Fourier transforms

Motivation and definition

Up to now, we've been expressing functions on finite intervals (usually the interval
0<z<Lor—L<uz<L) as Fourier series:

@) = a0+ i (p, COS (n—;m) + by, sin (?)

n=1

where

o fo@c) da
L[ nww 1 (* . (NTT
=7 J_L f(x) cos (T) dx, b, = I J_L f(z)sin (T) dx.

We also occasionally thought about the complex exponential version of Fourier series:

and

Since € = cosf +isinf and e~ = cos@ — isin 6, or equivalently
0, b i0 :
e’ +e ) e’ —e—if
cos = ——— and sinf=—-—,
2 21

we can rewrite the above series as:

Oz:c © nmx/L +e —nmiz/L ) enwiw/L _ e—mria:/L
/(@) Z 2 On 21
Ozx < ’fl nTrwc/L + an + lbn efnfri:v/L
= 2
0
_ Z cne—nmx/L
n=—0c0

where

t(an +ib,) forn>0
Cp = ag forn=0
(@, —1tb_,) forn<0

N =
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Using the formulas for a,, and b, given above, we see that, for n > 0.
1
Cp = §(Gn + an)
1 (L . oL
=37 J_L f(z) cos (?) dx + i J_L f(z)sin (n_zm) dx
1 (F nwr .. (nTT
=37 JL f(z) [cos (—L ) + isin (—L )] dx
1 (* /L
= — f(z)e"™ " d.
il

If n < 0 we have
1

Cpn = §(a,n —ib_p)
L

— i J_LL f(z) cos (—?) dr — i . (x) sin (_n_z:v) dx
= o [ 5 [eos (7)o (M55 e
= % JLL f(:):)emm/L dx

because cosine is an even function and sine is odd. So the same formula works for all
the coefficients (even ¢) in this case and we have

> . 1 (* .
_ —nmiz/L h _ nmixz/L
f(x) g Cpe where ¢, = o7 J_L f(z)e dx.

n=—oo

What we want to do here is let L tend to infinity, so we can consider problems on
the whole real line. To see what happens to our Fourier series formulas when we do
this, we introduce two new variables: w = nn/L and Aw = 7/L. Then our complex
Fourier series formulas become

0 L
. Aw )
f(z) = Z cpe” ™" where ¢, = —f f(z)e“*" dx
- 2m J g
n=—00
and the n in the formula for ¢, is hiding in the variable w. Now, if we let ¢, = ¢,/Aw,
we can rewrite these as

0 A 1 I |
f(i) = nzoo CA;Je_’WAw where E;J = % JL f(l.)elwx dr.

The variable w = nn/L takes on more and more values which are closer and closer
together as L — o0, so ¢, begins to feel like a function of the variable w defined
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for all real w. Likewise, the sum on the left looks an awful lot like a Riemann sum
approximating an integral. What happens in the limit as L — oo is:

eo] Q0
flz) = J c(w)e ™ dw where c(w)= if f(z)e™ dx.
—o0 2m J_
The formula on the right defines the function ¢(w) as the Fourier transform of f(x),
and the formula on the left defines f(z) as the inverse Fourier transform of c(w).
These formulas hold true (and the inverse Fourier transform of the Fourier transform
of f(z) is f(x) — the so-called Fourier inversion formula) for reasonable functions
f(x) that decay to zero as || — o0 in such a way so that |f(x)| and/or |f(x)|* has a
finite integral over the whole real line.

There are many standard notations for Fourier transforms (and alternative defi-
nitions with the minus sign in the Fourier transform rather than in the inverse, and
with the 27 factor in different places, so watch out if you're looking in books other
than our textbook!), including

Flo) = Fw) = FU@e) = o= [ e s

and
a0

Fa) = f(0) = FUF@)0) = | F)e™ o

—Q0

Properties and examples.

The Fourier transform is an operation that maps a function of x, say f(x) to a
function of w, namely F[f](w) = f(w). It is clearly a linear operator, so for functions
f(z) and g(z) and constants « and § we have

Flaf(z) + B9(x)] = aF [f(x)] + BF [9(x)].
Some other properties of the Fourier transform are
1. Translation (or shifting): F [f(z — a)] (w) = e**F [f(2)] (w). And in the other
direction, F [ f(z)] (w) = F [f(z)] (w + a).
2. Scaling: F [1f (£)] (w) = F[f(2)] (aw), and likewise F [ f(az)] (w) = %
3. Operational property (derivatives): F[f'(z)](w) = —iwF [f(z)](w), and
Flef@)](w) = —ig (F [f(@)] @)).

