- 1. The first few nonzero terms of the Maclaurin series for $f(x) = \ln(1 + \sin x)$ are
- (a) $1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{24}x^3 + \cdots$

(b) $1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + \cdots$

(c) $x - \frac{1}{2}x^2 + \frac{1}{8}x^3 - \frac{1}{24}x^4 + \cdots$

(d) $1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \cdots$

(e) $x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \cdots$

- (f) $1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3 \frac{1}{12}x^4 + \cdots$
- 2. If it converges, find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{3^{2n}(2n)!}$ If the series diverges, explain why.
- (a) ln 2
- (b) $\ln 3 \ln 2$
- (c) $1/e^2$ (d) 1/2 (e) 2/e
- (f) Diverges
- **3.** For which values of x does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n \, 4^n}$ converge?
- (a) -3 < x < 5

(b) $-3 \le x < 5$

(c) -3 < x < 5

(d) $-5 < x \le 3$

(e) $-5 \le x < 3$

- (f) $-5 \le x \le 3$
- 4. Determine whether the following series converge or diverge.
- (1) $\sum_{n=1}^{\infty} \frac{n^3}{n^4 + 4}$ (2) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ (3) $\sum_{n=1}^{\infty} \frac{\ln(\ln(n))}{\ln n}$ (4) $\sum_{n=1}^{\infty} \frac{3n^2}{(n!)^2}$

(1) converge or diverge

(2) converge or diverge

(3) converge or diverge

- (4) converge or diverge
- **5.** What is the limit of the sequence $\left\{n^2\left(1-\cos\frac{1}{n}\right)\right\}$?
 - (a) 1

- (b) -1 (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$ (e) $-\frac{\sqrt{3}}{2}$
- (f) diverges

6 .	The solution of the initial-value problem:	$x\frac{dy}{dx} + 3y = 7x^4$	y(1) = 1
sa	tisfies $y(2) =$		

(a) 0

(b) 1

(c) 2

(d) 4

(e) 8

(f) 16

 $\frac{dy}{dx} - 20x^4e^{-y} = 0$ y(0) = 07. The solution of the initial-value problem: satisfies y(1) =

(a) ln 5

(b) ln 4

(c) ln 3

(d) ln 2

(e) 1

(f) 0

8. The function

$$f(x) = \begin{cases} \frac{k}{x^3} & 1 < x \le \infty \\ 0 & \text{otherwise} \end{cases}$$

is a probability density function for a certain value of k. For that probability density function, find the probability that x > 2

(a) $\frac{1}{2}$

(b) $\frac{1}{3}$

(c) $\frac{1}{4}$ (d) $\frac{2}{3}$ (e) $\frac{1}{5}$

(f) $\frac{1}{6}$

9. An object moves in such a way that its acceleration at time t seconds is $\frac{1}{t^2 + 5t + 6}$ meters per second². If the initial velocity of the object is $\ln \frac{2}{3}$ meters per second, what is the limit of its velocity as $t \to \infty$?

(a) $\ln \frac{3}{2}$ meters per second

(b) ln 6 meters per second

(c) 1 meters per second

(d) $\ln \frac{4}{9}$ meters per second (e) $\ln \frac{9}{4}$ meters per second

(f) 0 meters per second

10. $\int_0^{\pi/8} \tan^4 2x \sec^4 2x \, dx$

(a) $\frac{4}{9}$

(b) $\frac{7}{24}$ (c) $\frac{5}{14}$ (d) $\frac{9}{28}$ (e) $\frac{6}{35}$

(f) $\frac{1}{7}$

 $11. \int_{\frac{1}{2}}^{\infty} \frac{\ln(2x)}{x^2} dx$

(a) $1 - \ln 2$	(b) 2	(c) $\ln 2 - \frac{1}{2}$	(d) $\frac{1}{2}$	(e) $2 - 2 \ln 2$	(f) the integral diverges
-----------------	-------	---------------------------	-------------------	-------------------	---------------------------

12. Find the y-coordinate of the centroid of the region in the first quadrant bounded by the coordinate axis and the graph of $y = \cos x$ for $0 \le x \le \frac{\pi}{2}$, if the density is constant.

(a)
$$\frac{\pi}{18}$$
 (b) $\frac{\pi}{12}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{6}$ (e) $\frac{\pi}{4}$

13. Find the length of the part of the curve $y = \frac{3}{16}e^{2x} + \frac{1}{3}e^{-2x}$ for $0 \le x \le \ln 2$.

(a)
$$\frac{13}{16}$$
 (b) $\frac{11}{16}$ (c) $\frac{3}{8}$ (d) $\frac{9}{8}$ (e) $\frac{29}{64}$ (f) $\frac{3}{4}$

14. The region between the graph of $y = 1 - x^2$ and the x-axis is rotated around the line y = 1. What is the volume of the resulting solid?

(a)
$$\frac{2\pi}{5}$$
 (b) $\frac{4\pi}{5}$ (c) $\frac{6\pi}{5}$ (d) $\frac{8\pi}{5}$ (e) 2π (f) $\frac{12\pi}{5}$

15. Calculate the volume of the solid obtained by rotating the area between the graph of $y = \frac{1}{\sqrt{x^2 - 1}}$ and the x-axis for $1 < x < \sqrt{5}$ around the y-axis.

(a)
$$\pi$$
 (b) 4π (c) 6π (d) 8π (e) 3π (f) 2π