
numerical analysis 1

1.13 Predictor-corrector methods

The trapezoidal rule differs from the other two that we’ve looked at in that it does not explicitly
tell us what the next value of the unknown function is, but instead gives us an equation that must
be solved in order to find it. At first sight this seems like a nuisance, but in fact it is a boon,
because it enables us to regulate the step size during the courses of a calculation, as we will discuss
in section 1.15.

Let’s take a look at the process by which we refine a guessed value of yn+1 to an improved value,
using the trapezoidal formula

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)). (1.13.1)

Suppose we let y(k)
n+1 represent some guess to the value of yn+1 that satisfies (1.13.1). Then the

improved value y(k+1)
n+1 is computed from

y
(k+1)
n+1 = yn +

h

2
(f(xn, yn) + f(xn+1, y

(k)
n+1)). (1.13.2)

We want to find out about how rapidly the successive values y(k)
n+1, k = 1, 2, . . . approach a limit,

if at all. To do this, we rewrite equation (1.13.2), this time replacing k by k − 1 to obtain

y
(k)
n+1 = yn +

h

2
(f(xn, yn) + f(xn+1, y

(k−1)
n+1)) (1.13.3)

and then subtract (1.13.3) from (1.13.2) to get

y
(k+1)
n+1 − y(k)

n+1 =
h

2
(f(xn+1, y

(k)
n+1) − f(xn+1, y

(k−1)
n+1)). (1.13.4)

Next we use the mean-value theorem on the difference of f values on the right-hand side, yielding

y
(k+1)
n+1 − y(k)

n+1 =
h

2
∂f

∂y

∣∣∣∣
(xn+1,η)

(
y
(k)
n+1 − y(k−1)

n+1

)
, (1.13.5)

where η lies between y(k)
n+1 and y(k−1)

n+1 .

From the above we see at once that the difference between two consecutive iterated values of
yn+1 will be h

2
∂f
∂y times the difference between the previous two iterated values.

It follws that the iterative process will converge if h is kept small enough so that h
2

∂f
∂y is less than

1 in absolute value. We refer to h
2

∂f
∂y as the local convergence factor of the trapezoidal rule.

If the factor is a lot less than 1 (and this can be assured by keeping h small enough), then the
convergence will be extremely rapid.

In actual practice, one uses an iterative formula together with another formula (the predictor)
whose mission is to provide an intelligent first guess for the iterative method to use. The predictor
formula will be explicit, or non-iterative. If the predictor formula is clever enough, then it will happen
that just a single application of the iterative refinement (corrector formula) will be sufficient, and
we won’t have to get involved in a long convergence process.

If we use the trapezoidal rule for a corrector, for instance, then a clever predictor would be the
midpoint rule. The reason for this will become clear if we look at both formulas together with their
error terms. We will see in the next section that the error terms are as follows:

yn+1 = yn−1 + 2hy′n +
h3

3
y′′′(Xm) (1.13.6)

2 numerical analysis

yn+1 = yn +
h

2
(y′n + y′n+1) − h

3

12
y′′′(Xt). (1.13.7)

Now the exact locations of the points Xm and Xt are unknown, but we will assume here that h
is small enough that we can regard the two values of y′′′ that appear as being the same.

As far as the powers of h that appear in the error terms go, we see that the third power occurs
in both formulas. We say then, that the midpoint predictor and the trapezoidal corrector constitute
a matched pair. The error in the trapezoidal rule is about one fourth as large as, and of opposite
sign from, the error in the midpoint method.

The midpont guess is therefore quite “intelligent”. The subsequent iterative refinement of that
guess needs to reduce the error only by a factor of four. Now let yP denote the midpoint predicted
value, y(1)n+1 denote the first refined value, and yn+1 be the final converged value given by the
trapezoidal rule. Then we have

yn+1 = yn +
h

2
(y′n + f(xn+1, yn+1))

y
(1)
n+1 = yn +

h

2
(y′n + f(xn+1, yP))

and by subtraction

y
(1)
n+1 − yn+1 =

h

2
∂f

∂y
(yP − yn+1) .

This shows that, however far from the converged value the first guess was, the refined value is
h
2

∂f
∂y times closer. Hence if we can keep h

2
∂f
∂y no bigger than about 1/4, then the distance from the

first refined value to the converged value will be no larger than the size of the error term in the
method, and so there would be little point in gilding the iteration any further.

The conclusion is that when we are dealing with a matched predictor-corrector pair, we need
do only a single refinement of the corrector if the step size is kept moderately small. Furthermore,
“moderately small” means that the step size times the local value of ∂f

∂y should be small compared
to 1. For this reason, iteration to full convergence is rarely done in practice.

1.14 Truncation error and step size

We have so far regarded the step size h as a silent partner, more often than not choosing it to be
equal to 0.05, for no particular reason. It is evident, however, that the accuracy of the calculation
is strongly affected by the step size. If h is chosen too large, the computed solution may be quite
far from the true solution of the differential equation, if too small then the calculation will become
unnecessarily time-consuming, and roundoff errors may build up excessively because of the numerous
arithmetic operations that are being carried out.

