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Integrals

Start with dx — this means “a little bit of x” or “a little change
in x”

If we add up a whole bunch of little changes in x , we get the
“total change of x”.

A tautology question

If you add up all of the changes in x as x changes from x = 2 to
x = 7, what do you get?

A. 0 B. 2 C. 5 D. 7 E. It cannot be determined.

We write this in integral notation as

ˆ 7

2
dx = 5
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Fundamental theorem

If y = f (x), then we know that dy = f ′(x) dx .
To add up all the “little changes in y” as x changes from 2 to 7,
we should write

ˆ 7

2
f ′(x) dx or

ˆ 7

2

df

dx
dx

. . . and the answer should be the total change in y as x changes
from 2 to 7, in other words

ˆ 7

2

df

dx
dx = f (7)− f (2).

This is the content of the fundamental theorem of calulus!
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Fundamental theorem

The Fundamental Theorem of Calculus gives the connection
between derivatives and integrals. It says that you can calculate

ˆ b

a
g(x) dx

precisely if you can find a function whose derivative is g(x).

And the result is the difference between the value of the
“anti-derivative” of g evaluated at x = b minus the same function
evaluated at x = a.
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Antiderivatives

Basic antiderivative formulas

ˆ
xn dx =

xn+1

n + 1
+ C unless n = −1,

ˆ
1

x
dx = ln |x |+ C

ˆ
cos x dx = sin x + C

ˆ
sin x dx = − cos x + C

ˆ
ex dx = ex + C More generally,

ˆ
ax dx =

ax

ln a
+ C

ˆ
1√

1− x2
dx = arcsin x + C

ˆ
1

1 + x2
dx = arctan x + C
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A quick example

Find the value of

ˆ 1

0
(1 + x)2 dx

A. 7/3 E. 2

B. 0 F. 1/3

C. 1 G. 4/3

D. 5/3 H. 2/3
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Fundamental Theorem workout

Let

f (x) =

ˆ x2

x
t2 dt

Find the value of f ′(1) — the derivative of f at x = 1.

A. 3 E. 5

B. 8 F. 2

C. 4 G. 6

D. 0 H. 1
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Integrals and Areas

A problem that was around long before the invention of calculus is
to find the area of a general plane region (with curved sides).

And a method of solution that goes all
the way back to Archimedes is to divide
the region up into lots of little regions,
so that you can find the areas of almost
all of the little regions and so that the
total area of the ones you can measure
is very small.
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Integrals and Areas

By Newton’s time, people realized that it would be sufficient to
handle regions that had three straight sides and one curved side
(or two or one straight sides — the important thing is that all the
sides but one are straight). Essentially all regions can be divided
up into this kind of pieces.
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Integrals and Areas

These all-but-one-side-straight regions look like areas under the
graphs of functions. And there is a standard strategy for
calculating (at least approximately) such areas. For instance, to
calculate the area between the graph of y = 4x − x2 and the
x-axis, we draw it and subdivide it as follows:

D. DeTurck Math 104 002 2016C: Integrals 10 / 55



Calculating the area

Since the green pieces are all rectangles,
their areas are easy to calculate. The
blue parts under the curve are relatively
small, so if we add up the areas of the
rectangles, we won’t be far from the
area under the curve. For the record,
the total areas of all the green

rectangles shown here is
246

25
,

whereas the actual area under the curve is

ˆ 4

0
4x − x2 dx =

32

3
.

Also for the record,
246

25
= 9.84 while

32

3
is about 10.6667.
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Improving the estimate

We can improve the approximation by dividing the region into
more rectangles:

Now there are 60 boxes instead of

20, and their total area is
7018

675
,

which is about 10.397. Getting
better. We can in fact take the limit
of the green area as the number of
rectangles goes to infinity, which will
give the same value as the integral.

This was Newton’s and Leibniz’s great discovery —
derivatives and integrals are related and they are related to
the area problem.
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Area between two curves

A standard kind of problem is to find the area above one curve and
below another (or to the left of one curve and to the right of
another). This is easy using integrals.

Note that the “area between the curve and the axis” is a
special case of this problem where one of the curves simply has the
equation y = 0 (or perhaps x = 0).

