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1.1 Differential equations

In this chapter we are going to study differential equations, with particular emphasis on how to
solve them with computers. We assume that the reader has previously met differential equations,
and so we’re going to review the most basic facts about them rather quickly.

A differential equation is an equation in an unknown function, say y(x), where the equation
contains various derivatives of y and various known functions of x. The problem is to “find” the
unknown function. The order of a differential equation is the order of the highest derivative that
appears in it.

Here’s an easy equation of first order:

y′(x) = 0. (1.1.1)

The unknown function is y(x) = constant, and so we have solved the given equation (1.1.1).

The next one is a little harder:
y′(x) = 2y(x). (1.1.2)

A solution will, now doubt, arrive after a bit of thought, namely y(x) = e2x. But, if y(x) is a solution
of (1.1.2), then so is 10y(x), or 49.6y(x), or in fact cy(x) for any constant c. Hence y = ce2x is a
solution of (1.1.2). Are there any other solutions? No there aren’t, because if y is any function that
satisfies (1.1.2) then

(ye−2x)′ = e−2x(y′ − 2y) = 0,

and so ye−2x must be a constant, C.

In general, we can expect that if a differential equation is of the first order, then the most general
solution will involve one arbitrary constant C. This is not always the case, since we can write down
differential equations that have no solutions at all. We would have, for instance, a fairly hard time
(why?) finding a real function y(x) for which

(y′)2 = −y2 − 2. (1.1.3)

There are certain special kinds of differential equations that can always be solved, and it’s often
important to be able to recognize them. Among there are the “first-order linear” equations

y′(x) + a(x)y(x) = 0, (1.1.4)

where a(x) is a given function of x.

Before we describe the solution of these equations, let’s discuss the word linear. To say that an
equation is linear is to say that if we have any two solutions y1(x) and y2(x) of the equation, then
c1y1(x) + c2y2(x) is also a solution of the equation, where c1 and c2 are any two constants (in other
words, the set of solutions forms a vector space).

Equation (1.1.1) is linear, in fact, y1(x) = 7 and y2(x) = 23 are both solutions, and so is
7c1 + 23c2. Less trivially, the equation

y′′(x) + y(x) = 0 (1.1.5)

is linear. The linearity of (1.1.5) can be checked right from the equation itself, without knowing
what the solutions are (do it!). For an example, though, we might note that y = sinx is a solution
of (1.1.5), that y = cosx is another solution of (1.1.5), and finally, by linearity, that the function
y = c1 sinx+ c2 cosx is a solution, whatever the constants c1 and c2. Now let’s consider an instance
of the first order linear equation (1.1.4):

y′(x) + xy(x) = 0. (1.1.6)
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So we’re looking for a function whose derivative is −x times the function. Evidently y = e−x2/2 will
do, and the general solution is y(x) = ce−x2/2.

If instead of (1.1.6) we had
y′(x) + x2y(x) = 0, (1.1.7)

then we would have found the general solution ce−x3/3.

As a last example, take
y′(x) + (cos x) y(x) = 0.

The right medicine is now y(x) = esin x. In the next paragraph we’ll give the general rule of which
the above are three examples. The reader might like to put down the book at this point and try to
formulate the rule for solving (1.1.4) before going on to read about it.

Ready? What we need is to choose some antiderivative A(x) of a(x), and then the solution is
y(x) = ce−A(x).

Since that was so easy, next let’s put a more interesting right hand side into (1.1.4), by considering
the equation

y′(x) + a(x)y(x) = b(x) (1.1.9)

where now b(x) is also a given function of x (Is (1.1.9) a linear equation? Are you sure?).

To solve (1.1.9), once again choose some antiderivative A(x) of a(x), and then note that we can
rewrite (1.1.9) in the equivalent form

e−A(x) d

dx

(
eA(x)y(x)

)
= b(x). (1.1.10)

Now if we multiply through by eA(x) we see that

d

dx

(
eA(x)y(x)

)
= b(x)eA(x)

and so, if we integrate both sides,

eA(x)y(x) =
∫ x

b(t)eA(t) dt + const. ,

where on the right side, we mean any antiderivative of the function under the integral sign. Conse-
quently

y(x) = e−A(x)

(∫ x

b(t)eA(t) dt + const.
)

. (1.1.11)

As an example, consider the equation

y′ +
y

x
= x + 1 . (1.1.12)

We find that A(x) = log x, then from (1.1.11) we get

y(x) =
1
x

(∫ x

(t + 1)t dt + C

)

=
x2

3
+

x

2
+

C

x
.

