
Introduction to Fourier analysis

This semester, we’re going to study various aspects of Fourier analysis. In par-
ticular, we’ll spend some time reviewing and strengthening the results from Math
425 on Fourier series and then looking at various applications to partial differential
equations and other parts of mathematics and science. Then we’ll look at Fourier
transforms, and see their similarities to and differences from Fourier series. Again,
we’ll look at applications to PDEs and to other parts of mathematics and physics.
Then, as time permits in the semester, we’ll look at Fourier analysis in more general
contexts. You’ll be surprised at how many different parts of mathematics will come
together here.

To get started, let’s review a little bit from last semester and think about the
early history of Fourier analysis. Recall that the idea of Fourier series is that “any”
periodic function of t can be expressed as an infinite trigonometric sum of sines and
cosines of the same period T :

f(t) =
∞∑

n=0

[f̂+(n) cos(
2πnt

T
) + f̂−(n) sin(

2πnt

T
)].

The idea of using these expansions first came up in the work of D’Alembert and
Euler on the wave equation (for oscillations of a string). The displacement u(x, t) of
a string that is stretched over the x-interval [0, 1] from its equilibrium configuration,
as a function of the time t ≥ 0 and the place x on the string, is a solution of

∂2u

∂t2
=

∂2u

∂x2
, t > 0, 0 < x < 1

subject to the boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0

and the initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0 0 < x < 1.

A solution of this problem is given by D’Alembert’s formula:

u(x, t) =
1

2
f(x + t) +

1

2
f(x− t),

where it is understood that f has been extended to be an odd function of period 2
(so it must vanish at 0,±1,±2, . . .). In 1748, Euler suggested that the odd periodic
extension of f could be expanded as a sine series:

f(x) =
∞∑

n=1

f̂(n) sin nπx,
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so that the solution of the problem would be

u(x, t) =
∞∑

n=1

f̂(n) cos nπt sin nπx.

The formula

f̂(n) = 2
∫ 1

0
f(x) sin nπx dx

for the coefficients, later associated with Fourier’s name, first appeared in a paper of
Euler in 1777.

Fourier came into the picture with his study of the heat equation

∂u

∂t
=

∂2u

∂x2
.

In his Théorie analytique de la chaleur in 1822, Fourier was the first to make a serious
attempt to prove the covergence of Fourier series for some wide class of functions.
Soon after Dirichlet found the proof we discussed last semester, that the Fourier
series of a piecewise smooth function converges pointwise. Through the rest of the
1800s, various further studies and improvements of Dirichlet’s theorem were pursued
by many mathematicians.

At the beginning of the 20th century, the key to understanding Fourier series was
developed by Henri Lebesgue. His notion of measurability and the “Lebesgue inte-
gral” enabled the generalization of Fourier series to the class of Lebesgue measurable
functions f of period 1 for which

‖f‖2 =
∫ 1

0
|f(x)|2 dx < ∞.

The main result of Fourier analysis, which we will prove, is the Riesz-Fischer Theorem
of 1907:

Theorem: If f is a Lebesgue-measurable function of period 1 for which

‖f‖2 =
∫ 1

0
|f(x)|2 dx < ∞,

then the formula for the Fourier coefficients

f̂(n) =
∫ 1

0
f(x)e−2πinx dx n ∈ Z

provides a one-to-one map of the space of functions onto the space of sequences
{f̂(n)}∞n=−∞ for which

‖f̂‖2 =
∞∑
−∞

|f̂(n)|2 < ∞.



fourier analysis 3

Moreover, this map is norm-preserving:

‖f‖ = ‖f̂‖

and the associated Fourier series

f(x) =
∞∑

n=−∞
f̂(n)e2πinx

actually converges to f in the sense of these norms:

lim
N→∞

∫ 1

0
|f(x)−

N∑
n=−N

f̂(n)e2πinx|2dx = 0.