To solve an area problem:

1 Graph the equations if possible

2 Find the points of intersection of the curves to determine the
limits of integration, if none are given

3 Integrate the top curve’s function minus the bottom curve’s
(or the right curve’s minus the left curve’s)
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Example

Find the area between the graphs of y = sin x and y = x(π − x).

D. DeTurck Math 104 002 2016C: Integrals 14 / 55



Example

It’s easy to see that the curves
intersect on the x-axis, and the
values of x at the intersection points
are x = 0 and x = π.

The parabola is on top, so we integrate:

ˆ π

0
x(π − x)− sin x dx =

π3

6
− 2

And this many “square units” is the area between the two curves.
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An area question

Find the area of the region bounded by the curves y = 4x2 and
y = x2 + 3.

A. 1/2 E. 5/2

B. 1 F. 3

C. 3/2 G. 7/2

D. 2 H. 4
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Position, velocity and acceleration

Since velocity is the derivative of
position and acceleration is the
derivative of velocity,
Velocity is the integral of acceleration
and position is the integral of velocity.

(Of course, you must know the starting
values of position and/or velocity in
order to determine the constant[s] of
integration.)
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Position, velocity and acceleration

Example

An object moves in a force field so that its acceleration at time t is
a(t) = t2 − t + 12 (meters per second squared). Assuming that
the object is moving at a speed of 5 meters per second at time
t = 0, determine how far it travels in the first 10 seconds.

First we determine the velocity, by integrating the acceleration.
Because v(0) = 5, we can write the velocity as v(t) = 5+ a
definite integral as follows:

v(t) = 5+

ˆ t

0
a(τ) dτ = 5+

ˆ t

0
τ2−τ+12 dτ = 5+

t3

3
− t2

2
+12t.
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Position, velocity and acceleration

Example

An object moves in a force field so that its acceleration at time t is
a(t) = t2 − t + 12 (meters per second squared). Assuming that
the object is moving at a speed of 5 meters per second at time
t = 0, determine how far it travels in the first 10 seconds.

The distance the object moves in the first 10 seconds is the total
change in position. In other words it is the integral of dx as t goes
from 0 to 10. But dx = v(t) dt so we can write:

(distance traveled between t = 0 and t = 10) =

ˆ 10

0
v(t) dt

=

ˆ 10

0
5 +

t3

3
− t2

2
+ 12t dt =

3950

3
= 1316.666 . . . meters
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Methods of integration

Before we get too involved with applications of the integral, we
have to make sure we’re good at calculating antiderivatives. There
are four basic tricks that you have to learn (and hundreds of ad
hoc ones that only work in special situations):

1 Integration by substitution (chain rule in reverse)

2 Trigonometric substitutions (using trig identities to your
advantage)

3 Partial fractions (an algebraic trick that is good for more than
doing integrals)

4 Integration by parts (the product rule in reverse)

We’ll do #1 this week, and the others later. LOTS of practice is
needed to master these!
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Integration by substitution

In some ways, substitution is the most important integration
technique, because every integral can be worked this way (at least
in theory).

The idea is to remember the chain rule: If G is a function of u and
u is a function of x , then the derivative of G with respect to x is:

dG

dx
= G ′(u)u′(x).

For instance, ex
2

could be thought of as eu where u = x2.
To differentiate ex

2
then, we use that the derivative of eu is eu:

d

dx
ex

2
=

d

du
(eu)

d

dx
(x2) = eu(2x) = 2xex

2
.

Now we’ll turn this around
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A substitution integral

In the integral ˆ
x3 cos(x4) dx

it looks as though x4 should be considered as u,
in which case du = d(x4) = 4x3 dx , or in other words x3 dx = 1

4du.
And so:ˆ

x3 cos(x4) dx =

ˆ
cos u

du

4
=

1

4
sin u + C =

1

4
sin(x4) + C .
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Integration by substitution tips

In general, to carry out integration by substitution, you

1 Separate the integrand into factors.

2 Decide which factor is the most complicated.

3 Ask whether the other factors are (perhaps a constant times)
the derivative of some compositional part of the complicated
one

This provides the clue as to what to set equal to u.
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Another substitution example

Calculate

ˆ
x

(2x2 + 5)3
dx

Clearly the complicated factor is
1

(2x2 + 5)3
in this case.

