Solution outlines for Gressman midterm 2

1. Start by completing the square in the expression under the radical:

$$4x^2 - 8x + 13 = 4x^2 - 8x + 4 + 9 = (2x - 2)^2 + 9$$

so we will make the substitution u = 2x - 2 to use the "fact":

$$\int_{1}^{3} x - \sqrt{4x^{2} - 8x + 13} \, dx = \frac{x^{2}}{2} \Big|_{1}^{3} - \int_{1}^{3} \sqrt{(2x - 2)^{2} + 9} \, dx$$
$$= 4 - \frac{1}{2} \int_{0}^{4} \sqrt{u^{2} + 9} \, du = 4 - \frac{20 + 9 \ln 3}{4} = -\frac{4 + 9 \ln 3}{4}$$

(B)

2. The formula in the box at the bottom of page 498 of the textbook says that

$$|E_T| < \frac{M(b-a)^3}{12n^2}$$

where $M = \max |f''|$ on [a, b] and for this integral a = -1 and b = 1 and $f = e^{x^2 - 1} = \frac{1}{e} e^{x^2}$. So

$$f' = \frac{2x}{e} e^{x^2}$$
 and $f'' = \frac{2_4 x^2}{e} e^{x^2}$.

Since $2+4x^2 \le 6$ on [-1,1] and $e^{x^2} \le e$ on [-1,1], we have |f''| < 6 So the error formula tells us that

$$|E_T| < \frac{6 \cdot 2^3}{12n^2}$$

For this to be less than 10^{-6} we'll need $10^6 \cdot 2^2 \le n^2$, i.e., n > 2000. (D)

3. I. We have

$$\int_0^\infty \frac{dt}{2e^t + 1} < \int_0^\infty \frac{dt}{2e^t} = \int_0^\infty \frac{1}{2} e^{-t} dt = \frac{1}{2}$$

so this integral is convergent.

II. Evaluate:

$$\int_0^1 \frac{dx}{x^2} = -\frac{1}{x} \Big|_0^1$$

which diverges at x = 0.

(C)

4. The condition $P(t \le X < \infty) = e^{-t/2}$ means that

$$\int_{t}^{\infty} f(s) \, ds = e^{-t/2}$$

Differentiate both sides to get $-f(t) = -\frac{1}{2}e^{-t/2}$ or $f(t) = \frac{1}{2}e^{-t/2}$. This is a probability distribution on $[0, \infty)$ because

$$\int_0^\infty \frac{1}{2} e^{-t/2} \, dt = \left. e^{-t/2} \right|_0^\infty = 1.$$

For the mean we'll need to integrate by parts with u=t and $dv=\frac{1}{2}e^{-t/2}dt$. We'll get

$$\mu = \int_0^\infty \frac{t}{2} e^{-t/2} dt = -t e^{-t/2} - 2e^{-t/2} \Big|_0^\infty = 2$$

The distribution is "memoryless" because the amount of time the center expects to have to wait is independent of how long it has already waited.
(B)

5. We say that $\lim_{n\to\infty} a_n = L$ if for every $\varepsilon > 0$ there is an N such that for every n > N we have $|a_n - L| < \varepsilon$. We expect that

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + 1} = \frac{1}{2}$$

so we need find out for which n the quantity

$$\frac{1}{2} - \frac{n^2}{2n^2 + 1} = \frac{1}{2(2n^2 + 1)}$$

is less than $\frac{1}{402}$. For this we should have $402 < 2(2n^2 + 1)$ or $201 < 2n^2 + 1$, or $100 < n^2$ or 10 < n. So N = 10 is the best we can do, so we much choose (E).

6. Do this one in pieces:

$$\lim_{n \to \infty} \frac{n+1}{2n + \sin n} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2 + \frac{\sin n}{n}} = \frac{1}{2}$$

(after dividing numerator and denominator by n) For the second term use top ten limit number 9:

$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a$$

to conclude

$$\lim_{n \to \infty} \left(1 - \frac{\ln 2}{n} \right)^n = e^{-\ln 2} = \frac{1}{2}$$

Therefore

$$\lim_{n \to \infty} \left(\frac{n+1}{2n + \sin n} - \left(1 - \frac{\ln 2}{n} \right)^n \right) = \frac{1}{2} - \frac{1}{2} = 0$$

(C)

7. Using the substitution $u = \ln x$,

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\infty} \frac{du}{u} = \ln(\ln x) \Big|_{2}^{\infty} = \infty.$$

Since the integral diverges, so does the series.

8. I. We'll limit-compare this series to $\sum e^{-n}$:

$$\lim_{n \to \infty} \frac{\frac{1}{e^n - e^{-n}}}{e^{-n}} = \lim_{n \to \infty} \frac{e^n}{e^n - e^{-n}} = \lim_{n \to \infty} \frac{1}{1 - e^{-2n}} = 1$$

(after dividing numerator and denominator by e^n). Since $\sum e^{-n}$ is a convergent geometric series, we have that the given series converges as well.

II. From part I, this series converges absolutely.

So both series converge.

(A)

9. The function f(x) is certainly positive on [1, 100], so we integrate:

$$\int_{1}^{100} \frac{1}{(\ln 100)x} \, dx = \left. \frac{\ln x}{\ln 100} \right|_{1}^{100} = 1.$$

For the median M, we need to find M so that

$$\int_{1}^{M} \frac{1}{(\ln 100)x} \, dx = \frac{1}{2}$$

which gives us

$$\frac{\ln M}{\ln 100} = \frac{1}{2}$$
 or $2 \ln M = \ln 100$

so M = 10. For the mean,

$$\mu = \int_{1}^{1} 00 \frac{x}{\ln(100)x} \, dx = \frac{99}{\ln 100}$$

and since $\ln(100) < 9$ we have $\mu > 10$ so the mean is greater than the median. (C)

10. If the limit exists and equals L, then $L = \frac{1}{2}L(l+1)$, i.e., $L^2 - L = 0$ so either L = 0 or L = 1. Now, observe that if $0 < a_n < 1$, then

$$a_{n+1} = \frac{1}{2}a_n(a_n+1) < \frac{1}{2}a_n(1+1) = a_n$$

so the sequence will be decreasing (and bounded below by 0), so it must converge to 0. If $b_n = 1$, then $b_{n+1} = \frac{1}{2} \cdot 1 \cdot (1+1) = 1$. So the limit will be 1.

If $c_n > 1$, then

$$c_{n+1} = \frac{1}{2}c_n(c_n+1) > \frac{1}{2}c_n(1+1) = c_n.$$

So c_n is an increasing sequence and can't have limit 0 or 1. Therefore $c_n \to \infty$. (A)

11. Since 0 < x < 1, we have $|x^2 - 1| = 1 - x^2$ We can write:

$$\int_0^1 \ln|x^2 - 1| \, dx = \int_0^1 \ln(1 - x^2) \, dx = \int_0^1 \ln(1 - x) \, dx + \int_0^1 \ln(1 + x) \, dx$$

The second of these integrals is not improper and is thus finite. For the first, make the substitution u = 1 - x and integrate by parts to see that

$$\int_0^1 \ln(1-x) \, dx = \int_0^1 \ln u \, du = u \ln u - u \Big|_0^1 = -1$$

so the entire integral converges. I'm not sure which of the (interestingly labeled) choices this implies. Probably the second (A).

12. Since $\frac{n+1}{n} \to 1$, this series diverges by the *n*th term test. (F)