The operational property is of essential importance for the study of differential equa-
tions, since it shows that the Fourier transform converts derivatives to multiplication

FLf@)](

w

a

).
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— 80 it converts calculus to algebra (or might reduce a partial differential equation to
an ordinary one).

Here are the proofs of the first of each of the three pairs of formulas to give a sense
of how to work with Fourier transforms, and leave the other three as exercises. For
the first shifting rule, we make the substitution y = z —a (so dy = dx and x = y +a)
to calculate

Flfa-al@ =5 | fa-aerd
= % fj:o f(y)eiwyeiwa dr

= e F [f(2)] (w)

For the first scaling rule, we make the substitution y = z/a (so dx = ady) and get

Ay @]o-2 ] G

a” \a 27 J_ o a
- [ e ay
= F[f(@)] (aw)

For the operational property we first point out that since the Fourier transforms of
both f'(z) and f(x) exist, we must have that f(z) — 0 and f'(z) — 0 as © — +oo.
Therefore the endpoint terms will vanish when we integrate by parts (with u = ¢
and dv = f'(x) dr, so du = iwe™® and v = f(r)):

FIN @ = o [ @
1 =00

— %e“xf(x) — % . iwf(z)e™" dw
=0- % foo f(z)e™* dx
= —iwF [f(z)] (w)

Let’s calculate a few basic examples of Fourier transforms:

Example 1. Let S,(x) be the function defined by

Sa($)={ 1 if |z <a

0 otherwise
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Then

F[Sa(x)] (W)

1 [ ewe — emwa  gin qu
_ T dy = : _ ]
2T 2miw W

Example 2. Let u(z) = e *"/2, so the graph of u(z) is a “Gaussian” or “bell-shaped
curve”. Then u(x) satisfies the differential equation v’ +axu = 0. We can use this fact
and the properties of the Fourier transform to calculate u as follows: Take the Fourier
transform of the differential equation and use linearity and both parts of property (3)
above to get

0= F|u + azu] (w) = F [u'] + aF |zu]

= —iwF [u] — ai dj;iu]

Therefore F [u] satisfies the differential equation
1
Flu] + ~wF[u] =0
a

the solution of which is
[u] = Ce"/20),

The constant C' is the value of F [u] (0), i

ie
1 (> 2 IR 2 1

O =— et /2 dr = _\/jf e YV dy = ,
2m f_oo 2r N a J_o Y V2ma

using the substitution y = /%2 and the familiar (or at least accessible) fact that
SO_O " e ¥’ dy = \/m. Therefore

1 2
L ea),

V2ma

F [6_“”2/2] (w) =
so the original Gaussian is transformed into a different one.

An interesting observation is what happens for a = 1: Then we have

1 2
F |:efx2/2:| _ e v /2
V2T ’

2*/2 is an eigenfunction of the Fourier transform with

so the specific Gaussian e~
eigenvalue 1/4/27.

Example 3. Let f(z) = e~*/, so
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Then
j U™ e
‘F —a|T - —a|xr| JIWT d
[6 ] (W) o . (& e T

1 . 1 (® ,

—_ eaxelwx da,; + . efawezwx da,;
21 J)_p 2m Jo
1 (° : 1 (> .

= elatiw)r g = J e—atiw)z 7.
21 J)_o 2m Jo
1 elativ)z z=0 1 el-atiw)z T=0

" or a+1iw |,__ %—a—i—iwmzo
1 ( 1 1 )

=5 — + —
2r \a+iw a—1iw

B a

-~ 7m(a? + w?)

(the limiting values of the exponentials at +oo are zero because e~lal?