The rest, x dx is a constant times the differential of x2 — but it’s
a good idea to try and make u substitute for a much of the
complicated factor as possible.

And if you think about it, x dx is also a constant times the
differential of 2x2 + 5! So we let u = 2x2 + 5 and then
du = 4x dx , in other words x dx = 1

4du. Therefore:

ˆ
x

(2x2 + 5)3
dx =

1

4

ˆ
1

u3
du = − 1

8u2
+ C = − 1

8(2x2 + 5)2
+ C .
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Your turn!

ˆ √π/2
0

x cos x2 dx =

A. 0 B. 1/2 C. 1 D. π/2 E.
√
π

ˆ π/4

0
sec2 x sin(tan x) dx =

A. π/2 B. 1− π/4 C. sin 1 D. 1− cos 1

E. π/2− sin 1 F. π/4 + cos 1 G. 1 + 3π/4 H. 1 + tan 1
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Surfaces of revolution

A surface of revolution is formed when a curve is revolved around a
line into 3-dimensional space. The line is usually the x or y axis in
the plane, but other lines sometimes occur. The curve sweeps out
a surface with 360-degree rotational symmetry.

Interesting problems that can be solved by integration are to find
the volume enclosed inside such a surface, or to find its surface
area.
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Volumes

You might already be familiar with finding volumes of revolution.
Once a surface is formed by rotating a curve around the x-axis,
you can sweep out the volume it encloses with disks perpendicular
to the x-axis.

Here is the surface formed by
rotating the part of the curve
y =
√

x for 0 ≤ x ≤ 2 around
the x-axis. We will calculate the
volume of the solid obtained by
rotating the region in the
xy -plane between the curve and
the x-axis around the x-axis, as
shown here.

D. DeTurck Math 104 002 2016C: Integrals 27 / 55



Calculate the volume

To calculate the volume enclosed inside the
surface, we need to add up the volumes of
all the disks for each value of x between 0
and 2. One such disk is shown here, with
its radius.

The disks are (approximately) cylinders turned sideways, and the
disk centered at (x , 0) has radius

√
x and width (or height) dx . So

the volume of the disk is πr2h = π(
√

x)2 dx = πx dx .

To find the total volume of the solid we have to integrate this
quantity for x from 0 to 2:

V =

ˆ 2

0
πx dx = 2π cubic units.
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A formula for volume

In general, if the region between the x-axis and the part of the
graph of y = f (x) between x = a and x = b is revolved around the
x-axis, the volume inside the resulting solid of revolution is
calculated as:

V =

ˆ b

a
π (f (x))2 dx

The same sort of formula applied if we rotate the region between
the y -axis and a curve around the y -axis (just change all the x ’s to
y ’s): if the curve is given as x = g(y) for c ≤ y ≤ d , then the
volume is

V =

ˆ d

c
π (g(y))2 dy
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A different kind of volume problem

A different kind of problem is to rotate the region between a curve
and the x-axis around the y -axis. For instance, let’s look at the
same region as before (between y = 0 and y =

√
x for x between 0

and 2), but rotated around the y -axis instead.

First, here’s the surface swept
out by the parabolic curve,
together with the region in the
xy -plane:
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Volume by shells

Here is the solid swept out by the
region — the outer (gray)
surface is swept out by the
vertical line x = 2.

If we rotate a thin rectangle of
width dx and height

√
x around

the y -axis, we get a cylindrical
shell . One such shell is shown in
the figure on the left.
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Volume by shells

Think of the shell as the label of a can (just the label, not the
contents of the can!). If you cut the label along a vertical line,
then it can be laid out as a rectangular sheet of paper, with length
2πx , with height

√
x and with thickness dx . The volume of the

sheet of paper (and so the volume [approximately] of the
cylindrical shell) that goes through the point (x , 0) is thus

dV = 2πx
√

x dx .

