposition 2.10. For all f ∈ C∞(Σ), there exists ϕ ∈ C∞(M) such that
if ġ(0) = ϕg, then:

∂

∂t

∣∣∣∣
t=0

Hgt,e = f.

Moreover, for any neighbourhood U of e(supp(f)) in M , ϕ may be chosen
such that supp(ϕ) ⊆ U .

Proof. We identify Σ with its image e(Σ) inM . We extend Σ and f smoothly
beyond ∂Σ. Let d be the signed distance function to Σ in M with respect
to the metric g. Let π be the closest point projection onto Σ with respect
to the metric g. There exists δ > 0 such that the restrictions of d and π
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to d−1(−δ, δ)∩M are smooth. Let χ ∈ C∞0 (R) be supported in (−δ, δ) and
equal to 1 near 0. We define:

ϕ = (χ ◦ d)(f ◦ π).

Observe that, restricted to Σ, ϕ = 0 and dϕ(N) = f . It follows then
from Proposition 2.9 that if ġ(0) = ϕg, then ∂

∂t

∣∣
t=0

Hgt,e = f . Moreover,
upon reducing δ if necessary, we may suppose that supp(φ) ⊆ U and this
completes the proof. �

Proposition 2.10 is already sufficient for the proof of Theorem 4.2 of Sec-
tion 4. However, the following refinement will prove useful:

Proposition 2.11. Let f1, ..., fm ∈ C∞(Σ) be a basis for Ker(Jg,e). Let p
be a point in Σ and let U be a neighbourhood of e(p) in M . Then, there
exists functions ϕ1, ..., ϕm ∈ C∞(M), all supported in U , such that for all
1 6 i, j 6 m, if g(t) is a path of metrics with ġ(0) = ϕig, where g(0) = g,
then: 〈

∂

∂t

∣∣∣∣
t=0

Hgt,e, fj

〉
= δij ,

where 〈·, ·〉 is the L2 inner product with respect to e∗g over Σ.

Remark 2.12. We will see in the following section that Ker(Jg,e) is finite
dimensional.

Proof. We identify Σ with its image e(Σ) ⊆M . Let r : C∞(Σ) −→ C∞(Σ∩
U) be the restriction mapping. For any vector p := (p1, ..., pm) of points in
Σ ∩ U , we define the mapping Lp : C∞(Σ ∩ U)→ Rm by:

Lp(f) = (f(p1), ..., f(pn)).

Since Jhg,e(fk) = 0 for all 1 6 k 6 m, and bearing in mind that Jhg,e is
a second-order elliptic linear partial-differential operator, it follows from
Aronszajn’s unique continuation theorem (c.f. [2]) that r restricts to a linear
isomorphism from Ker(Jg,e) to an m-dimensional subspace of C∞(Σ ∩ U).
There therefore exists a vector p such that Lp defines a linear isomorphism
from Ker(Jg,e) to Rm.

Observe that, for all 1 6 k 6 m:

Lp(f)k = 〈f, δpk〉
where δpk is the Dirac-delta distribution supported at k. For any vector
ψ := (ψ1, ..., ψm) of smooth functions in C∞0 (Σ∩U), we define the mapping
Lψ : C∞(Σ ∩ U)→ Rm such that for all 1 6 k 6 m:

Lψ(f)k = 〈f, ψk〉
Observe that as ψ converges to (δp1 , ..., δpm) in the distributional sense, Lψ
converges to Lp. There therefore exists a vector ψ such that Lψ is invertible.
We may suppose, moreover, that for all 1 6 k 6 m, ψk is supported in
Σ∩U . In addition, upon replacing each of ψ1, ..., ψn by an appropriate
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linear combination of these functions if necessary, we may suppose that for
all 1 6 i, j 6 m:

〈ψi, fj〉 = δij .

By Proposition 2.10, there exist functions ϕ1, ..., ϕm ∈ C∞(M) such that
for all 1 6 k 6 m, supp(ϕk) ⊆ U , and if ġ(0) = ϕkg, then ∂

∂t

∣∣
t=0

Hgt,e = ψk.
Thus, for all 1 6 i, j 6 m, if (∂tg)0 = ϕpg0, then:〈

∂

∂t

∣∣∣∣
t=0

Hgt,e, fj

〉
= δij ,

as desired. �

2.4. General elliptic theory. For λ ∈ [0,∞] \N, that is, λ = k+α where
k ∈ N∪{∞} and α ∈ (0, 1), and for any compact manifold Ω, we denote
by Cλ(Ω) the space of λ-times Hölder differentiable functions over Ω. For
λ < ∞, we denote by ‖ · ‖λ the Cλ-Hölder norm of Cλ(Ω) and we denote
by C∗,λ(Ω) the closure of C∞(Ω) in Cλ(Ω). We remark that C∗,λ(Ω) is
separable, but Cλ(Ω) is not (c.f. [24]).

For ϕ ∈ C∞(∂Ω), we define the Robin operator Rϕ : C∗,λ+1(Ω) −→
C∗,λ(∂Ω) such that, for all f ∈ C∗,λ+1(Ω):

Rϕ(f) = ϕ(f ◦ ε) + ∂νf,

where ε : ∂Ω −→ Ω is the canonical embedding and ∂νf is the derivative
of f in the outward pointing conormal direction. For all λ ∈ [0,∞] \ N, we

define C∗,λ+1
rob (Ω) to be the kernel of Rϕ in C∗,λ+1(Ω).

Proposition 2.13. If ∆ is the Laplacian over Ω, then for all ξ, η ∈ C∗,λ+2
rob (Ω):ˆ

Ω
η∆ξ dV =

ˆ
Ω
ξ∆η dV,

where dV is the volume form of Ω.

Proof. Since ξ, η ∈ C∗,λ+2
rob (Ω), we have η∂νξ − ξ∂νη = 0 along ∂Ω, and the

result follows by Stokes’ Theorem. �

We now recall some basic elliptic theory. Let ∆ be the Laplacian of Ω.

Proposition 2.14. Id−∆ defines a bijective map from C∞rob(Ω) into C∞(Ω).

Proof. For all k ∈ N, let Hk(Ω) be the Sobolev space of functions over Ω
whose distributional derivatives up to and including order k are of type
L2. For all k, by the Sobolev Trace Formula, Rϕ defines a continuous lin-

ear mapping from Hk+2(Ω) into Hk+1/2(∂Ω) from which it follows that

Hk+2
rob (Ω) := Ker(Rϕ) is closed in Hk+2(Ω) and is therefore also a Hilbert

space. By Exercise 3 of Section 5.7 of [23], for all k ∈ N, Id−∆ defines an

invertible linear mapping from Hk+2
rob (Ω) into Hk(Ω). However:

C∞rob(Ω) = ∩
k>0

Hk+2
rob (Ω).
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In particular Id−∆ has trivial kernel in C∞rob(Ω) and injectivity follows. For
surjectivity, choose f ∈ C∞(Ω). Since:

C∞(Ω) = ∩
k>0

Hk(Ω),

for all k, f ∈ Hk(Ω) and so there exists a unique function gk ∈ Hk+2
rob (Ω)

such that (Id − ∆)gk = f . However, for l > k, gl ∈ H l+2
rob (Ω) ⊆ Hk+2

rob (Ω),
and so by uniqueness gl = gk. In particular:

g := gk ∈ ∩
k>0

Hk+2
rob (Ω) = C∞rob(Ω),

and surjectivity follows. �

Proposition 2.15. (Id −∆, Rϕ) defines a bijective map from C∞(Ω) into
C∞(Ω)× C∞(∂Ω).

Proof. Choose f ∈ Ker(Id −∆, Rϕ). In particular, f ∈ C∞rob(Ω) and so, by
Proposition 2.14, f = 0 and injectivity follows. Choose (u, v) ∈ C∞(Ω) ×
C∞(∂Ω). Let g ∈ C∞(Ω) be such that Rϕ(g) = v. By Proposition 2.14
again, there exists f ∈ C∞rob(Ω) such that:

(Id−∆)f = u− (Id−∆)g.

We see that (Id−∆, Rϕ)(f+g) = (u, v) and surjectivity follows, completing
the proof. �

Proposition 2.16. (Id−∆, Rϕ) defines an invertible, linear mapping from

C∗,λ+2(Ω) into C∗,λ(Ω)× C∗,λ+1(∂Ω).

Proof. Denote λ = k + α. Choose f ∈ Ker(Id −∆, Rϕ). As in the proof of

Proposition 2.14, since f ∈ Hk+2
rob (Ω), f = 0, and it follows that (Id−∆, Rϕ)

is injective. By the global Schauder estimates for the oblique derivative
problem (Theorem 6.30 of [10]), there exists C > 0 such that, for all f ∈
C∗,λ+2(Ω):

‖f‖λ+2 6 C(‖f‖L∞ + ‖(Id−∆)f‖λ + ‖Rϕ(f)‖λ+1),

from which we deduce in the usual manner that the image of (Id −∆, Rϕ)

in C∗,λ(Ω)× C∗,λ+1(∂Ω) is closed. However:

C∞(Ω)× C∞(∂Ω) = (Id−∆, Rϕ)(C∞(Ω)) ⊆ (Id−∆, Rϕ)(C∗,λ+2(Ω)),

and since C∞(Ω) × C∞(∂Ω) is a dense subset of C∗,λ(Ω) × C∗,λ+1(Ω), it
follows that Id−∆ is surjective. In particular, it is bijective, and the result
now follows by the Closed Graph Theorem. �

2.5. The elliptic theory of Jacobi operators. Fix (x, [e]) ∈ X × E .
To simplify notation, we will drop the (x, [e]) dependence of the geometric
quantities and operators for the remainder of this section.

We define L : C∗,λ+2(Σ)→ C∗,λ(Σ) such that, for all ϕ ∈ C∗,λ+2(Σ):

Lϕ = −ϕ− (Ric(N,N) + ‖A‖2)ϕ,
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so that, by Lemma 2.5:

Jh = (Id−∆) + L.

Proposition 2.17. For all ξ, η ∈ C∗,λ+2(Σ) such that Jθξ = Jθη = 0:ˆ
Σ
ηJhξ dV =

ˆ
Σ
ξJhη dV,

where dV is the volume form of the metric e∗g.

Proof. Trivially, for all ξ, η ∈ C∗,λ+2(Σ):ˆ
Σ
ηLξ dV =

ˆ
Σ
ξLη dV,

and the result now follows by Proposition 2.13. �

Proposition 2.18. For all (x, [e]) ∈ X × E, and for all λ ∈ [0,∞[\N, if
ϕ ∈ C∗,λ+2(Σ) and Jϕ ∈ C∞(Σ)× C∞(Σ), then ϕ ∈ C∞(Σ).

Proof. Observe that:(
(Id−∆)ϕ, Jθϕ

)
= Jϕ− (Lϕ, 0) ∈ C∗,λ+2(Σ)× C∗,λ+3(∂Σ).

Thus, by Proposition 2.16, there exists ϕ′ ∈ C∗,λ+4(Σ) such that:(
(Id−∆)ϕ′, Jθϕ′

)
=
(

(Id−∆)ϕ, Jθϕ
)
.

By uniqueness, ϕ = ϕ′, and so ϕ ∈ C∗,λ+4(Σ), and it follows by induction
that ϕ ∈ C∞(Σ), as desired. �

Proposition 2.19. For all (x, [e]) ∈ X × E, the operator J defines a Fred-
holm map from C∗,λ+2(Σ) to C∗,λ(Σ)×C∗,λ+1(∂Σ) of Fredholm index zero.
Moreover:

(1) if we denote by Kerλ+2(J) and Ker(J) the kernels of J in C∗,λ+2(Σ)
and C∞(Σ) respectively, then:

Kerλ+2(J) = Ker(J); and

(2) if we denote by Imλ+2(J) the image of J in C∗,λ(Σ) × C∗,λ+1(∂Σ),
then:

Imλ+2(J)⊥ = {(f, f ◦ ε) | f ∈ Ker(J)} ,
where the orthogonal complement is taken with respect to the L2

inner-product of e∗g.

Proof. Observe that (L, 0) maps C∗,λ+2(Σ) into C∗,λ+2(Σ) × C∗,λ+3(∂Σ).
In particular, it defines a compact mapping from C∗,λ+2(Σ) into C∗,λ(Σ)×
C∗,λ+1(∂Σ). However:

J = (Id−∆, Jθ) + (L, 0),
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Thus, by Proposition 2.16, J defines a compact perturbation of an invertible
mapping from C∗,λ+2(Σ) to C∗,λ(Σ)×C∗,λ+1(∂Σ) and is therefore Fredholm
of index zero. Moreover, by Proposition 2.18:

Kerλ+2(J) ⊆ Ker(J).

Since the reverse inclusion is trivial, these two spaces therefore coincide, and
(1) follows.

Denote by 〈·, ·〉 the L2 inner-product of e∗g. Bearing in mind Stokes’
Theorem, for all ϕ ∈ C∗,λ+2(Σ) and for all ψ ∈ Ker(J):

〈Jϕ, (ψ,ψ ◦ ε)〉 =

ˆ
Σ
ψJhϕdV +

ˆ
∂Σ
ψJθϕdV

=

ˆ
Σ
ϕ Jhψ dV +

ˆ
∂Σ
ϕ Jθψ dV

= 0.

It follows that {(f, f ◦ ε) | f ∈ Ker(J)} ⊆ Imλ+2(J)⊥. However, since J is
Fredholm of index zero, the dimension of the orthogonal complement of
Imλ+2(J) cannot exceed that of Ker(J). Thus:

{(f, f ◦ ε) | f ∈ Ker(J)} = Imλ+2(J)⊥,

and this completes the proof. �

3. The Local Theory

3.1. Local charts I: the smooth case. Let Y be a compact neighbour-
hood in X. Let e : Y × Σ → M be a smooth function such that, for all
y ∈ Y , ey := e(y, ·) is an element of Ê with the property that ey(Σ) meets
∂M orthogonally along ∂Σ with respect to gy. We refer to the triplet (Y, g, e)
simply by Y . The following result is useful for constructing local charts of
the space of embeddings with boundary in ∂M :

Theorem 3.1. There exists a neighbourhood U of the zero section in TM ,
and a smooth mapping E : U →M with the following properties:

(1) If Xp is a vertical vector over the point 0p ∈ TM , then:

DE(0p)(Xp) = Xp;

(2) If Xp ∈ U ∩Tp∂M , then:

E(Xp) ∈ ∂M.

Remark 3.2. We henceforth refer to E as the modified exponential map.

Proof. It sufficies to let E : U −→M be the exponential map of a Riemann-
ian metric on M with respect to which ∂M is totally geodesic. �

Let N : Y ×Σ→M be such that, for all y ∈ Y , Ny := N(y, ·) is the unit,
normal vector-field over ey with respect to gy which is compatible with the
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orientation. Define Φ̂Y : Y × C∞(Σ)→ C∞(Σ,M) such that, for all y ∈ Y ,
for all f ∈ C∞(Σ) and for all p ∈ Σ:

Φ̂Y (y, f)(p) = E(f(p)Ny(p)).

Proposition 3.3. There exists r > 0 such that for all y ∈ Y , if ‖f‖L∞ < r,

then Φ̂Y (y, f) is an element of Ê.

Proof. By definition of E, for all y ∈ Y , for all f ∈ C∞(Σ) and for all p ∈ Σ,

Φ̂Y (y, f)(p) ∈ M . For all y ∈ Y and for all p ∈ ∂Σ, since ey(Σ) meets ∂M
orthogonally with respect to the metric gy, Ny(p) is tangent to ∂M at ey(p).
Therefore, for all f ∈ C∞(Σ), the vector f(p)Ny(p) is also tangent to ∂M

at ey(p), and so, by definition of E, Φ̂Y (y, f)(p) ∈ ∂M . We consider the
mapping F : Y × Σ× R→M given by:

F (y, p, t) = E(tNy(p)).

For all y, we denote Fy := F (y, ·, ·). By definition of E, for all y ∈ Y and for
all p ∈ Σ, DFy is bijective at (p, 0). Since ey is an embedding for all y ∈ Y ,
there exists r > 0 such that, for all y ∈ Y , the restriction of Fy to Σ×(−r, r)
is also an embedding. For f ∈ C∞(Σ), we define f̂ ∈ C∞(Σ,Σ× R) by:

f̂(p) = (p, f(p)).

If ‖f‖L∞ < r, then f̂ trivially defines an embedding of Σ into Σ × (−r, r),
and so, for all y ∈ Y , Φ̂Y (y, f) = Fy ◦ f̂ defines an embedding of Σ into M .

