MATH 104 - First Midterm Exam - Fall 2015

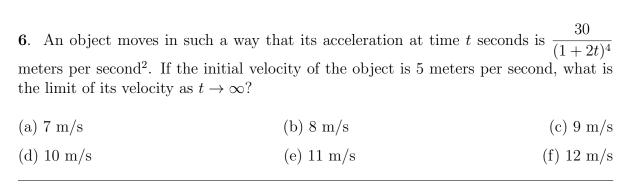
1.	Find t	he area between t	he graphs of $y =$	y = 9 - 2x and $y = 3$	$x^2 + 1$.	
(a)	24	(b) 36	(c) $\frac{32}{3}$	(d) $\frac{256}{3}$	(e) $\frac{4}{3}$	(f) $\frac{81}{2}$

2. A solid has as its base the region in the xy-plane the region between the curve $y = 1 - \frac{x^2}{4}$ and the x-axis. The cross-sections of the solid perpendicular to the y-axis are squares with one side in the base. What is the volume of the solid?

(a) 72 (b) 144 (c) 18 (d) 32 (e) 24 (f) 8

3. Let V(b) be the volume of the solid obtained by rotating the area between the graph of $y = e^{-4x^2}$ and the x-axis for 0 < x < b around the y-axis.

What is $\lim_{b\to\infty} V(b)$?


(a)
$$\pi$$
 (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$ (e) $\frac{\pi}{6}$ (f) $\frac{\pi}{8}$

4. Find the length of the part of the curve $y = e^x + \frac{1}{4}e^{-x}$ for $0 \le x \le \ln 2$.

(a)
$$\frac{19}{12}$$
 (b) $\frac{11}{12}$ (c) $\frac{3}{8}$ (d) $\frac{9}{8}$ (e) $\frac{29}{12}$ (f) $\frac{3}{4}$

 $5. \int_{\frac{1}{5}}^{\frac{1}{5}e^4} \frac{\ln(5x)}{x} \, dx$

(a) 5 (b) 14 (c) 32 (d) 72 (e) 8 (f) 18

7. Find the surface area obtained by rotating the part of the curve $y = \frac{x^2}{4}$ for $0 \le x \le 2$ around the y-axis.

(a)
$$\left(\frac{20}{3}\sqrt{5} - \frac{32}{3}\right)\pi$$
 (b) $\left(\frac{10}{3}\sqrt{5} - \frac{2}{3}\right)\pi$ (d) $\left(\frac{26}{9}\sqrt{13} - 6\right)\pi$ (e) $\left(\frac{8}{3}\sqrt{2} - \frac{16}{3}\right)\pi$

(e)
$$\left(\frac{8}{3}\sqrt{2} - \frac{16}{3}\right)\pi$$
 (f) $\left(8\sqrt{13} - \frac{32}{3}\right)\pi$

(c) $\left(\frac{16}{3}\sqrt{2} - \frac{8}{3}\right)\pi$

8. Find the x-coordinate of the centroid of the quarter-disk in the first quadrant bounded by the coordinate axis and the graph of $y = \sqrt{36 - x^2}$

(a)
$$\frac{4}{3\pi}$$
 (b) $\frac{2}{\pi}$ (c) $\frac{8}{3\pi}$ (d) $\frac{4}{\pi}$ (e) $\frac{6}{\pi}$ (f) $\frac{8}{\pi}$