T goes to oo and €™* stays bounded).

goes to zero as

An observation. Because the formulas for the Fourier transform and the inverse
Fourier transform are so similar, we can get inverse transform formulas from the direct
ones and vice versa. In particular, note that if we let y = —x then

FU@I) = 5 [ s@es e = oo [ fege iy = 57 0] @)

Likewise

FUF@) @) = |

—0

o0 o0

F(w)e ™ dw = J F(—a)e"* da = 2nF [F(—a)] (z)
—00

So if we know a Fourier transform formula or an inverse Fourier transform formula,

we can get another one for free by “reversing the inverse”. For example, since

FlSu(2)] (w) = 22

W

we immediately have that

From either of the formulas above and the fact that sinz/x is an even function, we

have . .
S1n axr
7[5 ) - g5

T
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or

axr

sin ax 1
= —S5,(w).
F [ ] o (w)
Similarly, since we know that

a

4 [e_am] a m(a? + w?)

for a > 0, we can immediately write

-1 a _ ,—alz|
d [w<a2+w2>] “

a
m(a? + w?)

And since

is an even function of w, we have

a 1
1
d |jT(CL2 + :1:2)] o’

1 1
= | = —eall
F[cﬂ —i—xz] 2

or

Convolutions.

We need one more Fourier transform formula, and it involves an operation on
functions that might seem new to you. It is called convolution and it starts with
two functions, f(x) and g(z) and produces a new one, denoted f = g or (f = g)(x) (or
sometimes just f = g(x)), defined by

79 = [ gt - )y

If you think about it, convolution is like multiplication of polynomials or series,

wherein
(Z an) (Z bn) = Z ¢, Wwhere ¢, = Z A bn_m.-

This motivates the definition of convolution as an operation that might have has its
Fourier transform the product of the transforms of the individual functions, and it
does (up to a nuisance factor of 27), but more on that in a moment.

First some basic properties of convolutions:
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1. Convolution is linear in each of the two functions. In other words, if f, g and h
are functions and « and 8 are constants, then

(af +Bg)+h=af «h+g+h and f=*(ag+ ph)=af =g+ Bf=h.

2. Convolution is commutative: fxg = g=f. To prove this, we make the substitution
z = x — y in the integral (so we think of = as being constant while we’re doing
the integral, and y = x — z and dy = dz) and get

VCE " e —y)dy

_ f f(x - 2)g(z) dz

_ f_w (2)f(x — 2) dz
= (g [)(x)

3. Now for the Fourier transform:

Flf »g)(w) = 20F [l (W) Fg] (@) or (f+g)(w)=2rf(w)g(w).

To see this we use the substitution z = z — y again, and break up e“* as
lw(E—y+y) — ciwy piw(z—y) t get:

— 1 [ o

T =5 (
T

- L F(W)g(x — y)e=* dudy

21 )

o0
_ L j F)e™ g(x — ) de dy

FW)o — ) dy) 67 d

—00

j 4l — y)e e dx) F(y)e dy

7 | foo g(z)e” dZ) fly)e™ dy

o [ o) ()
= 2 f(w)§

Likewise, the transform of the product of two functions is the convolution of
the transforms, except without the factor of 27, namely F~![F +G](z) =
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One last thing: the convolution product of two functions has an interesting prop-
erty relative to derivatives:
df dg

d

so when you take derivatives of convolution of two functions, you get to stick the
derivative on whichever of the two functions is more convenient (or differentiable)
— this is an easy consequence of the commutativity of convolution, and it has the
powerful consequence that the convolution of two functions has the better of the
differentiability properties of the two individual functions. So if f is discontinuous
but ¢ is smooth, then f * g will be smooth.

The heat equation on the whole line.

Now we’re ready to use all of this for something! We seek to solve the heat equation
Uy = kuzx

for t > 0 and —o0 < x < oo, with initial conditions u(x,0) = f(z) and assuming u
decays to zero at x = —o0 and x = c0.

We'll start by taking the Fourier transform of both sides of the differential equation
in the x-variable. By this we mean

1 (¥ ,
u(w,t) = J u(z,t)e™ dr,

2r )

so u satisfies JiN
u

— = —kw?u
ot

and

u(w,0) = f(w).
This is an ordinary differential equation where the independent variable is ¢t and w
should be treated as a constant. The general solution of the differential equation is

U(w, t) = c(w)e ™.