We may be doing a disservice to the reader by beginning with this discussion of certain types of
differential equations that can be solved analytically, because it would be erroneous to assume that
most, or even many, such equations can be dealt with by these techniques. Indeed, the reason for
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the importance of the numerical methods that are the main subject of this chapter is precisely that
most equations that arise in “real” problems are quite intractable by analytical means, and so the
computer is the only hope.

Despite the above disclaimer, in the next section we will study yet another important family
of differential equations that can be handled analytically, namely linear equations with constant
coefficients.

Exercises 1.1

1. Find the general solution of each of the following equations:

(a) y′ = 2 cosx

(b) y′ +
2
x

y = 0

(c) y′ + xy = 3

(d) y′ +
1
x

y = x + 5

(e) 2yy′ = x + 1

2. Show that the equation (1.1.3) has no real solutions.

3. Go to your computer or terminal and familiarize yourself with the equipment, the operating
system, and the specific software you will be using. Then write a program that will calculate
and print the sum of the squares of the integers 1, 2, . . . , 100. Run this program.

4. For each part of problem 1, find the solution for which y(1) = 1.

1.2 Linear equations with constant coefficients

One particularly pleasant, and important, type of linear differential equation is the variety with
constant coefficients, such as

y′′ + 3y′ + 2y = 0 . (1.2.1)

It turns out that what we have to do to solve these equations is to try a solution of a certain form,
and we will then find that all of the solutions indeed are of that form.

Let’s see if the function y(x) = eαx is a solution of (1.2.1). If we substitute in (1.2.1), and then
cancel the common factor eαx, we are left with the quadratic equation

α2 + 3α + 2 = 0 , (1.2.2)

whose solutions are α = −2 and α = −1. Hence for those two values of α our trial function
y(x) = eαx is indeed a solution of (1.2.1). In other words, e−2x is a solution, e−x is a solution, and
since the equation is linear,

y(x) = c1e
−2x + c2e

−x (1.2.3)

is also a solution, where c1 and c2 are arbitrary constants. Finally, (1.2.3) must be the most general
solution since it has the “right” number of arbitrary constants, namely two.

Trying a solution in the form of an exponential is always the correct first step in solving linear
equations with constant coefficients. Various complications can develop, however, as illustrated by
the equation

y′′ + 4y′ + 4y = 0 . (1.2.4)
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Again, let’s see if there is a solution of the form y = eαx. This time, substitution into (1.2.4)
and cancellation of the factor eαx leads to the quadratic equation

α2 + 4α + 4 = 0 , (1.2.5)

whose two roots are identical, both being −2. Hence e−2x is a solution, and of course so is c1e
−2x,

but we don’t yet have the general solution because there is, so far, only one arbitrary constant. The
difficulty, of course, is caused by the fact that the roots of (1.2.5) are not distinct.

In this case, it turns out that xe−2x is another solution of the differential equation (1.2.4) (verify
this), and so the general solution is (c1 + c2x)e−2x.

Suppose that we begin with an equation of third order, and that all three roots turn out to be
the same. For instance, to solve the equation

y′′′ + 3y′′ + 3y′ + y = 0 (1.2.6)

we would try y = eαx, and we would then be facing the cubic equation

α3 + 3α2 + 3α + 1 = 0 , (1.2.7)

whose “three” roots are all equal to −1. Now, not only is e−x a solution, but so are xe−x and x2e−x.