So we can calculate the volume of the entire solid by adding up the
volumes of all the shells for x starting from 0 and ending at 2:

V =

ˆ 2

0
2πx3/2dx =

16π
√

2

5
cubic units.
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Another approach

We could also calculate this last volume by rewriting the equation
of the curve as x = y2, and rotating thin horizontal rectangles of
height dy that stretch horizontally from the curve x = y2 to the
vertical line x = 2. Such a horizontal rectangle produces a disk
with a hole in the middle (a “washer”), as shown here:

To calculate the volume of a washer, simply calculate the volume of
the disk without the hole (for each y , it has radius 2), and subtract
the volume of the hole (which is a disk of radius y2 and height dy).
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Volume by washers

The volume of a single washer is thus

dV = 4π dy − π(y2)2 dy = (4π − πy4) dy

and so the volume of the entire solid is

V =

ˆ √2
0

4π − πy4 dy =
16π
√

2

5
cubic units

which agrees with what we got before.
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Volumes of revolution: disks/washers or shells?

When calculating volumes of revolution, an important step is the
decision of which approach to take. This decision is often framed
as a choice between the disk (or washer) method and the shell
method, but this is generally the wrong way to frame the question.

Rather, it is more important to ask whether choosing vertical (tall
and thin, with width dx) or horizontal (short and wide, with height
dy) sections of the region being rotated will result in simpler
calculations of relevant lengths and integrals. A few examples will
help illustrate this.

D. DeTurck Math 104 002 2016C: Integrals 35 / 55



Example 1

Find the volume obtained by revolving the region between the
parabola x = 4y − y2 and the line y = x around the x-axis.

We begin by drawing the region described by
the curves. For some values of x the (green)
vertical sections sometimes have their lower
endpoint on the parabola and their upper
endpoint on the line, and for others, both
endpoints are on the parabola. This means we
would have to split the interval of integration
into two pieces.
On the other hand, the (red) horizontal
sections all have their left endpoints on the
line and their right endpoints on the parabola.
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Example 1

Find the volume obtained by revolving the region between the
parabola x = 4y − y2 and the line y = x around the x-axis.

So we would rather use horizontal sections. If we revolve a
horizontal segment around the x-axis, we’ll get a cylindrical shell,
as shown here (from two different angles):
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Example 1

Find the volume obtained by revolving the region between the
parabola x = 4y − y2 and the line y = x around the x-axis.

The thickness of the shell is dy , so we need to
express everything in terms of y . The radius of
the shell points from the x-axis to the shell,
and so it is y itself. The height of the shell is
the x-coordinate on the parabola minus the
x-coordinate on the line, expressed in terms of
y , so it is (4y − y2)− y = 3y − y2.

The volume of one shell is thus

dV = 2πy(3y − y2) dy = π(6y2 − 2y3) dy .

D. DeTurck Math 104 002 2016C: Integrals 38 / 55



Example 1

Find the volume obtained by revolving the region between the
parabola x = 4y − y2 and the line y = x around the x-axis.

Therefore the total volume of the solid is the sum of the volumes
of the shells as y goes from 0 to 3, or:

V =

ˆ 3

0
π(6y2 − 2y3) dy =

(
2πy3 − πy4

2

)∣∣∣∣3
0

=
27π

2
cubic units.
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Example 2

Find the volume of the torus obtained by revolving the interior of
the circle x2 + y2 = 9 around the line x = 5.

Since the region is a round disk, it is indifferent to whether we use
horizontal or vertical sections, but perhaps this time the setup of
the integral that results will be easier one way than the other. You
can be the judge!

Here is the disk and the axis of rotation,
with horizontal (red) sections, that go
from the left half of the circle to the
right half, as well as vertical (green)
sections that go from the bottom half
of the circle to the top half.
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Example 2

Find the volume of the torus obtained by revolving the interior of
the circle x2 + y2 = 9 around the line x = 5.

The green vertical sections are tall and thin, with width dx . The
one at x goes from y = −

√
9− x2 to y = +

√
9− x2. When we

rotate one of the green sections around the axis x = 5, we get a
cylindrical shell of radius 5− x , height 2

√
9− x2 and thickness dx .

