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Integration by parts

This is another way to try and integrate products.
In fact, it is the opposite of the product rule for derivatives:

Product rule for derivatives

d(uv) = u dv + v du

Integration by parts ˆ
u dv = uv −

ˆ
v du

Use this when you have a product under the integral sign, and it
appears that integrating one factor and differentiating the other
will make the resulting integral easier.
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Example

ˆ
x2ex dx

The is no other rule for this, so we try parts.

If we differentiate x2. we’ll get 2x , which seems simpler.
And integrating ex doesn’t change anything.
So let u = x2 and dv = ex dx . Then du = 2x dx and v = ex .
The integration by parts formula then gives us:

ˆ
x2ex dx = x2ex −

ˆ
2xex dx .
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Example (continued)

ˆ
x2ex dx = x2ex −

ˆ
2xex dx .

Continuing, we can use parts again on the latter integral
(with u = 2x and dv = ex dx) to get:

ˆ
x2ex dx = x2ex − 2xex +

ˆ
2ex dx

= x2ex − 2xex + 2ex + C

Now you try one:ˆ
x sin 2x dx . . . contrast this with

ˆ
x sin x2 dx
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Tips and tricks

There is a method called the “tic-tac-toe method”, or tabular
integration for repeated integrations by parts.

You must use different strategies for choosing u and dv to
integrate x ln x or x arctan x . Some people find the mnemonic
“LIPET” useful – for

Logarithmic, Inverse trig, Polynomials, Exponential, Trigonometric

When you have a product of two of these kinds of functions, the
leftmost one should be u, and the rightmost dv .

There is also an algebraic trick for the integral of an exponential
times sine or cosine.

We’ll explore several examples of this in class.
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A couple of problems for you to do:

Find the value of

ˆ π

0
x cos x dx

A. π B. 2π C. 2 D. 0

E. −2 F. 1 G. 1/2 H. π/2

Evaluate

ˆ 1

0
x ln x dx

A. −1/4 B. −1/2 C. 0 D. 1/4 E. 1/2
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Trigonometric substitution integrals

These are just substitutions like the ordinary u-substitution
method, but some aspects are a little tricky and sometimes
surprising. There are two kinds:

The first kind: products of powers of sine and cosine

To integrate products of powers of sine and cosine (such as
sin3 x cos6 x), you need the identity:

sin2 x + cos2 x = 1 (everybody knows that one!)

and the double-angle formulas:

cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2

D. DeTurck Math 104 002 2018A: More Integrals 7 / 34



For integrals of products of powers of sine and cosine. . .

The trick is as follows:

• If both the power of sine and the power of cosine are even,
then use the double angle formulas to divide both in half.
Keep doing this until at least one of the powers is odd.

• Once the power of at least one of sine or cosine is odd, then
let u = the other function, and use the Pythagorean identity
to convert all but one power of the odd-powered function into
the u function, and the last power will be the du in a regular
substitution.

A couple of examples will help. . .
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First example

Evaluate

ˆ
sin5 2x cos2 2x dx

Since the power of sine is odd, we make the substitution
u = cos 2x . Then du = −2 sin 2x dx , which uses up one power of
sin 2x , and we rewrite the other four as

sin4 2x = (1− cos2 2x)2 = (1− u2)2.

So the whole integral becomesˆ
sin5 2x cos2 2x dx =

ˆ
(1− cos2 2x)2 cos2 2x sin 2x dx

=
1

2

ˆ
−(1− u2)2u2 du =

1

2

ˆ
−(u2 − 2u4 + u6) du

= −1

2

(
u3

3
− 2u5

5
+

u7

7

)
+ C = −cos3 2x

6
+

cos5 2x

5
− cos7 2x

14
+ C
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Here’s a nasty one:

Evaluate

ˆ
sin4 x cos4 x dx

Both powers are even, so we use the double-angle formula trick:

sin4 x cos4 x = (sin2 x)2(cos2 x)2

=

(
1− cos 2x

2

)2(1 + cos 2x

2

)2

=
1

16

(
1− 2 cos2 2x + cos4 2x

)
In the last two terms, the powers are still even so we use the
identities again to get what’s on the next slide:
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Trig identity city!

