## MATH 104 – Practice Problems for Final Exam - Selected (so far) Hints and answers

1(a) The two curves intersect at (0,0) and at  $(\frac{1}{2},3)$ . And  $3\sin(\pi x) > 6x$  for 0 < x < 1/2, so the area is given by the (elementary) integral

$$\int_0^{1/2} 3\sin(\pi x) - 6x \, dx = \frac{3}{4} \frac{4 - \pi}{\pi}.$$

- 1(b) This is a trig substitution integral, let  $x = 2 \tan \theta$ . You'll need a triangle. The result is  $\ln((3 + \sqrt{13})/2)$ .
- 1(c) This is easy integrate  $\sqrt{x} x$  from 0 to 1.
- 2(a) To do this one, compute  $\pi \int_0^{1/2} (3\sin(\pi x))^2 (6x)^2 dx$ , which is  $3\pi/4$ .
- 2(b) To do this one, compute  $2\pi \int_0^{1/2} x(3\sin(\pi x) 6x) dx$ , which is  $6/\pi \pi/2$ .
- 2(c) To do this one, compute  $\pi \int_0^3 \frac{1}{x^2+4} dx$ , which is  $\frac{\pi}{2} \arctan(\frac{3}{2})$ .
- 2(d) To do this one, compute  $2\pi \int_0^3 \frac{x}{\sqrt{x^2+4}} dx$ , which is  $2\pi(\sqrt{13}-2)$ .
- 2(e) Washers: integrate  $\pi(x-x^4)$  from 0 to 1.
- 2(f) Shells: integrate  $2\pi x(\sqrt{x}-x^2)$  from 0 to 1. Why is the answer the same as the previous problem?
- 2(g) Shells: integrate  $2\pi(1-x)(\sqrt{x}-x^2)$  from 0 to 1.
- 2(h) Washers: integrate  $\pi((\sqrt{x}+1)^2-(x^2+1)^2)$  from 0 to 1.
- 3(a) Answer:  $(\frac{\sqrt{5}}{2} + \frac{1}{8}\ln(9 + 4\sqrt{5}).$
- 3(b) Answer:  $\frac{58\sqrt{58}}{27} \frac{13\sqrt{13}}{27}$ .
- 3(c) Answer: infinite (the graph goes to negative infinity at x = 0).
- 3(d) Answer:  $\ln(2+\sqrt{3}) \frac{1}{2}\ln(2) + \ln(2-\sqrt{2})$
- 3(e) Answer:  $\frac{1}{2}\ln(2+\sqrt{2}) \frac{1}{2}\ln(2-\sqrt{2}) + \sqrt{1+e^2} \sqrt{2} + \frac{1}{2}\ln(\sqrt{1+e^2}-1) \frac{1}{2}\ln(\sqrt{1+e^2}+1)$ .
- 4(a) Answer:  $\frac{\pi}{6}(5\sqrt{5}-1)$ .
- 4(b) Answer:  $\frac{\pi}{64}(36\sqrt{5} \ln(9 + 4\sqrt{5}).$

- 4(e) Answer:  $\pi(e\sqrt{1+e^2} \sqrt{2} + \ln(e + \sqrt{1+e^2}) \ln(1+\sqrt{2})$ .
- 5(a) This is integration by parts, let  $u = \ln(2x)$  and  $dv = x^4 dx$ . The answer is  $\frac{1}{5}x^5 \ln(2x) \frac{1}{25}x^5 + C$ .
- 5(b) Parts again, this time  $u = x^2$  and  $dv = \cos(3x) dx$ . You'll have to do parts twice, or else use tabular integration. The result is  $\frac{1}{3}x^2\sin(3x) + \frac{2}{9}x\cos(3x) \frac{2}{27}\sin(3x) + C$ .
- 5(c) Partial fractions the denominator factors as (x+3)(x+5) and the result is  $\frac{3}{2}\ln(x+5) \frac{1}{2}\ln(x+3) + C$ .
- 5(d) Trig substitution since  $4x^2$  should equal  $\sin^2 \theta$ , let  $x = \frac{1}{2} \sin \theta$ . The resulting integral has  $\cos^2 \theta$ , and so you'll have to use the trig identity for that. The answer is  $\frac{1}{2}x\sqrt{1-4x^2}+\frac{1}{4}\arcsin(2x)+C$ . (You could probably also do this by parts, letting  $u=\sqrt{1-4x^2}$  and dv=dx.)
- 5(e) Start with a desparation substitution  $u = \sqrt{x}$ , or  $x = u^2$  with dx = 2u du, so the integral becomes

