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Abstract. We study rigidity of minimal two-spheres Σ that lo-
cally maximize the Hawking mass on a Riemannian three-manifold
with a positive lower bound on its scalar curvature. After assuming
strict stability of Σ, we prove that a neighborhood of it in M is iso-
metric to one of the deSitter-Schwarzschild metrics on (−ε, ε)×Σ.
We also show that if Σ is a critical point for the Hawking mass on
the deSitter-Schwarzschild manifold R×S2 and can be written as a
graph over a slice Σr = {r}×S2, then Σ itself must be a slice, and
moreover that slices are indeed local maxima amongst competitors
that are graphs with small C2-norm.

1. Introduction

In the last decades, stable minimal surfaces have proven to be a very
important tool in studying Riemannian three-manifolds (M, g) with
scalar curvature bounded from below.

It was Schoen and Yau who first observed in [18] that the second
variation formula of area provides an interesting interplay between the
scalar curvature of a three-manifold (M, g) and the total curvature of a
stable minimal surface Σ ⊂M , which in turn is related to the topology
of Σ. As a consequence, they proved that if (M, g) has nonnegative
scalar curvature and Σ is two-sided and compact, then either Σ is a
two-sphere or a totally geodesic flat two-torus.

Motivated by the above result of Schoen and Yau, Cai and Galloway
[7] later showed that if (M, g) is a three-manifold with nonnegative
scalar curvature and Σ is an embedded two-torus which is locally of
least area (which is a condition stronger than stability), then Σ is flat
and totally geodesic, and M splits isometrically as a product (−ε, ε)×Σ
in a neighborhood of Σ. Recently, the corresponding rigidity result in
the case where Σ is either a two-sphere or a compact Riemann surface
of genus greater than 1 were proved by Bray, Brendle, and Neves [4]
and by the second author [16], respectively. We note that Micallef
and Moraru [14] later found an alternative argument to prove these
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splitting results. Moreover, a similar rigidity result for area-minimizing
projective planes was obtained in [3].

Perhaps one of the most important uses of the above relation between
the scalar curvature of a three-manifold (M, g) and the total curvature
of a stable minimal surface Σ ⊂M was in the proof of the positive mass
theorem given by Schoen and Yau [17]. The positive mass theorem is
a fundamental result which relates Riemannian geometry and general
relativity. It states that the ADM mass of a complete asymptotically
flat three-manifold (M, g) with nonnegative scalar curvature is always
nonnegative and is only zero when M is isometric to the flat Euclidean
space R3. Later, Witten [19] gave an independent proof of the positive
mass theorem using spin methods.

Another important result in the context of general relativity which
involves minimal surfaces and scalar curvature is the Penrose inequality
proved by Huisken and Ilmanen [11], and independently, by Bray [2].
It states that if (M, g) is a complete asymptotically flat three-manifold
with nonnegative scalar curvature and boundary Σ = ∂M 6= ∅ being
an outermost minimal two-sphere, then the ADM mass of M is greater
than or equal to the Hawking mass of Σ, with equality attained if,
and only if, M is isometric to the one-half of the Schwarzschild metric
on R3 \ {0}. We recall that the Hawking mass of a compact surface
Σ ⊂ (M, g), denoted by mH(Σ), is defined as

(1.1) mH(Σ) =

(
|Σ|
16π

)1/2(
1− 1

16π

ˆ
Σ

H2 dσ − Λ

24π
|Σ|
)
,

where H is the mean curvature of Σ and Λ = infM R.
The Schwarzschild metrics on R3 \ {0} can be seen as complete ro-

tationally symmetric metrics on R× S2 with zero scalar curvature and
the slice Σ0 = {0}×S2 being the outermost minimal two-sphere. Each
Schwarzschild metric is determined by the Hawking mass of Σ0. These
metrics appear as spacelike slices of the Schwarzschild vacuum space-
time in general relativity.

Another class of metrics on R × S2 is the deSitter-Schwarzschild
metrics. These metrics are complete periodic rotationally symmetric
metrics on R × S2 with constant positive scalar curvature, and have
Σ0 = {0} × S2 as a strictly stable minimal two-sphere. They appear
as spacelike slices of the deSitter-Schwarzschild spacetime, which is
a solution to the vacuum Einstein equation with a positive cosmolo-
gical constant. The deSitter-Schwarzschild metrics constitute a one-
parameter family of metrics {ga}a∈(0,1) and, in this work, we scale each
ga to have scalar curvature equal to 2 (see Section 2 for a more detailed
description).
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In the present paper, we prove some results concerning the deSitter-
Schwarzschild metrics ga on R× S2.

We begin by considering the general situation of a two-sided closed
surface Σ which is a critical point of the Hawking mass on a three-
manifold (M, g) with R > 2. By writing the Euler-Lagrange equation of
the mass (see Proposition 6.1 of the Appendix), we prove that whenever
Σ has nonnegative mean curvature then it must be minimal or umbilic
with R = 2 along Σ and constant Gauss curvature.

In particular, whenever M is the deSitter-Schwarzschild manifold
(R × S2, ga), the above says that critical points of the Hawking mass
are either minimal surfaces or slices {r} × S2.

Remark 1.1. To the best of our knowledge, there is no complete classi-
fication of minimal surfaces in (R×S2, ga) to be found in the literature.
However, when the minimal surface Σ can be written as a graph over a
slice Σr, then a result of Montiel [15] says that Σ must itself be a slice.
See also [5].