We conclude that for all y ∈ Y and for ‖f‖L∞ < r, Φ̂Y (y, f) is an element

of Ê , as desired. �

We define UY ⊆ Y × C∞(Σ) by:

UY = {(y, f) | ‖f‖L∞ < r} ,
where r is as in Proposition 3.3. We define ΦY : UY → E and ΨY : UY →
Y × E such that for all (y, f) ∈ UY :

ΦY (y, f) = [Φ̂Y (y, f)], ΨY (y, f) = (y, [Φ̂Y (y, f)]).

Proposition 3.4. ΨY is injective.

Proof. Let (y, f), (y′, f ′) ∈ UY be such that ΨY (y, f) = ΨY (y′, f ′). In partic-
ular, y = y′ and ΦY (y, f) = ΦY (y′, f ′). There therefore exists an orientation-

preserving diffeomorphism α of Σ such that Φ̂Y (y, f ′) = Φ̂Y (y, f) ◦ α. Let

r be as in Proposition 3.3 and define f̂ , f̂ ′ : Σ −→ Σ × (−r, r) by f̂(p) =

(p, f(p)) and f̂ ′(p) = (p, f ′(p)). Define Fy : Σ × (−r, r) → M by Fy(p, t) =

E(tNy(p)). By definition of Φ̂Y :

Fy ◦ f̂ ◦ α = Φ̂Y (y, f) ◦ α = Φ̂Y (y, f ′) = Fy ◦ f̂ ′.
However, by definition of r, Fy is an embedding, and composing the above
relation with F−1

y yields, for all p ∈ Σ:

(α(p), (f ◦ α)(p)) = (f̂ ◦ α)(p) = f̂ ′(p) = (p, f ′(p)).
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It follows that α coincides with the identity and f ′ coincides with f , and
ΨY is therefore injective as desired �

Proposition 3.5. ΨY is an open mapping.

Proof. Choose (y, f) ∈ UY and let Ω be a neighbourhood of (y, f) in UY .
Denote (y, [e]) = ΨY (y, f) and let (ym, [em])m∈N ∈ Y × E be a sequence
converging to (y, [e]). In particular, (ym)m∈N converges to y. Let r be as in

Proposition 3.3. We define f̂ : Σ → Σ × (−r, r), by f̂(p) = (p, f(p)), and
F : Y ×Σ×(−r, r)→M , by F (y, p, t) = E(tNy(p)). By definition of r, Fy :=

F (y, ·, ·) is an embedding for all y ∈ Y . By definition, [e] = [Fy ◦ f̂ ]. Since
([em])m∈N converges to [e], there exists a sequence (αm)m∈N of orientation-

preserving diffeomorphisms of Σ such that (em◦αm)m∈N converges to Fy ◦ f̂ .
Bearing in mind that, in addition, (ym)m∈N converges to y, there exists
K ∈ N such that for all m > K, (em ◦ αm) takes values in Fym(Σ× (−r, r))
and that (F−1

ym ◦ em ◦ αm)m>K converges to f̂ .
Let π1 : Σ × R → Σ and π2 : Σ × R → R be the canonical projections

onto the first and second factors respectively. For all m > K, we denote:

βm = π1 ◦ F−1
ym ◦ em ◦ αm, f̃m = π2 ◦ F−1

ym ◦ im ◦ αm.

Observe that (βm)m>K converges to the identity mapping. Thus, upon
increasing K if necessary, we may assume that βm is a diffeomorphism for
all m and that (βm)−1

m>K also converges to the identity mapping. For all
m > K, we denote:

fm = f̃m ◦ β−1
m .

Since (f̃m)m>M converges to f , so too does (fm)m∈N. In particular, upon
increasing K further if necessary, we may assume that (ym, fm) ∈ Ω for all

m. However, for all m, em ◦ αm ◦ β−1
m = Φ̂Y (ym, fm). In other words:

(ym, [em]) = (ym,Φ(Y )(ym, fm)) = Ψ(Y )(ym, fm).

It follows that (ym, [em]) ∈ ΨY (Ω) for all m > K, and we conclude that ΨY

is an open mapping as desired. �

We denote the image ΨY (UY ) in Y × E by VY . By Proposition 3.5, VY
is an open subset of Y × E . By Proposition 3.4, ΨY defines a bijective
mapping from UY into VY , and by Proposition 3.5 again, this mapping is
a homeomorphism. We thus refer to the triplet (ΨY ,UY ,VY ) as the graph
chart of X × E over Y . When only e0 := e(x0) is a-priori given, we refer to
the triplet (ΨY ,UY ,VY ) as a graph chart of X × E about (x0, e0).

We define the mean curvature function HY : UY → C∞(Σ) and the bound-
ary angle function ΘY : UY → C∞(∂Σ) such that, for all (y, f) ∈ UY :

HY (y, f) = Hf,Φ̂Y (y,f), ΘY (y, f) = Θf,Φ̂Y (y,f).

We define ZY,loc ⊆ UY by:

ZY,loc = {(y, f) | HY (y, f) = 0,ΘY (y, f) = 0} ,
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and we call ZY,loc the local solution space in the graph chart. Observe in
particular that:

ZY,loc = Ψ−1
Y (Z(Y )∩VY ).

In later sections, where no ambiguity arises, we will often suppress Y and
simply write Φ̂, Φ, Ψ and so on respectively for Φ̂Y , ΦY and ΨY and so on.

3.2. Local charts II: The Hölder case. We consider families of Hölder
spaces parametrised by λ ∈ [0,∞) \ N (c.f. Section 2.4). Let r > 0 be as in

Proposition 3.3 and define Uλ+1
Y ⊆ Y × C∗,λ+1(Σ) by:

Uλ+1
Y = {(y, f) | ‖f‖L∞ < r} .

We denote by Êλ+1 the space of all C∗,λ+1 embeddings e : Σ → M with
the properties that e(∂Σ) ⊆ ∂M and e(∂Σ) = e(Σ) ∩ ∂M , and we define

Φ̂λ+1 : Uλ+1
Y −→ Êλ+1 such that for all (x, f) ∈ Uλ+1

Y and for all p ∈ Σ:

Φ̂λ+1
Y (y, f)(p) = E(f(p)Ny(p)).

We define the mean curvature function Hλ+2
Y : Uλ+2

Y → C∗,λ(Σ) such that,

for all (y, f) ∈ Uλ+2
Y :

Hλ+2
Y (y, f) = Hy,Φ̂λ+2

Y (y,f).

We recall that any function that may be constructed via a finite combi-
nation of addition, multiplication, differentiation and post-composition by
smooth functions defines a smooth function of Banach spaces. It follows in
particular that Hλ+2

Y defines a smooth function between two Banach spaces.

For each k, we denote by DkH
λ+2
Y the partial derivative of Hλ+2

Y with respect

to the k’th component in Uλ+2
Y ⊆ Y × C∗,λ+2(Σ). Observe, in particular,

that by definition of the Jacobi operator of mean curvature:

(3.1) D2H
λ+2
Y (x, 0) = Jhx,e.

We define the boundary angle function Θλ+1
Y : Uλ+1

Y → C∗,λ(∂Σ) such

that for all (y, f) ∈ Uλ+1
Y :

Θλ+1
Y (y, f) = Θy,Φ̂λ+1

Y (y,f).

Observe that Θλ+1
Y also defines a smooth function between two Banach

spaces. For each k, we denote by DkΘ
λ+1
Y the partial derivative of Θλ+1

Y

with respect to the k’th component in Uλ+1
Y ⊆ Y × C∗,λ+1(Σ). Observe, in

particular, that by definition of the Jacobi operator of the boundary angle:

(3.2) D2Θλ+1
Y (x, 0) = Jθx,e.

Finally, we denote Zλ+2
Y,loc ⊆ U

λ+2
Y by:

Zλ+2
Y,loc =

{
(y, f) | Hλ+2

Y (y, f) = 0, Θλ+2
Y (y, f) = 0

}
.

We recall the following classical result concerning the regularity of em-
beddings of prescribed mean curvature:
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Theorem 3.6. Let g be a smooth metric over M , let h : M → R be a smooth
function, and let Σ ⊆M be an embedded compact submanifold of M of class
Cλ+2 such that ∂Σ ⊆ ∂M and ∂Σ = Σ ∩ ∂M . If Σ meets ∂M orthogonally
along ∂Σ with respect to the metric g and if the mean curvature of Σ is at
every point p ∈ Σ equal to h(p), then Σ is smooth.

Proof. This follows by applying, for example, Schauder estimates [10]. �

Expressed in terms of graph charts, this yields:

Proposition 3.7. If (y, f) ∈ Uλ+2
Y is such that Hλ+2

Y (y, f) ∈ C∞(Σ), then
f ∈ C∞(Σ).

Proof. Denote h = Hλ+2
Y (y, f). Let r be as in Proposition 3.3. We define

f̂ : Σ→ Σ× (−r, r) such that for all p ∈ Σ, f̂(p) = (p, f(p)). We define the
mapping Fy : Σ× (−r, r)→M such that for all p ∈ Σ and for all t ∈ (−r, r):

Fy(p, t) = E(tNy(p)).

Recall that Fy is a diffeomorphism onto its image. Observe that Φ̃Y (y, f) =

Fy ◦ f̂ . In particular, f̂(Σ) is a Cλ+2 embedded submanifold of Σ× (−r, r)
such that f̂(∂Σ) meets ∂Σ × (−r, r) orthogonally along ∂Σ with respect

to the metric F ∗y gy. We define h̃ : Σ × (−r, r) → R by h̃(p, r) = h(p).

Observe that for all p ∈ Σ, the mean curvature of f̂(Σ) at f̂(p) is equal to

h(p) = (h̃ ◦ f̂)(p). It follows from Theorem 3.6 that f̂(Σ) is smooth and

since f̂(Σ) is the graph of f , f is therefore also smooth, as desired. �

Proposition 3.8. For all λ ∈ [0,∞[\N:

Zλ+2
Y,loc = ZY,loc.

Proof. Choose λ ∈ [0,∞[\N. Choose (y, f) ∈ Zλ+2
Y,loc and denote e′ =

Φ̃λ+2
Y (y, f). By definition of H and Θ, e′ is free boundary minimal with

respect to gy. By Proposition 3.7, f is smooth, and so (y, f) ∈ ZY,loc, from
which it follows that:

Zλ+2
Y,loc ⊆ ZY,loc.

The converse inclusion is trivial, and the result follows. �

3.3. Conjugations. We finish this section by describing the relationship
between functionals H and Θ and the perturbation and Jacobi operators
introduced in Sections 2.2 and 2.3. To this end, let (y, f) ∈ ZY,loc and

denote e′ = Φ̂Y (y, f). We define the vector field Vy,f over e′ such that, for
all p ∈ Σ:

Vy,f (p) = ∂tΦ̂Y (y, f + t)(p)|t=0.

We define the function λy,f : Σ→ R by:

λy,f = gy(Ny,e′ , Vy,f ).

Observe that for all (y, f) ∈ ZY,loc, both Vy,f and λy,f are smooth and,
moreover, Vy,f is at no point tangent to e′(Σ), from which it follows that



20 DAVI MAXIMO, IVALDO NUNES, AND GRAHAM SMITH

λy,f never vanishes. The next proposition follows immediately from the
definition of P:

Proposition 3.9. For all (y, f) ∈ ZY,loc = Zλ+2
Y,loc, and all ξy ∈ TyY :

D1H
λ+2
Y (y, f)(ξy) = Phy,e′(ξy), and D1Θλ+1

Y (y, f)(ξy) = Pθy,e′(ξy).

For the partial derivatives with respect to the second component:

Proposition 3.10. For all (y, f) ∈ ZY,loc = Zλ+2
Y,loc, and all ϕ ∈ C∗,λ+2(Σ):

D2H
λ+2
Y (y, f)(ϕ) = Jhy,e′(λy,fϕ).

Proof. Denote e′ = Φ̂Y (y, f). Let Y ′ be a compact neighbourhood of y
in Y and let (ΨY ′ ,UY ′ ,VY ′) be a graph chart of X × E about (y, e′) over
Y ′. Choose ϕ ∈ C∞(Σ). There exists δ > 0 and smooth mappings α :
(−δ, δ)×Σ→ Σ and ψ : (−δ, δ)×Σ→ R such that α(0, ·) coincides with the
identity mapping, for all t ∈ (−δ, δ), αt := α(t, ·) is a smooth diffeomorphism

of Σ and Φ̂Y ′(y, ψt) ◦ αt = Φ̂Y (y, f + tϕ), where ψt := ψ(t, ·). Observe
that, by injectivity of ΨY ′ , ψ0 = 0. Bearing in mind the definition of Vy,f ,

differentiating with respect to t yields D2Φ̂Y (y, f)(ϕ) = ϕVy,f . Likewise:

D2Φ̃Y ′(y, 0)((∂tψ)0) = (∂tψ)0Ny,e′ .

By the chain rule, this yields ϕVy,f = (∂tψ)0Ny,e′ +W , where W is tangent
to e(Σ). Taking the inner product with Ny,e′ therefore yields (∂tψ)0 =
ϕgy(Ny,e′ , Vy,f ) = λy,fϕ. Let HY ′ be the mean curvature function in the
chart (ΨY ′ ,UY ′ ,VY ′). Observe that, for all t:

HY ′(y, ψt) ◦ αt = HY (x, f + tϕ).

Observe, moreover, that since (y, f) ∈ Z(Y ), HY ′(y, 0) = HY (y, f) = 0.
Differentiating the above relation at t = 0 therefore yields:

D2HY (x, f)(ϕ) = D2HY ′(y, 0)((∂tψ)0)

= D2HY ′(y, 0)(λy,fϕ)

= Jhy,e′(λy,fϕ).

Since C∞(Σ) is a dense subset of C∗,λ+2(Σ), the result follows by continuity.
�

Proposition 3.11. For all (y, f) ∈ ZY,loc = Zλ+1
Y,loc, and for all ϕ ∈ C∗,λ+1(Σ):

D2Θλ+1
Y (y, f)(ϕ) = Jθy,e′(λy,fϕ).

Proof. Choose ϕ ∈ C∞(Σ). We use the same construction as in the proof
of Proposition 3.10. Let ΘY ′ be the boundary angle function in the chart
generated by Y ′. Observe that, for all t, ΘY ′(y, ψt) ◦ αt = ΘY (x, f + tϕ).
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Observe, moreover, that since (y, f) ∈ Z(Σ), ΘY ′(y, 0) = ΘY (y, f) = 0.
Differentiating this relation at t = 0 therefore yields:

D2ΘY (x, f)(ϕ) = D2ΘY ′(y, 0)((∂tψ)0)

= D2ΘY ′(y, 0)(λy,fϕ)

= Jθy,e′(λy,fϕ).

Once again, since C∞(Σ) is a dense subset of C∗,λ+1(Σ), the result follows
by continuity. �

4. The Differential Structure of the Solution Space

4.1. Extensions and surjectivity. Let X̃ be another smooth, compact,

finite-dimensional manifold. Let g̃ : X̃ ×M → Sym+(TM) be a smooth

function such that for all x ∈ X̃, the metric g̃x := g̃(x, ·) is admissable.

We say that X̃ is an extension of X whenever X ⊆ X̃, and the restriction
of g̃ to X coincides with g. In this section, we show the smoothness of

the solution space Z(X̃) for a suitable extension X̃ of X. Upon furnishing

X̃ with a canonical orientation, we then define a canonical orientation of

Z(X̃). In particular, this yields a canonical Z-valued mapping degree of

Π : Z(X̃)→ X̃ which we denote by Deg(Π). We will see in Sections 5.1 and
6.4 that it is also useful to define a local degree. We therefore denote for
any open subset Ω ⊆ E :

Z(X|Ω) := Z(X)∩(X × Ω), ∂ωZ(X|Ω) := Z(X)∩(X × ∂Ω),

Since Z(X|Ω) is an open subset of Z(X), we see that Z(X̃|Ω) is also smooth

for a suitable extension X̃ of X. If, in addition, ∂ωZ(X|Ω) = ∅, then we

may suppose also that ∂ωZ(X̃|Ω) = ∅, and, upon furnishing X̃ with an
orientation form, we obtain as before a Z-valued mapping degree of Π :

Z(X̃|Ω) → X̃, which we denote by Deg(Π|Ω). We recall from Section 3.3
that Px,e + Jx,e is conjugate to the derivative of (H,Θ) in any graph chart
about (x, e).

Proposition 4.1. If Px,e + Jx,e is surjective at (x, [e]) ∈ Z(X), then there
exists a neighbourhood Wx,e of (x, [e]) in Z(X) such that Px′,e′ + Jx′,e′ is
surjective for all (x′, [e′]) ∈W .

