Solution outlines for Rimmer midterm 2

1. The form v/1 — 22 leads us to the trig substitution x = sinf. So

1 /2 0
/ 152°V1 — 22 dx = / 15sin® 0 cos® 6 df) = —/ 15(1 — u?)u® du
0 0 1

! 11
:/0 15(u2—u4)du:15(§—3):5—3:2

(D)

2. First let u = 22, then do partial fractions:
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3. First let u =/, and later let u = 2tan 6 and get
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(note that /12 = 2v/3 and tan7/3 = v/3).
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4. If f(z) is to be a probability density, then we need C' > 0 and
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5. Integrate by parts with u = z and dv = e** (be careful to treat s as a constant
during the integration!):
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if s has a positive real part).
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T are zero as long as s > 0 (or more generally
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numerator of P is the derivative of its denominator, we have [P = In(1 + ¢*) and
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6. This is a linear differential equation with P =

Since y(0) = 1/2, we can conclude that C' = 2 and so
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7. This is a separable equation which can rewrite as — = —— dx. Integrate both sides
Y x

to get
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Since y(1) = 4, we see that C' = In4, and so when = = e, we have
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