So the volume of a single shell is dV = 2π(5− x)
(

2
√

9− x2
)

dx

We will integrate this for x going from −3 to 3 to get the volume
of the torus.
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Example 2

Find the volume of the torus obtained by revolving the interior of
the circle x2 + y2 = 9 around the line x = 5.

The red horizontal sections are wide and short, with height dy .
The one at height y goes from x = −

√
9− y2 to x = +

√
9− y2.

When we rotate one of the red sections around the axis x = 5, we
get a washer of outer radius 5 +

√
9− y2, inner radius

5−
√

9− y2 and thickness dy . So the volume of a single washer is

dV = π
(

(5 +
√

9− y2)2 − (5−
√

9− y2)2
)

dy We will integrate

this for y going from −3 to 3 to get the volume of the torus.
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Example 2

Find the volume of the torus obtained by revolving the interior of
the circle x2 + y2 = 9 around the line x = 5.

Now we have two ways to calculate the volume. The shell way
gives the integral:

V =

ˆ 3

−3
2π(5− x)

(
2
√

9− x2
)

dx

and the washer way gives:

V =

ˆ 3

−3
π
(

(5 +
√

9− y2)2 − (5−
√

9− y2)2
)

dy

=

ˆ 3

−3
20π

√
9− y2 dy .

These integrals look hard, but we can evaluate them easily with
some thought.
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Example 2

Find the volume of the torus obtained by revolving the interior of
the circle x2 + y2 = 9 around the line x = 5.

We will learn how to compute the antiderivative of
√

9− y2 later,
but we can use the fact that the integral is the area between a
curve and the axis to evaluate:

V =

ˆ 3

−3
20π

√
9− y2 dy = 20π × (area of semicircle of radius 3)

= 20π

(
1

2
π(32)

)
= 90π2 cubic units

We leave it to you to find a clever way to evaluate the other
expression for the volume of the torus.
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Volumes with known cross-sections

Another family of volume problems involves volumes of
three-dimensional objects whose cross-sections in some direction all
have the same shape.

For example:

Calculate the volume of the solid S if the base of S is the
triangular region with vertices (0, 0), (2, 0) and (0, 1) and
cross-sections perpendicular to the x-axis are semicircles.

First we have to visualize the solid.
Here is the base triangle, with a few
vertical lines (perpendicular to the
x-axis) drawn on it. These will be the
diameters of the semicircles in the solid.
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Volumes with known cross-sections

Here is a three-dimensional plot
of the solid that has this triangle
as the base and the semi-circular
cross sections:

From that point of view you can
see some of the base as well as
the cross-section. We’ll sweep
out the volume with slices
perpendicular to the x-axis, each
of which looks like half a disk.
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The volume of that object

Since the line connecting the two points (0, 1) and (2, 0) has
equation y = 1− 1

2x , the centers of the half-disks are at the points
(x , 1

2 −
1
4x) and their radii are likewise 1

2 −
1
4x .

So the little bit of volume at x is half the volume of a cylinder of
radius 1

2 −
1
4x and height dx , in other words

dV =
1

2
π

(
1

2
− 1

4
x

)2

dx

Therefore the volume of the entire solid is

V =
π

2

ˆ 2

0

(
1

2
− 1

4
x

)2

dx =
π

12
cubic units.
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As a check. . .

Finally, we could also have calculated the volume by noticing that
the solid S is half of a (skewed) cone of height 2 with base radius
1
2 .

Using the formula V = 1
3πr2h for a cone, we arrive at the same

answer,

V =
1

2
· 1

3
π

(
1

2

)2

(2) =
π

12
cubic units
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Arc length

The length of a curve in the plane is generally difficult to compute.
To do it, you must add up the little “bits of arc”, ds.
A good approximation to ds is given by the Pythagorean theorem:

ds =
√

dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx =

√(
dx

dy

)2

+ 1 dy .

So we have that the length of the part of the curve y = f (x) (or
x = g(y)) from the point (a, b) to the point (c , d) is given by:

L =

ˆ c

a

√
1 + (f ′(x))2 dx =

ˆ d

b

√
(g ′(y))2 + 1 dy .

