Von Neumann Algebras meet Quantum Information Theory

> Magdalena Musat University of Copenhagen

Operator algebras in the Twenty-First Century Richard V. Kadison Memorial conference

> University of Pennsylvania Philadelphia, March 31, 2019

Definition (Delaroche '05): Let $n \ge 2$. A unital quantum channel $T : \mathbb{M}_n \to \mathbb{M}_n$ is called factorizable if $\exists vN$ algebra N with normal faithful tracial state τ_N and unital *-homomorphisms (embeddings) $\alpha, \beta : \mathbb{M}_n \to \mathbb{M}_n \otimes N$ s.t. $T = \beta^* \circ \alpha$.

We say T exactly factors through $\mathbb{M}_n \otimes N$, and N is the ancilla.

Note: *N* can be taken a II_1 -vN alg (even a II_1 -factor).

Theorem (Haagerup-M '11): *T* is factorizable iff \exists vN algebra *N* with n.f. tracial state τ_N and $u \in \mathcal{U}(\mathbb{M}_n \otimes N)$ s.t.

 $Tx = (\mathrm{id}_{\mathbb{M}_n} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in \mathbb{M}_n.$

Theorem (Haagerup-M '11): T is factorizable iff $\exists vN$ algebra N with n.f. tracial state τ_N and $u \in \mathcal{U}(\mathbb{M}_n \otimes N)$ s.t.

 $Tx = (\mathrm{id}_{\mathbb{M}_n} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in \mathbb{M}_n.$

Example: $T \in Aut(\mathbb{M}_n)$ exactly factors through $\mathbb{M}_n \otimes \mathbb{C}$.

The set $\mathcal{FM}(n)$ of factorizable unital quantum channels in dim n is convex and closed, and

 $\operatorname{conv}(\operatorname{Aut}(\mathbb{M}_n)) \subsetneq \mathcal{FM}(n), \quad \forall n \geq 3.$

▶ $T \in \text{conv}(\text{Aut}(\mathbb{M}_n))$ iff T admits a finite dim abelian ancilla.

▶ Warning: The ancilla and its size are not uniquely determined! E.g., if S_n is the completely depolarizing channel in dim $n \ge 2$,

$$S_n(x) = \operatorname{tr}_n(x) \mathbb{1}_n, \quad x \in \mathbb{M}_n,$$

then both \mathbb{C}^{n^2} and \mathbb{M}_n are possible ancillas. Turns out that S_n also exactly factors through $(\mathbb{M}_n, \operatorname{tr}_n) * (\mathbb{M}_n, \operatorname{tr}_n)$!

Question (Delaroche): Are all quantum channels factorizable?

Proposition (Haagerup-M '11): Let $T : \mathbb{M}_n \to \mathbb{M}_n$ be a unital quantum channel $(n \ge 3)$, with Choi canonical form

$$Tx = \sum_{i=1}^n a_i^* x a_i, \quad x \in \mathbb{M}_n.$$

If $d \ge 2$ and $\{a_i^*a_j : 1 \le i, j \le d\}$ lin indep, then \mathcal{T} not factoriz.

Example: With
$$a_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $a_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$,
 $a_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ got first example of non-factorizable map.

(Holevo-Werner channel W_3^-)

(Haagerup-M '11): Non-factorizable maps are counterexamples to the Asymptotic Quantum Birkhoff Conjecture.

Question: Do we need vN algebras to describe factorizable maps?

Connections to the *Connes Embedding Problem* (CEP) whether every II₁-factor (on a sep Hilbert space) embeds in an ultrapower \mathcal{R}^{ω} of the hyperfinite II₁-factor \mathcal{R} .

Let $\mathcal{FM}_{matrix}(n)$ and $\mathcal{FM}_{fin}(n)$ be the factorizable maps in dim $n \ge 3$ that admit a full matrix algebra as an ancilla, respectively, admit a finite dimensional C^* -algebra as an ancilla.

Theorem (Haagerup-M '15): TFAE

• CEP has a positive answer.

3
$$\forall n \geq 3 \ \forall T \in \mathcal{FM}(n) \ \exists (T_k)_{k \geq 1} \subset \mathcal{FM}_{\text{matrix}}(n) \ \text{s.t.}$$

 $\lim_{k \to \infty} \|T - T_k\|_{cb} = 0.$

(**M** '18): $\mathcal{FM}_{fin}(n) = \operatorname{conv}(\mathcal{FM}_{matrix}(n))$, and $\mathcal{FM}_{matrix}(n)$ is non-convex and non-closed, whenever $n \geq 3$.