Proof. Suppose the contrary. There exists (x, [e]) ∈ Z(X) such that Px,e +
Jx,e is surjective and a sequence (xm, [em])m∈N ∈ Z(X) which converges to
(x, [e]) such that Pxm,em +Jxm,em is not surjective. Choose λ ∈ [0,∞[\N. By
Proposition 2.19, Px,e+Jx,e defines a surjective, Fredholm map from TxX×
C∗,λ+2(Σ) into C∗,λ(Σ) × C∗,λ+1(∂Σ). Observe that (Pxm,em , Jxm,em)m∈N
converges to Px,e + Jx,e in the operator norm. Since the property of being a
surjective, Fredholm map is open, there exists M ∈ N such that for all m >
M , Pxm,em + Jxm,em also defines a surjective map from TxmX × C∗,λ+2(Σ)

into C∗,λ(Σ)×C∗,λ+1(∂Σ). By Propositions 2.18 and 2.19, it follows that for
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all m >M , Pxm,em + Jxm,em defines a surjective map from TxmX × C∞(Σ)
into C∞(Σ)∩C∞(∂Σ), and this completes the proof. �

Theorem 4.2. For every open set Ω ⊆ E such that ∂ωZ(X|Ω) = ∅, there

exists an extension X̃ of X such that ∂ωZ(X̃|Ω) = ∅ and, for all (x, [e]) ∈
Z(X̃|Ω), the operator Px,e + Jx,e defines a surjective mapping from TxX̃ ×
C∞(Σ) into C∞(Σ)× C∞(∂Σ).

Proof. We define the mapping g̃ : C∞(M) × X ×M → Sym+(TM) such
that, for all f ∈ C∞(M) and for all x ∈ X:

g̃f,x := g̃(f, x, ·) = efgx.

Let E be a finite-dimensional, linear subspace of C∞(M) and for r > 0, let
Er be the closed ball of radius r about 0 in E with respect to some metric.
Observe that for sufficiently small r, and for all (f, x) ∈ Er ×X, the metric

g̃f,x is also admissable. We denote X̃ := Er ×X, and we will show that X̃
has the desired properties for suitable choices of E and r.

Choose (x, [e]) ∈ Z(X|Ω). We claim that there exists a finite-dimensional
subspace Ex,e ⊆ C∞(M) with the property that if E contains Ex,e, then:

C∞(Σ)× C∞(∂Σ) = Im(P(0,x),e) + Im(J(0,x),e).

Indeed, let f1, ..., fm be a basis of Ker(J(0,x),e). Let U be an open subset of
M intersecting e(Σ) non-trivially, let ϕ1, ..., ϕm be as in Proposition 2.11,
and let Ex,e ⊆ C∞(M) be the linear span of these functions. For 1 6 k 6
m, we think of ϕk as a tangent vector to Ex,e at 0 and we denote ψk =

Ph(0,x),e(ϕk). For all 1 6 k 6 m, by Proposition 2.8, Pθ(0,x),e(ϕk) = 0 and so

P(0,x),e(ϕk) = (ψk, 0). We denote by Fx,e the linear span of (ψ1, 0), ..., (ψm, 0)
in C∞(Σ)× C∞(∂Σ), and we claim that:

C∞(Σ)× C∞(∂Σ) ⊆ Fx,e + Im(J(0,x),e).

Indeed, let π be the orthogonal projection from C∞(Σ) × C∞(∂Σ) onto
Im(J(0,x),e) with respect to the L2 inner-product of e∗gx and denote π⊥ =

Id− π. By Proposition 2.19, Im(π⊥) is spanned by (fq, fq ◦ ε)16q6m, where
ε : ∂Σ → Σ is the canonical embedding. However, denoting by dVx,e the
volume form of e∗gx, and bearing in mind the definition of ψp, for all 1 6
p, q 6 m:

〈π⊥(ψp, 0), (fq, fq ◦ ε)〉 = 〈(ψp, 0), (fq, fq ◦ ε)〉 =

ˆ
Σ
ψpfq dVx,e = δpq.

The restriction of π⊥ to Fx,e therefore defines a linear isomorphism onto

Im(π⊥), and so:

Fx,e ∩ Im(J(0,x),e) = Fx,e ∩Ker(π⊥) = {0} .

Since the dimension of Fx,e is equal to the codimension of Im(J(0,x),e) in
C∞(Σ) × C∞(∂Σ), it follows that Fx,e and Im(J(0,x),e) are complementary
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subspaces so that:

C∞(Σ)× C∞(∂Σ) ⊆ Fx,e ⊕ Im(J(0,x),e),

as asserted. In particular, if E contains Ex,e, then J(0,x),e + P(0,x),e is sur-
jective.

We now conclude using compactness. By Proposition 4.1, there ex-
ists a neighbourhood W̃x,e of ((0, x), [e]) in Z(Ex,e,r × X|Ω) such that for

all ((f, x), [e′]) ∈ W̃x,e, P(f,x′),e′ + J(f,x′),e′ defines a surjective map from
T(f,x′)(Ex,e,r ×X) × C∞(Σ) onto C∞(Σ) × C∞(∂Σ). We consider Z(X|Ω)

as a subset of Z(Ex,e,r ×X) and we denote Wx,e = W̃x,e ∩Z(X|Ω). Thus,
if E contains Ex,e, then for all (x′, [e′]) ∈ Wx,e, P(0,x′),e′ + J(0,x′),e′ defines a
surjective mapping from T(0,x′)(Er ×X)× C∞(Σ) into C∞(Σ)× C∞(∂Σ).

Since ∂ωZ(X|Ω) = ∅, Z(X|Ω) is a closed subset of Z(X). By Proposition
2.4, Z(X) is compact and therefore so too is Z(X|Ω). There therefore exist
finitely many points (xk, [ek])16k6m such that:

Z(X|Ω) ⊆
m
∪
k=1

Wxk,ek .

We define E = Ex1,e1 + ...+Exm,em and we see that for all (x, [e]) ∈ Z(X|Ω),
P(0,x),e + J(0,x),e defines a surjective mapping from T(0,x)(E ×X) × C∞(Σ)
into C∞(Σ)×C∞(∂Σ). Finally, by compactness again, for sufficiently small

r we have ∂ωZ(X̃|Ω) = Z(Er × X)∩(Er × X × ∂Ω) = ∅, and since being
a surjective Fredholm map is an open property, we may also suppose that
Px,e+Jx,e defines a surjective map from TxX̃×C∞(Σ) into C∞(Σ)×C∞(∂Σ)

for all (x, [e]) ∈ Z(X̃|Ω), and this completes the proof. �

4.2. Surjectivity and smoothness.

Proposition 4.3. Let Ω ⊆ E be such that ∂ωZ(X|Ω) = ∅. If Px,e + Jx,e is
surjective for all (x, [e]) ∈ Z(X|Ω), then for every compact neighbourhood Y
of X and for every graph chart (Ψ,U ,V) of X × E over Y , Zloc ∩Ψ−1(X ×
Ω) = Zλ+2

loc ∩Ψ−1(X × Ω) is a smooth, embedded submanifold of Uλ+2 with
smooth boundary and of finite dimension equal to Dim(X). Moreover:

(1) the differential structure induced over Zloc ∩Ψ−1(X×Ω) by the canon-
ical embedding into Uλ+2 is independent of λ; and

(2) Π defines a smooth mapping from Zloc ∩Ψ−1(X × Ω) into Y with
the property that Π(∂Zloc) ⊆ ∂Y .

Proof. Choose (x, [e]) ∈ Z(X|Ω). By hypothesis, Px,e + Jx,e defines a
surjective map from TxX × C∞(Σ) into C∞(Σ) × C∞(∂Σ). Choose λ ∈
[0,∞[\N. By Proposition 2.19, Px,e + Jx,e defines a surjective map from

TxX ×C∗,λ+2(Σ) into C∗,λ(Σ)×C∗,λ+1(∂Σ). We now claim that Px,e + Jx,e
is Fredholm of index Dim(X). Indeed, let π1 : TxX × C∗,λ+2(Σ) → TxX
and π2 : TxX×C∗,λ+2(Σ)→ C∗,λ+2(Σ) be the projections onto the first and
second factors respectively. Observe that π2 is Fredholm of index Dim(X).
Since the composite of two Fredholm maps is Fredholm of index equal to the
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sum of the indices of each component, it follows that Jx,e ◦ π2 is Fredholm
of index Dim(X). Observe that π1 is compact. Since the composite of a
compact mapping and any other mapping is also compact, it follows that
Px,e ◦ π1 is compact. Since a compact perturbation of a Fredholm mapping
is also Fredholm of the same index, it follows that Px,e + Jx,e is Fredholm of
index Dim(X) as asserted.

Now let Y be a compact neighbourhood of x in X, let (Ψ,U ,V) be
a graph chart of X × E over Y and let Hλ+2 : Uλ+2 −→ C∗,λ(Σ) and
Θλ+1 : Uλ+1 −→ C∗,λ(∂Σ) be respectively the mean curvature function and
the boundary angle function in this chart (c.f. Section 3.1). By Proposi-

tions 3.9, 3.10 and 3.11, for all (y, f) ∈ Zλ+2
loc ∩Ψ−1(X × Ω), the mapping

D(Hλ+2,Θλ+2)(y, f) is conjugate to Py,e + Jy,e, where e = Φ̂(y, f), and
therefore defines a surjective, Fredholm map of index equal to Dim(X) from
TxX × C∗,λ+2(Σ) into C∗,λ(Σ) × C∗,λ+1(∂Σ). It therefore follows from the

Submersion Theorem for Banach manifolds that Zλ+2
loc ∩Ψ−1(X × Ω) is a

smooth, embedded submanifold of Uλ+2 of finite dimension equal to Dim(X)

and, moreover, that Π(∂Zλ+2
loc ) ⊆ ∂Y .

It remains to show independence. However, by the preceeding discussion,
for all µ > λ, Zµ+2

loc ∩Ψ−1(X × Ω) and Zλ+2
loc ∩Ψ−1(X × Ω) are smooth,

embedded, submanifolds of Uµ+2 and Uλ+2 respectively, both of finite di-
mension equal to Dim(X). Let iµ,λ : Y × C∗,µ+2(Σ) −→ Y × C∗,λ+2(Σ)
be the canonical embeddings. The mapping iµ,λ is smooth and injective
with injective derivative at every point, and therefore restricts to a diffeo-
morphism from Zµ+2

loc ∩Ψ−1(X ×Ω) to Zλ+2
loc ∩Ψ−1(X ×Ω). It follows that

the differential structure induced over Zloc ∩Ψ−1(X × Ω) by the canonical
embedding into Uλ+2 is independent of λ, and this completes the proof. �

We recall the following technical result:

Proposition 4.4. Let N1, N2 be smooth, finite-dimensional manifolds and
suppose that N2 is compact. Let Φ be a mapping from N1 into C∞(N2), and
define the function ϕ : N1 ×N2 → R such that for all (p, q) ∈ N1 ×N2:

ϕ(p, q) = Φ(p)(q).

Φ defines a smooth mapping from N1 into C∗,λ(N2) for all λ ∈ [0,∞[\N if
and only if ϕ is smooth.

Proof. For k ∈ {1, 2}, denote by Dk the partial derivative with respect to
the k’th component. Choose m ∈ N and λ > m. If Φ defines a smooth
mapping from N1 into C∗,λ(N2), then Dp

1D
q
2ϕ exists and is continuous for

all p, q ∈ N × {0, ...,m}. It follows that if Φ defines a smooth mapping
from N1 into C∗,λ(N2) for all λ ∈ [0,∞[\N, then ϕ is smooth. The reverse
implication is trivial, and this completes the proof. �

Theorem 4.5. Let Ω ⊆ E be such that ∂ωZ(X|Ω) = ∅. If Px,e + Jx,e
is surjective for all (x, [e]) ∈ Z(X|Ω), then Z(X|Ω) carries the canonical
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structure of a smooth, compact manifold with boundary of finite dimension
equal to Dim(X). Moreover, Π defines a smooth map from Z(X|Ω) to X
such that:

Π(∂Z(X|Ω)) ⊆ ∂X,

where ∂Z(X|Ω) here denotes the manifold boundary of Z(X|Ω).

Proof. Since ∂ωZ(X|Ω) = ∅, Z(X|Ω) is a closed subset of Z(X). Since Z(X)
is compact, by Proposition 2.4, so too is Z(X|Ω). In addition, Proposition
4.3 yields an atlas of smooth charts of Z(X|Ω), and it thus remains to prove
that the transition maps are also smooth. Choose (x, [e]) ∈ Z(X|Ω). Let Y
be a compact neighbourhood of x in X and let ẽ : Y ×Σ −→M be such that
ẽ(x) = e and, for all y ∈ Y , ẽy := ẽ(y, ·) is an embedding such that ẽy(Σ)
meets ∂M orthogonally along ∂Σ with respect to gy. Let N : Y ×Σ −→ TM
be such that, for all y ∈ Y , Ny := N(y, ·) is the unit, normal vector field
over ey with respect to gy which is compatible with the orientation. We
define the mapping F : Y × Σ× R −→M by:

F (y, p, t) = E(tNy(p)),

where E is the modified exponential map. Let Y ′ be another compact neigh-
bourhood of x in X and define ẽ′, N ′ and F ′ in the same manner. For all
y, we denote Fy := F (y, ·, ·) and F ′y := F ′(y, ·, ·).

Let (Ψ,U ,V) and (Ψ′,U ′,V ′) be the graph charts of X × E generated by
(Y, ẽ) and (Y ′, ẽ′) respectively. Denote Z0 = ZY,loc ∩Ψ−1(X × Ω) and let
B := (η, ϕ) : Z0 −→ Y ×C∞(Σ) be the canonical embedding. By definition
(η, ϕ) defines a smooth mapping from Z0 into Y × C∗,λ+2(Σ) for all λ. It
follows that η is smooth and, by Proposition 4.4, the function ϕ̃ : Z0×Σ→ R
given by:

ϕ̃(z, p) := ϕ(z)(p)

is smooth. Observe that, for all (z, p) ∈ Z0 × Σ:

(Φ̂ ◦B)(z)(p) = Fη(z)(p, ϕ̃(z, p)).

Let π1 : Σ × R −→ S and π2 : Σ × R → R be the projections onto
the first and second factors respectively. We define α : Z0 × Σ → S and
ψ : Z0 × Σ→ R such that for all (z, p) ∈ Z0 × Σ:

α(z, p) = (π1 ◦ (F ′η(z))
−1 ◦ Fη(z))(p, ϕ̃(z, p)),

ψ(z, p) = (π1 ◦ (F ′η(z))
−1 ◦ Fη(z))(p, ϕ̃(z, p)).

Observe that both α and ψ are smooth mappings. Moreover, for all z
sufficiently close to z0 := (x, 0), αz := α(z, ·) is a diffeomorphism. We
therefore define β : Z0×Σ→ Σ such that for all z ∈ Z0, βz := β(z, ·) = α−1

z ,
and we see that β is also a smooth mapping. However, for all z ∈ Z0:

((Ψ′)−1 ◦Ψ ◦B)(z) = (η(z), ψz ◦ βz).
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Since the mapping (z, p) 7→ (ψz◦βz)(p) is smooth, it follows from Proposition
4.4 again that ((Ψ′)−1 ◦Ψ ◦B) is also a smooth mapping, and the transition
maps are therefore smooth as desired. �

4.3. Surjectivity and Orientation. In order to define the orientation
form over Z(X|Ω), we briefly review some basic spectral theory. Although
we restrict attention here to self-adjoint operators, the results of this section
extend to the more general framework of operators of compact resolvent (c.f.
[14] and [20]).

Let E and F be Hilbert spaces. Let i : E → F be a compact, injective
mapping with dense image. Let A : E → F be a Fredholm mapping. We
say that A is self-adjoint whenever it has the property that for all u, v ∈ E:

〈A(u), i(v)〉 = 〈i(u), A(v)〉.

Observe, in particular, that A has Fredholm index zero. We henceforth
identify E with its image i(E). Let K ⊆ E ⊆ F be the kernel of A, let
Rf ⊆ F be its orthogonal complement and denote Re := Rf ∩E. Observe
that Re and Rf are closed subspaces of E and F respectively. Moreover:

E = K ⊕Re, F = K ⊕Rf .

By the Closed Graph Theorem, A restricts to an invertible, linear mapping
from Re to Rf . We define B : Rf → Re to be the inverse of this restriction.
We extendB to an operator from F into E by composing with the orthogonal
projection of F onto Rf , so that B then defines a self-adjoint, compact
operator from F to itself. By the Sturm-Liouville Theorem, the (non-zero)
spectrum of B, which we denote by Spec(B) is a discrete subset of R \ {0}
and every eigenvalue has finite multiplicity. We recall that the spectrum of
A, which we denote by Spec(A), is defined to be the set of all λ ∈ R such
that A− λ is not invertible, and we see that:

Spec(A) \ {0} =
{
λ ∈ R \ {0} | λ−1 ∈ Spec(B)

}
,

from which it follows, in particular, that Spec(A) is a discrete subset of R,
and every eigenvalue has finite multiplicity.

