

**Spring 2014**

3. Find the arclength of the curve  $y = \frac{2\sqrt{3}}{9} (3x^2 + 1)^{3/2}$  from  $x = -1$  to  $x = 2$ .

|       |        |
|-------|--------|
| (A) 8 | (E) 6  |
| (B) 2 | (F) 21 |
| (C) 9 | (G) 24 |
| (D) 4 | (H) 27 |

Spring 2013

**PROBLEM 7:** What is the centroid of the region bounded by the curves  $y = x^2$  and  $y = 8 - x^2$ ?

Hint: draw a picture of this region as your first step.

(a)  $(-2, 3)$  (b)  $(2, 5)$  (c)  $(-1, 4)$  (d)  $(0, 4)$  (e)  $(0, 3)$  (f)  $(1, 4)$

**Fall 2012**

11. Suppose that the region bounded by  $y = 4 \tan(x^2)$  and the  $x$ -axis for  $0 \leq x \leq \frac{\sqrt{\pi}}{2}$  is a thin homogeneous density plate of area  $A$ . Then the  $x$ -coordinate of the center of mass of the plate is:

(a)  $\frac{2}{A}\pi^2$     (b)  $\frac{2}{A}\pi$     (c)  $\frac{1}{A}\ln 2$     (d)  $\frac{3}{A}\sqrt{\pi}$     (e) 0    (f)  $\frac{e\pi}{2}$

**Spring 2012**

12. What is the area of the surface obtained by rotating the part of the curve  $y = \sqrt{4 - x^2}$  from  $x = 0$  to  $x = 1$  around the  $x$ -axis?

A)  $4\pi$       B)  $2\pi$       C)  $\pi$       D)  $\sqrt{2}\pi$       E)  $3\pi$       F)  $8\pi$

**Fall 2010**

7. What is the arclength of the part of the curve  $y = \frac{1}{12}e^x + 3e^{-x}$  for  $\ln 2 \leq x \leq \ln 4$ ?

(A)  $\frac{5}{12}$     (B)  $\frac{1}{2}$     (C)  $\frac{7}{12}$     (D)  $\frac{2}{3}$     (E)  $\frac{3}{4}$     (F)  $\frac{5}{6}$     (G)  $\frac{11}{12}$     (H) 1

---

**Spring 2010**

10. An artist is designing a wine glass in a flower shape, which can be generated by rotating the region bounded by  $y = \sqrt{x}$  and  $x = y$ , between  $x = 0$  and  $x = 1$ , about  $x$ -axis. What is the surface area (which contains both the inside and the outside surfaces) of such a glass?

(a)  $\left(\frac{8\sqrt{2}-4}{3} + \sqrt{2}\right)\pi$    (b)  $\left(\frac{8\sqrt{2}-4}{3} + \sqrt{5}\right)\pi$    (c)  $\left(\frac{8\sqrt{2}-4}{3} + 1\right)\pi$   
(d)  $\left(\frac{5\sqrt{5}-1}{6} + \sqrt{2}\right)\pi$    (e)  $\left(\frac{5\sqrt{5}-1}{6} + \sqrt{5}\right)\pi$    (f)  $\left(\frac{5\sqrt{5}-1}{6} + 1\right)\pi$

**ANSWERS:**

**Spring 2014 # 3: F**

**Spring 2013 # 3: C**

**FALL 2012 # 11: C**

**SPRING 2012 # 12: A**

**FALL 2010 # 7: G**

**SPRING 2010 # 10: D**