Theorem (M-Rørdam '18): $\mathcal{FM}_{fin}(n)$ is not closed, $\forall n \ge 11$. Moreover, in each such dimens, there exist factorizable quantum channels that do require a type II₁ vN algebra as an ancilla.

The proof is based on analysis of sets of matrices of correlations arising from unitaries/projections in vN algebras (resp., finite dim C*-algebras), and their closure properties.

$$\begin{aligned} \mathcal{F}_{\mathrm{matr}}(n) &= \bigcup_{k \geq 1} \Big\{ \big[\mathrm{tr}_k(u_j^* u_i) \big] : u_1, \dots, u_n \text{ unitaries in } \mathbb{M}_k \Big\}, \\ \mathcal{F}_{\mathrm{fin}}(n) &= \Big\{ \big[\tau(u_j^* u_i) \big] : u_1, \dots, u_n \text{ unitaries in arbitrary} \\ & \text{finite dim } \mathbb{C}^* \text{-alg } (\mathcal{A}, \tau) \Big\}, \\ \mathcal{G}(n) &= \Big\{ \big[\tau(u_j^* u_i) \big] : u_1, \dots, u_n \text{ unitaries in arbitrary finite} \\ & \text{vN alg } (M, \tau) \Big\}. \end{aligned}$$

Note: $\mathcal{F}_{matr}(n) \subseteq \mathcal{F}_{fin}(n) \subseteq \mathcal{G}(n)$. (All sets equal if n = 2.)

(Kirchberg '93): CEP positive iff $\mathcal{G}(n) = cl(\mathcal{F}_{matr}(n)), \forall n \geq 3$.

(M-Rørdam '18): $\mathcal{F}_{matr}(n)$ is neither convex, nor closed $\forall n \geq 3$. Also, $\mathcal{F}_{fin}(n)$ is not closed, $\forall n \geq 11$.

▶ (Haagerup-M '11): If $B \in \mathbb{M}_n$ is a *correlation* matrix, then its associated Schur multiplier T_B is factorizable iff $B \in \mathcal{G}(n)$. Furthermore, $T_B \in \mathcal{FM}_{fin}(n)$ iff $B \in \mathcal{F}_{fin}(n)$. For $n \ge 2$, consider now the following sets of $n \times n$ matrices of correlations arising from projections:

$$\begin{aligned} \mathcal{D}(n) &= \left\{ \left[\tau(p_j p_i) \right] : p_1, \dots, p_n \text{ projections in arbitrary } (M, \tau) \\ & \text{finite vN alg} \right\}, \\ \mathcal{D}_{\text{fin}}(n) &= \left\{ \left[\tau(p_j p_i) \right] : p_1, \dots, p_n \text{ projections in arbitrary } (\mathcal{A}, \tau) \\ & \text{finite dim C*-alg} \right\}. \end{aligned}$$

▶ For $n \ge 2$, $\mathcal{D}(n)$ is closed and convex, and $\mathcal{D}_{\text{fin}}(n)$ is convex. Also, $\mathcal{D}_{\text{fin}}(2)=\mathcal{D}(2)$. Not known if $\mathcal{D}_{\text{fin}}(3)$, $\mathcal{D}_{\text{fin}}(4)$ are closed. **Note**: CEP has positive answer iff $\mathcal{D}(n) = \mathsf{cl}(\mathcal{D}_{\text{fin}}(n)), \forall n \ge 3$.

Theorem (M–Rørdam '18): $\mathcal{D}_{fin}(n)$ not closed, $\forall n \geq 5$.

The proof follows ideas from **Dykema-Paulsen-Prakash '17**, but avoids graph correlation functions (and quantum games).

Projections adding up to a scalar multiple of the identity operator:

Let \sum_n be the set of $\alpha \ge 0$ for which \exists projections p_1, \ldots, p_n on a Hilbert space H such that $\sum_{i=1}^n p_i = \alpha \cdot I_H$.

▶ It is known that $\Sigma_n \subset \mathbb{Q}$, when $n \leq 4$.