We define the nullity of A to be the dimension of the kernel of A, and
we denote it by Null(A). Since A is Fredholm, Null(A) is finite. We define
the index of A (not to be confused with its Fredholm index) to be the sum
of the multiplicities of the negative eigenvalues of A, and we denote it by
Ind(A). That is:

Ind(A) =
∑

λ∈Spec(A)∩(−∞,0)

Mult(λ).

When Ind(A) is finite, we define the signature of A, which we denote by
Sig(A) by:

Sig(A) = (−1)Ind(A).
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We define F+(E,F ) to be the set of all self-adjoint, Fredholm maps A :
E −→ F such that, for all non-zero v ∈ E:

(4.1)
〈Av, v〉
〈v, v〉

> K,

for some K ∈ R, where 〈·, ·〉 is the inner-product of F . Observe that
Ind(A) < ∞ for all A ∈ F+(E,F ) and Sig(A) is therefore well defined
for all such A. Observe, moreover, that since 4.1 is a convex condition,
F+(E,F ) is a convex subset of the set of self-adjoint, Fredholm mappings
and is therefore, in particular, locally connected.

Proposition 4.6. Let C ⊆ F+(E,F ) be connected. If Null is constant over
C, then so too is Ind.

Proof. By classical spectral theory (c.f. [14]), Ind defines a lower semi-
continuous function over F+(E,F ), whilst (Ind + Null) defines an upper-
semicontinuous function over this set. Consequently, if Null is continuous
(i.e. locally constant), then so too is Ind, and the result follows. �

Let X be a vector space with orientation form τ and finite dimension
equal to n. LetM :=M(X,E, F ) be the space of all pairs (M,A) with the
properties that:

(1) M : X → F is a linear mapping;
(2) A : E → F is an element of F+(E,F ); and
(3) M +A is surjective.

Observe that Ker(M + A) defines a continuous mapping from M into the
Grassmannian of n-dimensional subspaces of X × E.

Proposition 4.7. If π : X ×E → X is the projection onto the first compo-
nent, then π restricts to a linear isomorphism from Ker(M + A) into X if
and only if A is bijective.

Proof. Since Dim(Ker(M+A)) = Dim(X), this restriction is bijective if and
only if it is injective. However:

Ker(M +A)∩Ker(π) = {0} ×Ker(A),

from which the result follows. �

When A is invertible, we therefore define the orientation form σ(M,A)
over Ker(M +A) by:

σ(M,A) = Sig(A)(π∗τ).

We identify orientation forms that differ only by a positive factor and we
obtain (c.f. Proposition 4 of [24]):

Proposition 4.8. σ(M,A) extends continuously to define an orientation
form over Ker(M +A) for all (M,A) ∈M.

Remark 4.9. In other words, for all (M,A) ∈ M, the subspace K(M,A)
carries a canonical orientation.
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Proof. Let K be the kernel of A. Let Rf be its orthogonal complement
in F and denote Re := Rf ∩E. We denote each of Re and Rf simply
by R when no ambiguity arises. Let p1 : F → K and p2 : F → R be
the orthogonal projections. For convenience, we furnish X with a positive-
definite inner product. Let L be the kernel of p1 ◦ M and let S be its
orthogonal complement. Let q1 : X → L and q2 : X → S be the orthogonal
projections. With respect to the decompositions E = K ⊕ R, F = K ⊕ R
and X = L⊕ S, we denote:

M =

(
M11 M12

M21 M22

)
, A =

(
A11 A12

A21 A22

)
.

By definition M11 = 0 and A11, A12, A21 = 0. The mapping M12 coincides
with the restriction of p1 ◦M to S. We claim that this mapping is a linear
isomorphism. Indeed, by definition of L and S, M12 is injective. To see that
it is surjective, observe that, for all w ∈ K, by surjectivity of M +A, there
exists (u, v) ∈ X × E such that M(u) +A(v) = w. In particular:

w = p1(w) = (p1 ◦M)(u) + (p1 ◦A)(w) = (p1 ◦M)(u),

and surjectivity follows. Consequently, we identify S with K and assume
that M12 = Id.

Let π and π̃ denote the canonical projections from X ×E onto X and E
respectively. We now claim that (q1 ◦ π, p1 ◦ π̃) defines a linear isomorphism
from Ker(M +A) onto L⊕K. Indeed, since:

Dim(L⊕K) = Dim(L⊕ S) = Dim(X) = Dim(Ker(M +A)),

it suffices to show that this mapping is injective. However, let (u, v) ∈
Ker(M + A) be such that q1(u), p1(v) = 0. By definition, M(u) = −A(v).
Thus, bearing in mind that M12 = Id, q2(u) = (p1 ◦M)(u) = −(p1 ◦A)(v) =
0, from which it follows that u = 0. Moreover, A(v) = −M(u) = 0, and
since the restriction of A to R is invertible, p2(v) = 0. Consequently, v = 0,
and (q1 ◦ π, p1 ◦ π̃) therefore defines a linear isomorphism from Ker(M +A)
onto L⊕K as asserted.

By classical perturbation theory (c.f. [14]), there exists a neighbour-
hood U of (M,A) in M and smooth mappings Qe : U → Lin(E) and
Qf : U → Lin(F ) such that Qe(M,A), Qf (M,A) = Id, and for all (M ′, A′) ∈
U , Qf (M ′, A′) is an isometry of F whose restriction to E coincides with
Qe(M

′, A′) and Qf (M ′, A′)∗A′Qe(M
′, A′) preserves both K and R. Conju-

gating with Q, we may therefore assume that for a given element (M ′, A′) ∈
U , A′ preserves both K and R.

Let τ1 and τ2 be non-zero volume forms over L and S respectively such
that τ = τ1 ∧ τ2. Since we identify S with K, we may also consider τ2 as a
volume form over K. Observe that, over Ker(M ′, A′), M ′ ◦ π coincides with
−A ◦ π̃. In particular, observing that A′ commutes with p1:

p1 ◦M ′ ◦ π = −p1 ◦A′ ◦ π̃ = −A′ ◦ p1 ◦ π̃.
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Thus, denoting the dimension of K by k:

π∗τ = (π∗q∗1τ1) ∧ (π∗q∗2τ2)

= (−1)k(π∗q∗1τ1) ∧ ((p1 ◦M ′ ◦ q2)−1 ◦A′ ◦ (p1 ◦ π̃))∗τ2

= (−1)k(π∗q∗1τ1) ∧ ((M ′12)−1 ◦A′11 ◦ (p1 ◦ π̃))∗τ2

= (−1)kDet(A′11)Det(M ′12)−1(π∗q∗1τ1) ∧ (p1 ◦ π̃)∗τ2.

We may suppose that the restriction of (q1 ◦ π, p1 ◦ π̃) to Ker(M ′ + A′) is
a linear isomorphism so that σ̃(M ′, A′) := (π∗q∗1τ1) ∧ (p1 ◦ π̃)∗τ2 defines a
non-zero volume form over Ker(M ′ + A′). In addition, since M12 = Id, we
may suppose that Det(M ′12) is always positive, and so, over Ker(M ′, A′):

Sig(A′11)π∗τ ∼ (−1)kσ̃(M ′, A′),

where ∼ denotes equivalence of volume forms up to a positive factor. Finally,
we may assume that Sig(A′22) = Sig(A22), and since:

Sig(A′) = Sig(A′11) + Sig(A′22) = Sig(A′11) + Sig(A22),

we conclude that over Ker(M ′ +A′):

σ(M,A) = Sig(A′)π∗τ ∼ (−1)kSig(A22)σ̃(M ′, A′).

Since the right-hand side defines a continuous family of non-vanishing vol-
ume forms, we see that σ extends continuously over a neighbourhood of
every point ofM, and therefore extends continuously over the whole ofM,
as desired. �

Proposition 4.10. Let Ω ⊆ E be such that ∂ωZ(X|Ω) = ∅. If Px,e + Jx,e is
surjective for all (x, [e]) ∈ Z(X|Ω) then (x, [e]) ∈ Z(X|Ω) is a regular point
of the restriction of Π to Z(X|Ω) if and only if Jx,e is invertible.

Proof. Choose (x, [e]) ∈ Z(X|Ω). Let Y be a compact neighbourhood of x
in X and let (Ψ,U ,V) be a graph chart of X × E about (x, [e]) over Y . Let
H and Θ be the mean curvature function and the boundary angle function
in this chart. Let Π′ : Y × C∞(Σ) → Y be the projection onto the first
factor. The point (x, [e]) is a regular point of Π if and only if it is a regular
point of Π′. However:

T(x,0)Zloc ∩Ker(D(x,0)Π
′) = Ker(D(x,0)(H,Θ))∩({0} × C∞(Σ))

= Ker(Px,e + Jx,e)∩({0} × C∞(Σ))

= Ker(Jx,e).

We conclude that (x, [e]) is a regular value of Π if and only if Jx,e is invertible,
as desired. �

Combining these results yields:

Theorem 4.11. Let Ω ⊆ E be such that ∂ωZ(X|Ω) = ∅. If X is orientable
with orientation form τ , and if Px,e + Jx,e is surjective for all (x, [e]) ∈
Z(X|Ω), then Z(X|Ω) carries a canonical orientation σ. Moreover, (x, [e])
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is a regular point of the restriction of Π to Z(X|Ω) if and only if Jx,e is
non-degenerate, and in this case:

σ(x, [e]) ∼ Sig(Jx,e)Π
∗τ,

where Sig(Jhe ) is defined to be the signature of the restriction of Jhx,e to the

kernel of Jθx,e.

Proof. By Theorem 4.5, Z(X|Ω) is a smooth manifold of finite dimension
equal to Dim(X). Choose (x, [e]) ∈ Z(X|Ω). Observe that T(x,[e])Z(X|Ω)

identifies canonically with Ker(Px,e+Jx,e). Let H2(Σ) be the Sobolev space
of L2 functions over Σ whose distributional derivatives up to order 2 are also
of class L2. By the Sobolev Trace Formula (c.f. Proposition 4.5 of Section 4

of [23]), Jθx,e maps H2(Σ) into H1/2(∂Σ). We denote by H2
rob(Σ) the kernel

of Jθx,e in this space. Observe that H2
rob(Σ) embeds canonically into L2(Σ),

and that this embedding is compact with dense image. By Proposition 2.17,
the restriction of Jhx,e to H2

rob(Σ) is self-adjoint. The preceeding discussion

therefore applies to this restriction of Jhx,e, and we define the orientation
form σ over Ker(Px,e + Jx,e) as in Proposition 4.8. Since this kernel is
canonically identified with T(x,[e])Z(X|Ω), σ also defines an orientation form
over this space. It follows from the definition that this construction yields
a continuous family of orientation forms over Z(X|Ω), so that the manifold
carries a canonical orientation, as desired. Finally, by Proposition 4.10,
(x, [e]) ∈ Z(X|Ω) is a regular value of Π if and only if Jx,e is invertible, and
so, by definition, and bearing in mind the definition following Proposition
4.7, we have σ(x, [e]) ∼ Sig(Jx,e)Π

∗τ , as desired. �

The results of this section may be summarised as follows:

Theorem 4.12. Let Ω ⊆ E be such that ∂ωZ(X|Ω) = ∅. There exists an ex-

tension X̃ of X, which we may take to be orientable, such that ∂ωZ(X̃|Ω) =

∅, Z(X̃|Ω) carries canonically the structure of a smooth orientable manifold

of finite dimension equal to that of X̃, and Π(∂Z(X̃|Ω)) ⊆ ∂X̃. In par-
ticular, the restriction of Π to Z(X|Ω) has a well-defined Z-valued degree.

Moreover, a point x ∈ X̃ is a regular value of this restriction if and only if
Jx,e is non-degenerate for all (x, [e]) ∈ Z({x} |Ω), and in this case:

Deg(Π|Ω) =
∑

(x,[e])∈Z({x}|Ω)

Sig(Jx,e),

where Sig(Jx,e) is defined to be the signature of the restriction of Jhx,e to the

kernel of Jθx,e.

Proof. By Theorem 4.2, there exists an extension X̃ of X with ∂ωZ(X̃|Ω) =
∅ and such that the operator Px,e + Jx,e defines a surjective mapping from

TxX̃ × C∞(Σ) into C∞(Σ) × C∞(∂Σ) for all (x, [e]) ∈ Z(X̃|Ω). Upon

extending X̃ further if necessary, we may assume that X̃ is orientable with
orientation form, τ , say. By Theorem 4.5, Z(X̃|Ω) carries the structure of a



FREE BOUNDARY MINIMAL ANNULI IN CONVEX THREE-MANIFOLDS 31

smooth, compact manifold with boundary, of finite dimension equal to that
of X̃ and moreover Π(∂Z(X̃|Ω) ⊆ ∂X̃. By Theorem 4.11, Z(X̃|Ω) carries a

canonical orientation form σ. Moreover, (x, [e]) ∈ Z(X̃|Ω) is a regular point

of the restriction of Π to Z(X̃|Ω) if and only if Jx,e is non-degenerate, and
in this case σ ∼ Sig(Jx,e)Π

∗τ , where ∼ here denotes equivalence of volume
forms up to a positive factor. By Proposition 2.4, Π defines a proper map
from Z(X̃|Ω) into X̃, and so, by classical differential topology (c.f. [13]), its

restriction to Z(X̃|Ω) has a well-defined Z-valued degree. Moreover x ∈ X̃ is
a regular value if and only if Jx,e is non-degenerate for all (x, [e]) ∈ Z({x} |Ω),
and in this case, by definition of the degree:

Deg(Π|Ω) =
∑

(x,[e])∈Z({x}|Ω)

Sig(Jx,e),

as desired. �

5. Non-Degenerate Families

5.1. Non-degenerate families. Let Z be a closed, finite-dimensional man-
ifold. Let F : Z → E be a continuous mapping. We say that F is smooth
whenever it has the property that for all z ∈ Z, there exists a compact
neighbourhood Z0 of z in Z and a smooth function e : Z0 × Σ → M such
that for all w ∈ Z0, ew := e(w, ·) is an element of Ê and F(w) = [ew]. We
refer to the pair (Z0, e) as a local parametrisation of (Z,F) about z. We say
that F is an immersion whenever it has the property that for all z ∈ Z, for
every local parametrisation (Z0, e) of (Z,F) about z, for all w ∈ Z0 and for
all non-zero ξw ∈ TwZ0, the vector field (D1e)w(ξw) is not tangent to ew(Σ)
at at least one point, where D1e is the partial derivative of e with respect
to the first component in Z0 ×Σ. We say that F is an embedding whenever
it is, in addition, injective.

Proposition 5.1. Let g0 be an admissable metric over M and let F : Z → E
be a smooth embedding. If F(z) is free boundary minimal with respect to g0

for all z ∈ Z, then for all z ∈ Z:

Null(Jg0,F(z)) = Dim(Ker(Jg0,F(z))) > Dim(Z).

Proof. Let n be the dimension of Z. Choose z ∈ Z. Observe that F defines
an n-dimensional family of non-trivial, free boundary minimal perturbations
of F(z), from which it follows that the derivative of F defines an injective
mapping from TzZ into Ker(Jg0,F(z)). More formally, this injection is ex-
plicitely described in the proof of Proposition 5.6 (below). In particular,
Null(Jg0,F(z)) > n, and the result follows. �

Proposition 5.1 motivates the following definition: if g0 is an admissable
metric over M , and if F(z) is free boundary minimal with respect to g0 for
all z ∈ Z, then (Z,F) is said to be a non-degenerate family whenever it has
in addition the property that for all z ∈ Z:

Null(Jg0,F(z)) = Dim(Ker(Jg0,F(z))) = Dim(Z).
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We recall from Proposition 4.6 that if Null(Jg0,F(z)) is constant, then so too
is Ind(Jg0,F(z)), and we therefore define the index of the family Z, which we
denote by Ind(Z) to be equal to Ind(Jg0,F(z)) for all z ∈ Z.

