A standard substitution

This week, we looked at the method of substitution (or *u*-substitution) for calculating integrals. Recall that the idea of substitution is to "reverse" the chain rule in order to simplify integrals of certain products.

For instance, to calculate $\int x^3 \sin 3x^4 dx$, you notice first that the integrand is a product, and that there are two factors: a simpler one, x^3 , and a more complicated one, $\sin 3x^4$. Moreover, the simple one is (a constant times) the derivative of part of the complicated one: the derivative of $3x^4$ is $12x^3$. So we let $u = 3x^4$, and calculate its differential: $du = 12x^3 dx$. In the integral, we can then substitute u for $3x^4$ in the sine function, and for $x^3 dx$ we can substitute $\frac{1}{12} du$. The result is

$$\int x^3 \sin 3x^4 dx = \int \frac{1}{12} \sin u \, du = -\frac{1}{12} \cos u + C = -\cos 3x^4 + C,$$

once we "un-substitute" $3x^4$ for u.

The standard substitution: The purpose of this note is to highlight a specific kind of substitution that comes up so often that it should become "second nature" to you. It occurs when you are trying to integrate a function (like exponential, sine or cosine, logarithm, square root, etc...) whose argument is a *linear* function of the variable, like ax + b. If you substitute u = ax + b in this case, you will simplify the integral and always end up with a factor of 1/a. Let's do a couple of examples to illustrate:

Example 1: $\int \cos 2x \, dx$. — The integrand is a function of 2x, which is of the form ax + b for a = 2 and b = 0. Make the substitution u = 2x. Then du = 2dx, or equivalently $dx = \frac{1}{2}du$. If we do the substitution we get that

$$\int \cos 2x \, dx = \int \frac{1}{2} \cos u \, du = \frac{1}{2} \sin u + C = \frac{1}{2} \sin 2x + C$$

— as promised, there is a factor of 1/a = 1/2 in the answer.

Example 2: $\int e^{3x} dx$. — The integrand is a function of 3x, so we're expecting a 1/3 in the answer. Make the substitution u = 3x, Then du = 3 dx or equivalently $dx = \frac{1}{3} du$. Do the substitution and get

$$\int e^{3x} dx = \int \frac{1}{3} e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x} + C.$$

Example 3: One more: $\int \sqrt{6x-3} \, dx$ – The integrand is a function of 6x-3 – so we expect a factor of 1/6. Make the substitution u=6x-3, so we get $du=6 \, dx$, or

equivalently $dx = \frac{1}{6}du$. Do the substitution and get

$$\int \sqrt{6x-3}\,dx = \int \frac{1}{6}\sqrt{u}\,du = \int \frac{1}{6}u^{1/2}\,du = \frac{1}{6}u^{3/2} \cdot \frac{2}{3} + C = \frac{1}{9}u^{3/2} + C = \frac{1}{9}(6x-3)^{3/2} + C.$$

Now you should try a couple: Calculate: $\int e^{-2x} dx$, $\int \sin\left(5x - \frac{\pi}{2}\right) dx$, $\int (4x - 2)^{10} dx$.

So that you can check your understanding, I got $-\frac{1}{2}e^{-2x}+C$, $-\frac{1}{5}\cos(5x-\pi/2)+C$, and $\frac{1}{44}(4x-12)^{11}+C$ as the answers.