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1. Solve the differential equation Z—z —2xy = x.

1 1
(A)y=5x2—C (B)y=—5x2—C
(©y=Ce™ —3 (D)y = Ce* —3
(BE)y = —2x+e* —C Fy=x+e* —C

G y=e*+-+C Hy=e™ —-+¢



2.

3.

2
Determine if the sequence a,, = (—1)" 1Zn3

. If the sequence
converges, find its limit.

(A) Divergent, lim,,_,, a, =0 (B) Convergent, lim,,_,, a, = 1
(C) Convergent, lim,,_,,, a, = 0 (D) Convergent, lim,,_,,, a, = —1
(E) Convergent, lim,,_,, a, = 3 (F) Divergent, lim,,_,,, a,, = o

Determine if the series ), converges or diverges. If the series converges, find

n= 1\/—
its sum.
(A) Convergent, ¥*_, \,— -0 (B) Divergent, 21?:1—\/127 —
(C) Divergent, ¥%_, \,— (D) Convergent, Zfi’=1—\/127 - —%
(F) Convergent, Z;’{;l\/% -1 (G) Convergent, .7, \/% - %



. Inn)2 .
4. Does the series Yn—q (T) converge or diverge?

(A) Converge (B) Diverge

5. Determine whether the following series converge or diverge:

L So, et L 35, 2
(A) I & II both divergent (B) I convergent & II divergent

(C) I divergent & 11 convergent (D) I & II both convergent



6. Determine whether the following series are absolutely convergent, conditionally
convergent, or divergent:

L B, I 22 (1" 1

n=1 ni1on n2+4

(A) I divergent; II absolutely convergent

(B) I absolutely convergent; II divergent

(C) I conditionally convergent; II conditionally convergent
(D) I divergent; II conditionally convergent

(E) I absolutely convergent; Il conditionally convergent

(F) I absolutely convergent; 11 absolutely convergent



7. Find the radius (R) and interval of convergence for the power series ). >

n= Om
(A) Diverges (B)R = és [_i’ﬂ ()R = L (_i'ﬂ

D)R=3.[-33) (E)R=13(-33) (FR=1[-33]

8. Find the Maclaurin series for f(x) = cos(x3) and its radius of convergence (R).

(_ 1)nx6(2n+1)

_ oo (_1)nx3n _
(A) Ln=0 e *R=* (B) Xn=o gy > R=
(-1)"x° _ (-1)™x® _

(C)Zno (2 )' ,R—OO (D)Zno (2 )| aR_]-
o (_1)11 2n . (_1)n 6n+3
() X0 R =10 F) Xieo— Gy R =

(2n)! ’



