
Fourier transforms

Motivation and definition

Up to now, we’ve been expressing functions on finite intervals (usually the interval
0 ¤ x ¤ L or �L ¤ x ¤ L) as Fourier series:

fpxq � a0 �
8̧

n�1

an cos
�nπx
L

	
� bn sin

�nπx
L

	

where

a0 � 1

2L

» L

�L

fpxq dx

and

an � 1

L

» L

�L

fpxq cos
�nπx
L

	
dx, bn � 1

L

» L

�L

fpxq sin
�nπx
L

	
dx.

We also occasionally thought about the complex exponential version of Fourier series:
Since eiθ � cos θ � i sin θ and e�iθ � cos θ � i sin θ, or equivalently

cos θ � eiθ � e�iθ

2
and sin θ � eiθ � e�iθ

2i
,

we can rewrite the above series as:

fpxq � a0e
0ix �

8̧

n�1

an
enπix{L � e�nπix{L

2
� bn

enπix{L � e�nπix{L

2i

� a0e
0ix �

8̧

n�1

an � ibn
2

enπix{L � an � ibn
2

e�nπix{L

�
8̧

n��8

cne
�nπix{L

where

cn �

$'&
'%

1
2
pan � ibnq for n ¡ 0

a0 for n � 0
1
2
pa�n � ib�nq for n   0
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Using the formulas for an and bn given above, we see that, for n ¡ 0.

cn � 1

2
pan � ibnq

� 1

2L

» L

�L

fpxq cos
�nπx
L

	
dx� i

2L

» L

�L

fpxq sin
�nπx
L

	
dx

� 1

2L

» L

�L

fpxq
�
cos

�nπx
L

	
� i sin

�nπx
L

	�
dx

� 1

2L

» L

�L

fpxqenπix{L dx.

If n   0 we have

cn � 1

2
pa�n � ib�nq

� 1

2L

» L

�L

fpxq cos
�
�nπx

L

	
dx� i

2L

» L

�L

fpxq sin
�
�nπx

L

	
dx

� 1

2L

» L

�L

fpxq
�
cos

�nπx
L

	
� i sin

�nπx
L

	�
dx

� 1

2L

» L

�L

fpxqenπix{L dx

because cosine is an even function and sine is odd. So the same formula works for all
the coefficients (even c0) in this case and we have

fpxq �
8̧

n��8

cne
�nπix{L where cn � 1

2L

» L

�L

fpxqenπix{L dx.

What we want to do here is let L tend to infinity, so we can consider problems on
the whole real line. To see what happens to our Fourier series formulas when we do
this, we introduce two new variables: ω � nπ{L and ∆ω � π{L. Then our complex
Fourier series formulas become

fpxq �
8̧

n��8

cne
�iωx where cn � ∆ω

2π

» L

�L

fpxqeiωx dx

and the n in the formula for cn is hiding in the variable ω. Now, if we let c̃ω � cn{∆ω,
we can rewrite these as

fpxq �
8̧

n��8

c̃ωe
�iωx∆ω where c̃ω � 1

2π

» L

�L

fpxqeiωx dx.

The variable ω � nπ{L takes on more and more values which are closer and closer
together as L Ñ 8, so c̃ω begins to feel like a function of the variable ω defined
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for all real ω. Likewise, the sum on the left looks an awful lot like a Riemann sum
approximating an integral. What happens in the limit as LÑ 8 is:

fpxq �
» 8

�8

cpωqe�iωx dω where cpωq � 1

2π

» 8

�8

fpxqeixω dx.

The formula on the right defines the function cpωq as the Fourier transform of fpxq,
and the formula on the left defines fpxq as the inverse Fourier transform of cpωq.
These formulas hold true (and the inverse Fourier transform of the Fourier transform
of fpxq is fpxq — the so-called Fourier inversion formula) for reasonable functions
fpxq that decay to zero as |x| Ñ 8 in such a way so that |fpxq| and/or |fpxq|2 has a
finite integral over the whole real line.

There are many standard notations for Fourier transforms (and alternative defi-
nitions with the minus sign in the Fourier transform rather than in the inverse, and
with the 2π factor in different places, so watch out if you’re looking in books other
than our textbook!), including

f̂pωq � F pωq � Frfpxqspωq � 1

2π

» 8

�8

fpxqeixω dx

and qF pxq � fpxq � F�1rF pωqspxq �
» 8

�8

F pωqe�ixω dω.