Speaking in quite general terms, if the true solution of the differential equation is rapidly chang-
ing, then we will need a small values of h, that is, small compared to the local relaxation length (see
section 1.12), and if the solution changes slowly, then a larger value of h will do.

Frequently in practice we deal with equations whose solutions change very rapidly over part of
the range of integration and slowly over another part. Examples of this are provided by the study of
the switching on of a complicated process, such as beginning a multi-stage chemical reaction, turning
on a piece of electronic equipment, starting a power reactor, etc. In such cases there usually are
rapid and ephemeral or “transient” phenomena that occur soon after startup, and that disappear
quickly. If we want to follow these transients accurately, we may need to choose a very tiny step
size. After the transients die out, however, the steady-state solution may be a very quiet, slowly
varying or nearly constant function, and then a much larger value of h will be adequate.

numerical analysis 3

If we are going to develop software that will be satisfactory for such problems, then the program
will obviously have to choose, and re-choose its own step size as the calculation proceeds. While
following a rapid transient it should use a small mesh size, then it should gradually increase h as
the transient fades, use a large step while the solution is steady, decreae it again if further quick
changes appear, and so forth, all without operator intervention.

Before we go ahead to discuss methods for achieving this step size control, let’s observe that one
technique is already available in the material of the previous section. Recall that if we want to, we
can implement the trapezoidal rule by first guessing, or predicting, the unknown at the next point
by using Euler’s formula, and then correcting the guess to complete convergence by iteration.

The first guess will be relatively far away from the final converged value if the solution is rapidly
varying, but if the solution is slowly varying, then the guess will be rather good. It follows that the
number of iterations required to produce convergence is one measure of the appropriateness of the
current value of the step size: if many iterations are needed, then the step size is too big. Hence
one way to get some control on h is to follow a policy of cutting the step size in half whenever more
than, say, one or two iterations are necessary.

This suggestion is not sufficiently sensitive to allow doubling the stepsize when only one iteration
is needed, however, and somewhat more delicacy is called for in that situation. Furthermore this is
a very time-consuming approach since it involves a complete iteration to convergence, when in fact
a single turn of the crank is enough if the step size is kept small enough.

The discussion does, however, point to the fundamental idea that underlies the automatic control
of step size during the integration. That basic idea is precisely that we can estimate the correctness of
the step size by whatching how well the first guess in our iterative process agrees with the corrected
value. The correction process itself, when viewed this way, is seen to be a powerful ally of the
software user, rather than the “pain in the neck” it seemed to be when we first met it.

Indeed, why would anyone use the cumbersome procedure of guessing and refining (i.e., prediction
and correction) as we do in the trapezoidal rule, when many other methods are available that give
the next value of the unknown immediately and explicitly? No doubt the question crossed the
reader’s mind, and the answer is now emerging. It will appear that not only does the disparity
between the first prediction and the corrected value help us to control the step size, it actually can
give us a quantitative estimate of the local error in the integration, so that if we want to, we can
print out the approximate size of the error along with the solution.

Our next job will be to make these rather qualitative remarks into quantitative tools, and so we
must discuss the estimation of the error that we commit by using a particular difference approxima-
tion to a differential equation, instead of that equation itself, on one step of the integration process.
This is the single-step truncation error. It does not tell us how far our computed solution is from
the true solution, but only how much error is committed in a single step.

The easiest example, as usual, is Euler’s method. In fact, in equation (1.7.2) we have already
seen the single-step error of this metnod. That equation was

y(xn + h) = y(xn) + hy′(xn) + h2 y
′′(X)

2
(1.14.1)

where X lies between xn and xn + h. In Euler’s procedure, we drop the third term on the right, the
“remainder term”, and compute the solution from the rest of the equation. In doing this we commit
a single-step trunction error that is equal to

E = h2 y
′′(X)

2
xn < X < xn + h. (1.14.2)

Thus, Euler’s method is exact (E = 0) if the solution is a polynomial of degree 1 or less (y′′ = 0).
Otherwise, the single-step error is proportional to h2, so if we cut the step size in half, the local

4 numerical analysis

error is reduced to 1/4 of its former value, approximately, and if we double h the error is multiplied
by about 4.

We could use (1.14.2) to estimate the error by somehow computing an estimate of y′′. For
instance, we might differentiate the differential equation y′ = f(x, y) once more, and compute y′′

directly from the resulting formula. This is usually more trouble than it is worth, though, and we
will prefer to estimate E by more indirect methods.

Next we derive the local error of the trapezoidal rule. There are various special methods that
might be used to do this, but instead we are going to use a very general method that is capable of
dealing with the error terms of almost every integration rule that we intend to study.