The above considerations are evidence that local maxima of the
Hawking mass in (R × S2, ga) must be slices. In our first main result
we show that slices are indeed local maxima in the following sense:

Theorem 1.2. Let Σr = {r}×S2 be a slice of the deSitter-Schwarszchild
manifold (R × S2, ga). Then there exists an ε = ε(r) > 0 such that if
Σ ⊂ R × S2 is an embedded two-sphere which is a normal graph over
Σr given by ϕ ∈ C2(Σr) with ‖ϕ‖C2(Σr) < ε, one has

(i) either mH(Σ) < mH(Σr);
(ii) or Σ is a slice Σs for some s.

The proof follows by showing that the second variation of the mass at
each slice is strictly negative, unless the variation has constant speed,
and using this to argue minimality amongst surfaces that are graphs
with small C2 norm over the slice Σr.

Remark 1.3. A general formula for the second variation on an arbitrary
three-manifold is given in Proposition 6.3 of the Appendix.

Our second result is a local rigidity for the deSitter-Schwarzschild
manifold (R × S2, ga) which involves strictly stable minimal surfaces
and the Hawking mass. We prove:

Theorem 1.4. Let (M, g) be a Riemannian three-manifold with scalar
curvature R > 2. If Σ ⊂ M is an embedded strictly stable minimal
two-sphere which locally maximizes the Hawking mass, then the Gauss
curvature of Σ is constant equal to 1/a2 for some a ∈ (0, 1) and a
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neighborhood of Σ in (M, g) is isometric to the deSitter-Schwarzschild
metric ((−ε, ε)× Σ, ga) for some ε > 0.

The idea of the proof goes as follows. Let λ1(Σ) denote the first
eigenvalue of the Jacobi operator. The first step is to prove an infini-
tesimal rigidity along Σ which is obtained as follows. Using the fact
that Σ is strictly stable we get an upper bound of the form

(1.2) (1 + λ1(Σ))|Σ| 6 4π.

On the other hand, the fact that Σ locally maximizes the Hawking
mass implies (1.2) with opposite inequality sign. Therefore equality is
achieved and from it the infinitesimal rigidity is attained.

From this infinitesimal rigidity we next are able to construct a con-
stant mean curvature (CMC) foliation of a neighborhood of Σ by em-
bedded two-spheres {Σ(t) ⊂ M}t∈(−ε,ε), where Σ0 = Σ. Finally, by
using the properties of the CMC foliation Σ(t) we obtain, decreasing ε
if necessary, a monotonicity of the Hawking mass along Σ(t). In par-
ticular, we get that mH(Σ(t)) > mH(Σ) for all t ∈ (−ε, ε). The rigidity
result then follows from this.

Some remarks are now in order. First we point out that the upper
bound (1.2) involving λ1(Σ) is sharp and is achieved on strictly minimal
slices in the deSitter-Schwarzschild manifold (R× S2, ga). In case Σ is
stable with λ1(L) = 0, (1.2) is the area bound that appear in [4], which
is attained on slices of the standard cylinder (R× S2, dr2 + gS2).

Moreover, we note that ga tends to dr2 + gS2 when a → 1, so it is
interesting to ask whether the rigidity statement in [4] can be proven
under the same hypothesis of Theorem 1.4 but with strict stability
replaced by stability. It turns out this is not the case as one can
construct examples of three-manifolds with scalar curvature R ≥ 2
that are not the standard cylinder and that contain a minimal two-
sphere Σ with area equal to 4π, see e.g. page 2 of [14]. It is then
straightforward to check that a minimal two-sphere with area 4π is a
global maximum of the Hawking mass.

Remark 1.5. The use of a CMC foliation in the proof above is inspired
by the work in [1] and [4] (see also [16], [14])

2. Preliminaries

In this section, we start defining the deSitter-Schwarzschild mani-
fold. The deSitter-Schwarzschild metric with mass m > 0 and scalar
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curvature equal to 2 is the metric(
1− r2

3
− 2m

r

)−1

dr2 + r2gS2

defined on (a0, b0)×S2, where (a0, b0) =
{
r > 0 : 1− r2

3
− 2m

r
> 0
}

and

gS2 is the standard metric on S2 with constant Gauss curvature equal
to 1.

The deSitter-Schwarzschild metric above extends to a smooth metric
g on [a0, b0]×S2 and the boundary components {a0}×S2 and {b0}×S2

are totally geodesic two-spheres with respect to the metric g. Thus,
after reflection along {a0}× S2, we find a smooth metric g on [c0, b0]×
S2, where c0 = 2a0 − b0. Since {c0} × S2 and {b0} × S2 are totally
geodesic two-spheres, we can use the metric g on [c0, b0]× S2 to define,
by reflection, a complete periodic rotationally symmetric metric on
R × S2 with scalar curvature equal to 2. This metric is called the
deSitter-Schwarszchild metric with mass m > 0 and scalar curvature
equal to 2 on R× S2.

In order to deal with this metric in our paper, we will use the warped
product notation. More precisely, consider the warped product metric
g = dr2 + u(r)2gS2 on R × S2, where u(r) is a positive real function.
If we assume that g has constant scalar curvature equal to 2, then u
solves the following second-order differential equation

(2.1) u′′(r) =
1

2

(
1− u′(r)2

u(r)

)
− u(r)

2
.

Considering only positive solutions u(r) to (2.1) which are defined
for all r ∈ R, we get a one-parameter family of periodic rotationally
symmetric metrics ga = dr2 + ua(r)

2gS2 with constant scalar curvature
equal to 2, where a ∈ (0, 1) and ua(r) satisfies ua(0) = a = minu
and u′a(0) = 0. These metrics are precisely the deSitter-Schwarzschild
metrics on R× S2 defined above.