Properties and examples.

The Fourier transform is an operation that maps a function of x, say fpxq to a
function of ω, namely Frf spωq � qfpωq. It is clearly a linear operator, so for functions
fpxq and gpxq and constants α and β we have

F rαfpxq � βgpxqs � αF rfpxqs � βF rgpxqs .
Some other properties of the Fourier transform are

1. Translation (or shifting): F rfpx� aqs pωq � eiωaF rfpxqs pωq. And in the other
direction, F reiaxfpxqs pωq � F rfpxqs pω � aq.

2. Scaling: F
�
1
a
f
�
x
a

�� pωq � F rfpxqs paωq, and likewise F rfpaxqs pωq � 1
a
F rfpxqs �ω

a

�
.

3. Operational property (derivatives): F rf 1pxqs pωq � �iωF rfpxqs pωq, and
F rxfpxqs pωq � �i d

dω
pF rfpxqs pωqq.

The operational property is of essential importance for the study of differential equa-
tions, since it shows that the Fourier transform converts derivatives to multiplication
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– so it converts calculus to algebra (or might reduce a partial differential equation to
an ordinary one).

Here are the proofs of the first of each of the three pairs of formulas to give a sense
of how to work with Fourier transforms, and leave the other three as exercises. For
the first shifting rule, we make the substitution y � x� a (so dy � dx and x � y� a)
to calculate

F rfpx� aqs pωq � 1

2π

» 8

�8

fpx� aqeiωx dx

� 1

2π

» 8

�8

fpyqeiωyeiωa dx

� eiωaF rfpxqs pωq

For the first scaling rule, we make the substitution y � x{a (so dx � a dy) and get

F
�

1

a
f
�x
a

	�
pωq � 1

2π

» 8

�8

1

a
f
�x
a

	
eiωx dx

� 1

2π

» 8

�8

fpyqeiaωy dy

� F rfpxqs paωq

For the operational property we first point out that since the Fourier transforms of
both f 1pxq and fpxq exist, we must have that fpxq Ñ 0 and f 1pxq Ñ 0 as x Ñ �8.
Therefore the endpoint terms will vanish when we integrate by parts (with u � eiωx

and dv � f 1pxq dx, so du � iωeiωx and v � fpxq):

F rf 1pxqs pωq � 1

2π

» 8

�8

f 1pxqeiωx dx

� 1

2π
eiωxfpxq

����x�8
x��8

� 1

2π

» 8

�8

iωfpxqeiωx dx

� 0 � iω

2π

» 8

�8

fpxqeiωx dx

� �iωF rfpxqs pωq

Let’s calculate a few basic examples of Fourier transforms:

Example 1. Let Sapxq be the function defined by

Sapxq �
"

1 if |x|   a
0 otherwise
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Then

F rSapxqs pωq � 1

2π

» a

�a

eiωx dx � eiωa � e�iωa

2πiω
� sin aω

πω
.

Example 2. Let upxq � e�ax
2{2, so the graph of upxq is a “Gaussian” or “bell-shaped

curve”. Then upxq satisfies the differential equation u1�axu � 0. We can use this fact
and the properties of the Fourier transform to calculate û as follows: Take the Fourier
transform of the differential equation and use linearity and both parts of property (3)
above to get

0 � F ru1 � axus pωq � F ru1s � aF rxus
� �iωF rus � ai

dF rus
dω

Therefore F rus satisfies the differential equation

F rus1 � 1

a
ωF rus � 0

the solution of which is
F rus � Ce�ω

2{p2aq.

The constant C is the value of F rus p0q, i.e.,

C � 1

2π

» 8

�8

e�ax
2{2 dx � 1

2π

c
2

a

» 8

�8

e�y
2

dy � 1?
2πa

,

using the substitution y � a
a
2
x and the familiar (or at least accessible) fact that³8

�8
e�y

2
dy � ?

π. Therefore

F
�
e�ax

2{2
�
pωq � 1?

2πa
e�ω

2{p2aq,

so the original Gaussian is transformed into a different one.