First, let’s look a little more carefully at the capability of the trapezoidal rule, in the form

yn+1 − yn − h
2

(y′n + y′n+1) = 0. (1.14.3)

Of course, this is a recurrence by meand of which we propagate the approximate solution to the
right. It certainly is not exactly true if yn denotes the value of the true solution at the point xn

unless that true solution is very special. How special?

Suppose the true solution is y(x) = 1 for all x. Then (1.14.3) would be exactly valid. Suppose
y(x) = x. Then (1.14.3) is again exactly satisfied, as the reader should check. Furthermore, if
y(x) = x2, then a brief calculation reveals that (1.14.3) holds once more. How long does this
continue? Our run of good luck has just expired, because if y(x) = x3 then (check this) the left side
of (1.14.3) is not 0, but is instead −h3/2.

We might say that the trapezoidal rule is exact on 1, x, and x2, but not x3, i.e., that it is an
integration rule of order two (“order” is an overworked word in differential equations). It follows by
linearity that the rule is exact on any quadratic polynomial.

By way of contrast, it is easy to verify that Euler’s method is exact for a linear function, but
fails on x2. Since the error term for Euler’s method in (1.14.2) is of the form const∗h2 ∗ y′′(X), it is
perhaps reasonable to expect the error term for the trapezoidal rule to look like const ∗ h3 ∗ y′′′(X).

Now we have to questions to handle, and they are respectively easy and hard:

(a) If the error term in the trapezoidal rule really is const ∗ h3 ∗ y′′′(X), then what is “const”?

(b) Is it true that the error term is const ∗ h3 ∗ y′′′(X)?

We’ll do the easy one first, anticipating that the answer to (b) is affirmative so the effort won’t
be wasted. If the error term is of the form stated, then the trapezoidal rule can be written as

y(xh) − y(x) − h
2

(y′(x+ h) + y′(x)) = c ∗ h3 ∗ y′′′(X), (1.14.4)

where X lies between x and x+ h. To find c all we have to do is substitute y(x) = x3 into (1.14.4)
and we find at once that c = −1/12. The single-step truncation error of the trapezoidal rule would
therefore be

E = −h3 y
′′′(X)
12

x < X < x+ h. (1.14.5)

Now let’s see that question (b) has the answer “yes” so that (1.14.5) is really right.

To do this we start with a truncated Taylor series with the integral form of the remainder, rather
than with the differential form of the remainder. In general the series is

y(x) = y(0) + xy′(0) + x2 y
′′(0)
2!

+ · · · + xn y
(n)(0)
n!

+Rn(x) (1.14.6)

numerical analysis 5

where
Rn(x) =

1
n!

∫ x

0

(x− s)ny(n−1)(s) ds. (1.14.7)

Indeed, one of the nice ways to prove Taylor’s theorem begins with the right-hand side of (1.14.7),
plucked from the blue, and then repeatedly integrates by parts, lowereing the order of the derivative
of y and the power of (x− s) until both reach zero.

In (1.14.6) we choose n = 2, because the trapezoidal rule is exact on polynomials of degree 2,
and we write it in the form

y(x) = P2(x) +R2(x) (1.14.8)

where P2(x) is the quadratic (in x) polynomial P2(x) = y(0) + xy′(0) + x2y′′(0)/2.

Next we define a certain operation that transforms a function y(x) into a new function, namely
into the left-hand side of equation (1.14.4). We call the operator L and so it is defined by

Ly(x) = y(x+ h) − y(x) − h
2

(y′(x) + y′(x + h)) . (1.14.9)

Now we apply the operator L to both sides of equation (1.14.8), and we notice immediately that
LP2(x) = 0, because the rule is exact on quadratic polynomials (this is why we chose n = 2 in
(1.14.6)). Hence we have

Ly(x) = LR2(x). (1.14.10)

Notice that we have here a remainder formula for the trapezoidal rule. It isn’t in a very satis-
factory form yet, so we will now make it a bit more explicit by computing LR2(x). First, in the
integral expression (1.14.7) for R2(x) we want to replace the upper limit of the integral by +∞. We
can do this by writing

R2(x) =
1
2!

∫ ∞

0

H2(x− s)y′′′(s) ds (1.14.11)

where H2(t) = t2 if t > 0 and H2(t) = 0 if t < 0.

Now if we bear in mind the fact that the operator L acts only on x, and that s is a dummy
variable of integration, we find that

LR2(x) =
1
2!

∫ ∞

0

LH2(x− s)y′′′(s) ds. (1.14.12)

Choose x = h. Then if s lies between 0 and h we find

LH2(x− s) = (h− s)2 − h
2

(2(h− s))
= −s(h− s)

(Caution: Do not read past the right-hand side of the first equals sign unless you can verify the
correctness of what you see there!), whereas if s > h then LH2(x− s) = 0.