Remark 2.1. Note that when a tends to 1, the metric ga tends to the
standard product metric dr2 + gS2 on R × S2. Moreover, observe that
Σ0 = {0} × S2 is a strictly stable minimal (in fact, totally geodesic)
two-sphere of area 4πa2 in (R × S2, ga), for each a ∈ (0, 1), but in the
standard product metric dr2 + gS2 on R×S2, i.e, in the limit as a→ 1,
Σ0 is only stable and not strictly so.

Remark 2.2. It follows from the first variation formula of the Hawking
mass (see Appendix) that if a two-sphere Σ ⊂ M is umbilic and has
constant Gauss curvature and M has constant scalar curvature equal
to 2 along Σ, then Σ is a critical point of the Hawking mass.
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Denote by Σr the slice {r} × S2. By Remark 2.2, Σr is a critical
point for the Hawking mass in (R×S2, ga), for all r ∈ R and a ∈ (0, 1).
Moreover, we note that the Hawking mass of Σr ⊂ (R × S2, ga) is
constant for all r ∈ R. It follows by a straightforward computation:

d

dr
mH(Σr) =

1

2
u′(r)(1− u′(r)− u(r)2 − 2u(r)u′′(r)),

which is zero once u(r) solves (2.1), we obtain therefore that mH(Σr) is
constant equal to mH(Σ0). We will denote by ma this constant value.
Thus, in what follows, ga is the deSitter-Schwarzschild metric with
mass ma and scalar curvature equal to 2 on R× S2.

3. Proof of Theorem 1.2

We establish the following proposition before going into the proof of
Theorem 1.2.

Proposition 3.1. Let (M, g) be a Riemannian three-manifold with
scalar curvature R > 2. If a two-sided closed surface Σ ⊂ M with
nonnegative mean curvature is a critical point of the Hawking mass,
then Σ is minimal or Σ is umbilic, R = 2 along Σ, and Σ has constant
Gauss curvature.

Proof. Let H be the mean curvature of Σ. By Proposition 6.1, the
Euler-Lagrange equation for the Hawking mass functional is

(3.1) ∆ΣH +QH = 0,

where

Q =
4π

|Σ|
−KΣ +

1

2
(R− 2) +

1

4

(
2|A|2 − 1

|Σ|

ˆ
Σ

H2 dσ

)
and satisfies the condition: ˆ

Σ

Q dσ > 0,

with equality if, and only if, Σ is umbilic.
Since H > 0, we can apply the maximum principle to (3.1) to obtain

that either H ≡ 0 or H > 0.
Now, suppose that H > 0. In this case, by (3.1), we have that

1

H
∆ΣH +Q = 0,

which we integrate by parts and get

0 =

ˆ
Σ

|∇H|2

H2
dσ +

ˆ
Σ

Q dσ > 0.
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Thus,
´

Σ
Q dσ = 0 which implies that Σ is umbilic and R is constant

equal to 2 along Σ. Moreover, we also get that H is a constant function.
So, we conclude that Q = 0. Since Σ is umbilic and R is constant along
Σ, we also obtain that Gauss curvature of Σ is constant equal 4π

|Σ| . �

As a immediate consequence of the above proposition we have:

Corollary 3.2. A two-sided closed surface with nonnegative mean cur-
vature in the deSitter-Schwarzshild manifold (R × S2, ga) is a critical
point of the Hawking mass if and only if is minimal or is a slice {r}×S2.

We now turn to prove Theorem 1.2. First we prove

Proposition 3.3. Let (R×S2, ga) be the deSitter-Schwarzschild mani-
fold with mass ma and let Σr = {r}×S2. Then, there exists a constant
C = C(Σr) > 0 such that for all smooth normal variation Σ(t) of Σr

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) 6 −C
ˆ

Σr

(ϕ− ϕ)2 dσr,

where ϕ ∈ C∞(Σr) is the function which gives the variation and ϕ =
1
|Σr|

´
Σr
ϕ dσ.

Proof. First, we have (see Appendix):

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − |Σ|
1/2

32π3/2

ˆ
Σr

(∆ϕ)2 dσr

+
1

4π1/2|Σ|1/2

ˆ
Σr

|∇ϕ|2 dσ − 3ma

2|Σr|

ˆ
Σr

|∇ϕ|2 dσr

+
3ma

4|Σr|
H2

ˆ
Σr

(ϕ− ϕ)2 dσr,

where H is the mean curvature of Σr and the gradients and Laplacians
are computed on Σr.

Next, by the Böchner-Weitzenböck identity applied on Σr

1

2
∆|∇ϕ|2 = |Hessϕ|2 + 〈∇∆ϕ,∇ϕ〉+ Ric(∇ϕ,∇ϕ)

>
1

2
(∆ϕ)2 + 〈∇∆ϕ,∇ϕ〉+KΣr |∇ϕ|2

=
1

2
(∆ϕ)2 + 〈∇∆ϕ,∇ϕ〉+

4π

|Σr|
|∇ϕ|2,

which once we integrate over Σr we have

−1

2

ˆ
Σr

(∆ϕ)2 dσr 6 −
4π

|Σr|

ˆ
Σr

|∇ϕ|2 dσr.
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This in turn imply

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) 6 −3

2

ma

|Σr|

ˆ
Σr

|∇ϕ|2 dσr +
3

4

ma

|Σr|
H2

ˆ
Σr

(ϕ− ϕ)2 dσr.

Moreover, since g|Σr = u(r)2gS2 , we have by the Poincaré inequalityˆ
Σr

|∇ϕ|2 dσr >
2

u(r)2

ˆ
Σr

(ϕ− ϕ)2 dσr

=
8π

|Σr|

ˆ
Σr

(ϕ− ϕ)2 dσr,

and therefore we have

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) 6 −12π
ma

|Σr|2

ˆ
Σr

(ϕ−ϕ)2 dσr+
3

4

ma

|Σr|
H2

ˆ
Σr

(ϕ−ϕ)2 dσr.