To see why this procedure works in general, suppose we have a linear differential equation with
constant coeficcients, say

y(n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any = 0 (1.2.8)

If we try to find a solution of the usual exponential form y = eαx, then after substitution into (1.2.8)
and cancellation of the common factor eαx, we would find the polynomial equation

αn + a1α
n−1 + a2α

n−2 + · · ·+ an = 0 . (1.2.9)

The polynomial on the left side is called the characteristic polynomial of the given differential
equation. Suppose now that a certain number α = α∗ is a root of (1.2.9) of multiplicity p. To
say that α∗ is a root of multiplicity p of the equation is to say that (α − α∗)p is a factor of the
characteristic polynomial. Now look at the left side of the given differential equation (1.2.8). We
can write it in the form

(Dn + a1D
n−1 + a2D

n−2 + · · ·+ an)y = 0 , (1.2.10)

in which D is the differential operator d/dx. In the parentheses in (1.2.10) we see the polynomial
ϕ(D), where ϕ is exactly the characteristic polynomial in (1.2.9).

Since ϕ(α) has the factor (α − α∗)p, it follows that ϕ(D) has the factor (D − α∗)p, so the left
side of (1.2.10) can be written in the form

g(D)(D − α∗)py = 0 , (1.2.11)

where g is a polynomial of degree n− p. Now it’s quite easy to see that y = xkeα∗x satisfies (1.2.11)
(and therefore (1.2.8) also) for each k = 0, 1, . . . , p− 1. Indeed, if we substitute this function y into
(1.2.11), we see that it is enough to show that

(D − α∗)p(xkeα∗x) = 0 k = 0, 1, . . . , p− 1 . (1.2.12)

However, (D−α∗)(xke−α∗x) = kxk−1eα∗x, and if we apply (D−α∗) again, (D−α∗)2(xke−α∗x) =
k(k − 1)xk−2eα∗x, etc. Now since k < p it is clear that (D − α∗)p(xke−α∗x) = 0, as claimed.
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To summarize, then, if we encounter a root α∗ of the characteristic equation, of multiplicity p,
then corresponding to α∗ we can find exactly p linearly independent solutions of the differential
equation, namely

eα∗x, xeα∗x, x2eα∗x, . . . , xp−1eα∗x.

Another way to state it is to say that the portion of the general solution of the given differential
equation that corresponds to a root α∗ of the characteristic polynomial equation is Q(x)eα∗x, where
Q(x) is an arbitrary polynomial whose degree is one less than the multiplicity of the root α∗.

One last mild complication may arise from roots of the characteristic equation that are not real
numbers. These don’t really require any special attention, but they do present a few options. For
instance, to solve y′′ +4y = 0, we find the characteristic equation α2 +4 = 0, and the complex roots
±2i. Hence the general solution is obtained by the usual rule as

y(x) = c1e
2ix + c2e

−2ix.

This is a perfectly acceptable form of the solution, but we could make it look a bit prettier by using
deMoivre’s theorem, which says that

e2ix = cos 2x + i sin 2x

e−2ix = cos 2x− i sin 2x.

Then our general solution would look like

y(x) = (c1 + c2) cos 2x + (ic1 − ic2) sin 2x.

But c1 and c2 are just arbitrary constants, hence so are c1 + c2 and ic1 − ic2, so we might as well
rename them c1 and c2, in which case solution would take the form

y(x) = c1 cos 2x + c2 sin 2x.

Here’s an example that shows the various possibilities:

y(8) − 5y(7) + 17y(6) − 997y(5) + 110y(4) − 531y(3) + 765y(2) − 567y′ + 162y = 0. (1.2.13)

The equation was cooked up to have a characteristic polynomial that can be factored as

(α− 2)(α2 + 9)2(α− 1)3.

Hence the roots of the characteristic equation are 2 (simple), 3i (multiplicity 2), −3i (multiplicity
2), and 1 (multiplicity 3).

Corresponding to the root 2, the general solution will contain the term c1e
2x. Corresponding to

the double root at 3i we have terms (c2 + c3x)e3ix in the solution. From the double root at −3i we
get a contribution (c4 + c5x)e−3ix, and finally from the triple root at 1 we get (c6 + c7x + c8x

2)ex.
The general solution is the sum of these eight terms. Alternatively, we might have taken the four
terms that come from 3i in the form

(c2 + c3x) cos 3x + (c4 + c5x) sin 3x.