Putting ¢ = 0 shows that ¢(w) = f)w). Therefore Fourier transform of the solution of
our problem is

U(w, t) = flw)e ™™
We can now recover u(x,t) by taking the inverse Fourier transform of both sides,
using the rule that the Fourier transform of a convolution is 27 times the product of
the individual Fourier transforms, so

u(x,t) = % flz) s F [efkoﬂt]
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and we have to calculate the inverse Fourier transform of e ***. But we have the
rule for Gaussians:
T [e—a:c2/2:| _ Le—oﬂ/@a)’
2wa
or

F-l |:€7w2/(2a):| — V2rae w2,

w2t

Since we want to calculate the inverse Fourier transform of e *°*, we should set

1/(2a) = kt, or a = 1/(2kt). Then we get

F-l [efkoﬂt] _ T ek
kt ’

1 T 2 1 00 )
u(z,t) = — f(x) * e /(4kt)) — _J o—(@=y)?/(4kt) g
(.0) = o= 1(2) ( T A w ,

The function
G(z,y,t) = _ 1 v

VAarkt

is called the fundamental solution of the heat equation. It is the solution to the initial
value for the heat equation for the situation where the initial conditions are such
that a single unit of heat energy is introduced at the point y at time ¢ = 0. So the
above formula for u(x,t) says that we can solve the heat equation for arbitrary initial
conditions u(z,t) by integrating together all the contributions to the temperature at
time ¢ = 0 at all points, as described by the differential f(y) dy.

The wave equation on the whole line.

Next, let’s look at the initial-value problem for the wave equation on the whole
line. We'll solve the wave equation

Ut = Uy
together with initial conditions
u(z,0) = f(x) and w(x,0) = g(x).

As we did with the heat equation, we’ll take the Fourier transform of both sides of
the differential equation in the z-variable. So once again, let

1 (” ,
u(w,t) = J u(z,t)e™" dx

2r )
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so U satisfies .
0°u 9 o~
=5 = —Cwu
ot

and

U(w,0) = f(w) and  Ty(w,0) = G(w).
We will again treat this as an ordinary differential equation in ¢ with w treated as a
constant. The general solution of this equation is

ulw, t) = ¢ (W) coswet + cy(w) sinwet,
and the initial conditions imply

w(w,0) = c1(w) = flw) and  w(w,0) = cwes(w) = Gw).

Therefore, ¢;(w) = f(w) and c3(w) = g(w)/(cw) and we have obtained the Fourier
transform of the solution:

n g(w)

u(w,t) = f(w) coswet + sinwet.
cw

Therefore

cw

(e, t) = F! [f(w) cos wct] +F! [@Msmwct] .

We'll take the two terms one at a time. For the first, we write coswect in complex
exponential form, so we're trying to compute

N iwct + —iwct 1 o . . .
]_-—1 |:f(w>6 e :| _ §J f(w) [ezwct + 6—zwct]ezwm dw
—0

2
1 L ) O )
_ 5 <f f(w)ezw(x-‘rct) dax +J f(w)ezw(x—ct) dl’)
—0

—0

1
= §[f($ + ct) + f(x — ct)]
using the definition of the inverse Fourier transform.
For the second term, we proceed differently. Recalling that S’;(w) = sinaw/(7w)

and that the inverse Fourier transform of a product of two functions is their convo-
lution (divided by 27), we have

1|y pSinwet |1 *(E )
™2 = Lot (Z5uw
1 [~
= — —)Su(y)d
2“_009(51j Y)Set(y) dy
1 rct
= — —y)d
2CJ_Ctg(:c y) dy
1 rT+ct
= — d
2] 9(u) du
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where in the last step we made the substitution u = z—y (soy = x—u and dy = —du).
We put both terms together to get the solution to our initial-value problem for the
wave equation:

u(z,t) = %[f(a: +ct) + f(x —ct)] + % rjj g(u) du.

This is called d”Alembert’s solution of the wave equation, and clearly shows that
signals propagate with speed ¢, since the value of the solution at a point x and time ¢
depends only on the initial position and velocity values in the interval [z — ct, x + ct],
and conversely that the initial values at a point x influence the solution at time ¢ only
within the interval [x — ct, x + ct].

Linear algebraic properties of the Fourier transform:
Parseval’s theorem and Hermite functions

We remarked earlier that the Fourier transform is a linear transformation from
functions of x to functions of w defined on the whole line (which can be integrated
etc.). We also found that the function e /2 is an eigenfunction of the Fourier trans-
form with eigenvalue 1/4/27. We explore some further consequences of these obser-
vations in this section.