Finally, we note that since H2 = 4u
′(r)2

u(r)2
and u′(r)2 < 1 we have that

H2 =
16π

|Σr|
−C, where C = C(Σr) > 0 is a positive constant, and thus

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) 6 −C
ˆ

Σr

(ϕ− ϕ)2 dσr.

�

Proof of Theorem 1.2. To prove Theorem 1.2 we will use an argument
adapted from [6] and [9]. Suppose Σ is a graph over a slice Σr given
by a function ϕ ∈ C2(Σr). Assume the average ϕ̄ of ϕ is zero and let
L be the operator given by the second variation of the Hawking mass:

〈Lϕ, ϕ〉 =− |Σr|1/2

32π3/2

ˆ
Σr

(∆ϕ)2 dσr +
1

4π1/2|Σr|1/2

ˆ
Σr

|∇ϕ|2 dσr

− 3

2

ma

|Σr|

ˆ
Σr

|∇ϕ|2 dσr +
3

4

ma

|Σr|
H2

ˆ
Σr

ϕ2 dσr,

By the computation in Proposition 6.3, we have

(3.2) mH(Σ)−mH(Σr) =
1

2
〈Lϕ, ϕ〉+O(||ϕ||C2||ϕ||2W 2,2),

where the constant in the Big-O notation is uniform in ϕ, i.e., depends
only on the slice Σ, and W k,p is usual notation for the Sobolev spaces.

We next claim that there must exist a constant C > 0 such that for
any function h of zero average:

(3.3) |〈Lh, h〉| ≥ C||h||2W 2,2 .
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We prove the above by contradiction: assuming the contrary, there will
exist a sequence of functions hn such that

||hn||2W 2,2 = 1, |〈Lhn, hn〉| <
1

n
.

By the Rellich-Kondrachov theorem, up to subsequence, hn must con-
verge in W 1,2 to a limit h with zero average. We would like to conclude
that |〈Lh, h〉| = 0, but for that we would need h ∈ W 2,2. So we argue
as follows. First, by Proposition 6.3, we note that |〈L·, ·〉| controls the
L2-norm, and since |〈Lhn, hn〉| → 0, we have that hn converges to zero
in L2, and therefore h must equal to zero. Finally, by the definition
of L, we observe that because there exists positive constants C1, C2

independent of n such that:

|〈Lhn, hn〉| ≥ C1||∆hn||2L2 − C2||hn||W 1,2 ,

so ∆hn must converge to zero in L2, and therefore by elliptic regularity
||hn||W 2,2 → 0, which is a contradiction since ||hn||W 2,2 = 1, and the
claim follows.

Hence, combining (3.2) and (3.3), we have for functions ϕ of zero
average and sufficiently small C2-norm that

mH(Σ)−mH(Σr) ≥
C

4
||ϕ||2W 2,2 ,

and, by changing the argument mutatis mutandis, we have more ge-
nerally that for any ϕ such that ϕ− ϕ̄ has sufficiently small C2-norm:

mH(Σ)−mH(Σr) ≥
C

4
||ϕ− ϕ̄||2W 2,2

and this concludes our proof. �

4. Stability and second variation of the Hawking mass

Given a surface Σ in a three-manifold (M, g), the Jacobi operator of
Σ, denoted by LΣ, or just by L if there is no ambiguity, is defined to
be

L = ∆Σ + Ric(ν, ν) + |A|2,
where ν and A denote the unit normal vector field along Σ and the
second fundamental form of Σ, respectively. We denote by λ1(L) the
first eigenvalue of L. Our convention for the eigenvalue problem is the
following:

λ ∈ R is an eigenvalue of L ⇔ ∃ ϕ ∈ C∞(Σ) such that Lϕ+ λϕ = 0.



10 DAVI MÁXIMO AND IVALDO NUNES

We start by proving a sharp upper bound involving λ1(L) for the
area of a stable minimal two-sphere Σ on a three-manifold (M, g) with
R > 2. In case λ1(L) = 0, it is precisely the area bound that appear
in [4]. In case λ1(Σ) > 0, the area bound below is achieved on stricly
minimal slices in the deSitter-Schwarzschild manifold (R× S2, ga).

Proposition 4.1. Let (M, g) be a Riemannian three-manifold with
scalar curvature R > 2. If Σ ⊂ M is a stable minimal two-sphere,
then

(4.1) |Σ| 6 4π

λ1(L) + 1
.

Proof. By the stability inequality we have that

λ1(L)

ˆ
Σ

ϕ2 dσ +

ˆ
Σ

(Ric(ν, ν) + |A|2)ϕ2 dσ 6
ˆ

Σ

|∇Σϕ|2 dσ

for all ϕ ∈ C∞(Σ), where dσ denotes the area element of Σ, and
λ1(L) > 0. Choosing ϕ = 1, we get

λ1(L)|Σ|+
ˆ

Σ

(Ric(ν, ν) + |A|2) dσ 6 0,(4.2)

where |Σ| is the area of Σ. The Gauss equation implies

Ric(ν, ν) =
R

2
−KΣ −

|A|2

2
,(4.3)

where KΣ is the Gauss curvature of Σ. Substituting (4.3) in (4.2):

λ1(L)|Σ|+ 1

2

ˆ
Σ

(R + |A|2) dσ 6
ˆ

Σ

KΣ dσ = 4π,(4.4)

and using in (4.4) that R > 2, we finally obtain

|Σ| 6 4π

λ1(L) + 1
.

�

As a corollary of the proof above, we have that if the upper area
bound is achieved then we get an infinitesimal rigidity over Σ.

