Solution outlines for Gressman midterm 2

1. Start by completing the square in the expression under the radical:

4o —8x+ 13 =42 —8x +4+9= (20 —2)*+9

so we will make the substitution © = 2z — 2 to use the “fact”:
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2. The formula in the box at the bottom of page 498 of the textbook says that
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where M = max |f”|on [a,b] and for this integral a = —1 and b =1 and f = e -l
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Since 2+42% < 6 on [—1,1] and €** < e on [—1,1], we have | f/| < 6 So the error formula

tells us that
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For this to be less than 107% we’ll need 106 - 22 < n?, i.e., n > 2000.
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3. 1. We have
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so this integral is convergent.



II. Evaluate:

which diverges at z = 0.
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4. The condition P(t < X < oo) = e~/ means that
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Differentiate both sides to get —f(t) = —3e "/ or f(t) = 1e7"/2. This is a probability
distribution on [0, c0) because
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For the mean we’ll need to integrate by parts with v =t and dv = %e‘t/th. We'll get
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The distribution is “memoryless” because the amount of time the center expects to have
to wait is independent of how long it has already waited.
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5. We say that lim a, = L if for every € > 0 there is an N such that for every n > N
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we have |a, — L| < e. We expect that
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so we need find out for which n the quantity
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is less than 4—02 For this we should have 402 < 2(2n?+ 1) or 201 < 2n? + 1, or 100 < n?

or 10 <n. So N = 10 is the best we can do, so we much choose (E).



6. Do this one in pieces:
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(after dividing numerator and denominator by n) For the second term use top ten limit
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to conclude
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7. Using the substitution v = Inz,

~ 1 < du >
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Since the integral diverges, so does the series.
8. L. We'll limit-compare this series to ) e™™:
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(after dividing numerator and denominator by €™). Since Y e~ is a convergent geomet-
ric series, we have that the given series converges as well.

II. From part I, this series converges absolutely.

So both series converge.
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9. The function f(x) is certainly positive on [1,100], so we integrate:
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For the median M, we need to find M so that
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so M = 10. For the mean,

which gives us
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and since In(100) < 9 we have p > 10 so the mean is greater than the median.
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10. If the limit exists and equals L, then L = %L(l +1), ie., L* = L = 0 so either L =0
or L = 1. Now, observe that if 0 < a,, < 1, then
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(pi1 = éan(an +1) < §an(1 +1)=a,

so the sequence will be decreasing (and bounded below by 0), so it must converge to 0.
If b, =1, then b1 =3 -1- (1 +1) = 1. So the limit will be 1.
If ¢, > 1, then
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So ¢, is an increasing sequence and can’t have limit 0 or 1. Therefore ¢, — oco.
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11. Since 0 < z < 1, we have |z* — 1| = 1 — 22 We can write:
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The second of these integrals is not improper and is thus finite. For the first, make the
substitution © = 1 — x and integrate by parts to see that
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so the entire integral converges. I'm not sure which of the (interestingly labeled) choices
this implies. Probably the second (A).
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12. Since n
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— 1, this series diverges by the nth term test.