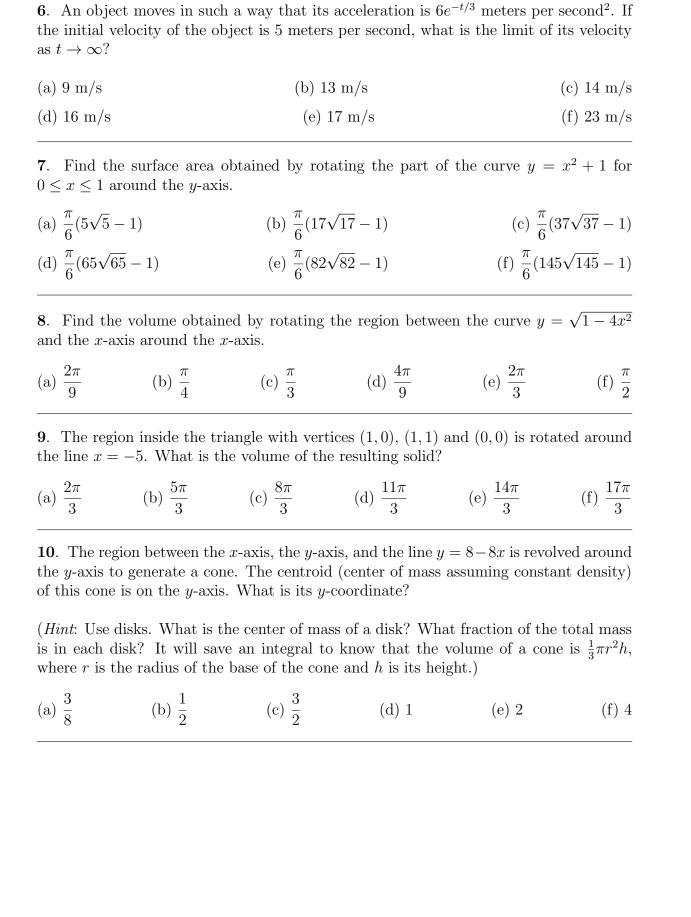
9. The region between the graph of $y = 1 - x^2$ and the x-axis is rotated around the line x = 3. What is the volume of the resulting solid?

(a)
$$2\pi$$
 (b) 4π (c) 8π (d) 12π (e) 15π (f) 16π

10. When the region between the graph of y = f(x), the x-axis and the line x = b for b > 0 is rotated around the x-axis, the volume of the resulting solid is $6\pi b^6$. What is f(x)?

(a)
$$4x^{5/2}$$
 (b) $6x^{3/2}$ (c) $6x^{5/2}$ (d) $2x^{7/2}$ (e) $2x^{3/2}$ (f) $4x^{7/2}$

MATH 104 – First Midterm Exam - Fall 2014


1.	Find	the area between	the graphs of $y =$	$=x^2+3x+5$ and	$d y = 2x^2 - x.$	
(a)	24	(b) 36	(c) $\frac{343}{6}$	(d) $\frac{125}{6}$	(e) $\frac{32}{3}$	(f) $\frac{81}{2}$
2.	A so	lid has as its bas	se the region in	the xy -plane the	e region between	the curve
<i>y</i> =	= 1 -	$\frac{x^4}{81}$ and the x-axis eircles with the fla	The cross-sect	ions of the solid	perpendicular to	the x -axis

- (a) $\frac{8\pi}{15}$ (b) $\frac{2\pi}{15}$ (c) $\frac{2\pi}{5}$ (d) $\frac{16\pi}{45}$ (e) $\frac{8\pi}{45}$ (f) $\frac{4\pi}{15}$
- 3. Let V(a) be the volume of the solid obtained by rotating the area between the graph of $y = \frac{1}{x^6}$ and the x-axis for 1 < x < a around the y-axis.

What is $\lim_{a\to\infty} V(a)$?

the solid?

- (a) 4π (b) 2π (c) $\frac{3\pi}{2}$ (d) π (e) $\frac{2\pi}{3}$ (f) $\frac{\pi}{2}$
- **4**. Find the length of the part of the curve $y = \frac{1}{12}x^3 + \frac{1}{x}$ for $1 \le x \le 2$.
- (a) $\frac{17}{12}$ (b) $\frac{13}{12}$ (c) $\frac{19}{12}$ (d) $\frac{23}{12}$ (e) $\frac{29}{12}$
- 5. $\int_0^{\pi/6} \frac{\cos(3x)}{1 + \sin^2(3x)} dx$ (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{12}$ (e) $\frac{\pi}{16}$ (f) $\frac{\pi}{24}$

Forty more practice problems

$1. \int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}}$	dx =			
(a) 0	(b) 2	(c) 4	(d) e^2	(e) $e^4 - e$

2. We know that the graph of a function $\varphi(x)$ passes through the point (4,6). We also know that $-1 \le \varphi'(x) \le 3$ for all x in the interval [0, 10]. What are the minimum and maximum values possible values for $\varphi(7)$?