Corollary 4.2. If we have equality in the above proposition, then on
Σ we must have A = 0, R = 2, Ric(ν, ν) = −λ1(L), KΣ = 4π/|Σ| and
Ker(L+ λ1(L)) are the constant functions.

Our next proposition gives a relation between strict stability and the
Hawking mass. More precisely, it tells us that if the second variation
of the Hawking mass of a stricly stable minimal two-sphere Σ is non-
positive for all smooth normal variations Σ(t) of Σ, then we get the
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reverse inequality in (4.1). We therefore get equality in (4.1) and the
conclusions of Corollary 4.2 follows in this case.

Recall that, by definition, Σ is stricly stable when λ1(L) > 0.

Proposition 4.3. Let (M, g) be a Riemannian three-manifold with
scalar curvature R > 2 and let Σ ⊂ M be a minimal two-sphere. If Σ
is strictly stable and the second variation of the Hawking mass of Σ is
non-positive, then

(4.5) |Σ| > 4π

λ1(L) + 1
.

Proof. Let Σ(t) ⊂ M be a smooth normal variation of Σ given by a
vector field X = ϕν, where ϕ ∈ C∞(Σ). Since Σ is a minimal surface,
a direct computation gives

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − 1

128π3/2|Σ|1/2

ˆ
Σ

ϕLϕ dσ

(
16π − 4

3
|Σ|
)

+
|Σ|1/2

64 π3/2

(
−2

ˆ
Σ

(Lϕ)2 dσ +
4

3

ˆ
Σ

ϕLϕ dσ

)
,

and, because d2

dt2

∣∣∣
t=0

mH(Σ(t)) 6 0, we get that

(4.6) (8π − 2|Σ|)
(
−
ˆ

Σ

ϕLϕ dσ

)
6 2|Σ|

ˆ
Σ

(Lϕ)2 dσ.

Furthermore, if we apply in (4.6) an eigenfunction of λ1(L) satisfying´
Σ
ϕ2 dσ = 1, we obtain

(8π − 2|Σ|)λ1(L) 6 2|Σ|λ1(L)2,

and, since λ1(L) > 0, this in turn imply

(8π − 2|Σ|) 6 2|Σ|λ1(L),

and the result follows. �

Remark 4.4. When a minimal two-sphere is stable but not strictly so,
i.e., in case λ1(L) = 0, one cannot use the hypothesis of Proposition 4.3
to conclude the infinitesimal rigidity of Corollary 4.2. In this case, the
correct assumption to make in order to have rigidity is the one made
in [4], that is, to bypass Proposition 4.3 and assume directly that Σ is
an area-minimizing two-sphere satisfying |Σ| = 4π, and in this case Σ
is in fact a global maximum of the Hawking mass.
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5. Proof of Theorem 1.4

Let (M, g) be a Riemannian three-manifold and consider a two-sided
compact surface Σ ⊂ M . If Σ is a strictly stable minimal surface we
can always use the implicit function theorem to find a smooth function
w : (−ε, ε)×Σ −→ R with w(0, x) = 0, ∀x ∈ Σ, such that the surfaces

Σ(t) = {expx(w(t, x)ν(x)) : x ∈ Σ}, t ∈ (−ε, ε),
have constant mean curvature, where ν is the unit normal vector field
along Σ and exp is the exponential map of M . But if we do not have
any other information on Σ, we cannot conclude that the one-parameter
family Σ(t) of surfaces defined above gives a foliation of a neighborhood
of Σ in M because ∂w

∂t
(0, ·) may change sign.

Now suppose that (M, g) has scalar curvature R > 2 and that Σ ⊂M
is an embedded strictly stable minimal two-sphere. In adittion, suppose
that the second variation at t = 0 of the Hawking mass of all smooth
normal variations Σ(t) of Σ is non-positive. Then, in this case, from
propositions 4.1 and 4.3, we have the infinitesimal rigidity, i.e.,

|Σ| = 4π

λ1(L) + 1
,

and the conclusions of Corollary 4.2 holds. It will follow from this
that we can construct a one-parameter family Σ(t) as described above,
with the function w satisfying ∂w

∂t
(0, ·) = 1, and the family Σ(t) defined

using this function w giving a foliation of a neighborhood of Σ by CMC
embedded two-spheres. This is proved in the next proposition.

Proposition 5.1. Let (M, g) be a Riemannian three-manifold with
scalar curvature R > 2. If Σ ⊂ M is an embedded stable minimal
two-sphere such that

|Σ| = 4π

λ1(L) + 1
,

then there exist ε > 0 and a smooth function w : (−ε, ε) × Σ −→ R
satisfying the following conditions:

• For each t ∈ (−ε, ε), Σ(t) = {expx(w(t, x)ν(x)) : x ∈ Σ} is an
embedded two-sphere with constant mean curvature.

• w(0, x) = 0,
∂w

∂t
(0, x) = 1 and

´
Σ

(w(t, ·)− t) dσ = 0.

Proof. The proof follows along the same lines as the proof of Proposi-
tion 2 in [16]. We use the same notations used there.

We consider the map Ψ : (−ε, ε)×B(0, δ) −→ Y defined by

Ψ(t, u) = HΣu+t −
1

|Σ|

ˆ
Σ

HΣu+t dσ,
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and we notice that Ψ(0, 0), because Σ0 = Σ. By Corollary 4.2, we have
that the Jacobi operator of Σ is given by

L = ∆Σ − λ1(L).