Let (Z0, e) be a local parametrisation of (Z,F). Let X be another smooth,
compact, finite-dimensional manifold. Let x0 be an element of X and let
g : X ×M → Sym+(TM) be a smooth function such that gx := g(x, ·) is
admissable for all x ∈ X and g(x0, ·) = g0. We extend e and g to functions
defined over X × Z0 by setting e to be constant in the X direction and by
setting g to be constant in the Z0 direction. Let (Ψ,U ,V) be the graph chart
of X ×Z0×E generated by (X ×Z0, e) and let H and Θ be respectively the
mean curvature function and the boundary angle function in this chart. We
define K ⊆ X × Z0 × C∞(Σ) by:

K = {(x, z, f) | f ∈ Ker(Jg0,ez)} ,

and for all (x, z) ∈ X ×Z0, we denote the fibre over (x, z) by Kx,z. Observe
that K is a finite-dimensional vector bundle over X ×Z0 of constant dimen-
sion equal to Dim(Z). We shall see presently that K is smooth, and is in
fact canonically isomorphic to TZ0. We also define K⊥ ⊆ X × Z0 ×C∞(Σ)
such that for all (x, z) ∈ X × Z0 the fibre K⊥x,z of K⊥ is the orthogonal

complement of Kx,z in C∞(Σ) with respect to the L2-inner-product of e∗zg0.

Proposition 5.2. There exists a compact neighbourhood Y of x0 in X and
a continuous function F : Y × Z0 → C∞(Σ) such that F (0, z) = 0 for all z
and, for all (x, z) ∈ Y × Z0:

(1) Fx,z := F (x, z) is an element of K⊥x,z;
(2) Θ(x, z, Fx,z) = 0; and
(3) H(x, z, Fx,z) is an element of Kx,z = Ker(Jg0,ez).

Moreover:

(1) the function F is unique in the sense that if Y ′ ⊆ Y is another
compact neighbourhood of x0 and if F ′ : Y ′×Z0 → C∞(Σ) is another
continuous function with the same properties, then F ′ = F ; and

(2) the function f : Y × Z0 × S → R given by f(x, z, p) = F (x, z)(p) is
smooth.

Remark 5.3. It is, in fact, sufficient for the proof of this result to assume
that Null(Jg0,F(z)) has constant dimension.

Remark 5.4. Recall that if e : Σ −→M is a free boundary minimal embed-
ding which is non-degenerate in the sense that Jg0,e is invertible, then for
any infinitesimal perturbation δg0 of g0, there exists a unique infinitesimal
perturbation δe of e with the property that e+ δe is free boundary minimal
with respect to g + δg0. Proposition 5.2 constitutes a generalisation of this
result to the case where Jg0,e has non-trivial kernel.

Proof. Denote n = Dim(Ker(Jg0,ez)) = Dim(K). Choose λ ∈ [0,∞[\N.

Observe that for all z ∈ Z0, D(Hλ,Θλ)(x0, z, 0) = Jg0,ez . By Proposition
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2.19, for all z ∈ Z0:

Dim(Ker(D(Hλ,Θλ))) = Dim(Ker(Jg0,ez)) = n,

and since (Hλ,Θλ) is a smooth, Fredholm mapping, it follows from the
Submersion Theorem for Banach manifolds that K defines a smooth Banach
sub-bundle of X × Z0 × C∗,λ(Σ) with typical fibre of dimension equal to n.

Let Kλ,⊥ ⊆ X × Z0 × C∗,λ(Σ) be the Banach sub-bundle whose fibre
over any point (x, z) ∈ X × Z0 coincides with the orthogonal complement
of Kx,z in C∗,λ(Σ) with respect to the L2 inner-product of e∗zg0. We define

Πλ : X × Z0 × C∗,λ(Σ) −→ Kλ,⊥ such that for all (x, z) ∈ X × Z0, Πλ
x,z :=

Πλ(x, z, ·) is the orthogonal projection of C∗,λ(Σ) onto Kλ,⊥x,z with respect to
the L2-inner-product of e∗zg0. Observe that Πλ is a smooth Banach bundle
mapping.

We define H
λ+2

: Uλ+2 → Kλ,⊥ such that for all (x, z, f) ∈ Uλ+2:

H
λ+2

(x, z, f) = (x, z, (Πλ
z ◦Hλ+2)(x, z, f))).

Let D3H
λ+2

be the partial derivative of H
λ+2

with respect to the third
component in X × Z0 × C∗,λ+2(Σ). Choose z ∈ Z0. We claim that the re-

striction of D3(H
λ+2

,Θλ+2)(x0, z, 0) = (Πλ
z ◦ Jhg0,ez , J

θ
g0,ez) to Kλ+2,⊥

x0,z defines

a linear isomorphism onto Kλ,⊥x0,z × C∗,λ+1(∂Σ). Indeed, by definition of K,

Jg0,ez restricts to a linear isomorphism from Kλ+2,⊥
x0,z to Imλ+2(Jg0,ez), and it

thus suffices show that the restriction of (Πλ
x0,z, Id) to Imλ+2(Jg,ez) defines a

linear isomorphism onto Kλ,⊥x0,z × C∗,λ+1(∂Σ). However, by definition of Πλ,
and bearing in mind that Jg0,ez is Fredholm of index zero:

Dim(Ker(Πλ
x0,z, Id)) = n = Codim(Imλ+2(Jg0,ez)).

Consequently, if Ker(Πλ
x0,z, Id)∩ Imλ+2(Jg0,ez) = {0}, then:

Cλ(Σ)× Cλ+1(∂Σ) = Ker(Πλ
x0,z, Id)⊕ Imλ+2(Jg0,ez),

and since (Πλ
x0,z, Id) is surjective, it would follow that its restriction to

Imλ+2(Jg0,ez) defines a linear isomorphism onto Kλ,⊥x0,z. It thus suffices to
show that this intersection is trivial. However, let (ψ, 0) be an element
of the intersection Ker(Πλ

x0,z, Id)∩ Imλ+2(Jg0,ez). In particular, there exists

ϕ ∈ C∗,λ+2(Σ) such that Jhg0,ez(ϕ) = ψ and Jθg0,ez(ϕ) = 0. Moreover, by def-

inition of Πλ, ψ ∈ Ker(Jg0,ez) and so Jθg0,ez(ψ) = 0. Thus, bearing in mind
Proposition 2.17, and denoting by dV the volume form of e∗zg0, we have:ˆ

Σ
ψ2 dV =

ˆ
Σ

(Jhg0,ezϕ)ψ dV =

ˆ
Σ
ϕ(Jhg0,ezψ) dV = 0,

and the intersection is therefore trivial, and the restriction ofD3(H
λ+2

,Θλ+2)

to Kλ+2,⊥
x0,z at (x0, z, 0) defines a linear isomorphism onto Kλ,⊥x0,z×C∗,λ+1(∂Σ),

as asserted.
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Since Z0 is compact, it follows from the implicit function theorem for
Banach manifolds that there exists a compact neighbourhood Y of x0 and
a continuous mapping F : Y × Z0 → Kλ+2,⊥ such that for all z ∈ Z0,
F (x0, z) = 0 and for all (x, z) ∈ Y × Z0:

(H
λ+2

,Θλ+2)(x, z, F (x, z)) = (0, 0).

Moreover, we may assume that F is unique in the sense described above,
and since any continuous mapping from Y × Z0 into C∞(Σ) which satisfies
(1) is in particular a continuous mapping from Y ×Z0 into Kλ+2,⊥ satisfying
the above relation, uniqueness follows.

We now prove that f : Y × Z0 × Σ −→ R is smooth. We claim that F
defines a smooth mapping into Kµ+2,⊥ for all µ ∈ [0,∞[\N. Indeed, choose
µ ∈ [0,∞[\N such that µ > λ. By Proposition 2.19, Ker(Jg0,ez) ⊆ C∞(Σ).
Thus, for all (x, z) ∈ Y × Z:

Hλ+2(x, z, F (x, z)) ∈ C∞(Σ),

and it follows by Proposition 3.7 that for all (x, z) ∈ Y × Z0:

F (x, z) ∈ C∞(Σ) ⊆ C∗,µ+2(Σ).

Since invertibility is an open property and since Z0 is compact, upon reduc-

ing Y if necessary, we may suppose that D3H
λ+2

(x, z, f(x, z)) defines an

invertible map from Kλ+2,⊥
x,z into Kλ,⊥x,z × C∗,λ+1(∂Σ) for all (x, z) ∈ Y × Z.

Then, by Propositions 2.18 and 2.19 that for all µ > λ, D3H
µ+2

(x, z, F (x, z))

also defines an invertible map from Kµ+2,⊥
x,z into Kµ,⊥x,z ×C∗,µ+1(∂Σ). Thus, by

the implicit function theorem for Banach manifolds, for all (x, z) ∈ Y × Z0,
there exists a neighbourhood, Ω of (x, z) ∈ Y × Z and a continuous map-
ping F ′ : Ω → Kµ+2,⊥ ⊆ Kλ+2,⊥ such that F ′(x, z) = F (x, z) and for all
(x′, z′) ∈ Ω:

(H̃µ+2,Θµ+2)(x′, z′, F ′(x′, z′)) = (0, 0).

Since F ′ is also unique in the sense described above, it coincides with the
restriction of F to Ω, from which it follows that F defines a smooth mapping
from Ω into C∗,µ+2(Σ) as asserted. Thus, by Proposition 4.4, the function
f : Y × Z × Σ→ R given by:

f(y, z, p) = F (y, z)(p)

is smooth, as desired. In particular, F defines a continuous mapping from
Y × Z into C∞(Σ). Finally, observe that for all (x, z) ∈ Y × Z0:

F (x, z) ∈ K⊥x,z, and

Hλ+2(x, z, F (x, z)) ∈ Kx,z,

and this completes the proof. �



FREE BOUNDARY MINIMAL ANNULI IN CONVEX THREE-MANIFOLDS 35

5.2. Global sections over non-degenerate families. Let Y ⊆ X and

F : Y ×Z0 −→ C∞(Σ) be as in Proposition 5.2. We define h̃ : Y ×Z0×Σ→ R
such that for all (x, z) ∈ Y × Z0:

h̃x,z := h̃(x, z, ·) = H(x, z, Fx,z).

We consider h̃ as a smooth family of sections of K over Z0 parametrised
by Y . We now show how this family is canonically identified with a family
of sections of T ∗Z0 parametrised by Y , and moreover, upon reducing Y if
necessary, that these sections can be combined to yield a family of sections
over the whole of T ∗Z.

Define ẽ : Y × Z0 × Σ→M such that for all (x, z) ∈ Y × Z0:

ẽx,z := ẽ(x, z, ·) = Ψ(x, z, Fx,z).

Define Ñ = Y × Z0 × Σ −→ TM such that for all (x, z) ∈ Y × Z0, Ñx,z :=

Ñ(x, z, ·) is the unit, normal vector field over ẽx,z with respect to g̃x,z which

is compatible with the orientation. Recalling Section 3.3, we define λ̃ :
Y × TZ0 × Σ→ R such that for all (x, z) ∈ Y × Z0 and for all ξz ∈ TzZ0:

λ̃x,z(ξz) := λ̃(x, z, ξz, ·) = g̃z((D2ẽ)x,z(ξz), Ñx,z),

where D2ẽ is the partial derivative of ẽ with respect to the second component

in Y × Z0 × Σ. Observe that λ̃x,z defines a linear mapping from TzZ0 to
C∞(Σ). We define A : Y × Z0 → R such that, for all (x, z) ∈ Y × Z0:

A(x, z) = Vol(ẽx,z) =

ˆ
Σ
dVx,z,

where dVx,z is the volume form of ẽ∗x,z g̃x,z. For all x ∈ Y , we denote Ax :=
A(x, ·).

Proposition 5.5. For all (x, z) ∈ Y × Z0 and for all ξz ∈ TzZ:

dAx(ξz) =

ˆ
Σ
h̃x,zλ̃x,z(ξz)dVx,z.

Proof. This follows from the definitions of h̃, λ̃ and the first variation formula
for area (c.f. Section 3.3 and Section 1.1 of [?]). �

Proposition 5.6. Upon reducing Y if necessary, for all (x, z) ∈ Y × Z0,
the pairing:

TzZ0 ×Ker(Jg0,ez) −→ R; (ξz, ϕ) 7→
ˆ

Σ
ϕλ̃x,z(ξz)dVx,z,

is non-degenerate.

Proof. Choose z ∈ Z0. There exists a neighbourhood Ω of z in Z0 and
smooth mappings α : Ω × Σ −→ Σ and ψ : Ω × Σ → R such that α(z, ·)
coincides with the identity mapping, ψ(z, ·) = 0, and for all w ∈ Ω, αw :=
α(w, ·) is a smooth diffeomorphism of Σ and Ψ(0, z, ψw) ◦αw = ẽx0,w, where
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ψw := ψ(w, ·). In particular, for all w ∈ Ω, (H,Θ)(x0, z, ψw) = 0, and so,
for all ξz ∈ TzZ:

(5.1) Jg,ez((D1ψ)z(ξz)) = D3(H,Θ)(x0, z, 0)((D1ψ)z(ξz)) = 0.

However, as in the proof of Proposition 3.10, (D1ψ)z(ξz) = λ̃x0,z(ξz), from

which it follows that λ̃x0,z maps TzZ0 into Ker(Jg0,ez). Moreover, since

F is an immersion, λ̃x0,z is injective for all z ∈ Z0, and since F is non-
degenerate, Dim(TZ0) = Dim(Ker(Jg0,ez)). It follows that this mapping
is a linear isomorphism and the pairing (5.1) is therefore non-degenerate.
Finally, since Z0 is compact, upon reducing Y if necessary, the pairing (5.1) is
also non-degenerate for all (x, z) ∈ Y ×Z0, and this completes the proof. �

Proposition 5.7. For all (x, z) ∈ Y ×Z0, h̃x,z = 0 if and only if dAx(z) = 0.

Proof. By Proposition 5.5, if h̃x,z = 0, then dAx(ξz) = 0. Conversely, if
dAx(z) = 0, then, for all ξz ∈ TzZ0:ˆ

Σ
h̃x,zλ̃x,z(ξz) dVx,z = 0,

and it follows from Proposition 5.6 that h̃y,z = 0, as desired. �

Proposition 5.8. There exists a compact neighbourhood Y of x0 in X, a

smooth mapping F̃ : Y ×Z −→ E and smooth family of sections σ : Y ×Z →
T ∗Z such that:

(1) the restriction of F̃ to {x0} × Z coincides with F ; and

(2) for all (y, z) ∈ Y ×Z, (y, F̃(y, z)) is an element of Z(Y ×Z) if and
only if σ(y, z) = 0.

Remark 5.9. Importantly, in the variational context studied here, for all
y ∈ Y , σy := σ(y, ·) is the derivative of the area functional.

Proof. Since Z is compact, there exists a finite family (Zi, ei)16i6m of local
parametrisations of (Z,F) which covers Z. Choose 1 6 i 6 m. Let Yi ⊆ X
and Fi : Yi × Zi −→ C∞(Σ) be as in Propositions 5.2 and 5.6. Define

ẽi : Yi × Zi × Σ −→ M and h̃i : Yi × Zi × Σ → R as above. Define
F̃i : Yi × Zi → E by F̃i(x, z) = [ẽi,x,z], define Ai : Yi × Zi −→ R by
Ai(x, z) = Vol(ẽx,z) and define σi : Yi × Zi → T ∗Zi by σi(x, z) = dAi,x(z),
where Ai,x = Ai(x, ·).

Denote Y = Y1 ∩ ...∩Ym. Choose z ∈ Zi ∩Zj . Since [ei,z] = F(z) = [ej,z],
there exists a smooth, orientation-preserving diffeomorphism α : Σ −→ Σ
such that ei,z ◦ α = ej,z. By uniqueness, it follows that for all x ∈ Y ,
Fi,x,z ◦ α = Fj,x,z. In particular ẽi,x,z ◦ α = ẽj,x,z, from which it follows that

F̃i(x, z) = F̃j(x, z). We thus define F̃ : Y × Z → E such that, for all i and

for all (x, z) ∈ Y × Zi, F̃(x, z) = F̃i(x, z), and it follows from the above

discussion that F̃ is smooth. We define σ : Y × Z −→ T ∗Z such that for
all i and for all (x, z) ∈ Y × Zi, σ(x, z) = σi(x, z), and we show in a similar
manner that σ is also smooth.
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Finally, choose 1 6 i 6 m and choose (x, z) ∈ Y × Zi. By definition, the

mean curvature of ẽi,x,z is equal to h̃i,x,z. In particular, ẽi,x,z is free boundary

minimal if and only if h̃i,x,z vanishes. However, by Proposition 5.7, h̃i,x,z
vanishes if and only if dAi,x(z) = σi(x, z) vanishes. F(x, z) is therefore free
boundary minimal if and only if σ(x, z) vanishes, and this completes the
proof. �

5.3. Non-degenerate sections. We briefly consider the following general
result for sections of bundles over finite-dimensional manifolds. Let N1 and
N2 be two Riemannian manifolds, let V be a smooth vector bundle over N2

and let σ : N1×N2 −→ V be a smooth family of sections of V parametrised
by N1. We say that σ is non-degenerate whenever D1σ(p, q) defines a sur-
jective map from TpN1 onto VqN2 for all (p, q) ∈ σ−1({0}). Non-degenerate
families of sections are of interest due to the following result:

Proposition 5.10. If σ : N1 × N2 −→ V is a non-degenerate family of
sections, then W := σ−1({0}) is a smooth, embedded submanifold of N1×N2

of dimension equal to Dim(N1) + Dim(N2) − Dim(V ). Moreover, if N2 is
compact, then there exists an open, dense subset N0

1 ⊆ N1 such that for all
p ∈ N0

1 , every zero of the section σp := σ(p, ·) is non-degenerate.