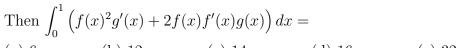
(a) $\min = 7$, $\max = 16$ (b) $\min = 4$, $\max = 7$ (c) $\min = -1$, $\max = 4$ (d) $\min = 6$, $\max = 10$ (e) $\min = 4$, $\max = 13$ (f) $\min = 3$, $\max = 15$

3. Find the area between the graphs of y = 4x + 5 and $y = x^2$.

(a) 24 (b) 36 (c) $\frac{343}{6}$ (d) $\frac{125}{6}$ (e) $\frac{32}{3}$ (f) $\frac{81}{2}$

4. What is the volume of the solid obtained by rotating the part of the graph of $y = \cos x \sqrt{\sin x}$ between x = 0 and $x = \frac{\pi}{2}$ around the x-axis?

(a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$


(d) $\frac{\pi}{4}$

5. $\lim_{b \to \infty} \int_0^b \frac{\arctan x}{1 + x^2} dx =$ (a) $\frac{\pi^2}{2}$ (b) π^2 (c) $\frac{\pi^2}{4}$ (d) $\frac{\pi^2}{8}$ (e) $+\infty$

6. The area between a curve y = f(x) and the x-axis between x = 1 and x = b is rotated around the x axis and the volume of the resulting solid is $\frac{\pi}{3}(\ln b)^3$, for all b > 1. What is f(x)?

(a) $(\ln x)^2$ (b) $\frac{\ln x}{\sqrt{x}}$ (c) $\frac{\ln x}{x}$ (d) $\frac{(\ln x)^2}{x}$ (e) $\frac{(\ln x)^2}{\sqrt{x}}$

7.	$\int_0^{\pi} \sin^2(2x) dx$ (a) 0	(b) 1	(c) 1/2	(d) $\pi/2$	(e) π (f) 2π
8.	Suppose that following valu	es:		rentiable functions, an $q(0) = 1$, $q(1) = 4$.	d we know the

- (a) 6
- (b) 12
- (c) 14
- (d) 16
- (e) 32
- (f) 48
- 9. The area bounded by the curves $y = x^2 1$ and y = 2x + 7 is
 - (a) 4
- (b) 9
- (c) 16
- (d) 24
- (e) 30
- (f) 36

- 10. If f(x) is continuous for all x and $\lim_{x\to 0} \frac{f(x)}{x} = 4$, then
 - (a) f(0) = 1 and f'(0) = 4

(b) f(0) = 0 and f'(0) = 4

(c) f(0) = 4 and f'(0) = 0

(d) f(0) = 0 and f'(0) = 1

(e) f(0) = 0 and f'(0) = 0

(f) f(0) = 4 and f'(0) = 1

- 11. $\frac{d}{dx} \int_0^{\sin x} e^{t^2} dt =$
 - (a) $e^{\sin^2 x}$

(b) $\cos x e^{\sin^2 x}$

(c) $2\sin x \cos x e^{\sin^2 x}$

- $(d) \cos x + e^{\sin^2 x}$
- (e) $2\sin x e^{\sin^2 x} + e^{\sin^2 x}$
- (f) $e^{\cos^2 x}$

- 12. $\int_{1/e}^{e} \frac{(\ln x)^2}{x} dx =$
 - (a) $\frac{e^2}{2} \frac{2}{e^2}$

