New Directions in Materials Science Guided by Research in Operator Algebras

Emil Prodan
Yeshiva University, New York, USA

Operator Algebras in the Twenty-First Century
University of Pennsy/vania, March 2019

Work supported by the W.M Keck Foundation

My Talk's Goals:

- Identify and communicate the main principle that drives the research in topological materials and meta-materials.
- Convince you that there is already a program in place: high throughput materials design enabled by operator algebras
- Enumerate the tools from operator algebras that are needed
- Convince you that these ideas can be implemented in laboratory, no matter how abstract/complicated the algebras are

Figure: Shift operator on $\ell^{2}(\mathbb{Z})$

And about how this topology gets changed when edges and interfaces are created

Figure: Shift operator on $\ell^{2}(\mathbb{N})$

Generically one finds:

$$
N=S+0.5 S^{-1}+1.5 S^{2}+2 S^{-2}
$$

Figure: A normal operator on $\ell^{2}(\mathbb{Z})$

In this case, one finds:

$$
\widehat{N}=\hat{S}+0.5 \hat{S}^{-1}+1.5 \hat{S}^{2}+2 \hat{S}^{-2}
$$

Figure: Same operator on $\ell^{2}(\mathbb{N})$

But this is not all of it

Browsing through "Analytic K-Homology" (by Higson \& Roe), one learns about:

- essentially normal operators (ENO) and their essentially unitary equivalence
- the group $\operatorname{Ext}(X)$ of classes of ENO with $X \subset \mathbb{C}^{2}$ as essential spectrum

Browsing through "Analytic K-Homology" (by Higson \& Roe), one learns about:

- essentially normal operators (ENO) and their essentially unitary equivalence
- the group $\operatorname{Ext}(X)$ of classes of ENO with X as essential spectrum

Furthermore, one finds the statement:

$$
\operatorname{Ext}(X)=\operatorname{Hom}\left(\pi^{1}(X), Z\right)
$$

Browsing through "Analytic K-Homology" (by Higson \& Roe), one learns about:

- essentially normal operators (ENO) and their essentially unitary equivalence
- the group $\operatorname{Ext}(X)$ of classes of ENO with X as essential spectrum

Furthermore, one finds the statement:

$$
\operatorname{Ext}(X)=\operatorname{Hom}\left(\pi^{1}(X), Z\right)
$$

A good question to ask is what happens if we create an interface between representatives from different classes?

A conjecture

Browsing through "Analytic K-Homology" (by Higson \& Roe), one learns about:

- essentially normal operators (ENO) and their essentially unitary equivalence
- the group $\operatorname{Ext}(X)$ of classes of ENO with X as essential spectrum and finds the statement:

$$
\operatorname{Ext}(X)=\operatorname{Hom}\left(\pi^{1}(X), Z\right)
$$

A good question to ask is what happens if we create an interface between representatives from different classes?

Figure: The conjecture is that we can selectively fill in the bubbles.

The case of self-adjoint operators is fairly well understood

In a first stage, the program consists in:
(1) Classifying the gapped Hamiltonians (under stable homotopy + possible symmetry constraints)
(2) Understanding when the topology of the essential bulk spectrum is modified when two representatives are interfaced.

The main challenge:
Produce statements that are independent of the boundary condition!!!

How can we approach such a problem?

Folding trick:
(1) Reduces the problem to that of stacked systems with a boundary.
(2) Stacking is naturally dealt with by stabilizing the algebras.

Operator algebras make their entrance

Algebra of boundary conditions \tilde{A}
Algebra of bulk observables A

When the algebras enter a short exact sequence:

$$
0 \longrightarrow \tilde{\mathcal{A}} \xrightarrow{i} \hat{\mathcal{A}} \xrightarrow{\text { ev }} \mathcal{A} \longrightarrow 0
$$

magic happens.

The engine of the bulk-boundary correspondence

The six-term exact sequence of complex K-Theory:

The connecting maps (Exp and Ind):
(1) Enable one to make connection between the bulk and boundary physical observables
(2) They involve arbitrary lifts from bulk to half-space \Rightarrow independence of boundary conditions.

