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Definition (Delaroche ‘05): Let n > 2. A unital quantum
channel T : M, — M, is called factorizable if 3 viN algebra N
with normal faithful tracial state Ty and unital x-homomorphisms
(embeddings) o, B: M, - M, ® N s.t. T = *oa.
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We say T exactly factors through M, ® N, and N is the ancilla.
Note: N can be taken a Il;-vN alg (even a ll;-factor).

Theorem (Haagerup-M ‘11): T is factorizable iff 3 vN algebra
N with n.f. tracial state 7y and v € U(M, ® N) s.t.

Tx = (idw, ® Ta) (0" (x ® In)u), x € M.



Theorem (Haagerup-M ‘11): T is factorizable iff 3 vN algebra
N with n.f. tracial state 7y and u € U(M, ® N) s.t.

Tx = (idm, @ Tn)(u*(x ® In)u), x € M,

Example: T € Aut(M,) exactly factors through M, ® C.

The set F M(n) of factorizable unital quantum channels in dim n
is convex and closed, and

conv(Aut(M,)) € FM(n), Vn>3.
» T € conv(Aut(M,)) iff T admits a finite dim abelian ancilla.

» Warning: The ancilla and its size are not uniquely determined!
g., if S, is the completely depolarizing channel in dim n > 2,

Sn(x) = tra(x)1,, x € M,

then both C" and M, are possible ancillas. Turns out that S, also
exactly factors through (M, tr,) * (M, tr,) !



Question (Delaroche): Are all quantum channels factorizable?

Proposition (Haagerup-M ’11): Let T : M, — M, be a unital

quantum channel (n > 3), with Choi canonical form
d

Tx = Z a;xaj, x € M.
i=1
If d >2and {a’aj : 1 <i,j < d} lin indep, then T not factoriz.

00 O 0 01
Example: Witha; =21 0 0 -1 |, a2=-1( 0 0 0
2 2
V2 01 0 V2 -1 0 0
0 -1 0
a3:% 1 0 0 | got first example of non-factorizable map.
0 0 O

(Holevo-Werner channel W;")

(Haagerup-M ‘11): Non-factorizable maps are counterexamples
to the Asymptotic Quantum Birkhoff Conjecture.



Question: Do we need vN algebras to describe factorizable maps?

Connections to the Connes Embedding Problem (CEP) whether
every ll;-factor (on a sep Hilbert space) embeds in an ultrapower
R“ of the hyperfinite Il;-factor R.

Let F Mpatrix(n) and FMgp(n) be the factorizable maps in dim
n > 3 that admit a full matrix algebra as an ancilla, respectively,
admit a finite dimensional C*-algebra as an ancilla.

Theorem (Haagerup-M ’15): TFAE
© CEP has a positive answer.
@ VYn>3VT € FM(n) 3 an ancilla (N, 7y) = (R¥, Tre).

Q@ Vn>3VT € FM(n) I(Tk)k>1 C FMmatrix(n) s.t.
IimkHoo H T — Tkch = 0.

(M “18): FMgn(n) = conv(F Mpatrix(n)), and F M patrix(n) is
non-convex and non-closed, whenever n > 3.



Theorem (M-Rgrdam ‘18): F Mg, (n) is not closed, Vn > 11.
Moreover, in each such dimens, there exist factorizable quantum
channels that do require a type ll; vN algebra as an ancilla.

The proof is based on analysis of sets of matrices of correlations
arising from unitaries/projections in vN algebras (resp., finite dim
C*-algebras), and their closure properties.



Fmatr(n) = U {[trk(ufu,-)] i u1,...,U,unitaries in I\\/Jlk},
k>1

*

Fen(n) = {[T(uj ui)] : u1, ..., up unitaries in arbitrary
finite dim C*-alg (A,T)},

[T(ufu,-)] > u1,...,U, unitaries in arbitrary finit
vN alg (M,Tﬁ.

Note: Fratr(n) C Fan(n) € G(n). (All sets equal if n =2.)
(Kirchberg ‘93): CEP positive iff G(n) = cl(Fmatr(n)), Vn > 3.

(M-Rgrdam ‘18): Fiatr(n) is neither convex, nor closed Vn > 3.
Also, Fgn(n) is not closed, Vn > 11.