Then (1.14.12) becomes

LR2(h) = −1
2

∫ h

0

s(h− s)y′′′(s) ds. (1.14.13)

This is a much better form for the remainder, but we still do not have the “hard” question (b). To
finish it off we need a form of the mean-value theorem of integral calculus, namely

Theorem 1.14.1: If p(x) is non-negative, and g(x) is continuous, then

∫ b

a

p(x)g(x) dx = g(X)
∫ b

a

p(x) dx (1.14.14)

6 numerical analysis

where X lies between a and b.

The theorem asserts that a weighted average of the values of a continuous function is itself one
of the values of that function. The vital hypothesis is that the “weight” p(x) does not change sign.

Now in (1.14.13), the function s(h− s) does not change sign on the s-interval (0, h), and so

LR2(h) = −1
2
y′′′(X)

∫ h

0

s(h− s) ds (1.14.15)

and if we do the integral we obtain, finally,

Theorem 1.14.2: The trapezoidal rule with remainder term is given by the formula

y(xn+1) − y(xn) =
h

2
(y′(xn) + y′(xn+1)) − h

3

12
y′′′(X), (1.14.16)

where X lies between xn and xn+1.

The proof of this theorem involved some ideas tha carry over almost unchanged to very general
kinds of integration rules. Therefore it is important to make sure that you completely understand
its derivation.

1.15 Controlling the step size

In equation (1.14.5) we saw that if we can estimate the size of the third derivative during the
calculation, then we can estimate the error in the trapezoidal rule as we go along, and modify the
step size h if necessary, to keep that error within preassigned bounds.

To see how this can be done, we will quote, without proof, the result of a similar derivation for
the midpoint rule. It says that

y(xn+1) − y(xn−1) = 2hy′(xn) +
h3

3
y′′′(X), (1.15.1)

where X is between xn−1 and xn+1. Thus the midpoint rule is also of second order. If the step size
were halved, the local error would be cut to one eighth of its former value. The error in the midpoint
rule is, however, about four times as large as that in the trapezoidal formula, and of opposite sign.

Now suppose we adopt an overall strategy of predicting the value yn+1 of the unknown by means
of the midpoint rule, and then refining the prediction to convergence with the trapezoidal corrector.
We want to estiamte the size of the single-step truncation error, using only the following data, both
of which are available during the calculation: (a) the initial guess, from the midpoint method, and
(b) the converged corrected value, from the trapezoidal rule.

We begin by defining three different kinds of values of the unknown function at the “next” point
xn+1. They are

(i) the quantity pn+1 is defined as the predicted value of y(xn+1) obtained from using the midpoint
rule, except that backwards values are not the computed ones, but are the exact ones instead.
In symbols,

pn+1 = y(xn+1) + 2hy′(xn). (1.15.2)

Of course, pn+1 is not available during an actual computation.

(ii) the quantity qn+1 is the value that we would compute from the trapezoidal corrector if for the
backward value we use the exact solution y(xn) instead of the calculated solution yn. Thus
qn+1 satisfies the equation

qn+1 = y(xn) +
h

2
(f(xn, y(xn)) + f(xn+1, qn+1)) . (1.15.3)

Again, qn+1 is not available to us during calculation.

numerical analysis 7

(iii) the quantity y(xn+1), which is the exact solution itself. It staisfies two different equations, one
of which is

y(xn+1) = y(xn) +
h

2
(f(xn, y(xn)) + f(xn+1, y(xn+1))) − h

3

12
y′′′(X) (1.15.4)

and the other of which is (1.15.1). Note that the two X ’s may be different.

Now, from (1.15.1) and (1.15.2) we have at once that

y(xn+1) = pn+1 +
h3

3
y′′′(X). (1.15.5)

Next, from (1.15.3) and (1.15.4) we get

y(xn+1) =
h

2
(f(xn+1, y(xn+1)) − f(xn+1, qn+1)) − h

3

12
y′′′(X)

= qn+1
h

2
(y(xn+1) − qn+1)

∂f

∂y
(xn+1, Y) − h

3

12
y′′′(X)

where we have used the mean-value theorem, and Y lies between y(xn+1) and qn+1. Now if we
subtract qn+1 from both sides, we will observe that y(xn+1) − qn+1 will then appear on both sides
of the equation. Hence we will be able to solve for it, with the result that

y(xn+1) = qn+1 − h
3

12
y′′′(X) + terms involving h4. (1.15.6)

Now let’s make the working hypothesis that y′′′ is constant over the range of values of x con-
sidered, namely from xn − h to xn + h. The y′′′(X) in (1.15.6) is thereby decreed to be equal to
the y′′′(X) in (1.15.5), even though the X ’s are different. Under this assumption, we can eliminate
y(xn+1) between (1.15.5) and (1.15.6) and obtain

qn+1 − pn+1 =
5
12
h3y′′′ + terms involving h4. (1.15.7)

We see that this expresses the unknown, but assumed constant, value of y′′′ in terms of the
difference between the initial prediction and the final converged value of y(xn+1). Now we ignore
the “terms involving h4” in (1.15.7), solve for y′′′, and then for the estimated single-step truncation
error we have

Error = −h
3

12
y′′′

≈ − 1
12

12
5

(qn+1 − pn+1)

= −1
5

(qn+1 − pn+1).