Proof. The first assertion follows from the implicit function theorem. Let
π : N1 × N2 → N1 be the canonical projection onto the first factor. Let
N0

1 ⊆ N1 be the set of regular values of the restriction of π to W . By Sard’s
Theorem, N0

1 is a dense subset of N1, and by compactness of N2 it is open.
Choose p ∈ N0

1 . We claim that every zero of the section σp is non-degenerate.
Indeed, let q be a zero of σp. Upon trivialising V , we consider σ as a smooth
mapping from N1×N2 into Rm, where m = Dim(V ). We claim that Dσp(q)
is surjective. Indeed, choose ξ ∈ Rm. Since σ is non-degenerate, there exists
α ∈ TpN1 such that (D1σ)(p, q)(α) = ξ. Since p is a regular value of the
restriction of π to W , there exists β ∈ TqN2 such that (−α, β) ∈ T(p,q)W .
In particular, Dσ(p, q)(−α, β) = 0. Taking the sum of these two relations
yields:

Dσp(q)(β) = (D2σ)(p, q)(β) = (Dσ)(p, q)((α, 0) + (−α, β)) = ξ,

from which it follows that Dσp(q) is surjective, as asserted, and we conclude
that every zero of the section σp := σ(p, ·) is non-degenerate, as desired. �

In the present framework, we have the following result:

Proposition 5.11. There exists an extension X̃ of X and a compact neigh-

bourhood Y of x0 in X̃ with the property that if h̃ : Y ×Z0×S → R is defined

as in the preceeding section, then h̃ defines a non-degenerate family of sec-
tions of K over Z0 parametrised by Y .

Proof. We define the mapping g̃ : C∞(M) × X ×M → Sym+(TM) such
that, for all ϕ ∈ C∞(M) and for all x ∈ X:

g̃ϕ,x := g̃(ϕ, x, ·) = eϕgx.
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Let E be a finite-dimensional, linear subspace of C∞(M), and for r > 0, let
Er be the closed ball of radius r about 0 in E with respect to some metric.
Since X is compact, for sufficiently small r, and for all (ϕ, x) ∈ Er ×X, the

metric gϕ,x is admissable. We denote X̃ = Er ×X and we will show that X̃
has the desired properties for suitable choices of E and r.

Choose z ∈ Z0. Let ψ1, ..., ψm be a basis of Ker(Jg0,ez). Let ϕ1, ..., ϕm ∈
C∞(M) be as in Proposition 2.10 with U = M and let Ez be the linear span
of ϕ1, ..., ϕm in C∞(M).

Let Yz ⊆ Ez,r ×X and fz : Yz × Z0 ×Σ −→ R be respectively a compact
neighbourhood of (0, x0) and a smooth function as in Proposition 5.2. We

define h̃z : Yz × Z0 → C∞(Σ) by:

h̃z,(ϕ,x),w := h̃z((ϕ, x), w) = H((ϕ, x), w, fz,ϕ,x,w).

Let D1h̃z be the partial derivative of h̃z with respect to the first com-

ponent in Ez,r ×X × Z0. We claim that (D1h̃z)(0,x0),z defines a surjective
mapping from Ez onto K(0,x0),z. We first show that for all 1 6 k 6 m,
(D1fz)(0,x0),z(ϕk) = 0. Indeed, by definition, fz,(0,x0),z = 0, and for all

ϕ ∈ Er, fz,ϕ,x0,z ∈ K⊥z . It thus follows upon differentiating that for all

1 6 k 6 m, (D1fz)(0,x0),z(ϕk) ∈ K⊥z = Ker(Jg0,ez)
⊥. However, differentiat-

ing the definition of fz yields:

(Πz ◦ Jhg0,ez , J
θ
g0,ez)((D1fz)(0,x0),z(ϕk)) = 0,

where Πz : C∞(Σ) −→ K⊥z is the orthogonal projection with respect to the
L2-inner-product of e∗zg0. As in the proof of Proposition 5.2, the restric-
tion of (Πz ◦ Jhg0,ez , J

θ
g0,ez) to K⊥z is injective, and so, for all 1 6 k 6 m,

(D1fz)(0,x0),z(ϕk) = 0 as asserted. It now follows from the chain rule and
by definition of (ψk)16k6m and (ϕk)16k6m, that for all 1 6 k 6 m:

(D1h̃z)(0,x0),z(ϕk) = ψk.

Consequently, Im((D1h̃z)(0,x0),z) = Ker(Jg0,ez) = K(0,x0),z and therefore

(D1h̃z)(0,x0),z defines a surjective mapping from Ez onto K(0,x0),z as asserted.
Since surjectivity is an open property, there exists a neighbourhood W of
z in Z0 such that (D1h̃z)(0,x0),z defines a surjective mapping from Ez onto
K(0,x0),w for all w ∈W . Observe that if E contains Ez then, by uniqueness,

the restrictions of f and h̃ to Ez × X × Z × S coincide with fz and h̃z
respectively, and so (D1h̃)(0,x0),z therefore also defines a surjective mapping
from Ez onto K(0,x0),w for all w ∈W . By compactness of Z0, there exists a
finite collection z1, ..., zm of points in Z0 such that:

Z0 =
m
∪
k=1

Wzk .

We denote E = Ez1 + ...+Ezk , and we see that (D1h̃)x0,z defines a surjective

mapping from Tx0X̃ onto Ker(Jg0,ez) for all z ∈ Z0. Since surjectivity is an
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open property, and since Z0 is compact, there exists a compact neighbour-

hood Y of x0 in X̃ such that (D1h̃)x,z defines a surjective mapping from TxX̃

onto Kx,z for all (x, z) ∈ Y × Z0 and h̃ therefore defines a non-degenerate
family of sections of K over Z0 parametrised by Y , as desired. �

Proposition 5.12. There exists an extension X̃ of X and a compact neigh-

bourhood Y of x0 in X̃ such that if σ : Y ×Z → T ∗Z is defined as in Propo-
sition 5.8, then σ defines a non-degenerate family of sections of T ∗Z over
Z parametrised by Y .

Proof. We use the notation of the proof of Proposition 5.8. We denote X̃0 =

X. For 1 6 i 6 m, having defined X̃i−1, we extend it to X̃i so that it satisfies

the conclusion of Proposition 5.11 with Z0 = Zi. We denote X̃ = X̃m. By
compactness, for 1 6 i 6 m, there exists a compact neighbourhood Yi of x0

in X̃ such that X̃ satisfies the conclusion of Proposition 5.11 with Y = Yi
and Z0 = Zi. We denote Y = Y1 ∩ ...∩Ym.

Choose 1 6 i 6 m. Choose (x, z) ∈ Y × Zi such that σi(x, z) = 0. By

Proposition 5.7, h̃i,x,z = 0. Choose α ∈ T ∗Zi. By Proposition 5.6, there
exists ψ ∈ Ki,x,z such that for all ξz ∈ TzZi:

α(ξz) =

ˆ
Σ
ψλ̃i,x,z(ξz) dVi,x,z.

However, by definition of X̃, there exists ηx ∈ TxX̃ such that (D1h̃i,x,z)(ηx) =
ψ. Thus, for all ξz ∈ TZi:

D1σi,x,z(ηx)(ξz) =

ˆ
Σ
D1h̃i,x,z(ηx)λ̃i,x,z(ξz)dVx,z

=

ˆ
Σ
ψλ̃i,x,z(ξz) dVx,z

= α(ξz),

and it follows thatD1σi,x,z is surjective. σi therefore defines a non-degenerate
family of sections of T ∗Zi over Zi parametrised by Y . Since i is arbitrary,
it follows that σ defines a non-degenerate family of sections of T ∗Z over Z
parametrised by Y , and this completes the proof. �

5.4. Determining the index. The following result is proven in [24]:

Lemma 5.13. Let A be an element of F+(E,F ). Let K ⊆ E be the kernel
of A. There exists a neighbourhood U of A in F+(E,F ) such that if A′ ∈ U
and if A′ maps K ′ into K for some K ′ ⊆ E of dimension equal to that of
K, then:

Null(A′) = Null(A′|K′), Ind(A′) = Ind(A) + Ind(A′|K′),

where A′|K′ denotes the restriction of the bilinear form 〈A′·, ·〉 to K ′.
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Proposition 5.14. For all (x, z) ∈ Y ×Z0 such that σ(x, z) = 0 and for all
ξz ∈ TzZ:

(Jh(x,z),ẽx,z ◦ λ̃x,z)(ξz) ∈ Ker(Jg0,ez),

and, for all ξz, ηz ∈ TzZ0:

Dσx(z)(ξz, ηz) =

ˆ
Σ

(Jh(x,z),ẽx,z ◦ λ̃x,z)(ξz)λ̃x,z(ηz) dVx,z,

where dVx,z is the volume form of ẽ∗x,z g̃x,z.

Proof. Since σ(x, z) = 0, by Proposition 5.7, h̃x,z = 0. Thus, for all ξz ∈
TzZ, as in the proof of Proposition 3.10:

(D2h̃)x,z(ξz) = (Jh(x,z),ẽx,z ◦ λ̃x,z)(ξz),

from which it follows that for all ξz, ηz ∈ TzZ0:

Dσx(z)(ξz, ηz) =

ˆ
Σ

(D2h̃)x,z(ξz)λ̃x,z(ηz) dVx,z

=

ˆ
Σ

(Jh(x,z),ẽx,z ◦ λ̃x,z)(ξz)λ̃x,z(ηz) dVx,z,

and the second result follows. Moreover, by definition, for all (x, z) ∈ Y ×Z,

h̃x,z is an element of Ker(Jg0,ez). Thus, when h̃x,z = 0:

(Jh(x,z),ẽx,z ◦ λx,z)(ξz) = (D2h̃)x,z(ξz) ∈ Ker(Jg0,ez).

The first result follows, and this completes the proof. �

Combining the above results yields:

Theorem 5.15. If Z({x0}) contains a closed, non-degenerate family Z,
then there exists a neighbourhood Ω of Z in E such that:

Z({x0})∩Ω = Z.

Moreover, for any such neighbourhood Ω, there exists a compact neighbour-
hood Y of x0 in X such that ∂ωZ(Y |Ω) = ∅ and the local mapping degree of
the restriction of Π to Z(Y |Ω) is given by:

Deg(Π|Ω) = (−1)Ind(Z0)χ(Z0),

where Ind(Z0) and χ(Z0) are respectively the index and Euler characteristic
of Z0.

Proof. Let F : Z → E be the canonical embedding. By Theorem 4.2, there

exists an extension X̃1 of X such that, for all (x, [e]) ∈ Z(X), Px,e + Jx,e
defines a surjective map from TxX̃1 × C∞(Σ) onto C∞(Σ) × C∞(∂Σ). Let

X̃ be a further extension of X̃1 satisfying the conclusion of Proposition
5.8. By Proposition 2.4, Z(X) is compact and so by Proposition 4.1, there

exists a compact neighbourhood, Ỹ of X in X̃ such that Px,e + Jx,e defines

a surjective mapping from TxX̃ × C∞(Σ) onto C∞(Σ) × C∞(∂Σ) for all
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(x, [e]) ∈ Z(Ỹ ). Thus, by Theorem 4.5, Z(Ỹ ) is a smooth, compact, finite-

dimensional manifold of dimension equal to Dim(X̃). Observe, in particular,

that by Proposition 4.4, F defines a smooth map from Z0 into Z(Ỹ ) and
since (Z,F) is non-degenerate, this mapping is an embedding.

Upon reducing Ỹ if necessary, there exists a smooth mapping F̃ : Ỹ ×
Z −→ E and a smooth, non-degenerate family of sections σ : Ỹ ×Z −→ T ∗Z

satisfying the conclusion of Proposition 5.8. We define W ⊆ Ỹ × Z by
W = σ−1({0}). Since σ is a non-degenerate family, by Proposition 5.10,
W is a smooth, embedded submanifold of Y × Z of dimension equal to

Dim(Ỹ ) = Dim(X̃). We define G̃ : W −→ Ỹ ×E such that for all (y, z) ∈W :

G̃(y, z) = (y, F̃(y, z)).

By definition, G̃(W ) ⊆ Z(Ỹ ). Moreover, G̃ defines a smooth mapping from
W into Z(Y ).

Choose z ∈ Z. We claim that DG̃(x0, z) is a linear isomorphism. Indeed,

choose (ξx0 , ηz) ∈ Tx0X̃ × TzZ such that DG̃(x0, z)(ξx0 , ηz) = 0. Let π1 :

X̃ ×E −→ X̃ be the projection onto the first factor. Then, bearing in mind
the chain rule:

ξx0 = D(π1 ◦ G̃)(x0, z)(ξx0 , ηz) = 0.

In particular, since the restriction of F̃ to {x0} × Z coincides with F :

(0, DF(z)(ηz)) = DG̃(x0, z)(0, ηz) = 0,

and since F is an embedding, it follows that ηz = 0 and DG̃(x0, z) is there-

fore a linear isomorphism as asserted. Upon reducing Ỹ if necessary, we
may assume that DG̃ is a linear isomorphism for all (x, z) ∈ Ỹ × Z. In

particular, G̃ is an open mapping.
Observe that G̃(W ) is an open subset of Z(Ỹ ). Thus, since:

Z = ({x0} × E)∩ G̃(W ),

it follows that Z is an isolated subset of Z({x0}) = ({x0} × E)∩Z(Ỹ ). In
particular, there exists a neighbourhood Ω of Z in E such that:

Z = Z({x0})∩Ω,

and the first assertion follows.
Since G̃ is a local diffeomorphism, since its restriction to {x0}×Z coincides

with F , which is a diffeomorphism, and since Z is compact, upon reducing
Ỹ further if necessary, we may assume that G̃ is also a diffeomorphism onto
its image. By continuity, we may suppose furthermore that G(Ỹ ) ⊆ Ỹ ×Ω.
In particular:

G(Ỹ ) ⊆ Z(Ỹ |Ω).

Conversely, by Proposition 2.4, upon reducing Ỹ yet further if necessary, we
may suppose that:

Z(Ỹ |Ω) = Z(Ỹ )∩(Ỹ × Ω) ⊆ G̃(W ),
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and so:

G̃(W ) = Z(Ỹ |Ω).

For all y ∈ Ỹ :

Z({y} |Ω) = G̃(
{

(y, z) | z ∈ σ−1
y ({0})

}
).

Since σ is a non-degenerate family, it follows from Proposition 5.10 that there

exists an open, dense subset Ỹ0 ⊆ Ỹ such that for all y ∈ Ỹ0, the zeroes of
the section dAy = σy are non-degenerate. Choose such a y. We claim that y

is also a regular value of the restriction of Π to Z(Ỹ |Ω). By Proposition 4.10
it suffices to show that J(y,z),ẽy,z is invertible for all z ∈ σ−1

y ({0}). However,

choose z ∈ σ−1
y ({0}). By Lemma 5.13 and Proposition 5.14, upon reducing

Ỹ if necessary:

Null(J(y,z),ẽy,z) = Null(J(y,z),ẽy,z |Ey,z),

where Ey,z =
{
λ̃y,z(ξz) | ξz ∈ TzZ0

}
. However, by Proposition 5.14, bearing

in mind that the critical points of Ay are non-degenerate:

(5.2) Null(Jg̃y,z ,ẽy,z |Ey,z) = Null(Hess(Ay)(z)) = 0,

and y is therefore a regular value of the restriction of Π to Z(Ỹ |Ω), as
asserted.

By Lemma 5.13 and Proposition 5.14 again:

Ind(J(y,z),ẽy,z) = Ind(Jg0,ez) + Ind(J(y,z),ẽy,z |Ey,z).

Thus, bearing in mind the definition of Ind(Z0):

Ind(J(y,z),ẽy,z) = Ind(Z0) + Ind(Hess(Ay)(z)).