» (Haagerup-M ‘11): If B € M, is a correlation matrix, then its
associated Schur multiplier Tg is factorizable iff B € G(n).
Furthermore, Tg € FMgn(n) iff B € Fan(n).



For n > 2, consider now the following sets of n X n matrices of
correlations arising from projections:

D(n) = {[T(pjp,-)} . P1,-- ., Pn Projections in arbitrary (M, 1)
finite vN alg},
Dsn(n) = {[T(pjp,-)} . P1,- - -, Pn Projections in arbitrary (A, 1)

finite dim c*_a|g}.

» For n > 2, D(n) is closed and convex, and Dg,(n) is convex.
Also, D5, (2)=D(2). Not known if Dg(3), Dgn(4) are closed.

Note: CEP has positive answer iff D(n) = cl(Dg,(n)), Vn > 3.
Theorem (M-Rgrdam ‘18): Dg,(n) not closed, ¥n > 5.

The proof follows ideas from Dykema-Paulsen-Prakash ‘17, but
avoids graph correlation functions (and quantum games).



Projections adding up to a scalar multiple of the identity operator:

Let >, be the set of @ > 0 for which 3 projections py,...,p, on a
Hilbert space H such that 3 7, pj = - In.

» It is known that X, C Q, when n < 4.

Theorem (Kruglyak-Rabanovich-Samoilenko ‘02): Let n > 5.
There exist projections p1, ..., pp on a finite dimensional Hilbert
space H so that Z};l pj=ca-lyifandonlyifa € X,NQ.
Furthermore,

[1(n— Vi —an), L

> 2(n—l— n2—4n)} Cx,.

Note: The “onIy if” part is easy (with Tr standard trace on B(H)):

ijfa Iy = o-dim(H ZTer
j=1



For n>2and 1/n < t <1, consider the following n x n matrix:

. o
AN, ) =< t(nt—1) I J
fot =)y
n—1

Proposition: Let (A, 7) be a unital C*-alg with faithful tracial
state 7, and p1,...,pn € A be projections. Set o = nt.
> If

r(pp) = A"(ij), 1<ij<n,

then 377 ) pj = a - 14. Moreover, if t ¢ Q, then dim(A) = oc.
(Even stronger, A has no finite dimens repres.)

» Respectively, if Z}’Zl pj = « - 14, then 3m > 1 and projections
P1s- -y Pn € Mn(A) such that

(r @ tr)(Bipi) = A7 j),  1<ij<n.



Recall
(n) t, =],

AL ) =< tnt—1) . .

f tt=1) 5

n—1

Combining the previous proposition with the theorem of Kruglyak,
Rabanovich and Samoilenko, we get

Theorem: Let n > 5, t € [3(1—\/1—4/n),3(1 + /1—4/n)].
> If t € Q, then A" € Dy, (n).
> If t ¢ Q, then A" € cl(Dgn(n)) \ Dan(n).

In particular, Dgy(n) is non-closed, when n > 5.

Note: If t € %Z,,\Q, and p1, ..., pn proj in a finite vN alg (N, 7n)
st. 7(pjpi) = A"(i,j), 1< i,j < n, then N must be of type Il;.



Theorem (M-Rgrdam): Dy, (n) is not closed, for all n > 5.

Using a trick originating in ideas of Regev-Slofstra-Vidick, we
can prove that

Dgn(n) not closed = Fxn(2n + 1) not closed.

We conclude that Fsy(n) is not closed, ¥n > 11.



The trick (originating in ideas of Regev-Slofstra-Vidick):
Let p1,...,pn € M be projections in a finite vN alg M with n.f.
tracial state 7ps. Define unitaries ug, u1, ... U2, € M by up = 1 and

1
up=2p—1,1<j<n, uj=—(u_p+i-1),n+1<j<2n.

V2

Let (N, 7n) be another finite vN alg with n.f. tracial state. Then 3
unitaries vp, v1, ..., v, € N satisfying

7_N(\/_;k‘/l'):7_1\/’(1']_;'kul')7 Oélv.jéznv (*)
iff 3 projections qi,...,q, € N satisfying

™w(q;ai) = Tm(pjpi), 1<ij<n. ()