Exercises 1.2

1. Obtain the general solutions of each of the following differential equations:

(a) y′′ + 5y′ + 6y = 0
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(b) y′′ − 8y′ + 7y = 0

(c) (D + 3)2y = 0

(d) (D2 + 16)2y = 0

(e) (D + 3)3(D2 − 25)2(D + 2)3y = 0

2. Find a curve y = f(x) that passes through the origin with unit slope, and which satisfies
(D + 4)(D − 1)y = 0.

1.3 Difference equations

Whereas a differential equation is an equation in an unknown function, a difference equation is
an equation in an unknown sequence. For example, suppose we know that a certain sequence of
numbers y0, y1, y2, . . . satisfies the following conditions:

yn+2 + 5yn+1 + 6yn = 0 n = 0, 1, 2, . . . (1.3.1)

and furthermore that y0 = 1 and y1 = 3.

Evidently, we can compute as many of the yn’s as we need from (1.3.1), thus we would get
y2 = −21, y3 = 87, y4 = −309 and so forth. The entire sequence of yn’s is determined by the
difference equation (1.3.1) together with the two starting values.

Such equations are encountered when differential equations are solved on computers. Naturally,
the computer can provide the values of the unknown function only at a discrete set of points. These
values are computed by replacing the given differential equations by a difference equation that
approximates it, and then calculating successive approximate values of the desired function from
the difference equation.

Can we somehow “solve” a difference equation by obtaining a formula for the values of the
solution sequence? The answer is that we can, as long as the difference equation is linear and
has constant coefficients, as in (1.3.1). Just as in the case of differential equations with constant
coefficients, the correct strategy for solving them is to try a solution of the right form. In the
previous section, the right form to try was y(x) = eαx. Now the winning combination is y = αn,
where α is a constant.

In fact, let’s substitute αn for yn in (1.3.1) to see what happens. The left side becomes

αn+2 + 5αn+1 + 6αn = αn(α2 + 5α + 6) = 0.

Just as we were able to cancel the common factor eαx in the differential equation case, so here we
can cancel the αn, and we’re left with the quadratic equation

α2 + 5α + 6 = 0. (1.3.2)

The two roots of this characteristic equation are α = −2 and α = −3. Therefore the sequence
(−2)n satisfies (1.3.1) and so does (−3)n. Since the difference equation is linear, it follows that

yn = c1(−2)n + c2(−3)n (1.3.3)

is also a solution, whatever the values of the constants c1 and c2.

Now it is evident from (1.3.1) itself that the numbers yn are uniquely determined if we prescribe
the values of just two of them. Hence, it is very clear that when we have a solution that contains
two arbitrary constants we have the most general solution.
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When we take account of the given data y0 = 1 and y1 = 3, we get the two equations{
1 = c1 + c2

3 = (−2)c1 + (−3)c2
(1.3.4)

from which c1 = 6 and c2 = −5. Finally, we use these values of c1 and c2 in (1.3.3) to get

yn = 6(−2)n − 5(−3)n n = 0, 1, 2, . . . . (1.3.5)

Equation (1.3.5) is the desired formula that represents the unique solution of the given difference
equation together with the prescribed starting values.

Let’s step back a few paces to get a better view of the solution. Notice that the formula (1.3.5)
expresses the solution as a linear combination of nth powers of the roots of the associated charac-
teristic equation (1.3.2). When n is very large, is the number yn a large number or a small one?
Evidently the powers of −3 overwhelm those of −2, and so the sequence will behave roughly like a
constant times powers of −3. This means that we should expect the members of the sequence to
alternate in sign and to grow rapidly in magnitude.

So much for the equation (1.3.1). Now let’s look at the general case, in the form of a linear
difference equation of order p:

yn+p + a1yn+p−1 + a2yn+p−2 + · · ·+ apyn = 0. (1.3.6)

We try a solution of the form yn = αn, and after substituting and canceling, we get the characteristic
equation

αp + a1α
p−1 + a2α

p−2 + · · ·+ ap = 0. (1.3.7)

This is a polynomial equation of degree p, and so it has p roots, counting multiplicities, somewhere
in the complex plane.