Thus, obtain for v ∈ X that

DΨ(0, 0) · v =
d

ds

∣∣∣∣
s=0

Ψ(0, s)

=
d

ds

∣∣∣∣
s=0

(
HΣsv −

1

|Σ|

ˆ
Σ

Hsv dσ

)
= Lv +

λ1(L)

|Σ|

ˆ
Σ

v dσ

= Lv,

and since L : X −→ Y is a linear isomorphism, we can use the implicit
function theorem to find the function w : (−ε, ε)× Σ −→ R as in [16].

Moreover, it is easy to see that w satisfies w(0, ·) = 0 and
´

Σ
(w(t, ·)−

t) dσ = 0, and that the latter impliesˆ
Σ

∂w

∂t
(0, ·) dσ = |Σ|.

Furthermore, since HΣw(t·) = 1
|Σ|

´
Σ
HΣw(t,·) dσ, ∀t ∈ (−ε, ε), we have

after differentiating at t = 0 that

L

(
∂w

∂t
(0, ·)

)
=

1

|Σ|

ˆ
Σ

L

(
∂w

∂t
(0, ·)

)
dσ

= −λ1(L)

|Σ|

ˆ
Σ

∂w

∂t
(0, ·) dσ

= −λ1(L)

= L(1),

and we thus conclude that ∂w
∂t

(0, ·) = 1, for the strict stability of Σ
implies that L is injective. �

We are now interested in properties of the CMC foliation constructed
above. We will say that a CMC surface Σ in a three-manifold (M, g)
is weakly stable ifˆ

Σ

|∇Σϕ|2 − (Ric(ν, ν) + |AΣ|2)ϕ2 dσ > 0,

for all ϕ ∈ C∞(Σ) such that
´

Σ
ϕ dσ = 0. Inspired by Lemma 3.3 of

[4], we next prove that, decreasing ε if necessary, all surfaces Σ(t) in
the foliation of Proposition 5.1 are weakly stable.
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Lemma 5.2. Consider (M, g), Σ and Σ(t) as in Proposition 5.1. Then,
there exists 0 < δ < ε such that: if t ∈ (−δ, δ) and u is a function on
the two-sphere with

´
Σ(t)

u dσt = 0, then

ˆ
Σ(t)

|∇Σ(t)u|2 dσt−
ˆ

Σ(t)

(Ric(νt, νt)+|AΣ(t)|2)u2 dσt > λ1(LΣ)

ˆ
Σ(t)

u2 dσt,

where νt is the unit normal vector field along Σ(t) with ν0 = ν.

Proof. We start by noting that a uniform constant C > 0 can be chosen
such that the Poincaré inequalityˆ

Σ(t)

|∇Σ(t)u|2 dσt > C

ˆ
Σ(t)

u2 dσt

holds for each t ∈ (−ε, ε) and any smooth function function u : S2 −→
R such that

´
Σ(t)

u dσt = 0. In addition, when t = 0 we know by

assumption that Σ(t) satisfies the hypothesis of Corollary 4.2 and thus

sup
Σ(t)

(Ric(νt, νt) + |AΣ(t)|2 + λ1(LΣ))→ 0

as t→ 0. These two facts together produce the desired δ. �

Again, let (M, g), Σ and Σ(t) as in Proposition 5.1. We introduce
some notation. Let f(t, x) = expx(w(t, x)ν(x)), (t, x) ∈ (−δ, δ) × Σ,
where δ > 0 is given by Lemma 5.2. Consider the lapse function

ρt(x) =

〈
∂f

∂t
(t, x), νt(x)

〉
, (t, x) ∈ (−δ, δ)× Σ.

Since ρ0 = 1, we can assume, decreasing δ > 0 if necessary, that ρt > 0.
Finally, denote by Ht the mean curvature of Σ(t) with respect to νt and
let ρt = 1

|Σ(t)|

´
Σ(t)

ρt dσt.

Now, we are in a position to state and prove our next lemma.

Lemma 5.3. For each t ∈ (δ, δ), we have
ˆ

Σ(t)

(Ric(ν(t), ν(t)) + |AΣ(t)|2) ρt dσt >
λ1(LΣ)

ρt

ˆ
Σ(t)

(ρt − ρt)2 dσt

+ρt

ˆ
Σ(t)

(Ric(ν(t), ν(t)) + |AΣ(t)|2) dσt.

Proof. The result follows from the fact that d
dt
Ht = LΣ(t)ρt together

with the weak stability inequality of lemma 5.2. In fact, since ρt − ρt
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has zero average on Σ(t), we have for each t ∈ (−δ, δ) that

λ1(LΣ)

ˆ
Σ(t)

(ρt − ρt)2 dσt 6 −
ˆ

Σ(t)

(ρt − ρt)LΣ(t)(ρt − ρt) dσt

= − d

dt
Ht

ˆ
Σ(t)

(ρt − ρt) dσt +

ˆ
Σ

(ρt − ρt)LΣ(t)ρt dσt

=

ˆ
Σ(t)

(ρt − ρt) (Ric(νt, νt) + |AΣ(t)|2) ρt dσ

and this proves the lemma. �

The proof of theorem 1.4 is now mostly a matter of putting these
facts together.

Proof of Theorem 1.4. Let (M, g) and Σ = S2 ⊂ M satisfying our as-
sumptions. Since Σ is a local maximum for the Hawking mass, we
have:

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) 6 0,

for all smooth normal variations Σ(t) of Σ, and by Corollary 4.2:

|Σ| = 4π

λ1(L) + 1
.

By Proposition 5.1, we can construct a CMC foliation of a neighbor-
hood of Σ in M by embedded two-spheres Σ(t) ⊂M , with t ∈ (−ε, ε).