A similar development was carried out for the Fourier transform (or Fourier inte-
gral)

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πiξx dx

for (non-periodic) f that decay rapidly at infinity. For these we have Plancharel’s
theorem of 1910:

Theorem: If f is Lebesgue measurable and

‖f‖2 =
∫ ∞

−∞
|f(x)|2 dx < ∞,

then the same is true of f̂ , and
‖f̂‖ = ‖f‖.

Moreover, f can be recovered from f̂ via the inverse Fourier transform:

f(x) =
∫ ∞

−∞
f̂(ξ)e2πiξx dξ.

So our first order of business will be to explore the Lebesgue theory of integration.

1. The Lebesgue integral

We’re going to go through half a semester’s material in a graduate real analysis
course in a day or two, so we won’t do too many of the proofs.

To begin, recall how the Riemann integral is defined. If we have a continuous
function f defined on an interval [a, b] (with a and b finite and a < b), then we pick
a partition of the interval:

a = x0 < x1 < x2 < · · · < xn = b
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and form the Riemann sum
n∑

k=1

f(x∗k )(xk − xk−1),

where x∗k is any point between xk−1 and xk. One verifies that these Riemann sums
approach a limit as n →∞ and the norm of the partition (i.e., the largest difference
between consecutive xk’s) goes to zero. The limit is defined to be the Riemann integral∫ b

a
f(x) dx.

One way to look at Lebesgue’s idea is simply to turn this on its side and subdivide
the range instead of the domain of f . First, assuming f is continuous, and thus
bounded, on [a, b], we choose numbers y0 ≤ min f and yn ≥ max f , and then subdivide
the vertical axis as

y0 < y1 < y2 < · · · < yn.

We then form the sum
n∑

k=1

yk−1 · µ{x | yk−1 ≤ f(x) < yk},

where µ{x | yk−1 ≤ f(x) < yk} is the sum of the lengths of the subintervals of [a, b]
where the inequality holds (this is called the measure of the set). One then verifies
that these sums approach the same limit as the Riemann sums did as n →∞ and the
biggest of the differences yk−yk−1 approaches zero. The new wrinkle in the Lebesgue
theory is that we can extend the idea of measure from unions of disjoint intervals
to a much larger class of “Lebesgue measurable” sets, and then we will be able to
integrate a much larger class of functions.

So our first task is to define the notion of measure and explore some of its proper-
ties. First, let’s start with an interval J ⊂ R, which might be a bounded interval [a, b],
a half-line (−∞, b] or [a,∞), or the whole line. We are going to define measurable
subsets of J . To begin, we’ll agree that

• the measure of a (countable) union of non-overlapping intervals is the sum of
their lengths, whether or not this sum is finite.

In particular, the measure of a single point, or a countable set of points, is zero.
The notion of measure is then extended to the class of Borel measurable sets, which
is the smallest collection of subsets of J that contains all subintervals of J and is
closed under countable unions, countable intersections, and complementation. This
extension is unique provided we define the measure of a countable collection of disjoint



fourier analysis 5

Borel measurable sets to be the sum of their individual measures. To get from Borel
to Lebesgue, we just throw in all subsets of sets of measure zero as additional sets
of measure zero. Taking countable unions, intersections, and complements, we get
the collection of all Lebesgue measurable sets. And when we say “measurable”, we
always will mean “Lebesgue measurable”. A more constructuve way of expressing
Lebesgue measure is to say that for any measurable set E,

µ(E) = inf µ(C),

where C is a covering of E by a countable set of intervals, i.e., C = ∪∞n=1In ⊃ E.

Example (the Cantor set): Take J = [0, 1]. Any open subset U ⊂ J is measurable,
being the union of a countable number of non-overlapping open intervals (Exercise:
Prove this). So the measure of a compact (closed) subset K ⊂ J is to put µ(K) =
1− µ(U), where U is the complement of K in J . For example, if K is the closed set
obtained from [0, 1] by first removing the middle third (1

3
, 2

3
), and then removing the

middle thirds of the two remaining pieces, (1
9
, 2

9
) and (7

9
, 8

9
), and so forth, then you

can show that the measure of K is zero, even though K is uncountable. K is called
the Cantor set.