1

16

(
1− 2 cos2 2x + cos4 2x

)
=

1

16

(
1− (1 + cos 4x) +

(
1 + cos 4x

2

)2
)

=
1

64

(
1− 2 cos 4x + cos2 4x

)
=

1

64

(
1− 2 cos 4x +

1 + cos 8x

2

)
=

1

128
(3− 4 cos 4x + cos 8x)

. . . and (finally!) this is something we can integrate!
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At last. . .

ˆ
sin4 x cos4 x dx =

1

128

ˆ
3− 4 cos 4x + cos 8x dx

=
1

128

(
3x − sin 4x +

1

8
sin 8x

)
+ C

=
3

128
x − 1

128
sin 4x +

1

1024
sin 8x + C

Wow. I told you it was a nasty one!
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A couple of problems for you to do:

Here’s one with an odd power:

ˆ π/2

0
sin2 x cos3 x dx

A. 2/15 B. 4/15 C. 2/5 D. 8/15

E. 2/3 F. 4/5 G. 14/15 H. 1

Try this one:

ˆ π

0
cos4 x dx

A. 2 B. π C. π − 1
2 D.

√
2π E. 3π/8
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Secants and tangents

A similar trick can be used to integrate products of powers of
secants and tangents, with a slight twist:

To integrate

ˆ
tana x secb x dx :

1 If the power of secant is even, then let u = tan x , so that
du = sec2 x dx , and you can covert the other powers of secant
(if any) into tangents using the identity sec2 x = 1 + tan2 x .
(If the power of secant is zero, then it usually helps to
[perhaps repeatedly] use the identity tan2 x = sec2 x − 1 to
create some).

2 If the power of secant is odd, then integration by parts is
called for — we’ll do an example of that next.
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Example:

ˆ
sec3 x dx

I’d rather integrate sec2 x then sec x , so break up the integrand
into a product by setting u = sec x and dv = sec2 x dx so that
du = sec x tan x dx and v = tan x . Thenˆ

sec3 x dx = sec x tan x −
ˆ

tan x sec x tan x dx

= sec x tan x −
ˆ

sec x(sec2 x − 1) dx

= sec x tan x +

ˆ
sec x dx −

ˆ
sec3x dx

= sec x tan x + ln(sec x + tan x)−
ˆ

sec3x dx

so we had to integrate sec x anyhow — but now we can do the
“add the integral back to the other side” trick.
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Example:

ˆ
sec3 x dx

So far we have:ˆ
sec3 x dx = sec x tan x + ln(sec x + tan x)−

ˆ
sec3x dx

and if we add the integral of sec3 x dx to both sides and divide by
2 we can conclude thatˆ

sec3 x dx =
1

2
(sec x tan x + ln(sec x + tan x)) + C .

There are also integrals like

ˆ
cos 2x sin 3x dx and in class we’ll

show how to use the addition formulas for sine and cosine to
handle these.

D. DeTurck Math 104 002 2018A: More Integrals 16 / 34



Trig subsitutions II

The second and more important kind of trig substitution happens
when there is a sum or difference of squares in the integrand —
usually one of the squares is a constant and the other involves the
variable.

If some other substitution doesn’t suggest itself first, then try the
Pythagorean trigonometric identity that has the same pattern of
signs as the one in the problem:

constant2 − expression2 ↔ cos2 = 1− sin2

constant2 + expression2 ↔ sec2 = 1 + tan2

expression2 − constant2 ↔ tan2 = sec2−1

D. DeTurck Math 104 002 2018A: More Integrals 17 / 34



Example:

ˆ
x2

√
5− x2

dx

If you think about it, the substitution u = 5− x2 won’t work,
because of the extra factor of x in the numerator.

But 5− x2 is vaguely reminiscent of 1− sin2, so let

x2 = 5 sin2 θ.

Then
x =
√

5 sin θ dx =
√

5 cos θ

and 5− x2 = 5− 5 sin2 θ = 5 cos2 θ.