The engine of the bulk-boundary correspondence

This general principle was discovered in:

Kellendonk, Richter, Schulz-Baldes
Edge current channels and Chern numbers in the integer quantum Hall effect Rev. Math. Phys. 14, 87-119 (2002)

This work:

- Established the bulk-boundary principle for Integer Quantum Hall Effect.
- The setting is generic: irrational magnetic flux values + disorder
- It continues to serve as a model for all rigorous work on bulk-boundary principle.

Let's see it at work!

Non-commutative Tori + 'Disorder' [encoded in $\tau: \mathbb{Z}^{d} \rightarrow \operatorname{Homeo}(\Omega)$]

Universal algebra $\mathcal{A}_{\Phi}=C^{*}\left(C_{N}(\Omega), u_{1}, \ldots, u_{d}\right)$:

$$
u_{i} u_{j}=e^{\imath \phi_{i j}} u_{j} u_{i}, \quad \phi_{i j} \in \mathbb{T}^{1}, \quad f u_{j}=u_{j}\left(f \circ \tau_{j}\right)
$$

generic element $->\sum_{q \in \mathbb{Z}^{d}} u_{q} a_{q}, \quad u_{q}=u_{1}^{q_{1}} \ldots u_{d}^{q_{d}}, \quad a_{q}: \Omega \rightarrow M_{N \times N}(\mathbb{C})$.

Conventions:

- For thermally disordered crystals, Ω is a contractible topological space
- For the synthetic crystals, Ω will have the topology of the circle or torus.
- In that case, the generators of $C(\Omega)$ will be counted as part of the u_{j} 's.

Classifying the Gap Hamiltonians

In the absence of symmetry constraints:

- Any (h, G) can be continuously deformed into $1-2 p_{G}$, with:

$$
p_{G}=\chi_{(-\infty, G]}(h) . \quad \text { (gap projector) }
$$

- Under stable homotopy, the projectors are classified by the K_{0}-theory of A_{Φ}.
- $K_{0}\left(\mathcal{A}_{\Phi}\right) \simeq \mathbb{Z}^{2^{d-1}}$ with generators $\left[e_{J}\right]_{0}, J \subseteq\{1, \ldots d\},|J|=$ even.

Given (h, G) :

$$
\left[p_{G}\right]_{0}=\bigoplus_{J}\left[e_{J}\right]_{0} \oplus \ldots\left[e_{J}\right]_{0}=\sum_{J} C_{J}\left[e_{J}\right]_{0}, \quad C_{J} \in \mathbb{Z}
$$

The class of (h, G) is fully determined by the integer coefficients C_{J}.

We can be Quantitative

Natural traces:

$$
\begin{aligned}
& \mathcal{T}_{\omega}\left(\sum u_{q} a_{q}\right)=\operatorname{tr}\left[a_{0}(\omega)\right], \quad \omega \in \Omega . \\
& \mathcal{T}\left(\sum a_{q} u_{q}\right)=\int_{\Omega} \operatorname{dP}(\omega) \operatorname{tr}\left[a_{0}(\omega)\right] .
\end{aligned}
$$

The values of traces on the generators is known:

$$
\mathcal{T}\left(e_{J}\right)=\operatorname{Pfaff}\left(\Phi_{J}\right)
$$

hence:

$$
\mathcal{T}\left(p_{G}\right)=\sum_{|J|=\text { even }} C_{J} \operatorname{Pfaff}\left(\Phi_{J}\right), \quad C_{J} \in \mathbb{Z}
$$

In practice:
$\mathcal{T}\left(p_{G}\right)=\lim _{\text {Vol } \rightarrow \infty} \frac{\# \text { of eigenvalues below } \mathrm{G}}{\text { Volume of the sample }}$

Canonical Representation

GNS-representations π_{ω} induced by \mathcal{T}_{ω} are:

$$
u_{q} \mapsto S_{q}|x\rangle=e^{\imath\left\langle q, \Phi_{x}\right\rangle}|x+q\rangle, \quad f \mapsto \sum_{n \in \mathbb{Z}^{d}}|n\rangle\langle n| \otimes f\left(\tau_{n} \omega\right)
$$