(b) $\frac{e}{2} - \frac{2}{e}$

(d) $\frac{2}{3}$

(e) $\frac{e^2}{2} - \frac{1}{2e^2}$

- 13. What is the average value of the function $f(x) = \sqrt{\frac{\arcsin x}{1-x^2}}$ on the interval $[0, \frac{1}{2}]$?
 - (a) $\frac{\pi\sqrt{6}}{15}$
- (b) $\frac{\pi^{3/2}\sqrt{2}}{54}$
- (c) $\frac{\pi\sqrt{3}}{18}$ (d) $\frac{\pi^{3/2}\sqrt{6}}{27}$

14. What is the volume of the solid obtained by rotating the region bounded by the graphs of $y = \sqrt{x}$, $y = 2 - x$ and $y = 0$ around the x-axis?						led by the
			(c) $\frac{2\pi}{5}$			(f) $\frac{7\pi}{6}$
15.	$\frac{1}{2}(e^x - e^{-x})$.	Calculate the		by the curves	$\frac{1}{2}(e^x + e^{-x}) \text{ and } $ $s y = \cosh x, y$ $\infty?$	
	(a) 1	(b) <i>e</i>	(c) $e +$	$\frac{1}{e}$	(d) $\frac{1}{e}$	(e) ∞
16.	that $f(0) = 2$	and $\lim_{x \to \infty} f(x)$			the interval $[0]$ erage value of f	
	(a) 2 (d) 6		(b) 4 (e) ($\begin{array}{c} \text{(c) 5} \\ \text{(f) } \infty \end{array}$
17.	$y = 4 - x^2 \text{ aro}$	ound the line a			bounded by $y = x$ $\frac{512\pi}{3}$	$c^2 - 4$ and (e) $\frac{1024\pi}{3}$
18.	$\int_0^{\pi^2/4} \frac{\cos\sqrt{x}}{\sqrt{x}} dx$	dx =				
	(a) 0	(b) 1	(c) $\sqrt{2}$	(d) 2	(e) $2\sqrt{2}$	(f) 3
19.	Compute \int (si	$n^2 x + 8)^7 \sin x$	$x\cos xdx.$			
	(a) $\frac{1}{16} (\sin^2 x +$	$(-8)^8 + C$	(b) $(\cos^2 x - \cos^2 x)$	$(+8)^7 + C$	(c) $\frac{1}{2}(\sin^2 x)$	$(+8)^8 + C$
	(d) $\frac{1}{8}(\sin^2(x +$	$(8)^8 + C$	(e) $\frac{1}{8}(\cos^2 x - \frac{1}{8})$	$(+8)^8 + C$	$(f) \frac{1}{32} (\sin^2 x)$	$(+8)^7 + C$
20.	Suppose f is a	a continuous f	unction and \int_{1}^{9}	f(x) dx = 6.	Then $\int_{1}^{3} x f(x^2)$	dx =
	(a) 6	(b) 4	(c) 3	(d) 2	(e) 1	(f) 0

21.
$$\int_0^1 \frac{e^{\arctan(x)}}{1+x^2} dx =$$
(a) $e^{\pi/4} - 1$ (b) $e^{\pi/4}$ (c) $e - 1$ (d) $\frac{\pi}{4}$ (e) $\frac{\pi}{4} - e$ (f) $e^{\pi/2} - e^{\pi/4}$

22. Find the area between the graphs of $y = \sin x$ and $y = \cos x$ for $0 \le x \le \pi/4$

(a)
$$\frac{\sqrt{2}}{2}$$
 (b) $\sqrt{2}$ (c) $\sqrt{2} - 1$ (d) $\frac{\sqrt{2}}{2} + 1$ (e) $\frac{\sqrt{2}}{2} - 1$ (f) 1

 $23. \int_0^{\pi/3} \sec^3 x \, \tan x \, dx$

(a) $e^{\pi/4} - 1$

(a)
$$\frac{\sqrt{2}}{6} - \frac{1}{6}$$
 (b) $\frac{\sqrt{3}}{6} - 1$ (c) $\frac{11}{3}$ (d) $\frac{7}{3}$ (e) $\frac{\sqrt{2}}{3} - \frac{1}{3}$ (f) $\frac{\sqrt{3}}{2} - \frac{1}{2}$

24. The base of a solid is the triangle in the xy-plane with vertices (0,0), (1,0) and (0,1). Cross-sections of the solid perpendicular to the x-axis are squares. What is the volume of the solid?