An interesting observation is what happens for a � 1: Then we have

F
�
e�x

2{2
�
� 1?

2π
e�ω

2{2,

so the specific Gaussian e�x
2{2 is an eigenfunction of the Fourier transform with

eigenvalue 1{?2π.

Example 3. Let fpxq � e�a|x|, so

fpxq �
"
e�ax if x ¥ 0

eax if x   0
.
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Then

F
�
e�a|x|

� pωq � 1

2π

» 8

�8

e�a|x|eiωx dx

� 1

2π

» 0

�8

eaxeiωx dx� 1

2π

» 8

0

e�aωeiωx dx

� 1

2π

» 0

�8

epa�iωqx dx� 1

2π

» 8

0

ep�a�iωqx dx

� 1

2π

epa�iωqx

a� iω

����
x�0

x��8

� 1

2π

ep�a�iωqx

�a� iω

����
x�8

x�0

� 1

2π

�
1

a� iω
� 1

a� iω




� a

πpa2 � ω2q
(the limiting values of the exponentials at �8 are zero because e�|a|x goes to zero as
x goes to �8 and eiωx stays bounded).

An observation. Because the formulas for the Fourier transform and the inverse
Fourier transform are so similar, we can get inverse transform formulas from the direct
ones and vice versa. In particular, note that if we let y � �x then

F rfpxqs pωq � 1

2π

» 8

�8

fpxqeiωx dx � 1

2π

» 8

�8

fp�yqe�iωy dy � 1

2π
F �1 rfp�yqs pωq

Likewise

F �1 rF pωqs pxq �
» 8

�8

F pωqe�iωx dω �
» 8

�8

F p�αqeiαx dα � 2πF rF p�αqs pxq

So if we know a Fourier transform formula or an inverse Fourier transform formula,
we can get another one for free by “reversing the inverse”. For example, since

F rSapxqs pωq � sin aω

πω
,

we immediately have that

F �1

�
sin aω

πω

�
pxq � Sapxq.

From either of the formulas above and the fact that sinx{x is an even function, we
have

F
�

sin ax

πx

�
pωq � 1

2π
Sapωq,
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or

F
�

sin ax

ax

�
� 1

2a
Sapωq.

Similarly, since we know that

F
�
e�a|x|

� � a

πpa2 � ω2q
for a ¡ 0, we can immediately write

F �1

�
a

πpa2 � ω2q
�
� e�a|x|.

And since
a

πpa2 � ω2q
is an even function of ω, we have

F
�

a

πpa2 � x2q
�
� 1

2π
e�a|ω|,

or

F
�

1

a2 � x2

�
� 1

2a
e�a|ω|.

Convolutions.

We need one more Fourier transform formula, and it involves an operation on
functions that might seem new to you. It is called convolution and it starts with
two functions, fpxq and gpxq and produces a new one, denoted f � g or pf � gqpxq (or
sometimes just f � gpxq), defined by

pf � gqpxq �
» 8

�8

fpyqgpx� yq dy.

If you think about it, convolution is like multiplication of polynomials or series,
wherein �¸

an

	�¸
bn

	
�
¸

cn where cn �
¸

ambn�m.

This motivates the definition of convolution as an operation that might have has its
Fourier transform the product of the transforms of the individual functions, and it
does (up to a nuisance factor of 2π), but more on that in a moment.

First some basic properties of convolutions:
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1. Convolution is linear in each of the two functions. In other words, if f , g and h
are functions and α and β are constants, then

pαf � βgq � h � αf � h� βg � h and f � pαg � βhq � αf � g � βf � h.

2. Convolution is commutative: f�g � g�f . To prove this, we make the substitution
z � x � y in the integral (so we think of x as being constant while we’re doing
the integral, and y � x� z and dy � dz) and get

pf � gqpxq �
» 8

�8

fpyqgpx� yq dy

� �
» �8

8

fpx� zqgpzq dz

�
» 8

�8

gpzqfpx� zq dz
� pg � fqpxq

3. Now for the Fourier transform:

F rf � gs pωq � 2πF rf s pωqF rgs pωq or ̂pf � gqpωq � 2πf̂pωqĝpωq.
To see this we use the substitution z � x � y again, and break up eiωx as
eiωpx�y�yq � eiωy eiωpx�yq to get:

̂pf � gqpωq � 1

2π

» 8

�8

�» 8

�8

fpyqgpx� yq dy


eiωx dx

� 1

2π

» 8

�8

» 8

�8

fpyqgpx� yqeiωx dx dy

� 1

2π

» 8

�8

» 8

�8

fpyqeiωy gpx� yqeiωpx�yq dx dy

� 1

2π

» 8

�8

�» 8

�8

gpx� yqeiωpx�yq dx


fpyqeiωy dy

� 1

2π

» 8

�8

�» 8

�8

gpzqeiωz dz


fpyqeiωy dy

� 2π

�
1

2π

» 8

�8

gpzqeiωz dz

�

1

2π

» 8

�8

fpyqeiωy dy



� 2πf̂pωqĝpωq
Likewise, the transform of the product of two functions is the convolution of
the transforms, except without the factor of 2π, namely F �1 rF �Gs pxq �qF pxq qGpxq.
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One last thing: the convolution product of two functions has an interesting prop-
erty relative to derivatives:

d

dx
pf � gq � df

dx
� g � f � dg

dx

so when you take derivatives of convolution of two functions, you get to stick the
derivative on whichever of the two functions is more convenient (or differentiable)
— this is an easy consequence of the commutativity of convolution, and it has the
powerful consequence that the convolution of two functions has the better of the
differentiability properties of the two individual functions. So if f is discontinuous
but g is smooth, then f � g will be smooth.

The heat equation on the whole line.

Now we’re ready to use all of this for something! We seek to solve the heat equation

ut � kuxx

for t ¡ 0 and �8   x   8, with initial conditions upx, 0q � fpxq and assuming u
decays to zero at x � �8 and x � 8.

We’ll start by taking the Fourier transform of both sides of the differential equation
in the x-variable. By this we mean

ûpω, tq � 1

2π

» 8

�8

upx, tqeixω dx,

so û satisfies Bû
Bt � �kω2û

and
ûpω, 0q � f̂pωq.

This is an ordinary differential equation where the independent variable is t and ω
should be treated as a constant. The general solution of the differential equation is

ûpω, tq � cpωqe�kω2t.

Putting t � 0 shows that cpωq � f̂qωq. Therefore Fourier transform of the solution of
our problem is

ûpω, tq � f̂pωqe�kω2t.

We can now recover upx, tq by taking the inverse Fourier transform of both sides,
using the rule that the Fourier transform of a convolution is 2π times the product of
the individual Fourier transforms, so

upx, tq � 1

2π
fpxq � F �1

�
e�kω

2t
�
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and we have to calculate the inverse Fourier transform of e�kω
2t. But we have the

rule for Gaussians:

F
�
e�ax

2{2
�
� 1?

2πa
e�ω

2{p2aq,

or

F �1
�
e�ω

2{p2aq
�
�
?

2πa e�ax
2{2.

Since we want to calculate the inverse Fourier transform of e�kω
2t, we should set

1{p2aq � kt, or a � 1{p2ktq. Then we get

F �1
�
e�kω

2t
�
�
c
π

kt
e�x

2{p4ktq,

and so

upx, tq � 1

2π
fpxq �

�c
π

kt
e�x

2{p4ktq



� 1?

4πkt

» 8

�8

fpyqe�px�yq2{p4ktq dy.

The function

Gpx, y, tq � 1?
4πkt

e�px�yq
2{p4ktq

is called the fundamental solution of the heat equation. It is the solution to the initial
value for the heat equation for the situation where the initial conditions are such
that a single unit of heat energy is introduced at the point y at time t � 0. So the
above formula for upx, tq says that we can solve the heat equation for arbitrary initial
conditions upx, tq by integrating together all the contributions to the temperature at
time t � 0 at all points, as described by the differential fpyq dy.

The wave equation on the whole line.

Next, let’s look at the initial-value problem for the wave equation on the whole
line. We’ll solve the wave equation

utt � c2uxx

together with initial conditions

upx, 0q � fpxq and utpx, 0q � gpxq.
As we did with the heat equation, we’ll take the Fourier transform of both sides of
the differential equation in the x-variable. So once again, let

ûpω, tq � 1

2π

» 8

�8

upx, tqeiωx dx
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so û satisfies
B2û
Bt2 � �c2ω2û

and
ûpω, 0q � f̂pωq and ûtpω, 0q � ĝpωq.