They supply all disordered physical models over $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{N}$:

$$
\mathcal{A}_{\Phi} \ni h=\sum_{q \in \mathbb{Z}^{d}} u_{q} w_{q} \mapsto H_{\omega}=\sum_{q, n \in \mathbb{Z}^{d}} S_{q}|n\rangle\langle n| \otimes w_{q}\left(\tau_{n} \omega\right) .
$$

Dynamics of electrons hopping on a 2 d -lattice in a magnetic field:

One Abstract Algebra

Many Representations/Manifestations

Physical Model X

Physical System $2\left(h \in C\left(\mathbb{T}^{1}\right) \rtimes_{\tau} \mathbb{Z} \simeq \mathcal{A}_{\Phi_{2}}\right)$

Center for Topological Dynamics NJIT / Yeshiva University

$$
h=\sum_{q} u_{q} e^{-\left|x_{\tau q} \omega-x_{\omega}+q l_{0}\right|}
$$

$$
H=\sum_{n, m} e^{-\left|x_{n}-x_{m}\right|}|n\rangle\langle m|
$$

For any gap projection p_{G} :

$$
\mathcal{T}\left(p_{G}\right) \in\{n+m \theta, n, m \in \mathbb{Z}\} \cap[0,1] .
$$

Physical System 3

Place identical resonators at each point and let them interact pair-wise

Physical System 3

Physical System $4\left((\Delta-\lambda)^{-1} \in \mathbb{K} \otimes C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z} \simeq \mathbb{K} \otimes \mathcal{A}_{\Phi_{3}}\right)$

Physical System 5

For any gap projection p_{G} :

$$
\mathcal{T}\left(p_{G}\right) \in\left\{n+\frac{m \theta}{1+\theta}, n, m \in \mathbb{Z}\right\} \cap[0, N] \cap[0,1]
$$

Physical System $6\left(h \in C\left(\mathbb{T}^{2}\right) \rtimes \mathbb{Z}^{2} \simeq \mathcal{A}_{\Phi_{4}}\right)$

For any gap projection p_{G} :

$$
\mathcal{T}\left(p_{G}\right) \in\left\{n+m \theta_{1}+k \theta_{2}+I \theta_{1} \theta_{2}, n, m, k, l \in \mathbb{Z}\right\} \cap[0,1]
$$

$$
\begin{aligned}
\boldsymbol{p}_{n}=\boldsymbol{n} & +r\left(\sin \left(n_{1} \theta_{1}+\omega_{1}\right)-\sin \left(\omega_{1}\right)\right) \boldsymbol{e}_{1} \\
& +r\left(\sin \left(n_{2} \theta_{2}+\omega_{2}\right)-\sin \left(\omega_{2}\right)\right) \boldsymbol{e}_{2}
\end{aligned}
$$

30	
	\#: :\% :\% : \%: \% : : : \%
25	
20	: : : : : : \% : : : : : \% :
15	: : : : : :: : : : : : \% : : : : : : :
	\#. \because. \because :
	: : : : : : : \% : : : : :
10	
	: : : : : : : \% : : : : \% : : :
5	
	1
	$\begin{array}{lllllll}0 & 5 & 10 & 15 & 20 & 25 & 30\end{array}$

Half-Space Algebra via Toeplitz Extension

Universal C^{*}-algebra $\widehat{\mathcal{A}}_{\Phi}=C^{*}\left(C_{N}(\Omega), \hat{u}_{1}, \ldots, \hat{u}_{d}\right)$ with same relations except for:

$$
\hat{u}_{1}^{*} \hat{u}_{1}=1, \quad \hat{u}_{1} \hat{u}_{1}^{*}=1-\hat{e} \quad(\hat{e}=\text { projection })
$$

Generic element:

$$
\hat{a}=\sum_{n, m \in \mathbb{N}} \hat{u}_{1}^{n}\left(\hat{u}_{1}^{*}\right)^{m} \hat{a}_{n m}, \quad \hat{a}_{n m} \in \mathcal{A}_{\tilde{\Phi}} \quad \tilde{\Phi}=\Phi_{d-1}
$$