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{4}{3}$ (e) $\frac{5}{4}$ (f) $\frac{1}{3}$

25. Find the volume of the solid obtained by rotating the area between the graphs of $y = x^2$ and x = 2y around the y-axis.

(a)
$$\frac{2\pi}{45}$$
 (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{96}$ (d) $\frac{\pi}{24}$ (e) $\frac{\pi}{180}$ (f) $\frac{3\pi}{64}$

26. A solid has as its base the region in the xy-plane the region between the curve $y=1-\frac{x^2}{4}$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are squares with one side in the base. What is the volume of the solid?

(a)
$$\frac{64}{15}$$
 (b) $\frac{16}{15}$ (c) $\frac{16}{5}$ (d) $\frac{128}{45}$ (e) $\frac{64}{45}$ (f) $\frac{32}{15}$

27. Find the average value of the function $f(x) = t\sqrt{16 + t^2}$ on the interval $0 \le x \le 3$.

(a)
$$\sqrt{2}$$
 (b) $\frac{2\sqrt{2}}{9}$ (c) $\frac{32}{9}$ (d) $\frac{61}{3}$ (e) $\frac{\sqrt{2}}{3}$ (f) $\frac{61}{9}$

		d by rotating to the line x	he region betw $= -2$.	een the x -axis,	the y -axis		
(a) $\frac{7\pi}{3}$	(b) $\frac{7\pi}{6}$	(c) $\frac{19\pi}{3}$	(d) $\frac{19\pi}{6}$	(e) $\frac{19\pi}{12}$	(f) $\frac{7\pi}{12}$		
29. Find the length of the part of the curve $y = \frac{1}{4}x^{3/2} - \frac{4}{3}x^{1/2}$ for $0 \le x \le 1$.							
(a) $\frac{7}{6}$	(b) $\frac{4}{3}$	(c) $\frac{17}{12}$	(d) $\frac{19}{12}$	(e) $\frac{23}{12}$	(f) $\frac{13}{6}$		
30. Find the volume of the solid obtained by rotating the region between the graph of $y = \sin(x/2)$ and the x axis for $0 \le x \le 2\pi$ around the x-axis.							
(a) $\frac{\pi^2}{8}$	(b) $\frac{\pi^2}{4}$	(c) $\frac{\pi^2}{2}$	(d) π^2	(e) $2\pi^2$	(f) $4\pi^2$		
31. Find the area between the graphs of $y = 1$ and $y = x^4$.							

31.	Find the	area between	the graphs	of $y = 1$	and $y = x^4$.

(a)
$$\frac{8}{7}$$
 (b) $\frac{16}{9}$ (c) $\frac{16}{5}$ (d) $\frac{12}{7}$ (e) $\frac{8}{5}$ (f) 1

32. Find the volume of the solid obtained by rotating the area between the graphs of $y = x\sqrt{2-x}$ and y = 0 around the x-axis.

(a)
$$\frac{\pi}{30}$$
 (b) $\frac{\pi}{24}$ (c) $\frac{4\pi}{3}$ (d) $\frac{\pi}{12}$ (e) $\frac{3\pi}{64}$ (f) $\frac{\pi}{180}$

$$33. \int_0^1 \frac{x^3}{1+x^8} \, dx$$

34. Find the volume obtained by rotating the square with corners at the points (0,0), (0,1), (1,1) and (1,0) around the line x=4.