(1.15.8)

The quantity qn+1 − pn+1 is not available during the calculation, but as an estimator we can
use the compted predicted value and the compted converged value, because these differ only in that
they use computed, rather than exact backwards values of the unknown function.

Hence, we have here an estimate of the single-step trunction error that we can conveniently
compute, print out, or use to control the step size.

The derivation of this formula was of course dependent on the fact that we used the midpoint
metnod for the predoctor and the trapezoidal rule for the corrector. If we had used a different pair,
however, the same argument would have worked, provided only that the error terms of the predictor

8 numerical analysis

and corrector formulas both involved the same derivative of y, i.e., both formulas were of the same
order.

Hence, “matched pairs”” of predictor and corrector formulas, i.e., pairs in which both are of
the same order, are most useful for carrying out extended calculations in which the local errors are
continually monitored and the step size is regulated accordingly.

Let’s pause to see how this error estimator would have turned out in the case of a general
matched pair of predictor-corrector formulas, insted of just for the midpoint and trapezoidal rule
combination. Suppose the predictor formula has an error term

yexact − ypredicted = λhqy(q)(X) (1.15.9)

and suppose that the error in the corrector formula is given by

yexact − ycorrected = µhqy(q)(X). (1.15.10)

Then a derivation similar to the one that we have just done will show that the estimator for the
single-step error that is available during the progress of the computation is

Error ≈ µ

λ− µ (ypredicted − ycorrected). (1.15.11)

In the table below we show the result of integrating the differential equation y′ = −y with
y(0) = 1 using the midpoint and trapezoidal formulas with h = 0.05 as the predictor and corrector,
as described above. The successive columns show x, the predicted value at x, the converged corrected
value at x, the single-step error estimated from the approximation (1.15.8), and the actual single-step
error obtained by computing

y(xn+1) − y(xn) − h
2

(y′(xn) + y′(xn+1))

using the true solution y(x) = e−x. The calculation was started by (cheating and) using the exact
solution at 0.00 and 0.05.

x Pred(x) Corr(x) Errest(x) Error(x)
0.00 ——- ——- ——- ——-
0.05 ——- ——- ——- ——-
0.10 0.904877 0.904828 98 × 10−7 94 × 10−7

0.15 0.860747 0.860690 113 × 10−7 85 × 10−7

0.20 0.818759 0.818705 108 × 10−7 77 × 10−7

0.25 0.778820 0.778768 102 × 10−7 69 × 10−7

0.30 0.740828 0.740780 97 × 10−7 61 × 10−7

0.35 0.704690 0.704644 93 × 10−7 55 × 10−7

0.40 0.670315 0.670271 88 × 10−7 48 × 10−7

0.45 0.637617 0.637575 84 × 10−7 43 × 10−7

0.50 0.606514 0.606474 80 × 10−7 37 × 10−7

...
...

...
...

...
0.95 0.386694 0.386669 51 × 10−7 5 × 10−7

1.00 0.367831 0.367807 48 × 10−7 3 × 10−7

table 1.15.1

Now that we have a simple device for estimating the single-step truncation error, namely by
using one fifth of the distance between the first guess and the corrected value, we can regulate the
step size so as to keep the error between preset limits. Suppose we would like to keep the single-step

numerical analysis 9

error in the neighborhood of 10−8. We might then adopt, say 5×10−8 as the upper limit of tolerable
error and, for instance, 10−9 as the lower limit.

Why should we have a lower limit? If the calculation is being done with more precision than
necessary, the step size will be smaller than needed, and we will be wasting computer time as well
as possibly building up roundoff error.

Now that we have fixed these limits we should be under no delusion that our computed solution
will depart from the true solution by no more than 5 × 10−8, or whatever. What we are controlling
is the one-step truncation error, a lot bettern than nothing, but certainly not the same as the total
accumulated error.

With the upper and lower tolerances set, we embark on the computation. First, since the
midpoint method needs two backward values before it can be used, something special will have to
be done to get the procedure moving at the start. This is typical of numerical solution of differential
equations. Special procedures are needed at the beginning to build up enough computed values so
that the predictor-corrector formulas can be used thereafter, or at least until the step size is changed.

In the present case, since we’re going to use the trapezoidal corrector anyway, we might as well
use the trapezoidal rule, unassisted by midpoint, with complete iteration to convergence, to get the
value of y at the first point x0 + h beyond the initial point x0.

Now we have two consecutive values of y, and the generic calculation can begin. From any two
consecutive values, the midpoint rule is used to predict the next value of y. This predicted value is
also saved for future use in error estimation. The predicted value is then refined by the trapezoidal
rule.

