

Spring 2016 LPS

1. The base of a solid is a the region between the x – axis, $y = \sqrt{x}$, $x = 4$,
Each cross section perpendicular to the x – axis is a
semicircle with diameter running along the base. Find the volume.

(A) $\sqrt{2}$ (C) $2\sqrt{3}$ (E) $\frac{5\pi}{6}$ (G) π
(B) $\frac{\pi}{9}$ (D) $\frac{\pi}{6}$ (F) $\frac{\pi}{2}$ (H) $\frac{\pi}{4}$

Fall 2010

3. Find the volume of the solid obtained by rotating the region bounded by the x-axis, the line $y = 1$, the curve $y = \ln(x)$, and the line $x = 1/2$ about the y-axis.

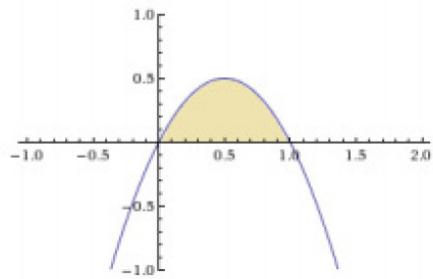
(A) $\pi(e - 2)$ (B) $2\pi \left(\frac{e^2}{4} - \frac{3}{4} \right)$ (C) $2\pi \left(\frac{e^2}{4} + \frac{3}{4} \right)$ (D) $\pi \left(\frac{1}{2}e^2 - \frac{3}{4} \right)$
(E) $\frac{\pi}{8}(4e^2 - 3 - 2\ln 2)$ (F) $\pi \left(e - \frac{3}{2} \right)$ (G) $\frac{e\pi}{2}$ (H) $\pi \left(\frac{3}{4} + \frac{e^2}{2} - e \right)$

Spring 2014 # 1

1. Find the volume of the solid generated by revolving the region bounded by the graphs of

$y = e^x$, $y = 0$, $x = 0$, and $x = 2$ about the line x – axis.

(A) $\frac{\pi}{4}e^2$ (E) $\frac{\pi}{2}(e^4 - 1)$


(B) $\frac{\pi}{2}e^4$ (F) $2\pi(e^4 - 1)$

(C) $2\pi e^2$ (G) $2\pi e^4$

(D) $\frac{\pi}{4}e$ (H) 2π

Spring 2014 # 2

2. Find the volume of the solid generated by revolving the region bounded above by the graph of $y = 2x - 2x^2$ and below by the x -axis about the line $x = 2$.

(A) $\frac{\pi}{4}$ (E) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$ (F) $\frac{\pi}{2}$
(C) $\frac{2\pi}{3}$ (G) 2π
(D) $\frac{3\pi}{4}$ (H) π

Fall 2008

2. The volume of the solid generated by revolving the region bounded by the curves $x = y^2$ and $y = x - 2$ about the y -axis

a) $\frac{20\pi}{3}$

b) $\frac{72\pi}{5}$

c) $\frac{42\pi}{5}$

d) $\frac{13\pi}{2}$

e) $\frac{32\pi}{5}$

f) $\frac{212\pi}{15}$

Spring 2007

2. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = e^{x^2} \quad \text{and} \quad y = 0 \quad \text{and} \quad x = 0 \quad \text{and} \quad x = 2$$

about the y -axis.

A.) $4\pi e^4$ B.) $2\pi e^4$ C.) $2\pi(e^4 - 1)$ D.) $\pi(e^4 - 1)$ E.) $\pi\sqrt{e}$ F.) πe

ANSWERS:

Spring 2016 LPS # 1: G

Fall 2010 #3: D

Spring 2014 # 1: E

Spring 2014 #2: H

Fall 2008 # 2: B

Spring 2007 # 2: D