Let α∗ be one of these p roots. If α∗ is simple (i.e., has muiltiplicity 1) then the part of the
general solution that corresponds to α∗ is c(α∗)n. If, however, α∗ is a root of multiplicity k > 1
then we must multiply the solution c(α∗)n by an arbitrary polynomial in n, of degree k− 1, just as
in the corresponding case for differential equations we used an arbitrary polynomial in x of degree
k − 1.

We illustrate this, as well as the case of complex roots, by considering the following difference
equation of order five:

yn+5 − 5yn+4 + 9yn+3 − 9yn+2 + 8yn+1 − 4yn = 0. (1.3.8)

This example is rigged so that the characteristic equation can be factored as

(α2 + 1)(α− 2)2(α− 1) = 0 (1.3.9)

from which the roots are obviously i, −i, 2 (multiplicity 2), 1.

Corresponding to the roots i, −i, the portion of the general solution is c1i
n + c2(−i)n. Since

in = einπ/2 = cos
(nπ

2

)
+ i sin

(nπ

2

)

and similarly for (−i)n, we can also take this part of the general solution in the form

c1 cos
(nπ

2

)
+ c2 sin

(nπ

2

)
. (1.3.10)

The double root α = 2 contributes (c3 +c4n)2n, and the simple root α = 1 adds c5 to the general
solution, which in its full glory is

yn = c1 cos
(nπ

2

)
+ c2 sin

(nπ

2

)
+ (c3 + c4n)2n + c5. (1.3.11)
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The five constants would be determined by prescribing five initial values, say y0, y1, y2, y3 and y4,
as we would expect for the equation (1.3.8).

Exercises 1.3

1. Obtain the general solution of each of the following difference equations:

(a) yn+1 = 3yn

(b) yn+1 = 3yn + 2

(c) yn+2 − 2yn+1 + yn = 0

(d) yn+2 − 8yn+1 + 12yn = 0

(e) yn+2 − 6yn+1 + 9yn = 1

(f) yn+2 + yn = 0

2. Find the solution of the given difference equation that takes the prescribed initial values:

(a) yn+2 = 2yn+1 + yn; y0 = 0; y1 = 1

(b) yn+1 = αyn + β; y0 = 1

(c) yn+4 + yn = 0; y0 = 1; y1 = −1; y2 = 1; y3 = −1

(d) yn+2 − 5yn+1 + 6yn = 0; y0 = 1; y1 = 2

3. (a) For each of the difference equations in problems 1 and 2, evaluate

lim
n→∞

yn+1

yn

if it exists.

(b) Formulate and prove a general theorem about the existence of, and value of the limit in
part (a) for a linear difference equation with constant coefficients.

(c) Reverse the process: given a polynomial equation, find its root of largest absolute value
by computing from a certain difference equation and evaluating the ratios of consecutive
terms.

(d) Write a computer program to implement the method in part (c). Use it to calculate the
largest root of the equation

x8 = x7 + x6 + x5 + · · ·+ 1.

1.4 Computing with difference equations

This is, after all, a book about computing, so let’s begin with computing from difference equations
since they will give us a chance to discuss some important questions that concern the design of
computer programs. For a sample difference equation we’ll use

yn+3 = yn+2 + 5yn+1 + 3yn (1.4.1)

together with the starting values y0 = y1 = y2 = 1. The reader might want, just for practice, to
find an explicit formula for this sequence by the methods of the previous section.

Suppose we want to compute a large number of these y’s in order to verify some property that
they have, for instance to check that

lim
n→∞

yn+1

yn
= 3
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as it must, since 3 is the root of largest absolute value of the characteristic equation.

As a first approach, we might declare y to be a linear array of some size large enough to ac-
commodate the expected length of the calculation. Then the rest is easy. For each n, we would
calculate the next yn+1 from (1.4.1), we would divide it by its predecessor yn to get a new ratio. If
the new ratio agrees sufficiently well with the previous ratio we announce that the computation has
terminated and print the new ratio as our answer. Otherwise, we move the new ratio to the location
of the old ratio, increase n and try again.

