Solution outlines for Stovall midterm 3

1. y' — 2y =z is a linear equation with P = —2z and Q = z, so [ P = —z?. Therefore
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2. Since lim —— = 0, we have lim M

Jm s Jim s =0 as well
(A)

3. Can use the integral test (with the substitution u = 1 + ?):

—,dx:—/ v du = u| = oo.
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Since the integral diverges (and is infinite), the series diverges and the sum is infinite.

(B)

4. For sufficiently large n, we know that Inn < n%! Therefore
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which is a convergent p-series with p = 1.8 > 1. So the original series converges by the
direct comparison test.
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the original series converges by direct comparison.

II. Use the ratio test (and divide the numerator and denominator by 6™ = 2" - 3"):
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therefore the series converges.

So both series converge.
(D)

6. 1. This series is not alternating (so can’t be conditionally convergent). Ratio test:
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so this series converges absolutely.
II. Since — 1 is decreasing and its limit as n — oo is zero, the series converges by
n

the alternating series test. But the integral:
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so the series Z 21 1 of absolute values diverges and so the original series converges
n

conditionally.

(E)

7. First use the ratio test:
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For the ratio test to guarantee convergence we need 3|z| < 1, so —% <z <g.
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Next check the endpoints: At x = % the series becomes Z m < Z s (a
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convergent p-series), so the series converges at z =
test shows the series converges absolutely.
So the interval of convergence is [—%, £
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5. Likewise at = —3, the same
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| and the radius of convergence is r = 3
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8. Since cos Z = Z >— with infinite radius of convergence, we can replace Z by
— (2n)!
2% to get
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again with infinite radius of convergence.
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