With the trapezoidal value in hand, the local error is then estimated by calculating one-fifth of
the difference between that value and the midpoint guess.

If the absolute value of the local error lies between the preset limits 10−9 and 5 × 10−8, then we
just go on to the next step. This means that we augment x by h, and move back the newer values
of the unknown function to the locations that hold older values (we remember, at any moment, just
two past values).

Otherwise, suppose the local error was too large. Then we must reduce the step size h, say
by cutting it in half. When all this is done, some message should be printed out that announces
the change, and then we should restart the procedure, with the new value of h, from the “farthest
backward” value of x for which we still have the corresponding y in memory. One reason for this
is that we may find out right at the outset that our very first choice of h is too large, and perhaps
it may need to be halved, say, three times before the errors are tolerable. Then we would like to
restart each time from the same originally given data point x0, rather than let the computation
creep forward a little bit with step sizes that are too large for comfort.

Finally, suppose the local error was too small. Then we double the step size, print a message to
that effect, and restart, again from the smallest possible value of x.

Now let’s apply the philosophy of structured programming to see how the whole thing should be
organized. We ask first for the major logical blocks into which the computation is divided. In this
case we see

(i) a procedure midpt. Input to this procedure will be x, h, yn−1, yn. Output from it will be
yn+1 computed from the midpoint formula. No arrays are involved. The three values of y in
question occupy just three memory locations. The leading statement in this routine might be

midpt:=proc(x,h,y0,ym1,n);

and its return statement would be return(yp1);. One might think that it is scarcely nec-
essary to have a separate subroutine for such a simple calculation. The spirit of structured

10 numerical analysis

programming dictates otherwise. Someday one might want to change from the midpoint pre-
dictor to some other predictor. If organized as a subrouting, then it’s quite easy to disentangle
it from the program and replace it. This is the “modular” arpproach.

(ii) a procedure trapez. This routine will be called from two or three different places in the
main routine: when starting, when restarting with a new value of h, and in a generic step,
wher eit is the corrector formula. Operation of thie routine is different, too, depending on the
circumstances. When starting or restarting, there is no externally supplied guess to help it. It
must find its own way to convergence. On a generic step of the integration, however, we want
it to use the prediction supplied by midpt, and then just do a single correction.

One way to handle this is to use a logical variable start. If trapez is called with start =
TRUE, then the subroutine would supply a final converged value without looking for any input guess.
Suppose the first line of trapez is

trapez:=proc(x,h,yin,yguess,n,start,eps);

and its return statement is return(yout);. When called with start = TRUE, then the routine
might use yin as its first guess to yout, and iterate to convergence from there, using eps as its
convergence criterion. If start = FALSE, it will take yguess as an estimate of yout, then use the
trapezoidal rule just once, to refine the value as yout.

The combination of these two modules plus a small main program that calls them as needed,
constitutes the whole package. Each of the subroutines and the main routine should be heavily
documented in a self-contained way. That is, the descriptions of trapez, and of midpt, should
precisely explain their operation as separate modules, with their own inputs and outputs, quite
independently of the way they happen to be used by the main program in this problem. It should
be possible to unplug a module from this application and use it without change in another. The
documentation of a procedure should never make reference to how it is used by a certain calling
program, but should describe only how it transforms its own inputs into its own outputs.

In the next section we are going to take an intermission from the study of integration rules in
order to discuss an actual physical problem, the flight of a spacecraft to the moon. This problem
will need the best methods that we can find for a successful, accurate solution. Then in section 1.17,
we’ll return to the modules discussed above, and will display complete computed programs that
carry them out. In the meantine, the reader might enjoy trying to write such a complete program
now, and comparing it with the one in that section.

1.16 Case study: Rocket to the moon

Now we have a reasonably powerful apparatus for integration of initial-value problems and sys-
tems, including the automatic regulation of step size and built-in error estimation. In order to try
out this software on a problem that will use all of its capability, in this section we are going to
derive the differential equations that govern the flight of a rocket to the moon. We do this first in a
one-dimensional model, and then in two dimensions. It will be very useful to have these equations
available for testing various proposed integration methods. Great accuracy will be needed, and the
ability to chenge the step size, both to increase it and the devrease it, will be essential, or else the
computation will become intolerably long. The variety of solutions that can be obtained is quite
remarkable.

First, in the one-dimensional simplified model, we place the center of the earth at the origin of
the x-axis, and let R denote the earth’s radius. At the point x = D we place the moon, and we let
its radius be r. Finally, at a position x = x(t) is our rocket, making its way towards the moon.

numerical analysis 11

MoonrocketEarth

x=D

x=D-r

x

x=R

x=0

figure 1.16.1

We will use Newton’s law of gravitation to find the net gravitational force on the rocket,and
equate it to the mass of the rocket times its acceleration (Newton’s second law of motion). According
to Newton’s law of gravitation, the gravitational force exerted by one body on another is proportional
to the product of their masses and inversely proportional to the square of the distance between them.
If we use K for the constant of proportionality, then the force on the rocket due to the earth is

−KMEm

x2
,

whereas the force on the rocket due to the moon’s gravity is

K
MMm

(D − x)2

where ME, MM and m are, respectively, the masses of the earth, the moon and the rocket.