We will again treat this as an ordinary differential equation in t with ω treated as a
constant. The general solution of this equation is

upω, tq � c1pωq cosωct� c2pωq sinωct,

and the initial conditions imply

upω, 0q � c1pωq � f̂pωq and utpω, 0q � cωc2pωq � ĝpωq.
Therefore, c1pωq � f̂pωq and c2pωq � ĝpωq{pcωq and we have obtained the Fourier
transform of the solution:

ûpω, tq � f̂pωq cosωct� ĝpωq
cω

sinωct.

Therefore

upx, tq � F �1
�
f̂pωq cosωct

�
� F �1

�
ĝpωq
cω

sinωct

�
.

We’ll take the two terms one at a time. For the first, we write cosωct in complex
exponential form, so we’re trying to compute

F �1

�
f̂pωqe

iωct � e�iωct

2

�
� 1

2

» 8

�8

f̂pωqreiωct � e�iωctseiωx dω

� 1

2

�» 8

�8

f̂pωqeiωpx�ctq dx�
» 8

�8

f̂pωqeiωpx�ctq dx



� 1

2
rfpx� ctq � fpx� ctqs

using the definition of the inverse Fourier transform.

For the second term, we proceed differently. Recalling that Ŝapωq � sin aω{pπωq
and that the inverse Fourier transform of a product of two functions is their convo-
lution (divided by 2πq, we have

F �1

�
ĝpωqsinωct

cω

�
� 1

2π
gpxq �

�π
c
Sctpxq

	
� 1

2c

» 8

�8

gpx� yqSctpyq dy

� 1

2c

» ct

�ct

gpx� yq dy

� 1

2c

» x�ct

x�ct

gpuq du
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where in the last step we made the substitution u � x�y (so y � x�u and dy � �du).
We put both terms together to get the solution to our initial-value problem for the
wave equation:

upx, tq � 1

2
rfpx� ctq � fpx� ctqs � 1

2c

» x�ct

x�ct

gpuq du.

This is called d”Alembert’s solution of the wave equation, and clearly shows that
signals propagate with speed c, since the value of the solution at a point x and time t
depends only on the initial position and velocity values in the interval rx� ct, x� cts,
and conversely that the initial values at a point x influence the solution at time t only
within the interval rx� ct, x� cts.

Linear algebraic properties of the Fourier transform:
Parseval’s theorem and Hermite functions

We remarked earlier that the Fourier transform is a linear transformation from
functions of x to functions of ω defined on the whole line (which can be integrated
etc.). We also found that the function e�x

2{2 is an eigenfunction of the Fourier trans-
form with eigenvalue 1{?2π. We explore some further consequences of these obser-
vations in this section.

First, we can compare the inner product of the Fourier transforms of two functions
with the inner product of the functions themselves (remember, in the complex (or
Hermitian) inner product, we have to take the complex conjugate of the second factor,
and we write z� for the complex conjugate of z):

xf , gy �
» 8

�8

fpxqpgpxqq� dx

�
» 8

�8

fpxq
�» 8

�8

ĝpωqe�iωx dω

�

dx

�
» 8

�8

» 8

�8

fpxqeiωxpĝpωqq� dx dω

�
» 8

�8

�» 8

�8

fpxqeiωx dx


pĝpωqq� dω

� 2π

» 8

�8

f̂pωqpĝpωqq� dω

� 2π
A
f̂ , ĝ

E
.

In particular, if f � g we have that }f}2 � xf , fy � 2π
A
f̂ , f̂

E
� 2π}f̂}2 or

}f̂}2 � 1

2π
}f}2.
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This is called Parseval’s equality or Parseval’s theorem — it says that the Fourier
transforms shrinks the norms of all functions by a factor of 1{?2π (so it wasn’t an
accident that we found an eigenfunction with that eigenvalue!), and it has a number
of interesting consequences.

As a simple example. since we know that (recalling that Sapxq is the step function
for the interval r�a, as,

F rSapxqs pωq � sin aω

πω

we can conclude that ����sin aω

πω

����2 � 1

2π
}Sapxq}2.