$$\int \frac{2u}{u-1} \, du.$$

Divide it out, then it's easy. The result is  $2\sqrt{x} + 2\ln(\sqrt{x} - 1) + C$ .

- 5(f) First let  $u = \ln x$ , then you have to integrate  $\sin^2 u$  using the trig identity. The result is  $\frac{1}{2} \ln x \frac{1}{4} \sin(2 \ln x) + C$ .
- 5(g) Lots of substitutions  $-u = \ln x$  changes it to the integral of  $\sec^u / \sqrt{1 \tan u}$ . Then let  $v = \tan u$  to get the integral of  $1/\sqrt{1-u}$ . Then it's not too bad. The result is  $-2\sqrt{1-\tan(\ln x)} + C$ .
- 6(a) Use the identity  $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ , multiply out, and use the identity again.
- 6(b) Substitute  $x = 4 \tan \theta$ , the answer is  $\sqrt{x^2 + 16} + 2 \ln(\sqrt{x^2 + 16} 4) 2 \ln(\sqrt{x^2 + 16} + 4) + C$ , I think
- 6(c) Substitute  $e^t = 2 \tan \theta$ , the answer is  $\frac{1}{2} \arctan(\frac{1}{2}e^t) + C$ .
- 6(d) Start with  $e^x = \sin \theta$ .
- 6(e) First let  $u = \sqrt{x}$ , then integrate by parts. Get  $2\cos\sqrt{x} + 2\sqrt{x}\sin\sqrt{x} + C$ .
- 7(a) Answer: 1
- 7(b) Answer:  $\frac{2}{3} \ln 2$
- 7(c) Answer:  $\pi/2$ .
- 8(a) Answer: k = -3,  $E = \frac{1}{3}$ , median= $\frac{1}{3} \ln 2$ ,  $P(x > 1) = e^{-3}$ .
- 8(b) Answer:  $k = 1/\pi$ , E does not exist, median= 0,  $P(x > 1) = \frac{1}{4}$ .

- 8(c) Answer:  $k = 1/(6 \ln 2 2)$ ,  $E = (2 \ln 2 + 1)/(6 \ln 2 2)$ , median  $\approx 1.15124$ ,  $P(x > 1) = (8 \ln 2 3 \ln 3 1)/(6 \ln 2 2)$ .
- 9(a) The general solution of the equation is  $y = 2 + Ce^{-x}$ . For y(0) = 1, you need C = -1, so the solution of the problem is  $y = 2 e^{-x}$ .
- 9(b) Answer:  $y = 1 e^{-(x^3 + 3x)/3}$ .
- 9(c) Answer:  $y = 4e^{x^2/2} 1$ .
- 10(a) Answer:  $y = 2^x$
- 10(b) Answer: y = 2/(2 x)
- 10(c) Answer:  $y = (3 2\sqrt{2})x^2 + (2\sqrt{2} 2)x + 1$
- 10(d) Answer:  $y = 2(\frac{3}{2})^x 1$ .
- 11(a) Answer:  $\frac{3}{2}$
- 11(b) Answer:  $e^{-1}$
- 11(c) Answer: 5
- 12(a) Converges by the ratio test (the ratio is 1/3).
- 12(b) Diverges by limit comparison to the harmonic series.
- 12(c) Converges by (limit) comparison to the sum of  $1/n^2$ .
- 12(d) Diverges the denominator approaches 1 (since  $e^{-n}$  approaches zero), but the numerator doesn't approach anything (let alone zero), so it fails the test for divergence (nth term test).
- 12(e) Converges by the ratio test the ratio is 0.
- 13(a), (c) and (e) since these series converged without  $(-1)^n$ , their corresponding alternating versions converge absolutely.
- 13(b) converges conditionally, since these terms approach zero and we already know that the series of absolute values diverges.
- 13(d) Still diverges, since the terms don't approach zero.
- 14(a) Converges by the integral test (same integral as in 7(a) after a substitution  $u = \ln x$  you're integrating  $1/u^2$ , which converges.
- 14(b) Since  $\ln(n!) = \ln 1 + \ln 2 + \dots + \ln n < 1 + 2 + \dots + n < n^2$ , this series converges by (limit) comparison with the sum of  $1/n^2$ .
- 14(c) For large n, since  $1/n \approx 0$ , we have  $\tan(1/n) \approx 1/n$ . So this series can be limit-compared to the sum of  $1/(n \ln n)$ , which diverges by the integral test.
- 14(d) The ratio test works to show this one converges (the limit is zero).