First, we can compare the inner product of the Fourier transforms of two functions
with the inner product of the functions themselves (remember, in the complex (or
Hermitian) inner product, we have to take the complex conjugate of the second factor,
and we write z* for the complex conjugate of z):

G- s@ew)

=ﬁj@“inWMYm

ﬁiﬁmwwwwww

[ ([ e i) Gy ae
— o [ Fw)@e)” a
— o <f, §> .
In particular, if f = g we have that | f|? = (f, f) = 2x <f, f> — 21| f]2 ot

~ 1
712 = 1112
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This is called Parseval’s equality or Parseval’s theorem — it says that the Fourier
transforms shrinks the norms of all functions by a factor of 1/v/27 (so it wasn’t an
accident that we found an eigenfunction with that eigenvalue!), and it has a number
of interesting consequences.

As a simple example. since we know that (recalling that S,(z) is the step function
for the interval [—a, al,

sin aw
F|Sa =
[Su(0)] () = 22
we can conclude that )
sin aw 1
= —|S.(2)|*
e e A0
The right side is easy to compute, it’s simply
I
— lde = 2.
2m J_, m

But we learn something interesting by comparing this to the left side:

dw = —
T

© sin? aw a
o T2

or

* sin? aw
;— dw = Ta,
w W

which is certainly something we didn’t know before.

Now, back to the linear algebra. We ask a curious question, related to the obser-
vation we made on page 6: What happens if you take the Fourier transform of the
Fourier transform of a function? Let’s see:

FIFU@N @) = 5 [ e de= o [ Fepe iz = - p(-w)

since the last integral is the inverse Fourier transform evaluated at —w. But this
shows that doing the Fourier transform twice to a function gives back its “reverse”
multiplied by 1/(27). So if we do the Fourier transform four times to a function we
should get 1/(47?) times the reverse of the reverse, which is the original function. In
other words,

1
4 _
FU@)] = g/ @)
We could write this as an equation about the Fourier transform operator:
1
Fr——=I=0,

472
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where [ is the identity operator. Knowing this, we can see that if f is any eigenfunc-
tion of F with eigenvalue A\, then

P - gl = (V- ) £ =0

472

which means that all of the eigenvalues of the Fourier transform must satisfy the
equation

1
M—— =0
472 ’
so the only possible eigenvalues of F are
1 7 -1 —1
) , and ——.
V2T A2 /27 V2T

We already have that the Gaussian e™**/2 is an eigenfunction of F with eigenvalue

1/4/2m. Now we’ll find eigenfunctions for the other eigenvalues.

We have two Fourier transform rules that look quite similar:

a, . = . df
%(w)——zwf(w) and (x)(w)——Z%.

So the Fourier transforms of each of the operations “multiply by the variable” and
“take the derivative” on the z-side is the other operation on the w-side (well, there are
factors of i to keep track of, and we will). Because of this, the sum and difference of
these two operators have a special relationship with the Fourier transform operator:

F [% + xf(x)] = —iwF [f] () - d];—if] = —i (dﬁ—ﬁ +wrlf] <w>)

and

f[% —xf(ar)] _ iwF[f] ) + 1L :Z.(d]-"[f]

| Ul wrin).

These equations show that if f(z) is an eigenfunction of the Fourier transform op-
erator with eigenvalue X\ then f'(x) 4+ zf(z) will be an eigenfunction of the Fourier
transform with eigenvalue —i (unless f'(x)+zf(xz) = 0), and f'(z)—x f(z) will be an
eigenfunction of the Fourier transform with eigenvalue i\ (unless f'(x) —zf(z) = 0).

Let’s try this with the eigenfunction we know, namely f(z) = e */2. Unfortu-
nately, '+ zf = 0, but

e~ (@) = e pe s e,

/2 is an eigenfunction of the Fourier transform with eigenvalue i/+/2m:

so —2xe~
F [Qxe_xz/ﬂ w) = —i —wew ).
( ) \/277(( )
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And we can keep going: If we set fi(x) = —92ze™*"/2, then
fitafi=—27" = —2f(x),
so we get nothing new here. But
fi—wfi=(4a® =207/,

so we call fo(z) = (422 — 2)e™*"/? and we have

F (422 - 2)e 2|

15

We can continue in this way and obtain an infinite sequence of eigenfunctions of the

Fourier transform, starting from fo(z) = e™*"/2

fn+1($) = f;(x) - l’fn(l’),

, where

and the eigenvalue of f,, will be i"/4/27. There will be more to say about this in the

homework!