The acceleration of the rocket is of course x′′(t), and so the assertion that the net force is equal
to mass times acceleration takes the form:

mx′′ = −KMEm

x2
+K

MMm

(D − x)2
. (1.16.1)

This is a (nasty) differential equation of second order in the unknown function x(t), the position
of the rocket at time t. Note the nonlinear way in which this unknown function appears on the
right-hand side.

A second-order differential equations deserves two initial values, and we will oblige. First. let’s
agree that at time t = 0 the rocket was onthe surfact of the earth, and second, that the rocket was
fired at the moon with a certain initial velocity V . Hence, the initial conditions that go with (1.16.1)
are

x(0) = R ; x′(0) = V. (1.16.2)

Now, just a quick glance at (1.16.1) shows that m cancels out, so let’s remove it, but not before
pointing out the immense significance of that fact. It implies that the motion of the rocket is
independent of its mass. For performing a now-legendary experiment with rocks of different sizes
dropping from the Tower of Pisa, Galileo demonstrated that fact to an incredulous world.

At any rate, (1.16.1) now reads as

x′′ = −KME

x
+

KMM

(D − x)2
. (1.16.3)

We can make this equation a good bit prettier by changing the units of distance and time from miles
and seconds (or whatever) to a set of more natural units for the problem.

For our unit of distance we choose R, the radius of the earth. If we divide (1.16.3) through by
R, we can write the result as (x

R

)′′
= −

KME

R3(
X
R

)2 +
KMM

R3(
D
R − x

R

)2 . (1.16.4)

Now instead of the unknown function x(t), we define y(t) = x(t)/R. Then y(t) is the position of
the rocket, expressed in earth radii, at time t. Further, the ratio D/R that occurs in (1.16.4) is a

12 numerical analysis

dimensionless quantity, whose numerical value is about 60. Hence (1.16.4) has now been transformed
to

y′′ = −
KME

R3

y2
+

KMM

R3

(60 − y)2 . (1.16.5)

Next we tackle the new time units. Since y is now dimensionless, the dimension of the left side
of the equation is the reciprocal of the square of a time. If we look next at the first term on the
right, which of course has the same dimension, we see that the quantity R3/KME is the square of
a time, and so

T0 =

√
R3

KME
(1.16.6)

is a time. Its numerical value is easier to calculate if we change the formula first, as follows.

Consider a body of mass m on the surface of the earth. Its weight is the magnitude of the force
exerted on it by the earth’s gravity, namely KMEm/R

2. Its weight is also equal to m times the
acceleration of the body, namely the acceleration due to gravity, usually denoted by g, and having
the value 32.2 feet/sec2.

It follows that
KMem

R2
= mg,

and if we substitute into (1.16.6) we find that our time unit is

T0 =

√
R

g
. (1.16.7)

We take R = 4000 miles, and find T0 is about 13 minutes and 30 seconds. We propose to measure
time in units of T0. To that end, we multiply through equation (1.16.5) by T0 and get

T 2
0 y

′′ = − 1
y2

+
MM

ME

(60 − y)2 . (1.16.8)

The ratio of the massMM of the moon to the massME of the earth is about 0.012. Furthermore,
we will now introduce a new independent variable τ and a new dependent variable u = u(τ) by the
relations

u(τ) = y(τT0) ; t = τT0 . (1.16.9)

Thus, u(τ) represents the position of the rocket, measured in units of the radius of the earth, at a
time τ that is measured in units of T0, i.e., in units of 13.5 minutes.

The substitution of (1.16.9) into (1.16.8) yields the differential equation for the scaled distance
u(τ) as a function of the scaled time τ in the form

u′′ = − 1
u2

+
0.012

(60 − u)2
. (1.16.10)

Finally we must translate the initial conditions (1.16.2) into conditions on the new variables.
The first condition is easy: u(0) = 1. Next, if we differentiate (1.16.9) and set τ = 0 we get

u′(0) =
T0V

R
=

V

R/T0
. (1.16.11)

This is a ratio of two velocities. In the numerator is the velocity with which the rocket is launched.
What is the significance of the velocity R/T0?

numerical analysis 13

We claim that it is, aside from a numerical factor, the escape velocity from the earth, if there
were no moon. Perhaps the quickest way to see this is to go back to equation (1.16.8) and drop the
second term on the right-hand side (the one that comes from the moon). Then we will be looking
at the differential equation that would govern the motion if the moon were absent. This equation
can be solved. Multiply bth sides by 2y′, and it becomes

T 2
0

(
(y′)2

)′
=

(
2
y

)′
,

and integration yields

T 2
0 (y′)2 =

2
y

+ C.