Noting that

d

dt

∣∣∣∣
t=0

Ht = L(1) = −λ1(LΣ) < 0,

and decreasing ε > 0 if necessary, we can assume that Ht < 0 for
t ∈ (0, ε) and that Ht > 0 for t ∈ (−ε, 0). We can also assume that
mH(Σ) > mH(Σ(t)) for t ∈ (−ε, ε) because Σ is a local maximum for
the Hawking mass.

Now, let δ > 0 be given by Lemma 5.2 so that for each t ∈ (−δ, δ),
Σ(t) ⊂M is a weakly stable CMC two-sphere. In what follows, we will
see that this implies, using Lemma 5.3, monotonicity of the Hawking
mass along the foliation Σ(t).



16 DAVI MÁXIMO AND IVALDO NUNES

In fact, we have

d

dt
mH(Σ(t)) = −|Σ(t)|1/2

32π3/2
Ht

[ˆ
Σ(t)

(
Ric(νt, νt) + |AΣ(t)|2

)
ρt dσt

+4πρt −
3

4
H2
t

ˆ
Σ(t)

ρt dσt −
ˆ

Σ(t)

ρt dσt

]
> −|Σ(t)|1/2

32π3/2
Ht

[
λ1(LΣ)

ρt

ˆ
Σ(t)

(ρt − ρt)2 dσt +

ρt

ˆ
Σ(t)

(
Ric(νt, νt) + |AΣ(t)|2

)
dσt + 4πρt −

3

4
H2
t

ˆ
Σ(t)

ρt dσt −
ˆ

Σ(t)

ρt dσt

]
,

where the inequality follows by Lemma 5.3, and moreover, using the
Gauss equation:

d

dt
mH(Σ(t)) > −|Σ(t)|1/2

32π3/2
Ht

[
ρt
2

ˆ
Σ(t)

(
|AΣ(t)|2 −

H2
t

2

)
+ (R− 2) dσt

+
λ1(LΣ)

ρt

ˆ
Σ(t)

(ρt − ρt)2 dσt

]
.

Thus, by the formula above, we obtain that d
dt
mH(Σ(t)) > 0 for

t ∈ [0, δ) and d
dt
mH(Σ(t)) 6 0 for t ∈ (−δ, 0]. This implies that

mH(Σ) 6 mH(Σ(t)),

for all t ∈ (−δ, δ). SincemH(Σ) > mH(Σ(t)), we conclude thatmH(Σ(t)) ≡
mH(Σ) and so d

dt
mH(Σ(t)) ≡ 0, and from this, using the formulae above,

we have for all t ∈ (−δ, δ) that

• Σ(t) is umbilic;
• R = 2 on Σ(t);
• ρt ≡ ρt.

Moreover, using that ρt ≡ ρt, it is not difficult to show that

w(t, x) = t, ∀(t, x) ∈ (−δ, δ)× Σ.

Finally, denote by gΣ(t) the induced metric on Σ(t). Since Σ(t) is um-
bilic and Ht is constant, we have

∂

∂t
gΣ(t) = v(t)gΣ(t), ∀t ∈ (−δ, δ),

where v is a real function. Thus, we get for all t ∈ (−δ, δ) that

gΣ(t) = e
´ t
0 v(s) ds gΣ

= u(t)2 gS2 ,

where u(t) = a e
´ t
0 v(s) ds with a2 = |Σ|/4π ∈ (0, 1).
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Therefore, we conclude that the metric g on (−δ, δ)× Σ induced by
f(t, x) = expx(tν(x)), (t, x) ∈ (−δ, δ) × Σ, is equal to dt2 + u(t)2gS2 .
Since this metric has scalar curvature equal to 2, we have, by unicity of
solutions to (2.1), that g is precisely the deSitter-Schwarzschild metric
with mass ma on (−δ, δ)× Σ. This finishes the proof. �

6. appendix

Let (M, g) be a three-manifold and consider a two-sided compact
surface Σ ⊂ M . Our goal in this section is to provide the first and
second variation formulae of the Hawking mass at Σ. Recall that the
Hawking mass is defined by

mH(Σ) =

(
|Σ|
16π

)1/2(
1− 1

16π

ˆ
Σ

H2 dσ − Λ

24π
|Σ|
)
,

where Λ = inf R.
Choose a unit normal vector field ν along Σ and let Σ(t) ⊂ M be a

smooth normal variation of Σ, that is, Σ(t) = {f(t, x) : x ∈ Σ} where
f : (−ε, ε)× Σ −→M is a smooth function satisfying:

• ft = f(t, ·) : Σ −→M is an immersion for each t ∈ (−ε, ε);
• f(0, x) = x for each x ∈ Σ;
• ∂f

∂t
(0, x) = ϕ(x)ν(x) for each x ∈ Σ, where ϕ ∈ C∞(Σ).

For such a given variation, we have:

Proposition 6.1 (First variation of the Hawking mass).

d

dt
mH(Σ(t))

∣∣∣∣
t=0

= − 2|Σ|1/2

(16π)3/2

ˆ
Σ

ϕ∆ΣH dσ

+
|Σ|1/2

(16π)3/2

ˆ
Σ

[
2KΣ −

8π

|Σ|
+

(
1

2|Σ|

ˆ
Σ

H2 dσ − |A|2
)]

Hϕ dσ

+
|Σ|1/2

(16π)3/2

ˆ
Σ

(Λ−R)Hϕ dσ.

Proof. This is a direct computation using the first variation formula of
area and the following identities:

(i) d
dt
Ht

∣∣
t=0

= ∆Σϕ+ Ric(ν, ν)ϕ+ |A|2ϕ;

(ii) d
dt

(dσt)
∣∣
t=0

= −ϕHdσ.

and the Gauss equation 2Ric(ν, ν) = R−2KΣ+H2−|A|2. For identities
(i) and (ii) see [12].

