Solution outlines for Gressman midterm 3

1. The graphs of y = x and y = 2? intersect at = 0 and 2 = 1. The area of the region
is thus

and so

(B)

2. The ratio test gives

2|z + 3|(n+1)?
3(n+2)?

For the ratio test to guarantee convergence, we need %]a: +3| <1, or —% <r+3< %

which gives —3 <z < —3.
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At the endpoints, the absolute value of the nth term is W, the nth term of
n
a convergent p-series, so the series converges (absolutely) at both endpoints and the
interval of convergence is [—5, —3].

(B)

3. If the series ) a, converges then a, — 0, in which case e — 1, and so the series
> e fails the nth term test and diverges.

(E)

4. For f(z) to be a pdf, we need C' > 0 and
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so C'= % The mean of f is:
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5. Rotate the vertical section at z with width dz to obtain a disk with radius e=*/2.

The volume is
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6. Use the substitution ©v = cos x:
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(D)

7. This is a linear differential equation, in proper form it is
y—-—y=2a’
x
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soP=—=and Q=250 [P=—2Inzand e/’ = —- Therefore
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y—efP/QefP—x2/1d:U—x2($+C)—363—1-035.

The condition y(1) = 0 tells us the C = —1, and so y = 2* — 2%, and y(3) = 27 -9 = 18.
(F)

8. Partial fractions:
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9. For the family of functions y = Ce™ @ we have 3y = S Divide the
x
second of these equations by the first to eliminate C"
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This is the differential equation for the original curves. The orthogonal trajectories have
slopes (derivatives) that are the negative reciprocals of the originals:
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for the orthogonal trajectories, or
ydy = (14 2°)dx

Integrate this to get

L, L 3

2 = - C
2y x + 313 +

for the formula of the orthogonal trajectories.
(E) (although in some sense (B) is a formula for the O.T'.s).

10. Use the substitution 2 = secf to write
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11. Both series have positive terms so either they converge absolutely or else they
diverge.
I. Limit comparison with (divergent) harmonic series:
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so series I diverges.



IT. Since ——— < —, this series is less than the convergent geometric series
n + n2en en
> e, hence converges absolutely.

(D)

12. Around the y-axis, the radius is z. So we have
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