We make all the substitutions and get:

ˆ
x2

√
5− x2

dx =

ˆ
5 sin2 θ√
5 cos θ

√
5 cos θ dθ =

ˆ
5 sin2 θ dθ
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So far,

ˆ
x2

√
5− x2

dx =

ˆ
5 sin2 θ dθ where x =

√
5 sin θ

The latter is a trig integral of the first kind, and we can use the
double-angle formula to get

ˆ
5 sin2 θ dθ =

5

2

ˆ
1− cos 2θ dθ =

5

2
θ − 5

4
sin 2θ + C .

Now we have to get back to x ’s.

Since sin θ =
x√
5

, we have θ = arcsin

(
x√
5

)
.

Also, sin 2θ = 2 sin θ cos θ and

from the triangle we see that cos θ =

√
5− x2

√
5

.
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ˆ
x2

√
5− x2

dx

The conclusion is

ˆ
x2

√
5− x2

dx =
5

2
θ − 5

4
sin 2θ + C

=
5

2
θ − 5

2
sin θ cos θ + C

=
5

2
arcsin

(
x√
5

)
− 5

2

x√
5

√
5− x2

√
5

+ C

=
5

2
arcsin

(
x√
5

)
− 1

2
x
√

5− x2 + C

Quite a bit of work for one integral!
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Examples for you. . .

Here are two for you two work on.

Notice the subtle difference in the integrand that changes entirely
the method used:

ˆ
x
√

4− x2 dx

ˆ
x2
√

4− x2 dx
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Partial Fractions

Last but not least is integration by partial fractions. This method
is based on an algebraic trick. It works to integrate a rational
function (quotient of polynomials) when the degree of the
denominator is greater than the degree of the numerator
(otherwise “when in doubt, divide it out”) and you can factor the
denominator completely.

In full generality, partial fractions works when the denominator has
repeated and/or quadratic factors, but we will begin with the case
of distinct linear factors (i.e., the denominator factors into linear
factors and they’re all different). This part also uses the (easy)
fact that ˆ

1

ax + b
dx =

1

a
ln(ax + b) + C .
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Basic partial fractions

The basic idea of partial fractions is to take a rational function of
the form

p(x)

(x − a)(x − b)(x − c) · · ·
(where there can be more or fewer factors in the denominator, but
the degree of p(x) must be less than the number of factors in the
denominator) and rewrite it as a sum:

A

x − a
+

B

x − b
+

C

x − c
+ · · ·

for some constants A, B, C (etc..).
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For instance,

You can rewrite
2x + 1

x2 + 4x + 3
first by factoring the denominator:

2x + 1

(x + 1)(x + 3)

and then in partial fractions as

−1
2

x + 1
+

5
2

x + 3
.

This leads naturally to two questions:

1 Why do partial fractions?

2 How to do partial fractions?
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Two reasons for why:

The first reason is that partial fractions help us to do integrals.

From the previous example, we see that we don’t know how to

evaluate

ˆ
2x + 1

x2 + 4x + 3
dx straightaway, but. . .

ˆ
2x + 1

x2 + 4x + 3
dx =

ˆ 5
2

x + 3
dx −

ˆ 1
2

x + 1
dx

=
5

2
ln(x + 3)− 1

2
ln(x + 1) + C
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The second reason for “why”:

Partial fractions help us understand the behavior of a rational
function near its “most interesting” points.

For the same example, we graph the function
2x + 1

x2 + 4x + 3
in blue,

and the partial fractions
5
2

x + 3
and

−1
2

x + 1
in red:

One or the other of the red curves mimics the behavior of the blue
one at each singularity.
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OK, now for the “how”

First, we give the official version, then a short-cut.
Official version: It is a general fact that the original function can
be decomposed into a sum with one term for each factor in the
denominator. So (in the example above), write

2x + 1

x2 + 4x + 3
=

A

x + 3
+

B

x + 1

where the constants A and B are to be determined. To determine
A and B, pick two values of x other than x = −3 or x = −1,
substitute them into the equation, and then solve the resulting two
equations for the two unknowns A and B.

For instance, we can put x = 0 and get 1
3 = 1

3A + B and for x = 1,
get 3

8 = 1
4A + 1

2B.