Exercise 1: Here are basic properties of Lebesgue measure. Assume J = [a, b], and
A, B, . . . are measurable subsets of J :

1. 0 ≤ µ(A) ≤ µ(J) = b− a

2. µ(A) ≤ µ(B) if A ⊂ B

3. µ(J − A) + µ(A) = µ(J)

4. µ(∪∞n=1Bn) ≤ ∑∞
n=1 µ(Bn)

5. µ(∪∞n=1Bn) =
∑∞

n=1 µ(Bn) if Bi ∩Bj = ∅ for i 6= j

6. limn→∞ µ(Bn) = µ(A) if B1 ⊂ B2 ⊂ · · · and ∪∞n=1Bn = A

7. limn→∞ µ(Bn) = µ(A) if B1 ⊃ B2 ⊃ · · · and ∩∞n=1Bn = A, provided µ(B1) < ∞.

Check that each of statements 4, 5 and 7 implies the other two.

Exercise 2: There are sets that are not measurable. Consider the set obtained by
choosing one element from each coset of the rational points in J .

Exercise 3: Suppose f1, f2, . . . are continuous functions onR, and that f = limn→∞ fn

exists pointwise, then {x | 0 ≤ f(x) < 1} is measurable. Hint: Note that

{x | f(x) < 1} =
∞⋃

k=1

∞⋃
m=1

∞⋂
n=m

{x | fn(x) ≤ 1− 1/k}.
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A real-valued function f on J = [0, 1] is measurable if the set

{x |α ≤ f(x) < β}

is measurable for every choice of α and β. The integral of a non-negative measurable
function, which can take on the value +∞ at some points, is defined by forming the
“Lebesgue sums”

∞∑
k=0

k

2n
· µ({x | k

2n
≤ f(x) <

k + 1

2n
}) +∞ · µ({x | f(x) = ∞})

and letting n → ∞, where it is understood that 0 · ∞ = 0. As n increases, the
subdivision of the y-axis becomes finer and finer, and the sums increase either to a
finite or an infinite limit, which is declared to be the Lebesgue integral of f :∫

J
f =

∫ 1

0
f =

∫ 1

0
f(x) dx.

It is important to note that the Lebesgue integral of a non-negative function always
exists, although it may be +∞.

The Lebesgue integral of a general measurable function f (which may take on
positive and negative values) can be obtained by splitting f into its positive part
f+ = max(f, 0) and its negative part f− = min(f, 0) and then declaring the integral
to be ∫

J
f =

∫
J
f+ −

∫
J
(−f−),

provided that at least one of the integrals on the right is less than ∞. If both are less
than ∞, the function f is called summable. Note that f is summable if and only if
|f | = f+ − f− is so.

If B is a subset of J and f is a measurable function on J , then the integral of f
times the “indicator function” 1B is said to be the integral of f over B:∫

B
f =

∫
J
f · 1B.

Exercise 3. Check that the Lebesgue integral
∫ 1
0 f of the indicator function f of the

rational numbers exists (and equals zero), but that f is not integrable in the Riemann
sense. Also, check that the class of measurable functions is closed under:

• multiplication by real constants

• addition (and subtraction)

• multiplication (and division) of functions (with obvious precautions about mul-
tiplying infinities)
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• (countable) infima, suprema, as well as limits superior and inferior.

Exercise 4. Check that any (piecewise) continuous function is measurable.

Exercise 5. Suppose f1, f2, . . . is a sequence of measurable functions. Prove that
inf fn, sup fn, lim inf fn and lim sup fn are measurable, too. (Hint: For f = lim inf fn,
note that

{x | f(x) > a} =
⋃
b>a

⋃
m≥1

⋂
n≥m

{x | fn(x) ≥ b},

where the first union is over the rational numbers b that are bigger than a. Explain
why this is true.)

Properties of measurable functions: (Assume f, f1, f2, . . . are measurable func-
tions):

1. µ(B) =
∫
J f if f is the indicator function of a measurable subset B of J .

2. a · µ(A) ≤
∫
A f ≤ b · µ(A) if a ≤ f ≤ b.