Canonical representations $\hat{\pi}_{\omega}$:

$$
f \mapsto \sum_{n \in \mathbb{N} \times \mathbb{Z}^{d-1}}|n\rangle\langle n| \otimes f\left(\tau_{n} \omega\right), \quad \hat{u}_{q} \mapsto \Pi S_{q} \Pi^{*}, \quad \Pi: \mathbb{Z}^{d} \rightarrow \mathbb{N} \times \mathbb{Z}^{d-1},
$$

supply all homogeneous physical models with a boundary. Note that:

$$
\hat{\pi}_{\omega}(\hat{e})=\sum_{n \in\{0\} \times \mathbb{Z}^{d-1}}|n\rangle\langle n| .
$$

The exact sequence

The principal ideal generated by \hat{e}

$$
\tilde{\mathcal{A}}_{\tilde{\Phi}}=\widehat{\mathcal{A}}_{\Phi} \hat{e} \widehat{\mathcal{A}}_{\Phi} \simeq \mathbb{K} \otimes \mathcal{A}_{\tilde{\Phi}}
$$

serves as the algebra of the boundary observables and

$$
0 \longrightarrow \tilde{\mathcal{A}}_{\tilde{\Phi}} \xrightarrow{i} \widehat{\mathcal{A}}_{\Phi} \underset{i^{\prime}}{\stackrel{\mathrm{ev}}{\longrightarrow}} \mathcal{A}_{\Phi} \longrightarrow 0
$$

The exact sequence between the linear spaces is split, hence:

$$
\widehat{\mathcal{A}}_{\Phi} \ni \hat{a}=i^{\prime}(a)+\tilde{a}, \quad \text { with unique pair } a \in \mathcal{A}_{\Phi}, \tilde{a} \in \widetilde{\mathcal{A}}_{\tilde{\Phi}} .
$$

Furthermore:

$$
\begin{gathered}
\hat{\pi}_{\omega}\left(i^{\prime}(a)\right)=\Pi \pi_{\omega}(a) \Pi \quad(\text { Dirichlet boundary condition }) \\
\hat{\pi}(\tilde{a})=\text { boundary condition }
\end{gathered}
$$

The K-Groups and Generators

- The generators of $K_{0}\left(\mathcal{A}_{\Phi}\right)$ and $K_{0}\left(\widetilde{\mathcal{A}}_{\tilde{\Phi}}\right)$ can be indexed as:

$$
\left[e_{J}\right]_{0} \text { and }\left[\tilde{e}_{J}\right]_{0}, \quad J,\{1\} \cup J^{\prime} \subseteq\{1, \ldots, d\}, \quad|J|,\left|J^{\prime}\right|=\text { even }
$$

- The generators of $K_{1}\left(\mathcal{A}_{\Phi}\right)$ and $K_{1}\left(\widetilde{\mathcal{A}}_{\tilde{\Phi}}\right)$ can be indexed as:

$$
\left[v_{J}\right]_{1} \text { and }\left[\tilde{v}_{J^{\prime}}\right]_{1}, \quad J,\{1\} \cup J^{\prime} \subseteq\{1, \ldots, d\}, \quad|J|,\left|J^{\prime}\right|=\operatorname{odd}
$$

and chosen such that:

$$
\begin{aligned}
& \operatorname{Exp}\left[e_{\{1\} \cup J}\right]_{0}=\left[\tilde{v}_{J}\right]_{1} \\
& \operatorname{Ind}\left[v_{\{1\} \cup J}\right]_{1}=\left[\tilde{e}_{J}\right]_{0}
\end{aligned}
$$

K-Theoretic Bulk-Boundary Principle Supplied by Exp Map

Consider (\hat{h}, h, G) given and let $p_{G}=\chi_{(-\infty, G]}(h)$ be the gap-projection.
Exp map in terms of this data:
Consider a continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f=0 / 1$ below/above G. Then:

$$
\operatorname{Exp}\left[p_{G}\right]_{0}=\left[e^{-2 \pi \imath f(\hat{h})}\right]_{1} \quad\left(1-f(\hat{h}) \text { supplies a lift for } p_{G}\right)
$$

The big statement: Let

$$
K_{0}\left(\mathcal{A}_{\Phi}\right) \ni\left[p_{G}\right]_{0}=\sum_{|J|=\text { even }} c_{J}\left[e_{J}\right]_{0}
$$

If any of c_{J} 's with $\{1\} \subset J$ are nonzero, then:

$$
G \subset \operatorname{Spec}(\hat{h})
$$

Proof.