Theorem (Kruglyak-Rabanovich-Samoilenko '02): Let $n \ge 5$. There exist projections p_1, \ldots, p_n on a *finite dimensional* Hilbert space H so that $\sum_{j=1}^{n} p_j = \alpha \cdot I_H$ if and only if $\alpha \in \sum_n \cap \mathbb{Q}$. Furthermore,

$$\left[\frac{1}{2}(n-\sqrt{n^2-4n}),\frac{1}{2}(n+\sqrt{n^2-4n})\right]\subseteq \Sigma_n.$$

Note: The "only if" part is easy (with Tr standard trace on B(H)):

$$\sum_{j=1}^{n} p_j = \alpha \cdot I_H \implies \alpha \cdot \dim(H) = \sum_{j=1}^{n} \operatorname{Tr}(p_j).$$

For $n \ge 2$ and $1/n \le t \le 1$, consider the following $n \times n$ matrix:

$$A_t^{(n)}(i,j) = \begin{cases} t, & i = j, \\ \frac{t(nt-1)}{n-1}, & i \neq j. \end{cases}$$

Proposition: Let (\mathcal{A}, τ) be a unital C^* -alg with faithful tracial state τ , and $p_1, \ldots, p_n \in \mathcal{A}$ be projections. Set $\alpha = nt$. If

$$\tau(p_j p_i) = A_t^{(n)}(i,j), \qquad 1 \le i,j \le n,$$

then $\sum_{j=1}^{n} p_j = \alpha \cdot 1_{\mathcal{A}}$. Moreover, if $t \notin \mathbb{Q}$, then $\dim(\mathcal{A}) = \infty$. (Even stronger, \mathcal{A} has no finite dimens repres.)

▶ Respectively, if $\sum_{j=1}^{n} p_j = \alpha \cdot \mathbf{1}_A$, then $\exists m \ge 1$ and projections $\tilde{p}_1, \ldots, \tilde{p}_n \in M_m(\mathcal{A})$ such that

 $(au\otimes \operatorname{tr}_{\mathrm{m}})(\widetilde{
ho}_{j}\widetilde{
ho}_{i})=A_{t}^{(n)}(i,j), \qquad 1\leq i,j\leq n.$

Recall

$$A_t^{(n)}(i,j) = \begin{cases} t, & i = j, \\ \frac{t(nt-1)}{n-1}, & i \neq j. \end{cases}$$

Combining the previous proposition with the theorem of Kruglyak, Rabanovich and Samoilenko, we get

Theorem: Let $n \ge 5$, $t \in [\frac{1}{2}(1 - \sqrt{1 - 4/n}), \frac{1}{2}(1 + \sqrt{1 - 4/n})].$ If $t \in \mathbb{Q}$, then $A_t^{(n)} \in \mathcal{D}_{\text{fin}}(n)$. If $t \notin \mathbb{Q}$, then $A_t^{(n)} \in \text{cl}(\mathcal{D}_{\text{fin}}(n)) \setminus \mathcal{D}_{\text{fin}}(n)$. In particular, $\mathcal{D}_{\text{fin}}(n)$ is non-closed, when $n \ge 5$.

Note: If $t \in \frac{1}{n} \Sigma_n \setminus \mathbb{Q}$, and p_1, \ldots, p_n proj in a finite vN alg (N, τ_N) s.t. $\tau(p_j p_i) = A_t^{(n)}(i, j), 1 \le i, j \le n$, then N must be of type II₁.

Theorem (M-Rørdam): $\mathcal{D}_{fin}(n)$ is not closed, for all $n \geq 5$.

Using a trick originating in ideas of $\ensuremath{\textbf{Regev-Slofstra-Vidick}},$ we can prove that

 $\mathcal{D}_{\text{fin}}(n)$ not closed $\Longrightarrow \mathcal{F}_{\text{fin}}(2n+1)$ not closed.

We conclude that $\mathcal{F}_{fin}(n)$ is not closed, $\forall n \geq 11$.

The trick (originating in ideas of **Regev-Slofstra-Vidick**): Let $p_1, \ldots, p_n \in M$ be projections in a finite vN alg M with n.f. tracial state τ_M . Define unitaries $u_0, u_1, \ldots, u_{2n} \in M$ by $u_0 = 1$ and

$$u_j = 2p_j - 1, \ 1 \le j \le n, \quad u_j = \frac{1}{\sqrt{2}}(u_{j-n} + i \cdot 1), \ n+1 \le j \le 2n.$$

Let (N, τ_N) be another finite vN alg with n.f. tracial state. Then \exists unitaries $v_0, v_1, \ldots, v_{2n} \in N$ satisfying

$$\tau_{\mathcal{N}}(\mathbf{v}_{j}^{*}\mathbf{v}_{i}) = \tau_{\mathcal{M}}(u_{j}^{*}u_{i}), \qquad 0 \leq i, j \leq 2n, \qquad (*)$$

iff \exists projections $q_1, \ldots, q_n \in N$ satisfying

$$\tau_{\mathcal{N}}(q_j q_i) = \tau_{\mathcal{M}}(p_j p_i), \qquad 1 \le i, j \le n. \tag{**}$$