3.
∫
A∪B f =

∫
A f +

∫
B f if A and B are disjoint.

4.
∫
A cf = c

∫
A f .

5.
∫
A f1 + f2 =

∫
A f1 +

∫
A f2.

The three big convergence theorems:

Monotone convergence theorem: If 0 ≤ f1 ≤ f2 ≤ · · · then

lim
n→∞

∫
A

fn =
∫

A
lim

n→∞
fn.

The integrals exist automatically, because we allow both sides to be +∞. The con-
dition 0 ≤ f1 can be replaced by the condition that f−1 be summable (i.e., that∫

f−1 > −∞).

Exercise 6: If f1 ≥ f2 ≥ · · · and
∫

f+
1 < ∞, then then

lim
n→∞

∫
A

fn =
∫

A
lim

n→∞
fn.

Exercise 7: If fn ≥ 0, then ∫
A

∞∑
n=1

fn =
∞∑

n=1

∫
A

fn.
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Dominated convergence theorem: If for every n ≥ 1, |fn| < h where h is a summable
function, then

lim
n→∞

∫
A

fn =
∫

A
lim

n→∞
fn.

The special case where h is a constant function and µ(A) is finite is sometimes
called the “bounded convergence theorem”.

Exercise 8: Check that each of the dominated and monotone convergence theorems
implies the other. For instance, consider the function

inf
k≥n

(h± fk)

to go from monotone to dominated.

Exercise 9: Let fn = ne−nx and show that

lim
n→∞

∫
A

fn 6=
∫

A
lim

n→∞
fn.

Why doesn’t this contradict the theorems?

Fatou’s Lemma: If fn ≥ 0 for all n, then

lim inf
n→∞

∫
A

fn ≥
∫

A
lim inf

n→∞
fn.

Many of the above properties and all three theorems can be strengthened by per-
mitting the hypotheses to fail on a set of measure zero. In this context, we use the
phrase “almost everywhere”, and the abbreviation a.e., to indicate this. For example,
limn→∞ fn = f a.e. means that the set of points at which limn→∞ fn(x) fails to exist,
or else exists but fails to agree with f(x), is of measure zero.

To integrate complex-valued functions, we proceed in a pretty natural way. We’ll
say that f is summable over A if

∫
A |f | < ∞, where |f | means the complex absolute

value. Then the functions Re f and Im f will be summable, and we put∫
A

f =
∫

A
Re f + i

∫
A

Im f.

Most of the preceding rules hold without change, except property 2 can be replaced
by:

Exercise 10: |
∫
A f | ≤

∫
A |f | (Hint: Use that |

∫
f | =

∫
Re(fe−iϕ) where ϕ is the

argument (complex angle) of
∫

f .)

Because we will need it later in our approach to the Riesz-Fischer theorem, we’ll
prove
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The Borel-Cantelli Lemma: If
n∑

n=1

Bn < ∞,

then almost no point belongs to an infinite number of the sets Bn. In other words,

µ

 ⋂
n≥1

⋃
k≥n

Bk

 = 0.

Exercise 11: Check that this last set is really the set of points x that belong to Bn

for infinitely many values of n. (Probabilists sometimes denote this set by Bn i.o.,
for “infinitely often”.)

Proof of Borel-Cantelli:

µ

 ⋂
n≥1

⋃
k≥n

Bk

 ≤ µ

 ⋃
k≥m

Bk

 ≤
∑
k≥m

µ(Bk)

for any m ≥ 1, and this is the tail of a convergent series and so can be made arbitrarily
small by taking m large.

Exercise 12: Prove Chebyshev’s inequality:

µ({x ∈ A | |f(x)| ≥ a}) ≤ 1

a2

∫
A
|f |2.

(Hint: a−2|f 2| ≥ 1 on the set where |f | ≥ a.)

Exercise 13: Check that if f ≥ 0 and if
∫
A f = 0, then f = 0 a.e. (Hint:

{x | f(x) > 0} =
⋃
n≥1

{x | f(x) ≥ 1

n
}.)