(b) 5π (c) 7π (d) 9π (e) 11π (f) 13π (a) 3π

35. Let V(b) be the volume obtained by rotating the area between the x-axis and the graph of $y = \frac{1}{x^3}$ from x = 1 to x = b around the x-axis. What is $\lim_{b \to \infty} V(b)$?

(a)
$$\frac{\pi}{5}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ (e) π

36	Let $V(a)$ be	the volume of	otained by rotat	ing the area h	etween the x -axi	is and the
					s. What is $\lim_{a\to 0+}$	
					(e) $\frac{6\pi}{5}$	
27	D: 1.41	C 1.4	. 11	41 C	41	4 2 C

37.	Find the surface area	a obtained by	rotating	the part	of the	curve y	= 4 - 1	x^2 f	or
	$0 \le x \le 2$ around the y-axis.								

(a)
$$\frac{\pi}{6}(5\sqrt{5}-1)$$
 (b) $\frac{\pi}{6}(17\sqrt{17}-1)$ (c) $\frac{\pi}{6}(37\sqrt{37}-1)$

(d)
$$\frac{\pi}{6}(65\sqrt{65}-1)$$
 (e) $\frac{\pi}{6}(101\sqrt{101}-1)$ (f) $\frac{\pi}{6}(145\sqrt{145}-1)$

38.
$$\int_0^{\sqrt{\pi}} x \sin^2(x^2) dx$$
(a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$ (e) $\frac{\pi}{4}$ (f) $\frac{3\pi}{4}$

- 39. Find the area between the graphs of $y = x^4 + 4x^2$ and $y = 4x^3$.
 - (a) $\frac{1}{30}$ (b) $\frac{8}{15}$ (c) $\frac{16}{15}$ (d) $\frac{27}{10}$ (e) $\frac{81}{10}$ (f) $\frac{512}{15}$
- 40. The average value of the function f(x) on the interval [0, b] is \sqrt{b} . What is f(x)?

(a)
$$(1+x)e^x$$
 (b) $\frac{e^x}{1+x}$ (c) $\cos x + x \sin x$ (d) $\sin x + x \cos x$ (e) $\frac{3}{2\sqrt{x}}$ (f) $\frac{3\sqrt{x}}{2}$

- 41. Calculate the length:
 - (a) of the part of $y = \frac{1}{3}(x^2 + 2)^{3/2}$ from x = 0 to x = 1. (Answer: 4/3)

(b) of the part of
$$y = x^{2/3}$$
 from $x = -1$ to $x = 8$ (careful!) (Answer: $\frac{80\sqrt{10} + 13\sqrt{13} - 16}{27}$)

(c) of the part of
$$y = \ln(\cos x)$$
 for $0 \le x \le \pi/4$. (Answer: $\ln(\sqrt{2} + 1)$)

(d) of the part of
$$y = \ln x$$
 for $1 \le x \le 2$
(Answer: $\sqrt{5} - \sqrt{2} + \frac{1}{2}\ln(\sqrt{5} - 1) - \frac{1}{2}\ln(\sqrt{2} - 1) - \frac{1}{2}\ln(\sqrt{5} + 1) + \frac{1}{2}\ln(\sqrt{2} + 1)$)

42. Calculate the surface area obtained by rotating:

(a)
$$y = \sqrt{x}$$
 around the x axis for $0 \le x \le 4$ (Answer: $\frac{\pi}{6}(17\sqrt{17} - 1)$)

(b)
$$y = x^3$$
 around the *x* axis for $1 \le x \le 2$ (Answer: $\frac{\pi}{27}(145\sqrt{145} - 10\sqrt{10})$)

(c)
$$y = \sqrt{9-x^2}$$
 around the y axis for $1 \le x \le 3$. (Answer: $12\pi\sqrt{2}$)

(d)
$$y = x^2$$
 around the x axis for $0 \le x \le 1$. (Answer: $\frac{\pi}{32}(18\sqrt{5} - \ln(\sqrt{5} + 2))$)