MATH 104 - Practice Problems for Exam 3 - Hints and answers

- 1. Converges by comparison (or limit comparison) with $\sum (1/n^2)$, a convergent p-series.
- 2. Converges by comparison (or limit comparison) with $\sum (\frac{3}{4})^n$, a convergent geometric series. You could also use the ratio test.
- 3. Converges by the ratio test (ratio turns out to be 1/2).
- 4. Diverges by *n*th term test $-\lim_{n\to\infty} n \sin\frac{1}{n} = 1$.
- 5. Using the idea of the integral test, see that what's left over after the first N terms, namely $\sum_{n=N+1}^{\infty} \frac{1}{n^3}$ is less than $\int_{N}^{\infty} \frac{1}{x^3} dx$, which equals $\frac{1}{2N^2}$. For this to be less than 0.001, we need $N^2 > 500$, in other words $N \ge 23$. So 23 terms will do.
- 6. The series given here converges by the ratio test (or by comparison with the convergent $\sum 2(\frac{3}{4})^n$). This is the sum of two geometric series, and the sum equals 4.
- 7. Use limit comparison with $\sum 1/n^{3-p}$, which converges when p < 2 (which is the answer).
- 8. Ratio test gives 1/2 < x < 9/2. Checking endpoints shows that the series converges at both ends (has either 1 or $(-1)^n$ over n^2), so the precise interval is [1/2, 9/2].
- 9. Recall $\arctan(x) = x \frac{x^3}{3} + \frac{x^5}{5} + \cdots$, so it looks like F.
- 10. Substitute \sqrt{t} into the series for $\cos x$ (which works because all the powers of x in that series are even) and integrate. I got B.
- 11. Integrate $x^2 \frac{x^6}{3!} + \frac{x^{10}}{5!} + \cdots$ (keep the extra term to estimate the error) and get $\frac{1}{3} \frac{1}{42} + \frac{1}{1320} \cdots$. The sum of the first two terms is 13/42, and because the series is alternating and the terms decreasing, the error is less than the first omitted term, namely 1/1320.

- 12. This is like problem 5, and once you decide (as indicated) to use that the error is less than $\sum_{11}^{\infty} \frac{1}{n^4}$, the integral test idea gives that this is in turn less than $\int_{10}^{\infty} \frac{1}{x^4} dx$, which is exactly 1/3000.
- 13. The ratio test gives convergence on 1 < x < 3, which has center at x = 2 and radius 1.
- 14. Using Taylor's formula gives $\sqrt{x} = 5 + \frac{x-25}{10} \frac{(x-25)^2}{100} + \cdots$. This will be an alternating series and is decreasing. For x = 26, get $\sqrt{26}$ is about 5.099. The error is less than the next term, which turns out to be 1/50000.
- 15. You could write the *n*th term as $1/n^{2-1/n}$, which is less than $1/2^{3/2}$ once n > 2. So this series converges by comparison to $\sum 1/n^{3/2}$.
- 16. Use fancy L'Hosiptal (i.e., write the nth term as e to something, and take the limit of the something using L'Hospital's rule) and get the sequence converges to 1.
- 17. This sequence converges to zero because each term is positive but less than $\int_{n}^{\infty} \frac{1}{x^8} dx$, which approaches zero as $n \to \infty$.
- 18. This series converges by limit comparison to $\sum 1/n^2$. (Try it, and use L'Hospital's rule to evaluate the resulting limit)
- 19. This series converges by the ratio test (limiting ratio turns out to be 0).

35. B

20. Use series or L'Hospital several times – limit is -1/2.

30. A

25. B

21. C 26. D 31. D 36. A 41. C 46. C 22. A 27. B 32. A 37. B 42. E 47. D 23. B 28. A 38. C 43. D 33. A 48. A 24. B 29. B 34. B 39. A 44. F 49. C

40. B

45. E

Answers to 2011 midterm (there were three versions of each problem, answers as follows):

- 1. B, A, F
- 2. A, B, A
- 3. B, A, A
- 4. B, A, B
- 5. B, D, C
- 6. B, C, A
- 7. D, F, D
- 8. D, A, E
- 9. D, E, F
- 10. E, A, C

Answers to 2014 midterm (there were three versions of each problem, answers as follows):

- 1. A, B, C
- 2. A, B, A
- 3. A, B, B
- 4. A, B, A
- 5. D, B, E
- 6. B, B, A
- 7. A, D, F
- 8. C, E, F
- 9. D, E, B
- 10. D, E, A

Answers to 2015 midterm (there were four parts to the first problem, and three versions of the other problems, answers as follows):

- 1. B, A, B, A
- 2. A, C, E
- 3. A, B, B
- 4. B, A, A
- 5. B, B, A
- 6. D, B, E

- 7. B, B, A
- 8. A, D, B
- 9. C, E, F
- 10. E, C, B
- 11. F, A, C