If we were to write this out as formal procedure (algorithm) it might look like:

y0 ← 1; y1 ← 1; y2 ← 1; n← 2;
newrat← −10; oldrat← 1;
while |newrat− oldrat| ≥ 0.000001 do

oldrat← newrat; n← n + 1;
yn ← yn−1 + 5 ∗ yn−2 + 3 ∗ yn−3;
newrat← yn/yn−1

endwhile
print newrat; Halt.

Well use the leftarrow “← to mean that we are to compute the quantity on the right, if nec-
essary, and then store it in the place named on the left. It can be read as “is replaced by or “is
assigned”. Also, the block that begins with “while” and ends with “endwhile” represents a group
of instructions that are to be executed repeatedly until the condition that follows “while” becomes
false, at which point the line following “endwhile” is executed.

The procedure just described is fast, but it uses lots of storage. If, for instance, such a program
needed to calculate 79 y’s before convergence occurred, then it would have used 79 locations of array
storage. In fact, the problem above doesnt need that many locations because convergence happens
a lot sooner. Suppose you wanted to find out how much sooner, given only a programmable pocked
calculator with ten or twenty memory locations. Then you might appreciate a calculation procedure
that needs just four locations to hold all necessary y’s.

Thats fairly easy to accomplish, though. At any given moment in the program, what we need
to find the next y are just the previous three y’s. So why not save only those three? Well use the
previous three to calculate the next one, and stow it for a moment in a fourth location. Then well
compute the new ratio and compare it with the old. If theyre not close enough, we move each one
of the three newest ys back one step into the places where we store the latest three y’s and repeat
the process. Formally, it might be:

y ← 1; ym1← 1; ym2← 1;
newrat← −10; oldrat← 1;
while |newrat− oldrat| ≥ 0.000001 do

ym3← ym2; ym2← ym1; ym1← y;
oldrat← newrat;
y ← ym1 + 5 ∗ ym2 + 3 ∗ ym3;
newrat← y/ym1 endwhile;

print newrat; Halt.

The calculation can now be done in exactly six memory locations (y, ym1, ym2, ym3, oldrat,
newrat) no matter how many y’s have to be calculated, so you can undertake it on your pocket
calculator with complete confidence. The price that we pay for the memory saving is that we must
move the data around a bit more.
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One should not think that such programming methods are only for pocket calculators. As we
progress through the numerical solution of differential equations we will see situations in which each
of the quantities that appears in the difference equation will itself be an array (!), and that very
large numbers, perhaps thousands, of these arrays will need to be computed. Even large computers
might quake at the thought of using the first method above, rather than the second, or doing the
calculation. Fortunately, it will almost never be necessary to save in memory all of the computed
values simultaneously. Normally, they will be computed, and then printed or plotted, and never
needed except in the calculation of their immediate successors.

Exercises 1.4

1. The Fibonacci numbers F0, F1, F2, . . . are defined by the recurrence formula Fn+2 = Fn+1+Fn

for n = 0, 1, 2, . . . together with the starting values F0 = 1, F1 = 1.

(a) Write out the first ten Fibonacci numbers.

(b) Derive an explicit formula for the nth Fibonacci number Fn.

(c) Evaluate your formula for n = 0, 1, 2, 3, 4.

(d) Prove directly from your formula that the Fibonacci numbers are integers (This is per-
fectly obvious from their definition, but is not so obvious from the formula!).

(e) Evaluate

lim
n→∞

Fn+1

Fn

(f) Suppose we change the starring value F1 = 1 to something else, say F1 = α. Show that
there is exactly one value of α for which the sequence Fn approaches zero as n→∞, and
determine that value of α.

(g) Write a computer program that will compute Fibonacci numbers and print out the limit
in part (e) above, correct to six decimal places.

(h) Write a computer program that will compute the first 40 members of the modified Fi-
bonacci sequence, in which F1 = α, the number that you found in (f) above. Do these
computed numbers seem to be approaching zero? Explain carefully what you see and
why it happens.

(i) Modify the program of part (h) to run in higher (or double) precision arithmetic. Does
it change any of your answers?

2. Find the most general solution of each of the following difference equations:

(a) yn+1 − 2yn + yn−1 = 0

(b) yn+1 = 2yn

(c) yn+2 + yn = 0

(d) yn+2 + 3yn+1 + 3yn + yn−1 = 0