Thus by Theorem 4.12, the mapping degree of the restriction of Π to Z(Ỹ |Ω)
is given by:

Deg(Π|Ω) =
∑

(y,[e])∈Z({y}|Ω)

Sig(Jy,e)

=
∑

z∈σ−1
y ({0})

Sig(J(y,z),ẽy,z)

= (−1)Ind(Z0)
∑

z∈σ−1
y ({0})

Sig(Hess(Ay)(z))

= (−1)Ind(Z0)χ(Z0),

where χ(Z0) is the Euler characteristic of Z0 and the last equality follows
from classical Morse theory. �
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6. Free boundary minimal surfaces inside convex domains

6.1. Rotationally invariant free boundary minimal surfaces. Let δ
be the Euclidean metric over R3 and let B := B3 ⊂ R3 be the unit Euclidean
three-ball. In order to apply degree theoretic techniques, it is preferrable
to work with metrics of strictly positive curvature. For −1 < t < 1 and
t 6= 0, let S3(t) ⊂ R4 be the sphere of radius r(t) = 1/ |t| centered at
c(t) = (0, 0, 0,−1/t). For t 6= 0, we define ϕt : B → S3(t) by:

(6.1) ϕt(x) = (x,−1/t+ sgn(t)
√
t−2 − ‖x‖2),

where sgn(t) is the sign of t. Observe that ϕ extends to a smooth mapping
from ]− 1, 1[×B into R4 with ϕ0(x) := ϕ(0, x) = (x, 0). For all t, denoting
by δ the Euclidean metric, the induced metric gt = ϕ∗t δ on B at the point
x ∈ B is given by:

(6.2) gt(x) = δ +
t2

1− t2‖x‖2
x⊗ x,

so that, for all −1 < t < 1 and t 6= 0, gt is the metric of a spherical cap of
radius 1/ |t| and g0 is the Euclidean metric. In particular, for all t ∈]− 1, 1[,
gt has positive constant sectional curvature equal to t2. Observe, moreover,
that (B, gt) is functionally strictly convex for all t ∈]− 1, 1[.

Remark 6.1. Given a unit vector v ∈ R3, we define the standard foliation
{Cs}s∈(−1,1) of ∂B \ {v,−v} by Cs = {w ∈ ∂B : 〈v, w〉δ = s}. For all
t ∈] − 1, 1[, we define the standard foliation {Ds,t}s∈(−1,1) of B \ {v,−v}
so that for all s, Ds,t ⊂ B is the properly embedded disk which is totally
geodesic with respect to gt such that ∂Ds,t = Cs. Observe that, for all s,
Ds,0 = {w ∈ B : 〈v, w〉δ = s}.

For every unit vector v in R3 and for all θ ∈ R, we define Rv,θ ∈ SO(3) to
be the rotation about v by θ radians in the positive direction (with respect
to the canonical orientation of R3). In this section, we consider embedded
surfaces in B mainly as subsets of B (rather than as equivalence classes
of embeddings). We recall that an embedded surface Σ ⊆ B is said to be
invariant by rotation about v whenever:

Rv,θ(Σ) = Σ,

for all θ ∈ R. For f : R →]0,∞[ be a positive function, recall that the
surface of revolution of f about v is defined by:

Σv,f = {Rv,θ(tv + f(t)w) | θ, t ∈ R} ,
where w ∈ R3 is any unit vector orthogonal to v.

Proposition 6.2. For every unit vector v ∈ R3, the unique (unoriented)
properly embedded free boundary minimal surfaces in (B, δ) which are in-
variant under rotation about v are:

(1) the disk obtained by intersecting B with the equatorial plane normal
to v; and
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(2) the annulus obtained by intersecting B with the catenoid Σv,f , where

f(t) = r−1
0 cosh(r0t), r0 = t0 cosh(t0) and t0 > 0 is the unique posi-

tive solution of t0 = coth(t0).

Remark 6.3. An elementary calculation shows that r0 > t0 > 1.

Proof. Consider the foliation of R3 by lines parallel to v. Let Σ ⊆ (B, δ) be
a properly embedded free boundary minimal surface. If Σ is normal to this
foliation at every point, then Σ is the intersection of B with a plane normal
to v. Since Σ meets ∂B orthogonally along ∂Σ, it follows that Σ coincides
with the intersection of the equatorial plane normal to v with B, which
yields Case (1). Otherwise, it follows by Example 5 of Section 3.5 of [3] that
Σ is the surface of revolution about v of the function f(t) = a−1 cosh(at+ b)
for some a > 0 and for some b ∈ R. Since Σ meets ∂B orthogonally along
∂Σ, an elementary calculation shows that α = r0 and b = 0, as desired. �

Proposition 6.4. For all t 6= 0 and for every vector v ∈ R3, the unique
(unoriented) properly embedded free boundary minimal disk in (B, gt) which
is invariant under rotation about v is the disk obtained by intersecting with
the equatorial Euclidean plane normal to v.

Proof. Choose t 6= 0 and let Σ be an properly embedded free boundary
minimal disk in (B, gt). Suppose that Σ is invariant under rotation about
v. It follows from this that ∂Σ is equal to Cs for some s ∈ (−1, 1), where
{Cs}s∈(−1,1) is the standard foliation of ∂B \ {v,−v} by spherical geodesic
circles (c.f. Remark 6.1). Now consider the standard foliation {Ds,t}s∈(−1,1)

of B\{v,−v} by totally geodesic disk with respect to metric gt (c.f. Remark
6.1). There exists a leaf of this foliation which is an exterior tangent to Σ at
some point. By the geometric maximum principle, Σ coincides with this leaf
and since Σ meets ∂B orthogonally along ∂Σ we conclude that Σ = D0,t,
which is precisely the disk obtained by intersecting B with the equatorial
Euclidean plane normal to v. �

Proposition 6.5. There exists δ > 0 such that, for all t ∈ (−δ, δ) and for ev-
ery vector v ∈ R3, there exists a unique (unoriented) properly embedded free
boundary minimal surface in (B, gt) which is diffeomorphic to the annulus
S1 × [0, 1] and invariant under rotation about v.

Proof. We first study the transversality properties of rotationally symmetric
minimal surfaces in Euclidean space. We define F :]0,∞[×R× R→ R by:

F (a, b, s) = a−1cosh(as+ b).

We note that for all a, b, the surface of revolution of Fa,b := F (a, b, ·) about
v is a catenoid which is a properly embedded minimal surface. We de-

note F̂ (a, b, s) := (s, F (a, b, s)) and F̂a,b := F̂ (a, b, ·). We verify that F̂
is a submersion into R2. Let S1 be the unit circle in R2. Observe that
F̂ (r0, 0,±r0t0) ∈ S1. By definition of r0, the curve F̂ (r0, 0, ·) meets S1 or-
thogonally. In particular, it is transverse to S1. Let Ω be a neighbourhood
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of (r0, 0) in ]0,∞[×R. By the implicit function theorem, for Ω sufficiently
small, there exist smooth functions G± : Ω→ R such that for all (a, b) ∈ Ω,

F̂ (a, b,G±(a, b)) is an element of C.
Let ν be the outward-pointing unit normal vector field over S1. Let N :

Ω × R → R2 be such that, for all (a, b) ∈ Ω, Na,b := N(a, b, ·) is a unit,

normal vector field over the curve F̂a,b(R). We define Θ± : Ω → R such
that, for all (a, b) ∈ Ω, Θ± is the angle that ν makes with Na,b at the point
F (a, b,G±(a, b)). Observe that ∂aΘ−(r0, 0) and ∂aΘ+(r0, 0) are both non-
zero with the same sign, but that ∂bΘ−(r0, 0) and ∂bΘ+(r0, 0) are both non-
zero with opposite signs. In particular, ∇Θ±(r0, 0) 6= 0 and ∇Θ−(r0, 0) 6=
∇Θ+(r0, 0). Thus, upon reducing Ω if necessary, Θ−1

+ ({0}) and Θ−1
− ({0})

define smooth embedded curves in Ω which intersect transversally at (r0, 0).
We now return to metrics of non-zero curvature. Choose δ > 0 small and

define F̃ : Ω× (−δ, δ)×R→ R such that, for all (a, b, t), the surface of rev-

olution of F̃a,b,t := F̃ (a, b, t, ·) about v is minimal with respect to the metric

gt, and, moreover, F̃a,b,t(−b/a) = a−1, F̃ ′a,b,t(−b/a) = 0. Observe that, for

all (a, b, t), F̃a,b,t is uniquely defined by a second-order nonlinear ODE. In

particular, F̃a,b,0 = Fa,b for all (a, b) ∈ Ω. It now follows by transversality
that, upon reducing Ω and δ if necessary, for all t ∈ (−δ, δ), there exists

a unique point (a(t), b(t)) ∈ Ω such that the curve F̃a(t),b(t),t intersects S1

orthogonally with respect to the metric gt. In particular, the surface of rev-
olution of F̃a(t),b(t),t about v is a properly embedded free boundary minimal
annulus with respect to this metric, thus proving existence for sufficiently
small δ.

We now prove uniqueness. Indeed, suppose the contrary. Observe first
that, by the uniqueness part of above discussion, if Σ is a properly embedded
minimal annulus in (B, gt) which is invariant under rotation about v, and if
Σ is sufficiently close to the surface of revolution of Fr0,0 about v in the C1

sense, then Σ coincides with the surface of revolution of F̃a(t),b(t),t about v.
Now suppose there exists a sequence (tm)m∈N converging to 0, and, for all m,
two distinct (unoriented) properly embedded free boundary minimal annuli
Σm and Σ′m in (B, gtm) which are invariant under rotations about v. By
Theorem 2.3, we may suppose that (Σm)m∈N and (Σ′m)m∈N both converge
to Σ∞ and Σ′∞ respectively. By Proposition 6.2, Σ∞ = Σ′∞ is the surface
of revolution of Fr0,0,0 about v, and so, by the preceeding observation, for
sufficiently large m, Σm and Σ′m both coincide with the surface of revolution
of Fa(tm),b(tm),tm about v. This is absurd, and uniqueness follows. �

Proposition 6.6. If Σ is neither diffeomorphic to the disk D nor to the
annulus S1 × [0, 1] then there exists δ > 0 such that for all t ∈ (−δ, δ), there
exists no properly embedded free boundary minimal surface (B, gt) which is
diffeomorphic to Σ and invariant under rotation about v.

Proof. Indeed, suppose the contrary. There exists a sequence (tm)m∈N con-
verging to 0, and, for all m, a properly embedded free boundary minimal
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surface Σm in (B, gt) which is diffeomorphic to S and invariant under rota-
tion about some unit vector, vm, say. Upon extracting a subsequence, we
may suppose that (vm)m∈N converges to v∞ ∈ S2, say. By Theorem 2.3,
upon extracting a further subsequence, we may suppose that (Σm)m∈N con-
verges to an embedded surface Σ∞ say. Σ∞ is a properly embedded free
boundary minimal surface in (B, δ) which is diffeomorphic to Σ and invari-
ant under rotation about v∞. It thus follows from Proposition 6.2 that Σ
is diffeomorphic either to the disk D or to the annulus S1 × [0, 1]. This is
absurd and the result follows. �

We henceforth refer to the embeddings constructed in Propositions 6.4
and 6.5 respectively as the critical disk and the critical catenoid of the metric
gt with axis v.

6.2. Non-degenerate families of disks. Let e1, e2, e3 be the canonical
basis of R3. We parametrise the critical disk of the Euclidean metric by the
mapping edisk : D −→ B given by:

edisk(x, y) = (x, y, 0).

Let Jdisk := (Jhdisk, J
θ
disk) be the Jacobi operator of edisk with respect to this

metric.

Proposition 6.7. For all ϕ ∈ C∞(D):

Jhdiskϕ = −∆ϕ,

where ∆ is the standard Laplacian of R2, and:

Jθdiskϕ = ϕ ◦ ε− ∂νϕ,
where ε : ∂D → D is the canonical embedding, and ∂ν is the partial derivative
in the outward-pointing, normal direction over ∂D.

Proof. Observe that edisk is a totally geodesic isometric embedding, and the
result now follows by Propositions 2.5 and 2.7. �

Proposition 6.8. Ker(Jdisk) is 2-dimensional.

Proof. Choose ϕ ∈ Ker(Jdisk). In particular, ∆ϕ = 0, and ϕ is therefore the
real part of a holomorphic function defined over D. There therefore exists
a sequence (an)n∈N ∈ C such that for all z ∈ D:

ϕ(z) = Re

( ∞∑
n=0

anz
n

)
.

By elliptic regularity, ϕ ∈ C∞(D), and so, by classical Fourier analysis,
the Taylor series of ϕ and all its derivatives converge uniformly over ∂D.
Since ϕ satisfies the Robin condition Jθdiskϕ = 0, using the Cauchy-Riemann
equations, we obtain, for all θ:

Re

( ∞∑
n=0

(1− n)ane
inθ

)
= 0,
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from which it follows that an = 0 for all n 6= 1. Consequently:

ϕ(z) = Re(a1z) = αx+ βy,

where a1 = α − iβ, and we conclude that Ker(Jdisk) is 2-dimensional, as
desired. �

Proposition 6.9. If Σ = D is the disk, then there exists δ > 0 such that for
all t ∈ (−δ, δ), the family of embeddings [e] ∈ Z({gt}) which are invariant
under rotation about some unit vector in R3 constitutes a non-degenerate
family diffeomorphic to S2.

Proof. We define It : S2 → Z({gt}) such that, for all v ∈ S2, It(v) is
the critical disk of the metric gt with axis v, oriented such that its normal
coincides with v. We see that It is a smooth embedding. By Proposition
6.4, It(S2) accounts for all free boundary minimal embeddings in Z({gt})
which are invariant under rotation. By Proposition 6.8, when t = 0, the
nullity of the Jacobi operator of I(v) with respect to the metric g0 is equal
to 2 for all v ∈ S2. Since the nullity is upper-semicontinuous, there exists
δ > 0 such that for all |t| < δ and for all v ∈ S2, the nullity of the Jacobi
operator of It(v) with respect to the metric gt is at most 2. Since It is an
embedding, by Proposition 5.1, the nullity of the Jacobi operator of It(v)
is also bounded below by the dimension of S2. It follows that the nullity of
It(v) with respect to the metric gt is equal to 2, and we conclude that It(S2)
is a non-degenerate family, as desired. �

6.3. Non-degenerate families of catenoids. Let t0 be as in Proposition
6.2. We parametrise the critical catenoid with axis e3 by the mapping ecat :
[−t0, t0]× S1 → R3 given by:

ecat(t, θ) = (r−1
0 cosh(t)cos(θ), r−1

0 cosh(t)sin(θ), r−1
0 t).

Let Jcat = (Jhcat, J
θ
cat) be the Jacobi operator of ecat with respect to the

Euclidean metric.

Proposition 6.10. For all ϕ ∈ C∞([−t0, t0]×S1) and for all (t, θ) ∈ R×S1:

(Jhcatϕ)(t, θ) = − 2r2
0

cosh4(t)
ϕ(t, θ)− r2

0

cosh2(t)
(∆ϕ)(t, θ),

where ∆ is the standard Laplacian of R× S1, and, for all θ ∈ S1:

(Jθcatϕ)(±t0, θ) = ϕ(±t0, θ)∓ t0(∂tϕ)(±t0, θ)

Proof. Observe that the parametrisation ecat is conformal and that, for all
(t, θ) ∈ R× S1:

(e∗catg0)(t, θ) = r−2
0 cosh2(t)(dt2 + dθ2).

Thus if ∆cat denotes the Laplacian operator of the metric e∗catδ, then:

∆cat =
r2

0

cosh2(t)
∆.
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Let I be an interval, and let f : I →]0,∞[ be a smooth, positive function.
We recall that the principle curvature vectors of the surface of revolution
of f lie in the directions parallel and normal to the direction of revolution.
Moreover, the principle curvature in the direction of revolution (with respect

to the outward-pointing normal) is equal to 1/(f
√

1 + (f ′)2). When this
surface is minimal, the principle curvature in the other direction is then
equal to −1/(f

√
1 + (f ′)2). Thus, if A denotes the shape operator of ecat,

then:

‖A‖2 =
2r2

0

cosh4(t)
.

Thus by Lemma 2.5:

(Jhcatϕ)(t, θ) = − 2r2
0

cosh4(t)
ϕ(t, θ)− r2

0

cosh2(t)
(∆ϕ)(t, θ),

as desired. Finally, by Proposition 2.7, bearing in mind that the shape
operator of the unit sphere in R3 coincides with Id:

(Jθϕ)(±t0, θ) = ϕ(±t0, θ)∓ t0(∂tϕ)(±t0, θ),

and this completes the proof. �

For any function ϕ ∈ C∞([−t0, t0]×S1), we consider the Fourier transform
of ϕ in the θ direction. For all (t, θ) ∈ R× S1, we write:

ϕ(t, θ) =
∑
n∈Z

ϕn(t)einθ,

where, for all n ∈ Z, ϕn is the n’th Fourier mode of ϕ.