�
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Now, denote by νt the unit normal vector along Σ(t) with ν0 = ν
and let Ht be the mean curvature of Σ(t) with respect to νt. Consider
the lapse function

ρt(x) =

〈
∂f

∂t
(t, x), νt(x)

〉
.

Notice that ρ0 = ϕ. Also, it is a well-known fact that

(6.1)
d

dt
Ht = L(t)ρt,

where

L(t) = ∆Σ(t) + Ric(νt, νt) + |AΣ(t)|2

is the Jacobi operator of Σ(t). By (6.1), we have the second variation
formula of the mean curvature Ht at t = 0 as a consequence of the next
proposition.

Proposition 6.2 (First variation of the Jacobi operator). For each
function ψ ∈ C∞(Σ), we have:

L′(0)ψ = 2ϕ 〈A,Hessψ〉+ 2ψ 〈A,Hessϕ〉 − 2ϕω(∇ψ)− 2ψ ω(∇ϕ)

+ϕ 〈∇H,∇ψ〉 −H 〈∇ϕ,∇ψ〉+ 2A(∇ϕ,∇ψ)− ψ divΣ(divΣ ω)

+ϕψRiννj Aij + ϕψHRic(ν, ν) + ϕψH|A|2 + ϕψAij Aik Ajk

−ϕψHKΣ,

where ω is the 1-form on Σ defined by ω(X) = Ric(X, ν).

Proof. Using the Gauss equation, we can rewrite L(t) as

L(t) = ∆Σ(t) +
R

2
−KΣ(t) +

H2
t

2
−
|AΣ(t)|2

2
.

Now, the formula follows by a straightforward computation using the
following identities. The first one is

d

dt
KΣ(t)

∣∣∣∣
t=0

= −〈A,Hessϕ〉+H ∆ϕ+ 2ω(∇ϕ)

+ divΣ(divΣ ω)ϕ+HKΣ ϕ,

which can be derived directly from Lemma 3.7 of [8] with hij = −2ϕAij.
The other ones are(

d

dt
∆Σ(t)

∣∣∣∣
t=0

)
ψ = 2ϕ 〈A,Hessψ〉+ 2A(∇ϕ,∇ψ) + ϕ 〈∇H,∇ψ〉

−H 〈∇ϕ,∇ψ〉 − 2ϕω(∇ψ),
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and

d

dt
|AΣ(t)|2

∣∣∣∣
t=0

= 2 〈A,Hessϕ〉+ 2Riννj Aij ϕ+ 2Aij Aik Ajk ϕ,

whose proof can be found in detail at [13].
�

Next, we have the second variation of the Hawking mass.

Proposition 6.3 (Second variation of the Hawking mass). If Σ ⊂ M
is a critical point of the Hawking mass, then

d2

dt2
mH(Σ(t))

∣∣∣∣
t=0

= − 2|Σ|1/2

(16π)3/2

ˆ
Σ

(Lϕ)2 dσ +
4|Σ|1/2

(16π)3/2

ˆ
Σ

H2ϕLϕ dσ

+
mH(Σ)

2|Σ|

ˆ
Σ

|∇ϕ|2 dσ − |Σ|1/2

(16π)3/2

ˆ
Σ

(
H2 +

2Λ

3

)
|∇ϕ|2 dσ

− mH(Σ)

2|Σ|

ˆ
Σ

(
Ric(ν, ν) + |A|2 −H2

)
ϕ2 dσ

+
|Σ|1/2

(16π)3/2

ˆ
Σ

(
H2 +

2Λ

3

)(
Ric(ν, ν) + |A|2 −H2

)
ϕ2 dσ

− 3mH(Σ)

2|Σ|2

(ˆ
Σ

Hϕ dσ

)2

− 2|Σ|1/2

(16π)3/2

ˆ
Σ

HL′(0)ϕ dσ,

where L = L(0) and L′(0) is given in the proposition above.

Proof. Once establishing (6.1), the above follows after a direct compu-
tation using the second variation formula of the area element:

d2

dt2
(dσt)

∣∣∣∣
t=0

=
[
|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 +H2ϕ2 + divΣ(∇XX)

]
dσ,

where X(x) = ∂f
∂t

(0, x). �

To finish this section, we will consider the particular case where
(M, g) is the deSitter-Schwarzschild manifold (R× S2, ga) and Σ ⊂M
is some slice {r} × S2. In this case, we have:

• R is constant equal to 2;
• Σ is totally umbilic and has constant Gauss curvature;
• ω = 0 (recall definition in Proposition 6.2).

Therefore, we have by (6.2) that

L′(0)ϕ = 2Hϕ∆ϕ+
3

2
H

(
Ric(ν, ν) +

H2

2

)
ϕ2 − 4π

|Σ|
Hϕ2.
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Thus, since

Ric(ν, ν) +
H2

2
=

8π

|Σ|
− (16π)3/2 3

4

mH(Σ)

|Σ|3/2
,

we have after a direct but long computation using (6.3)

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − |Σ|
1/2

32π3/2

ˆ
Σ

(∆ϕ)2 dσ +
1

4π1/2|Σ|1/2

ˆ
Σ

|∇ϕ|2 dσ

− 3mH(Σ)

2|Σ|

ˆ
Σ

|∇ϕ|2 dσ +
3mH(Σ)

4|Σ|
H2

ˆ
Σ

(ϕ− ϕ)2 dσ,

where ϕ = 1
|Σ|

´
Σ
ϕ dσ and we have used in the above that

ˆ
Σ

(ϕ− ϕ)2 dσ =

ˆ
Σ

ϕ2 dσ − 1

|Σ|

(ˆ
Σ

ϕ dσ

)2

.
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