- 15(a), (b) and (d) converge absolutely as in problem 13.
- 15(c) Converges conditionally, since the terms decrease and approach zero (alternating series test), but the series of absolute values diverged.
- 16(a) Ratio test gives convergence for -3 < x < -1, and at x = -3 get the (conditionally convergent) alternating harmonic series, and at x = -1 get the (divergent) harmonic series, so interval of convergence is [-3, 1).
- 16(b) Ratio test gives convergence for 2 < x < 4, and the series converges (absolutely) at both endpoints by integral test or comparison with  $\sum 1/n^2$ . so interval of convergence is [2, 4].
- 16(c) Ratio test gives convergence for 1 e < x < 1 + e, and at x = 1 + e get the alternating harmonic series, at x = 1 e get the plain harmonic series, so the interval of convergence is (1 e, 1 + e].
- 16(d) Ratio test gives convergence for -1 < x < 1, and at the endpoints, the terms don't approach zero, so the interval of convergence is (-1,1).
- 17(a) The series in 16(a) is related to the geometric series. Since the integral of  $(x+2)^{n-1}$  is  $(x+2)^n/n$ , the whole series is the integral of  $\sum (x+2)^{n-1}$ , which is geometric with first term 1 and ratio (x+2). So the entire series represents the integral of 1/(1-(x+2)) = 1/(-1-x), which is  $-\ln(-1-x)$ .
- 17(c) Answer:  $-\ln\left(1 + \frac{x-1}{e}\right)$ .
- 17(d) Answer:  $\frac{x^2 + x}{(1-x)^3}$ .
- 18(a) Substitute  $-x^2$  into the series for  $e^x$  and get

$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}.$$

18(b) As in part (a), the series for  $\cos t^3$  is

$$\cos t^3 = \sum_{n=0}^{\infty} \frac{(-1)^n t^{6n}}{(2n)!}.$$

Then integrate this from 0 to x and get

$$\int_0^x \cos t^3 dt = \sum_{n=0}^\infty \frac{(-1)^n x^{6n+1}}{(2n)!(6n+1)}.$$

18(c) Answer: 
$$\sqrt{x} = 1 + \frac{x-1}{2} + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} \cdot 3 \cdot \cdot \cdot (2n-3)}{2^n n!} (x-1)^n$$

18(d) Answer: 
$$y = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$$
.

19(a) Since

$$\cos \sqrt{x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n)!},$$

the integral is

$$\sum_{n=0}^{\infty} \frac{(-1)^n (0.2)^{n+1}}{(2n)!(n+1)} = 0.2 - \frac{(0.2)^2}{2! \cdot 2} + \frac{(0.2)^3}{4! \cdot 3} - \cdots$$

Since this is an alternating series, and the last term shown here is less than 0.001, we can stop after the first two terms, to get

$$\int_0^{0.2} \cos \sqrt{x} \, dx \approx 0.2 - \frac{0.04}{4} = 0.190$$

to within 0.001.

20. The Maclaurin series for  $x^3 \cos x^2$  is  $x^3 - \frac{x^7}{2!} + \frac{x^{11}}{4!} - \frac{x^{15}}{6!} - \cdots$ . Since there's no  $x^{13}$  term,  $f^{(13)}(0) = 0$ .