Now let t = 0 and find that C = T 2
0 V

2/R2 − 2, and so

T 2
0 (y′)2 =

2
y
−

(
T 2

0 V
2

R2
− 2

)
. (1.16.2)

Suppose the rocket is launched with sufficient initial velocity to escape from the earth. Then the
function y(t) will grow without bound. Hence let y → ∞ on the right side of (1.16.12). For all
values of y, the left side is a square, and therefore a non-negative quantity. Hence the right side,
which approaches the constant C, must also be non-negative. Thus C ≥ 0 or, equivalently

V ≥
√

2
R

T0
. (1.16.13)

Thus, if the rocket escapes, then (1.16.13) is true, and the converse is easy to show also. Hence
the quantity

√
2R/T0 is the escape velocity from the earth. We shall denote it by Vesc. Its numerical

value is approximately 25, 145 miles per hour.

Now we can return to (1.16.9) to translate the initial conditions on x′(t) into initial conditions
on u′(τ). In terms of the escape velocity, it becomes u′(0) =

√
2V/Vesc. We might say that if we

choose to measure distance in units of earth radii, and time in units of T0, then velocities turn out
to be measured in units of escape velocity, aside from the

√
2.

In summary, the differential equation and the initial conditions have the final form

u′′ = − 1
u2

+
0.012

(60 − u)2

u(0) = 1

u′(0) =
√

2
V

Vesc

(1.16.14)

Since that was all so easy, let’s try the two-dimensional case next. Here, the earth is centered
at the origin of the xy-plane, and the moon is moving. Let the coordinates of the moon at time t
be (xm(t), ym(t)). For example, if we take the orbit of the moon to be a circle of radius D, then we
would have xm = D cos(ωt) and ym(t) = D sin(ωt).

If we put the rocket at a generic position (x(t), y(t)) on the way to the moon, then we have the
configuration shown in figure 1.16.2.

my (t)

y(t)

mx (t)x(t)

Moon

rocket

Earth

ψ

θ

14 numerical analysis

figure 1.16.2

Consider the net force on the rocket in the x direction. It is given by

Fx = −KMEm cos θ
x2 + y2

+
KMMm cosψ

(x− xm)2 + (y − ym)2
, (1.16.15)

where the angles θ and ψ are shown in figure 1.16.2. From that figure, we see that

cos θ = x
√
x2 + y2

and
cosψ =

xm − x
sqrt(xm − x)2+)ym − y)2 .

Now we substitute into (1.16.15), and equate the force in the x direction to mx′′(t), to obtain the
differential equation

mx′′(t) = − KMEmx

(x2 + y2)3/2
+

KMMm(xm − x)
((xm − x)2 + (ym − y)2)3/2

. (1.16.16)

If we carry out a similar analysis for the y-component of the force on the rocket, we get

my′′(t) = − KMEmy

(x2 + y2)3/2
+

KMMm(ym − y)
((xm − x)2+)ym − y)2)3/2

. (1.16.17)

We are now looking at two (even nastier) simultaneous differential equations of the second order
in the two unknown functions x(t), y(t) that describe the position of the rocket. To go with these
equations, we need four initial conditions. We will suppose that at time t = 0, the rocket is on the
earth’s surface, at the point (R, 0). Further, at time t = 0, it will be fired with an initial speed of
V , in a direction that makes an angle α with the positive x-axis. Thus, our initial conditions are{

x(0) = R ; y(0) = 0
x′(0) = V cosα ; y′(0) = V sinα . (1.16.18)

The problem has now been completely defined. It remains to change the units into the same
natural dimensions of distance and time that were used in the one-dimensional problem. This time
we leave the details to the reader, and give only the results. If u(τ) and v(τ) denote the x and y
coordinates of the rocket, measured in units of earth radii, at a time τ measured in units of T0 (see
(1.16.7)), then it turns out the u and v satisfy the differential equations

u′′ = − u

(u2 + v2)3/2
+

0.012(um − u)
((um − u)2 + (vm − v)2)3/2

v′′ = − v

(u2 + v2)3/2
+

0.012(vm − v)
((um − u)2 + (vm − v)2)3/2

.

(1.16.19)

Furthermore, the initial data (1.16.18) take the form

u(0) = 1 ; v(0) = 0

u′(0) =
√

2
V cosα
Vesc

; v′(0) =
√

2
V sinα
Vesc

.
(1.16.20)

In these equations, the functions um(τ) and vm(τ) are the x and y coordinates of the moon, in units
of R, at the time τ . Just to be specific, let’s decree that the moom is in a circular orbit of radius
60R, and that it completes a revolution every twenty-eight days. Then, after a brief session with a
hand calculator or a computer, we discover that the equations

um(τ) = 60 cos(0.002103745τ)
vm(τ) = 60 sin(0.002103745τ)

(1.16.21)

represent the position of the moon.