The right side is easy to compute, it’s simply

1

2π

» a

�a

1 dx � a

π
.

But we learn something interesting by comparing this to the left side:» 8

�8

sin2 aω

π2ω2
dω � a

π

or » 8

�8

sin2 aω

ω2
dω � πa,

which is certainly something we didn’t know before.

Now, back to the linear algebra. We ask a curious question, related to the obser-
vation we made on page 6: What happens if you take the Fourier transform of the
Fourier transform of a function? Let’s see:

F rF rfpxqss pωq � 1

2π

» 8

�8

f̂pzqeiωz dz � 1

2π

» 8

�8

f̂pzqe�ip�ωqz dz � 1

2π
fp�ωq,

since the last integral is the inverse Fourier transform evaluated at �ω. But this
shows that doing the Fourier transform twice to a function gives back its “reverse”
multiplied by 1{p2πq. So if we do the Fourier transform four times to a function we
should get 1{p4π2q times the reverse of the reverse, which is the original function. In
other words,

F 4rfpxqs � 1

4π2
fpxq.

We could write this as an equation about the Fourier transform operator:

F 4 � 1

4π2
I � 0,
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where I is the identity operator. Knowing this, we can see that if f is any eigenfunc-
tion of F with eigenvalue λ, then

F 4rf s � 1

4π2
Irf s �

�
λ4 � 1

4π2



f � 0,

which means that all of the eigenvalues of the Fourier transform must satisfy the
equation

λ4 � 1

4π2
� 0,

so the only possible eigenvalues of F are

1?
2π
,

i?
2π
,

�1?
2π

and
�i?
2π
.

We already have that the Gaussian e�x
2{2 is an eigenfunction of F with eigenvalue

1{?2π. Now we’ll find eigenfunctions for the other eigenvalues.

We have two Fourier transform rules that look quite similar:

d̂f

dx
pωq � �iωf̂pωq and x̂fpxqpωq � �i df̂

dω
.

So the Fourier transforms of each of the operations “multiply by the variable” and
“take the derivative” on the x-side is the other operation on the ω-side (well, there are
factors of i to keep track of, and we will). Because of this, the sum and difference of
these two operators have a special relationship with the Fourier transform operator:

F
�
df

dx
� xfpxq

�
� �iωF rf s pωq � i

dF rf s
dω

� �i
�
dF rf s
dω

� ωF rf s pωq



and

F
�
df

dx
� xfpxq

�
� �iωF rf s pωq � i

dF rf s
dω

� i

�
dF rf s
dω

� ωF rf s pωq


.

These equations show that if fpxq is an eigenfunction of the Fourier transform op-
erator with eigenvalue λ then f 1pxq � xfpxq will be an eigenfunction of the Fourier
transform with eigenvalue �iλ (unless f 1pxq�xfpxq � 0), and f 1pxq�xfpxq will be an
eigenfunction of the Fourier transform with eigenvalue iλ (unless f 1pxq � xfpxq � 0).

Let’s try this with the eigenfunction we know, namely fpxq � e�x
2{2. Unfortu-

nately, f 1 � xf � 0, but

f 1pxq � xfpxq � �xe�x2{2 � xe�x
2{2 � �2xe�x

2{2,

so �2xe�x
2{2 is an eigenfunction of the Fourier transform with eigenvalue i{?2π:

F
�
2xe�x

2{2
�
pωq � i?

2π
p�2ωe�ω

2{2q.
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And we can keep going: If we set f1pxq � �2xe�x
2{2, then

f 11 � xf1 � �2e�x
2{2 � �2fpxq,

so we get nothing new here. But

f 11 � xf1 � p4x2 � 2qe�x2{2,
so we call f2pxq � p4x2 � 2qe�x2{2 and we have

F
�
p4x2 � 2qe�x2{2

�
� �1?

2π
p4ω2 � 2qe�ω2{2.

We can continue in this way and obtain an infinite sequence of eigenfunctions of the
Fourier transform, starting from f0pxq � e�x

2{2, where

fn�1pxq � f 1npxq � xfnpxq,
and the eigenvalue of fn will be in{?2π. There will be more to say about this in the
homework!


