Midterm Exam #2 for Math 104-004, Fall 2016

Name (printed):	Recitation hours:	
My signature below certifies that I had Academic Integrity in completing this	ave complied with the University of Pennsylvania's Code of midterm examination.	
Signatura	Data	

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Box your final answers.
- You have 50 minutes for this exam.
- Please show **ALL** your work on this exam paper. Partial credit will be awarded where appropriate. Answers with little or no justification will get no credit.
- You may use both sides of one 8.5 by 11 inch sheet of notes.
- NO books, laptops, cell phones, calculators, or any other electronic devices may be used during the exam.
- No form of cheating will be tolerated. You are expected to uphold the Code of Academic Integrity.

1. (10 points) Compute the following integral

$$\int \frac{1}{\sqrt{2x-x^2}} dx.$$

2. (a) (2 points) Perform the following long division:

$$x+2)x^3+8.$$

(b) (8 points) Using partial fractions, evaluate the following integral:

$$\int_1^2 \frac{x}{x^3 + 8} dx.$$

(Hint: Use part (a))

- 3. A tire company produces tires for sedans. Suppose the lifetime in miles of a tire is described by a continuous random variable L. Let f(L) be the probability density for the random variable L. Answer the following questions:
 - (a) (2.5 points) What is the meaning of the integral $\int_{10,000}^{20,000} f(L)dL$?
 - i. The integral is the probability that the tire will fail at 15,000 miles.
 - ii. The integral is the probability that the tire will fail at either 20,000 miles or 10,000 miles.
 - iii. The integral is the probability that the tire will fail at some point between 10,000 miles and 20,000 miles.
 - (b) (2.5 points) What is the meaning of the integral $\int_{-\infty}^{20,000} f(L)dL$?
 - i. The integral is the probability that the tire will fail before 20,000 miles.
 - ii. The integral is the probability that the tire will fail exactly at 20,000 miles.
 - iii. The integral is the probability that the tire will fail after 20,000 miles.
 - (c) (2.5 points) What is the meaning of the integral $\int_{10,000}^{\infty} f(L)dL$?
 - i. The integral is the probability that the tire will never fail.
 - ii. The integral is the probability that the tire will fail before 10,000 miles.
 - iii. The integral is the probability that the tire will fail after 10,000 miles.
 - (d) (2.5 points) What is the meaning of the integral $\int_0^{15,000} f(L)dL$?
 - i. The integral is the probability that the tire will fail at 0 miles.
 - ii. The integral is the probability that the tire will fail at 15,000 miles.
 - iii. The integral is the probability that the tire will fail at some point before 15,000 miles.

4. Evaluate the following integral:

$$\int e^x \sin(x) \cos(x) dx.$$

5. (10 points) Determine whether the following integral is convergent or divergent:

$$\int_0^\infty \frac{5 + \cos\left(e^x\right)}{x^2 + 1} dx.$$

Justify your answer completely. More specifically, state whether you will be using the direct comparison test or the limit comparison test; And state precisely why the hypotheses of that test are satisfied.

This page is intentionally left blank