C*-Algebras and Tempered Representations

Nigel Higson

Department of Mathematics Pennsylvania State University

University of Pennsylvania March 31, 2019

▲□▶▲□▶▲□▶▲□▶ ▲□▼

PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY

HELD AT QUEENS UNIVERSITY KINGSTON, ONTARIO JULY 14-AUGUST 2, 1980

EDITED BY RICHARD V. KADISON

Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-27061

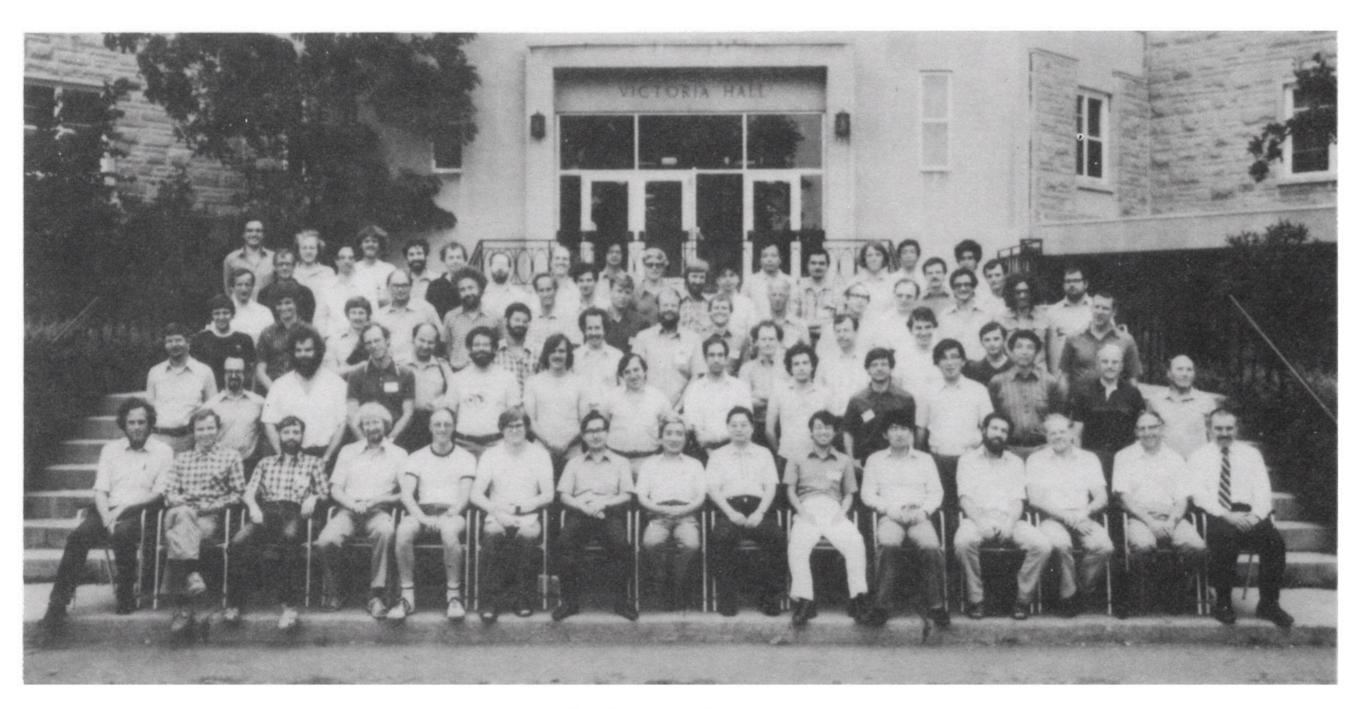
Library of Congress Cataloging in Publication Data

Symposium in Pure Mathematics (1980: Queens University, Kingston, Ont.) Operator algebras and applications. (Proceedings of symposia in pure mathematics; v. 38) Includes bibliographies and index.
1. Operator algebras-Congresses. I. Kadison, Richard V., 1925-

AUTHOR INDEX

	Part	Page
AKEMANN, CHARLES A. (joint work with WALTER, MARTIN E.). Un-		c
bounded negative definite functions and property T for locally		
compact groups	2	625
ARAKI, HUZIHIRO. Positive cones for von Neumann algebras	2	5
ARCHBOLD, R. J. On maximal abelian subalgebras of C^* -algebras	1	409
ARVESON, WILLIAM. The harmonic analysis of automorphism groups	1	199
BATTY, C. J. K. Derivations of abelian C*-algebras	2	333
BAUM, PAUL AND DOUGLAS, RONALD G. K homology and index		
theory	1	117
BEHNCKE, HORST. C^* -algebras with a countable dual	2	593
BELLISSARD, J. AND IOCHUM, B. Order structure and Jordan Banach		
algebras	2	297
BELLISSARD, J. AND TESTARD, D. Quasi-periodic Hamiltonians. A math	1-	
ematical approach	2	579
BRATTELI, OLA. Fixedpoint algebras versus crossed products	1	357
Phase transitions	2	499
BRATTELI, OLA AND JØRGENSEN, PALLE E. T. Unbounded *-deriva-		
tions and infinitesimal generators on operator algebras	2	353
BROWN, LAWRENCE G. Extensions of AF algebras: the projection lifting		
problem	1	175
BUCHHOLZ, DETLEV AND FREDENHAGEN, KLAUS. Local nets of C^* -		
algebras and the structure of elementary particles	2	567
BUNCE, JOHN W. Stone-Weierstrass theorems for separable C^* -algebras	1	401

