Solution outlines for Palvannan midterm 1

1. Take the derivative:

$$y' = x^{3/2} - \frac{x^{-3/2}}{4}$$

and see that it's one of those. Therefore

$$L = \frac{2x^{5/2}}{5} - \frac{x^{-1/2}}{2} \Big|_{1}^{4} = \frac{64}{5} - \frac{1}{4} - \left(\frac{2}{5} - \frac{1}{2}\right) = \frac{253}{20}.$$

2. (a) Since the region is revolved around the x-axis, to get disks we take vertical slices. The disks have radius $\arccos x$ and thickness dx, so the volume is

$$V = \int \pi r^2 t = \pi \int_0^1 (\arccos x)^2 dx.$$

(b) To use shells, we need horizontal slices. The shells will have radius y, height $\cos y$ and thickness dy. So this way the volume is

$$V = \int 2\pi r h t = 2\pi \int_0^{\pi/2} y \cos y \, dy.$$

(Either way, the integral evaluates to $\pi^2 - 2\pi$.

3. Using horizontal sections — rotate a horizontal section around the line y=5 and get a shell with radius 5-y, height $\frac{1}{y^3}-\frac{1}{8}$ and thickness dy. So the volume is

$$V = 2\pi \int_{1}^{2} (5 - y) \left(\frac{1}{y^{3}} - \frac{1}{8} \right) dy = 2\pi \int_{1}^{2} \frac{5}{y^{3}} - \frac{5}{8} - \frac{1}{y^{2}} + \frac{y}{8} dy$$
$$= 2\pi \left(-\frac{5}{2y^{2}} - \frac{5y}{8} + \frac{1}{y} + \frac{y^{2}}{16} \right) \Big|_{1}^{2} = \frac{15\pi}{8}.$$

4. Since the density is constant, we can ignore it for the purposes of computing the center of mass. First we need the area of the region. Using horizontal slices,

$$A = \int_0^2 y - (y^2 - y) \, dy = \int_0^2 2y - y^2 \, dy = y^2 - \frac{y^3}{3} \Big|_0^2 = 4 - \frac{8}{3} = \frac{4}{3}.$$

Then

$$\overline{y} = \frac{1}{A} \int_0^2 2y^2 - y^3 \, dy = \frac{3}{4} \left(\frac{2y^3}{3} - \frac{y^4}{4} \right) \Big|_0^2 - \frac{3}{4} \left(\frac{16}{3} - 4 \right) = 4 - 3 = 1.$$

Next,

$$\overline{x} = \frac{1}{A} \int_0^2 \frac{1}{2} \left(y^2 - (y^2 - y)^2 \right) dy = \frac{1}{A} \int_0^2 \frac{1}{2} (y^2 - (y^4 - 2y^3 + y^2)) dy$$

$$= \frac{3}{4} \int_0^2 2y^3 - y^4 dy = \frac{3}{8} \left(\frac{y^4}{2} - \frac{y^5}{5} \right) \Big|_0^2 = \frac{3}{8} \left(8 - \frac{32}{5} \right)$$

$$= 3 - \frac{12}{5} = \frac{3}{5}$$

So the center of mass is the point $\left(\frac{3}{5}, 1\right)$.

- 5. (i) True, because x^5 is an odd function and $\cos x$ is even, so their product is odd and so the integral of the product over an interval symmetric around 0 is zero.
- (ii) False. The integral is zero, because x^4 is even and $\sin x$ is odd, so the product is odd.
 - (iii) This is true.
- (iv) Technically false, since it should say that the line does not cut through the region's interior (rather than the plane's interior), but otherwise true.
- (v) False this i.e. the y coordinate of the centroid. The x coordinate of the centroid is zero.