We can use one of these to find the length of any graph —
provided we can do the integral that results!
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Example

It’s not easy to make up an arc length problem that yields a
reasonable integral. The way textbooks (and professors making up
exams) often do it is to find two functions whose derivatives
multiply together to give −1

4 and then have the problem be to
calculate the length of part of the curve y = f (x), where f (x) is
the sum of those two functions. To illustrate:

Find the arclength of the part of the curve y = x3

3 + 1
4x for

1 ≤ x ≤ 2.

We’ll solve the problem the “standard” way, then make some

observations. We have y ′ = x2 − 1

4x2
, so (y ′)2 = x4 − 1

2
+

1

16x4
.

Therefore 1 + (y ′)2 = x4 +
1

2
+

1

16x4
=

(
x2 +

1

4x2

)2

, and so

L =

ˆ 2

1
x2 +

1

4x2
dx =

x3

3
− 1

4x

∣∣∣∣2
1

=
7

3
+

1

8
=

59

24
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Some observations

In the preceding example, the derivatives of the two terms in f (x)
multiplied together to give −1

4 , so that the middle term of (f ′)2

turned out to be −1
2 .

That meant that when we added 1, the −1
2 turned into +1

2 , so
that 1 + (f ′)2 was a perfect square.

And in fact, the integral of
√

1 + (f ′)2 turned out to be the
original function with the + sign changed to a −. So we actually
could have gone directly from the question to the final evaluation
of the integral at the endpoints without any of the intermediate
calculation.

Be alert for this trick in the homework problems (and on review
problems from old exams) — it can be a real timesaver!
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A harder example

As we will see, the simpler the function, the harder the arclength
integral often turns out to be!

Find the arclength of the parabola y = x2 for x between −1 and 1

Since y ′ = 2x , the element of arclength is ds =
√

1 + 4x2 dx and
the length we wish to calculate is

L =

ˆ 1

−1

√
1 + 4x2 dx .

We’ll do this integral later, using a trig substitution. But,
appealing to Maple we get that

L =

ˆ 1

−1

√
1 + 4x2 dx =

√
5− 1

2
ln(
√

5− 2).
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Area of a surface of revolution

The area of a surface of revolution can be calculated using a
strategy similar to the disk method for volume: Slice the surface up
into thin bands using slices perpendicular to the axis of revolution.
Then get a good differential approximation for area of each band,
and then add them up to get the area of the entire surface.

Here is the paraboloid obtained by rotating y =
√

x for 0 ≤ x ≤ 2
that we used before, together with one of the circular bands that
sweep out its surface area:
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To calculate the surface area. . .

. . . we need to determine the area of the bands. The one centered
at (x , 0) has radius y =

√
x and width equal to ds =

√
dx2 + dy2.

The radius of the band is its circumference times its width, or

dσ = 2πr ds.

In general, we can choose whether to integrate with respect to x
or y — sometimes one way is clearly easier, but we’ll do this one
both ways so you can see how it’s done.

To integrate with respect to x , write ds =
√

1 + (y ′)2 dx . Since

y ′ =
1

2
√

x
, we have ds =

√
1 +

1

4x
dx . And the radius is

√
x , so

σ =

ˆ 2

0
dσ =

ˆ 2

0
2π
√

x

√
1 +

1

4x
dx =

ˆ 2

0
π
√

4x + 1 dx

=
π

4

2

3
(4x + 1)3/2

∣∣∣∣2
0

=
π

6
(27− 1) =

13π

3
square units
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The other way around

We can also calculate the surface area by integrating with respect
to y . To do this, we express the curve as x = y2 for 0 ≤ y ≤

√
2.

Then the radius of the bands can be expressed simply as y , and

ds =
√

(x ′)2 + 1 dy =
√

4y2 + 1 dy .

So we have

σ =

ˆ √2
0

dσ =

ˆ √2
0

2πr ds =

ˆ √2
0

2πy
√

4y2 + 1 dy

Make the substitution u = 4y2 + 1 (so du = 8y dy) and obtain:

σ =

ˆ 3

1

π

4

√
u du =

π

4

2

3
u3/2

∣∣∣∣3
1

=
π

6
(27− 1) =

13π

3
square units

just as before.
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