- If $\operatorname{Spec}(\hat{h})$ is not the whole G, then we can concentrate the variation of f in $\rho(\hat{h})$.
- But then $e^{-2 \pi \imath f(\hat{h})}=1$ and we know this is not possible.

Example 1

Example 2

Experimental Confirmation

K-Theoretic Bulk-Boundary Principle Supplied by Ind Map

Consider (\hat{h}, h, G) and assume chiral symmetry $(N \rightarrow 2 N)$:

$$
J=\left(\begin{array}{cc}
1_{N} & 0 \\
0 & -1_{N}
\end{array}\right), \quad J(h-G) J^{-1}=-(h-G)
$$

then

$$
p_{G}=\frac{1}{2}\left(\begin{array}{cc}
1 & -u_{G}^{*} \\
-u_{G} & 1
\end{array}\right), \quad \operatorname{sgn}(h-G)=\left(\begin{array}{cc}
0 & u_{G}^{*} \\
u_{G} & 0
\end{array}\right)
$$

Ind map in terms of this data:
Consider a continuous $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g= \pm 1$ above/below G and $g-G$ odd. Then:

$$
\operatorname{Ind}\left[u_{G}\right]_{1}=\left[e^{-\imath \frac{\pi}{2} g(\hat{h})} \operatorname{diag}\left(1_{N}, 0_{N}\right) e^{\imath \frac{\pi}{2} g(\hat{h})}\right]_{0}-\left[\operatorname{diag}\left(1_{N}, 0_{N}\right)\right]_{0}
$$

Note:

$$
e^{-\imath \frac{\pi}{2} g(\hat{h})} \operatorname{diag}\left(1_{N}, 0_{N}\right) e^{\imath \frac{\pi}{2} g(\hat{h})}=\frac{1}{2} J\left(e^{\imath \pi g(\hat{h})}+1\right)+\operatorname{diag}\left(0_{N}, 1_{N}\right) .
$$

K-Theoretic Bulk-Boundary Principle Supplied by Ind Map

$$
\operatorname{Ind}\left[u_{G}\right]_{1}=\left[e^{-\imath \frac{\pi}{2} g(\hat{h})} \operatorname{diag}\left(1_{N}, 0_{N}\right) e^{\imath \frac{\pi}{2} g(\hat{h})}\right]_{0}-\left[\operatorname{diag}\left(1_{N}, 0_{N}\right)\right]_{0}
$$

Note:

$$
e^{-\imath \frac{\pi}{2} g(\hat{h})} \operatorname{diag}\left(1_{N}, 0_{N}\right) e^{\imath \frac{\pi}{2} g(\hat{h})}=\frac{1}{2} J\left(e^{\imath \pi g(\hat{h})}+1\right)+\operatorname{diag}\left(0_{N}, 1_{N}\right) .
$$

The big statement:

$$
K_{1}\left(\mathcal{A}_{\Phi}\right) \ni\left[u_{G}\right]_{1}=\sum_{|J|=\mathrm{odd}} c_{J}\left[v_{J}\right]_{1}
$$

If any of c_{J} 's with $J \cap\{1\}$ are nonzero, then:
$\{G\} \subset \operatorname{Spec}(\hat{h}) \quad$ (mid-gap point belongs to the spectrum)

Proof.

- If $\{G\}$ is not inside $\operatorname{Spec}(\hat{h})$, then we can concentrate the variation of g in this missing interval.
- But then $\frac{1}{2} J\left(e^{\imath \pi g(\hat{h})}+1\right)=0$ and we know this is not possible.

Other Active Directions

Group C*-algebras and crossed products by Heisenberg group

Moire patterns

Group C*-algebras and crossed products by Fucshian groups

Fractal patterns

Graph Algebras

Grupoid Algebras

A Word About Quasi-Crystals

Quasi-Crystal

$(0,0)$