automorphisms of von Neumann algebras	2	145
TAKAI, HIROSHI. Duality for C^* -crossed products and its applications	1	369
——————————————————————————————————————	2	343
Такемото, Hideo. On the extensions of C^* -algebras relative to factors of type II_{∞}	2	597
TAKESAKI, MASAMICHI. Automorphisms and von Neumann algebras of type III	2	111
TESTARD, D. See BELLISSARD, J. AND TESTARD, D.		
UPMEIER, HARALD. Derivations and automorphisms of Jordan C^* -alge-		
bras	2	291
VAN DAELE, ALFONS. Celebration of Tomita's theorem	1	2
VERBEURE, A. Nature of Bose condensation	2	503
WALTER, MARTIN E. Semiderivations on group C^{\uparrow} -algebras	2	367
See Akemann, Charles A. (joint work with Walter, Martin E.).		
WASSERMANN, SIMON. Representations of inseparable C^* -algebras	2	591
WATATANI, YASUO. A graph theory for C^* -algebras	1	195
WOODS, E. J. ITPFI factors-a survey	2	25
WRIGHT, J. D. MAITLAND. See SULLIVAN, DENNIS AND WRIGHT, J. D. MAITLAND.	2	367
ZSIDÓ, LÁSZLÓ. The characterization of the analytic generator of *-automorphism groups	2	381
(report on joint work with ELLIOTT, GEORGE A.) Almost uniformly continuous dynamical systems	2	385



Speakers and Organizers

Introduction

I'm going to be talking about the tempered representation theory of real reductive groups, more or less as in Harish-Chandra's work. This was never far from the attention of Dick and the operator algebras group at Penn.

I want to show how C^* -algebra techniques can help clarify some basic principles in the theory, especially those related to the dichotomy between discrete series and continuous series of representations.

I also want to indicate one feature of tempered representation theory (not the only one!) that is a bit of a puzzle from the C^* -point of view.

Harish-Chandra and Unitary Representation Theory

Recall Plancherel's formula: if *f* is a test function on the line, and if

$$\widehat{f}(s) = \int_{-\infty}^{\infty} f(x) e^{-isx} dx,$$

then

$$f(0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\widehat{f}(s)\,ds.$$

In the 1950's, Segal proved a version of this for (suitable) locally compact groups:

$$f(e) = \int_{\widehat{G}} \operatorname{Trace}(\pi(f)) d\mu(\pi)$$

Here \widehat{G} is the unitary dual of G, and μ is the Plancherel measure for G.

SOME REMARKS ON REPRESENTATIONS OF CONNECTED GROUPS

BY RICHARD V. KADISON* AND I. M. SINGER

INSTITUTE FOR ADVANCED STUDY AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Communicated by John von Neumann, March 19, 1952

1. Introduction.-The purpose of this note is to bring to light a fact which has escaped notice, viz., in the direct integral reduction of the regular representation of a connected separable¹ locally compact group, factors of Type II1 occur almost nowhere2 (cf. Corollary 3). This proof is carried out by the following scheme of argument. We show first that a connected locally compact group which has sufficiently many unitary representations which generate rings of finite type is the group direct product of a compact group and an abelian group³ (cf. Theorem 1). From this it follows quite easily that a unitary representation of a connected locally compact group generates a ring of operators which has no summand of Type II1 (cf. Theorem 1) and, in particular, is not itself a factor of Type II₁. Employing a theorem of Mautner,4 to the effect that, for almost every factor in the direct integral reduction of the regular representation of a group, there exists a strongly continuous representation of the group which generates the factor, we obtain the final result.

A THEORY OF SPHERICAL FUNCTIONS. I

ROGER GODEMENT

THEOREM 2. Let G be a semi-simple connected Lie group with a faithful representation and let K be a maximal compact subgroup of G; then every irreducible representation \mathfrak{d} of K is contained at most dim (\mathfrak{d}) times in every completely irreducible representation of G. Harish-Chandra made the Plancherel formula completely explicit for real reductive groups.