Solve to get A = 5
2 and B = −1

2 as we did before.
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“Short cut”

1 Write the fraction with denominator in factored form, and
leave blanks in the numerators of the partial fractions:

2x + 1

(x + 3)(x + 1)
=

x + 3
+

x + 1

2 To get the numerator that goes over x + 3, put your hand
over the x + 3 factor in the fraction on the left and set
x = −3 in the rest. You should end up with 5/2.

3 To get the numerator that goes over x + 1, cover the x + 1
and set x = −1 (and you get −1/2).

It’s that simple
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Another example:

ˆ
x2 + 1

x2 − x
dx

First, the numerator and denominator have the same degree. So
we have to divide it out before we can do partial fractions:

x2 − 1

x2 − x
= 1 +

x + 1

x2 − x
= 1 +

x + 1

x(x − 1)

and we can use partial fractions on the second term:

1 +
x + 1

x(x − 1)
= 1 +

A

x
+

B

x − 1

Use either the official or short-cut method to get A = −1 and
B = 2, and so:

ˆ
x2 + 1

x2 − x
dx =

ˆ
1− 1

x
+

2

x + 1
dx = x − ln x + 2 ln(x + 1) + C .
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A couple of examples for you to try:

Find

ˆ 3

2

dx

x(x − 1)

A. 3/2 B. 4/3 C. ln 2 D. ln 3

E. ln(3/2) F. ln(4/3) G. ln(2/3) H. 3
2 ln 2

Calculate

ˆ 4

3

4x − 6

x2 − 3x + 2
dx

A. ln(4/3) B. 2 + arctan 3 C. 2 ln 3

D. ln(12/5) E. π/3−arctan(1/4)
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Nasty partial fraction examples

ˆ
3x2 + 17x + 30

x3 + 7x2 + 19x + 13
dx

ˆ
4x2 + 2x + 16

x4 + 8x2 + 16
dx

ˆ
9x3 − 3x2 + 2x − 16

(x − 2)(x − 1)(x2 + 2x + 2)
dx
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Can we do that arclength integral?

Recall the problem about the arclength of the parabola:

Find the arclength of the parabola y = x2 for x between −1 and 1

Since y ′ = 2x , the element of arclength is ds =
√

1 + 4x2 dx and
the length we wish to calculate is

L =

ˆ 1

−1

√
1 + 4x2 dx .

This is a trig substitution integral. With the identity
tan2 +1 = sec2 in mind we let 4x2 = tan2 θ, in other words
x = 1

2 tan θ and so dx = 1
2 sec2 θ dθ.

These substitutions transform the integral into

ˆ √
1 + 4x2 dt =

ˆ √
1 + tan2 θ

1

2
sec2 θ dθ =

1

2

ˆ
sec3 θ dθ.
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That arclength integral

We’ve integrated sec3 θ before, when we did integration by parts,
and got that

ˆ
sec3 θ dθ =

1

2
sec θ tan θ +

1

2
ln(sec θ + tan θ) + C .

So for our arclength integral we have:

L =

ˆ 1

−1

√
1 + 4x2 dx =

ˆ x=1

x=−1

1

2
sec3 θ dθ

=
1

4
sec θ tan θ +

1

4
ln(sec θ + tan θ)

∣∣∣∣x=1

x=−1

where x = 1
2 tan θ, or tan θ = 2x .
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So far L =
1

4
sec θ tan θ +

1

4
ln(sec θ + tan θ)

∣∣∣∣x=1

x=−1

Becuase x = 1
2 tan θ, we can use the triangle

to see that tan θ = 2x and sec θ =
√

1 + 4x2.
Therefore

L =

ˆ 1

−1

√
1 + 4x2 dx =

x

2

√
1 + 4x2 +

1

4
ln
(

2x +
√

1 + 4x2
)∣∣∣∣1
−1

=
√

5 +
1

4
ln

(√
5 + 2√
5− 2

)

Even though it looks a little different, this is the same answer
Maple got (to see this, use the fact that (

√
5 + 2)(

√
5− 2) = 1).
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