Solution outlines for Rimmer midterm 3

1. We'll make careful use of Top Ten limit number 9:

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a.$$

as follows:

$$\lim_{n \to \infty} \left(\frac{n}{n-2} \right)^{n/2} = \lim_{n \to \infty} \left[\left(1 + \frac{2}{n-2} \right)^{n-2} \right]^{1/2} \left(\frac{n}{n-2} \right) = \lim_{n \to \infty} (e^2)^{1/2} \cdot 1 = e$$

(E)

2. Since $3^{n+1}4^{-n} = 3(\frac{3}{4})^n$, the series is geometric with $r = \frac{3}{4} < 1$ and thus convergent. Its first term is $a = \frac{9}{4}$ so the sum is

$$\frac{\frac{9}{4}}{1 - \frac{3}{4}} = 9$$

(A)

3. I. The numerator is $2n^2+3n$ and the denominator is $3n^4+\cdots$. So the series converges by limit comparison with $\sum \frac{1}{n^2}$

II. Since the limit as $n \to \infty$ of $n^{1/n}$ is 1, the series diverges by the nth term test.

III. Use the integral test (and the substitution $u = \ln x$):

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{5/3}} = \int_{\ln 2}^{\infty} \frac{1}{u^{5/3}} du = -\frac{3}{2u^{2/3}} \Big|_{\ln 2}^{\infty} < \infty.$$

Since the integral converges, so does the series.

4. I. Since e and π are positive, the series converges by the alternating series test, since $n^{e/\pi}$ increases to infinity. But $e < \pi$ so the series of absolute values is a p-series with p < 1, hence divergent. Therefore the original series converges conditionally.

II. Since $\ln n < n^{1/4}$ for n large, we have

$$\sum \frac{\ln n}{n^{7/4}} < \sum \frac{n^{1/4}}{n^{7/4}} = \sum \frac{1}{n^{3/2}}$$

and the latter is a convergent p-series. So the original series converges absolutely.

5. Use the ratio test:

$$\lim_{n \to \infty} \frac{|x - 1| n(\ln n)^2}{(n+1)(\ln(n+1))^2} = |x - 1|$$

We need |x-1| < 1 for the ratio test to guarantee convergence, i.e, -1 < x - 1 < 1 or 0 < x < 2.

Next, we have to check the endpoints. Using the integral test, since

$$\int_{*}^{\infty} \frac{dx}{x(\ln x)^2} = \int_{*}^{\infty} \frac{1}{u^2} dx = -\frac{1}{u} \Big|_{*}^{\infty} < \infty$$

converges, then the series at both endpoints converge absolutely. The interval of convergence is thus [0, 2].

6. The easiest way is to use that we know

$$\ln(1+Z) = Z - \frac{Z^2}{2} + \frac{Z^3}{3} - \cdots$$

Since x = 1 + (x - 1), we can substitute Z = x - 1 in the above to get

$$\ln x = \ln 1 + (x - 1) = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} + \cdots$$

Without the \cdots this is $T_3(x)$. So

$$T_3(2) = 1 - \frac{1}{2} + \frac{1}{3} = \frac{5}{3}$$

(B)

7. Since we're going to integrate, which increases powers by 1, we only need the series of the integrand up to x^3 . Next, since the arctan series begins with x, we just need the terms of e^{2x} up to x^2 . So we have

$$e^{2x} \arctan x = \left(1 + 2x + \frac{(2x)^2}{2} + \cdots\right) \left(x - \frac{x^3}{3} + \cdots\right) = x + 2x^2 - \frac{x^3}{3} + 2x^3 + \cdots$$

To get the x^4 term of the integral, we just have to integrate the x^3 term of this:

$$\int \frac{5}{3}x^3 \, dx = \frac{5}{12}x^4$$

(we can ignore the "+C" for this purpose), so the coefficient is $\frac{5}{12}$.