Proposition 6.11. A function ϕ ∈ C∞([−t0, t0] × S1) is an element of
Ker(Jcat) if and only if, for all n ∈ Z:

ϕ′′n + (
2

cosh2(t)
− n2)ϕn = 0,

ϕn(±t0)∓ t0ϕ′n(±t0) = 0.(6.3)

Proof. Since ϕ is smooth, its Fourier series converges in the C∞ sense. Since,
in addition, the operator Jcat = (Jhcat, J

θ
cat) is linear, it follows that Jcatϕ = 0

if and only if Jcatϕn = 0 for all n ∈ Z, and the result follows by Proposition
6.10. �

Proposition 6.12. There exists no non-trivial solution ϕ0 ∈ C∞([−t0, t0])
to (6.3) with n = 0.

Remark 6.13. The functions constructed in the proof of this result are ob-
tained by considering the normal perturbations of ecat arising from dilata-
tions and from translations in the e3 direction.



FREE BOUNDARY MINIMAL ANNULI IN CONVEX THREE-MANIFOLDS 49

Proof. The solution space to any second-order, linear ODE (ignoring bound-
ary conditions) is 2-dimensional. By inspection, we verify that the solution
space to (6.3) with n = 0 is spanned by u and v, where:

u(t) = 1− t tanh t, v(t) = tanh t.

By inspection, we verify that no linear combination of these solutions satis-
fies the boundary conditions, and it follows that there exists no non-trivial
solution to (6.3) with n = 0, as desired. �

Proposition 6.14. There exists no non-trivial solution ϕn ∈ C∞([−t0, t0])
to (6.3) with |n| > 2.

Proof. Choose |n| > 2 and define fn : [−t0, t0] −→ R by

fn(t) =
2

cosh2 t
− n2.

Since |n| > 2, we have that fn(t) 6 −2. We now argue by contradiction.
Suppose there exists a non-trivial solution, ϕn to (6.3) with |n| > 2. Since
(6.3) is linear, upon multiplying by −1 if necessary, we may assume that
ϕn(0) > 0. Since (6.3) is even, upon replacing ϕn(t) with ϕn(−t) if necessary,
we may assume that ϕ′n(0) > 0. Since ϕn is non-trivial, ϕn(0) and ϕ′n(0)
cannot both be equal to 0. Observe that if ϕn > 0 over an interval I,
then ϕ′′n = −fnϕn > 2ϕn > 0 over I, and so ϕn is strictly convex over I.
We deduce that ϕn(t), ϕ′n(t) > 0 for all t ∈]0, t0], and we therefore define
γ :]0, t0]→ R by:

γ(t) =
ϕ′n(t)

ϕn(t)
.

Observe that, for all t:

γ′(t) = −fn(t)− γ(t)2 > 2− γ(t)2.

Moreover, since γ(t) > 0 for all t > 0, it follows that:

LimInf
t→0

γ(t) > 0.

Observe that β(t) :=
√

2tanh(
√

2t) satisfies:

β′(t) = 2− β(t)2,

with initial condition β(0) = 0, and it follows that γ(t) > β(t) =
√

2tanh(
√

2t)
for all t ∈]0, t0]. In particular, bearing in mind that t0 > 1:

γ(t0) > β(t0) =
√

2tanh(
√

2t0) >
√

2tanh(
√

2) > 1 > t−1
0 .

However, the boundary condition implies that γ(t0) = t−1
0 , which is absurd,

and there therefore exists no solution to (6.3) with |n| > 2 as desired. �

Proposition 6.15. The only non-trivial solutions to (6.3) with n = ±1 are
given by:

ϕ±1(t) = a

(
sinh(t) +

t

cosh(t)

)
,

for some a ∈ C.
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Remark 6.16. The functions constructed in the proof of this result are ob-
tained by considering the normal perturbations of ecat arising from rotations
about the axes e1 and e2 and from translations in the e1 and e2 directions.

Proof. The solution space to any second-order ODE (ignoring boundary
conditions) is 2-dimensional. By inspection, we verify that the solution
space to (6.3) with n = ±1 is spanned by u and v, where:

u = sinh t+
t

cosh t
, v =

1

cosh t
.

By inspection au+ bv satisfies the boundary condition if and only if b = 0,
and this completes the proof. �

Proposition 6.17. Ker(J) is 2-dimensional.

Proof. Choose ϕ ∈ Ker(Jh, Jθ). By Proposition 2.19, ϕ ∈ C∞([−t0, t0]×S1),
and so its Fourier series converges in the C∞ sense. For n ∈ Z, let ϕn ∈
C∞([−t0, t0]) be the n’th Fourier mode of ϕ. By Proposition 6.12, ϕ0 = 0,
by Proposition 6.14, ϕn = 0 for all |n| > 2, and by Proposition 6.15:

ϕ±1 = a

(
sinh(t) +

t

cosh(t)

)
,

for some a ∈ C. Thus:

ϕ =

(
sinh(t) +

t

cosh(t)

)
(acos(θ) + bsin(θ)),

for some a, b ∈ R. The space of all such functions is 2-dimensional, and this
completes the proof. �

Proposition 6.18. If S = S1× [0, 1] is the annulus, then there exists δ > 0
such that for all t ∈ (−δ, δ), the family of embeddings [e] ∈ Z({gt}) which
are invariant under rotation about some vector constitutes a non-degenerate
family diffeomorphic to two disjoint copies of RP2.

Proof. We define It,+ : S2 → Z({gt}) such that, for all v ∈ S2, It,+(v) is the
extremal catenoid of the metric gt with axis v, oriented such that its normal
points towards the axis of rotation. We define It,− : S2 → Z({gt}) such that
for all v ∈ S2, It,−(v) = It,+(v) with the reverse orientation. We see that
It,± quotients down to a smooth embedding of RP2 into E . By Proposition
6.5, It,±(RP2) accounts for all free boundary minimal embeddings in Z({gt})
which are invariant under rotation. By Proposition 6.17, when t = 0, the
nullity of the Jacobi operator of I0,±(v) with respect to the metric g0 is
equal to 2 for all v ∈ RP2. Since the nullity is upper-semicontinuous, there
exists δ > 0 such that for all |t| < δ and for all v ∈ S2, the nullity of the
Jacobi operator of It,±(v) with respect to the metric gt is at most 2. Since
It,± is an embedding, by Proposition 5.1, the nullity of the Jacobi operator
of It,±(v) is also bounded below by the dimension of RP2. It follows that
the nullity of It,±(v) with respect to the metric gt is equal to 2, and we
conclude that It,±(RP2) is a non-degenerate family, as desired. �
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6.4. Calculating the degree. Let Σ be a compact surface with boundary.
Let δ be a positive real number chosen as in Proposition 6.9 if Σ is diffeo-
morphic to the disk, D; as in Proposition 6.18 if Σ is diffeomorphic to the
annulus, S1× [0, 1]; and as in Proposition 6.6 otherwise. We have (c.f. [25]):

Proposition 6.19. For all t ∈ (−δ, δ), there exists N ∈ N such that if
S ⊆ B is an embedded surface in B which is diffeomorphic to Σ and free
boundary minimal with respect to gt, then either:

(1) S is invariant by rotation about some unit vector v; or
(2) for all unit vectors v ∈ S2, and for all k > N , Rv,2π/k(S) 6= S.

Proof. Suppose the contrary. There exists a sequence (km)m∈N in N con-
verging to ∞, a sequence (vm)m∈N of unit vectors in R3 and a sequence
(Sm)m∈N of embedded surfaces in B diffeomorphic to Σ such that for all m,
Sm is free boundary minimal with respect to gt, is not invariant under rota-
tion about any vector, but satisfies Rvm,2π/km(Sm) = Sm. Upon extracting
a subsequence, we may suppose that (vm)m∈N converges to a unit vector v∞
in R3, say. By Theorem 2.3, upon extracting a further subsequence, we may
suppose that (Sm)m∈N converges to an embedded submanifold S∞ which is
also diffeomorphic to Σ and free boundary minimal with respect to gt. We
claim that S∞ is invariant under rotation about v∞. Indeed, choose θ ∈ R.
Since (km)m∈N converges to ∞, there exists a sequence (lm)m∈N ∈ Z such
that (2πlm/km)m∈N converges to θ. However, for all m:

Rvm,2πlm/km(Sm) = (Rvm,2π/km)lm(Sm) = Sm.

Thus, upon taking limits, we find that Rv∞,θ(S∞) = S∞, and since θ ∈ R
is arbitrary, it follows that S∞ is invariant under rotation about v∞, as
asserted. If Σ is diffeomorphic to the disk, D, then by Proposition 6.4, S∞
is the critical disk of the metric gt with axis v. By Proposition 6.9, the
family of critical disks of the metric gt is non-degenerate. In particular,
by Theorem 5.15, this family is isolated in Z({gt}). Thus, for sufficiently
large m, Sm is also a critical disk of gt. In particular, Sm is invariant under
rotation about some vector, which is absurd. If Σ is diffeomorphic to the
annulus, S1 × [0, 1], then, by Proposition 6.5, S∞ is the critical catenoid of
the metric gt with axis v. By Proposition 6.18, the family of critical annuli
of the metric gt is non-degenerate. In particular, by Theorem 5.15, this
family is isolated in Z({gt}). Thus, for sufficiently large m, Sm is also a
critical annulus of gt. In particular, Sm is invariant under rotation about
some vector, which is absurd. It follows that S∞ is not diffeomorphic, either
to the disk, D, or to the annulus, S1 × [0, 1]. However, this is absurd by
Proposition 6.6, and the result follows. �

Theorem 6.20.

Deg(Π) =

 ±2 if Σ is diffeomorphic to D;
±2 if Σ is diffeomorphic to S1 × [0, 1]; and
0 otherwise.
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Remark 6.21. We recall that the degree theory constructed in this paper has
been designed to count oriented surfaces. In the present case, this means
that every free boundary minimal surface will be counted twice, once for
each orientation, so that the degree will always be even.

Proof. Let Z0 ⊆ Z({gt}) be the set of embeddings which are free boundary
minimal with respect to gt and invariant under rotation with respect to some
vector. By Propositions 6.6, 6.9 and 6.18, Z0 constitutes a non-degenerate
family. By Theorem 5.15, there exists a neighbourhood Ω of Z0 in E such
that:

Z({gt})∩Ω = Z0.

Upon reducing Ω if necessary, we may suppose that Ω is also invariant under
the action of SO(3). We first calculate the contribution to the degree from
embeddings in Ω

c
. Let N be as in Proposition 6.19 and let v be a unit

vector in R3. Pick [e] ∈ Z({gt} |Ω
c
). By definition of N , for all p > N ,

Rv,2π/p ◦ e(Σ) 6= e(Σ). If, in addition, p is prime, then for all 1 6 k < p we
also have Rv,2πk/p ◦ e(Σ) 6= e(Σ). Since e is minimal, there exists an open,
dense subset V of Σ such that, for all 1 6 k < p, Rv,2πk/p ◦ e(V )∩ e(V ) = ∅.
Choose q ∈ V and let U be a neighbourhood of e(q) in B such that for all
1 6 k < p:

Rv,2πk/p(U)∩U = ∅, Rv,2πk/p(U)∩ e(Σ) = ∅.

Let X0 = {x0} be the manifold consisting of a single point. Denote gx0 := gt.
We define the mapping g : C∞(M)×X0 ×M → Sym+(TM) such that for
all f ∈ C∞(M):

gf := g(f, x0, ·) = efgt.

Let E be a finite-dimensional, linear subspace of C∞(M) and for r > 0, let
Er be the closed ball of radius r about 0 in E with respect to some metric.
Extend X0 to X = Er × {x0}. Let G ⊆ SO(3) be the subgroup generated
by Rv,2π/p. Let f1, ..., fm be a basis of Ker(Jgx0 ,e), let ϕ1, ..., ϕm be as in

Proposition 2.11 with U as above, and for 1 6 k 6 m, define ϕ′k by:

ϕ′k =

p∑
l=1

ϕk ◦Rv,2πl/p.

By definition, ϕ′k is invariant under the action of G. Let Et,e ⊆ C∞(M) be
the linear span of ϕ′1, ..., ϕ

′
m. As in the proof of Theorem 4.2, we show that

if E contains Et,e, then Px0,e + Jx0,e defines a surjective map from Tx0X ×
C∞(Σ) into C∞(Σ)×C∞(∂Σ). Proceeding as in the proof of Theorem 4.2,
we show that E and r may be chosen such that gx is invariant under the
action of G for all x ∈ X, ∂ωZ(X|Ω) = ∂ωZ(X|Ωc

) = ∅, and Px,e + Jx,e
defines a surjective map from TxX × C∞(Σ) into C∞(Σ)× C∞(∂Σ) for all

[e] ∈ Z({x} |Ωc
). Thus, by Theorem 4.5, Z(X|Ωc

) is a smooth manifold of

finite dimension equal to Dim(X) and Π(∂(Z(X|Ωc
)) ⊆ ∂X.
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Now, we let x ∈ X be a regular value of the restriction of Π to Z(X|Ωc
).

Since gx and Ωc are both invariant under the action of G, it follows that
Z({x} |Ωc

) decomposes into disjoint orbits of G. By Proposition 6.19, none
of the orbits of G in Z({x0} |Ωc) is trivial, and so, by Theorem 2.3, for x
sufficiently close to x0, none of the orbits of G in Z({x} |Ωc

) is trivial either.
However, since p is prime, all of the non-trivial orbits of G have order p, so:

Deg(Π|Ωc
) =

∑
[e]∈Z({x}|Ωc)

Sig(Jx,e) = 0 mod p.

We now account for the embeddings in Ω. By Theorem 4.12, there exists
an extension X̃ of X such that ∂ωZ(X̃|Ω) = ∅ and Z(X̃) is a smooth

manifold of finite dimension equal to Dim(X̃). By Theorem 5.15:

Deg(Π|Ω) = (−1)Ind(Z0)χ(Z0).

Combining these relations yields:

Deg(Π) = (−1)Ind(Z0)χ(Z0) mod p,

and since p > 0 is arbitrary, it follows that:

Deg(Π) = (−1)Ind(Z0)χ(Z0),

and the result now follows by Propositions 6.6, 6.9 and 6.18. �

6.5. Proof of Theorem 1.3. We now complete the proof of Theorem 1.3.
For s ∈ R, denote gs := e−2sfg, and let Rcs be the Ricci-curvature tensor of
this metric. Then:

∂

∂s

∣∣∣∣
s=0

Rcs = (n− 2)Hessf + ∆fg > 0.

Thus, for sufficiently small, positive s, gs has positive Ricci curvature. Triv-
ially, for s sufficiently small, f is still strictly convex with respect to gs. We
now use Theorem 6.20 to prove existence. Indeed, let tm be any sequence of
positive numbers converging to 0. Fix m and let X = {gtm} be the manifold

consisting of a single point. By Theorem 4.12, there exists an extension X̃
of X such that Z(X̃) has the structure of a differential manifold of finite

dimension equal to Dim(X̃) and the canonical projection Π : Z(X̃) has a
well-defined integer valued degree. By Theorem 6.20, Deg(Π) = ±2, and,

in particular, for any regular value x of Π in X̃, there exists an embedding
em : S1 × [0, 1] → B which is free boundary minimal with respect to gx.
Moreover, by Sard’s Theorem, gm := gx may be chosen as close to gtm as
we wish, and we may therefore suppose that (gm)m∈N also converges to g.
It now follows by Theorem 2.3 that there exists an embedded submanifold
Σ∞ ⊆ B towards which (Σm)m∈N converges. In particular, Σ∞ is diffeomor-
phic to S1 × [0, 1] and is free boundary minimal with respect to g, and this
completes the proof.

Remark 6.22. Observe that Theorem 6.20 and the same argument as above
also recovers the result [12] of Grueter and Jost.
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Grundlehren der Mathematischen Wissenschaften, 340. Springer, Heidelberg, 2010.
xviii+623 pp. ISBN: 978-3-642-11699-5

[7] A. Fraser and M. Li. Compactness of the space of embedded minimal surfaces with free
boundary in three-manifolds with nonnegative Ricci curvature and convex boundary.
J. Differential Geom. to appear.

[8] A. Fraser and R. Schoen. The first Steklov eigenvalue, conformal geometry, and min-
imal surfaces. Adv. Math. 226 (2011), no. 5, 4011–4030.

[9] A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball.
Preprint (2013) arXiv:1209.3789.

[10] D. Gilbarg and N. S. Trudinger. Elliptic partical differential equations of second order.
Die Grundlehren der mathemathischen Wissenschagten 224, Springer-Verlag, Berlin,
New York (1977)

[11] G. Huisken. Contracting convex hypersurfaces in Riemannian manifolds by their mean
curvature. Invent. Math. 84 (1986), no. 3, 463–480
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