For instance, when $G = SL(2, \mathbb{R})$, Harish-Chandra's formula is

$$f(e) = \sum_{n \neq 0} \operatorname{Trace}(\pi_n(f)) \cdot |n| + \frac{1}{2} \int_0^\infty \operatorname{Trace}(\pi_s^{even}(f)) \cdot s \tanh(\pi s/2) \, ds + \frac{1}{2} \int_0^\infty \operatorname{Trace}(\pi_s^{odd}(f)) \cdot s \coth(\pi s/2) \, ds.$$

(Actually this special case was obtained earlier, by Bargmann.)

Primer on Reductive Groups

Definition A *real reductive group* is a closed, (almost) connected subgroup of some $GL(n, \mathbb{R})$ with the property that

 $g \in G \quad \Leftrightarrow \quad g^{\text{transpose}} \in G.$

Examples $SL(n, \mathbb{R}), SO(p, q), Sp(2n, \mathbb{R}),$ etc.

Notation

- $K = O(n) \cap G = \max$. compact subgroup
- $A = \max$. commuting group of positive-definite elts in G

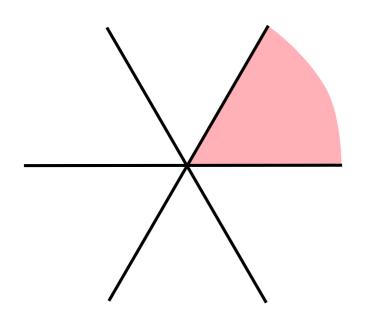
Theorem G = KAK.

Some Examples

If $G = SL(n, \mathbb{R})$, then

$$K = SO(n)$$

A = positive diagonal matrices



It is often important to divide up *A* into smaller parts—chambers and the walls between them. When $G = SL(3, \mathbb{R})$ there are 6 of them. For instance the shaded area is

$$A_{+} = \{ diag(a, b, c) : a > b > c \}$$

One has

$$G = K \cdot \overline{A_+} \cdot K.$$

Definition

The group C^* -algebra $C^*(G)$ is the (universal) completion of the convolution algebra of test functions on G into a C^* -algebra.

Theorem

Each unitary representation π of G integrates to a C*-algebra representation:

 $\pi(f) = \int_G f(g)\pi(g)\,dg$

Moreover all representations of $C^*(G)$ (as bounded operators on Hilbert spaces) come this way.

Tempered Representations

For the most part Harish-Chandra studied only tempered representations, and so shall we:

Definition

The *reduced group* C^* -*algebra* $C^*_r(G)$ is the image of $C^*(G)$ in the representation of G by left translation on $L^2(G)$.

So the reduced C^* -algebra is a quotient of $C^*(G)$.

Definition

A unitary representation of G is *tempered* if

As a representation of $C^*(G)$, it factors through $C^*_r(G)$.

- \Leftrightarrow Its matrix coefficients (functions on G) decay sufficiently rapidly at infinity.
- ↔ It decomposes into irreducible unitary representations in the support of the Plancherel measure.

Discrete Series and Continuous Series

Let's consider $G = SL(2, \mathbb{R})$ for a moment. As we saw in the Plancherel formula, there are:

discrete series π_n

and

continuous series $\pi_s^{even/odd}$

in the tempered dual.

The continuous series are built from homogeneous functions

$$h(av) = |a|^{is-1} \operatorname{sign}(a)^{\varepsilon} h(v)$$

on the plane.

The discrete series are perhaps a bit more complicated ...

Discrete Series from the C*-Algebra Perspective

... but the discrete series are easily *defined* abstractly, using C^* -algebra theory.

Definition (Standard)

A tempered irreducible representation is a *discrete series representation* if it is isolated in the tempered dual.

Definition (Interesting)

A tempered irreducible representation is a *discrete series* representation if it is associated to the ideal in $C_r^*(G)$ consisting of elements that act as compact operators on $L^2(G)^{\sigma}$ for every $\sigma \in \widehat{K}$.

Here $L^2(G)^{\sigma}$ is the σ -isotypical part of $L^2(G)$ for the right action of K on $L^2(G)$.

Each ideal in a C^* -algebra, $J \triangleleft A$, determines a open subset of the dual of A (the irreducible representations of A up to equivalence):

$\left\{ \, [\pi] : \pi |_J \neq \mathbf{0} \, \right\}$

These are all the open subsets of the dual.

Theorem

The discrete series ideal (according to the standard definition) consists precisely of elements in $C_r^*(G)$ that act as compact operators on $L^2(G)^{\sigma}$ for every $\sigma \in \widehat{K}$.

Discrete Series and Hilbert's Integral Operators

For a manifold M, the compact operators on $L^2(M)$ more or less correspond to the integral operators

$$(Th)(x) = \int_M k(x, y)h(y) dy$$

with k(x, y) smooth and compactly supported, as studied by Hilbert and Schmidt.

For a group G, the convolution operator on $L^2(G)$ associated to a test function f is

$$(f \star h)(x) = \int_G k(x, y)h(y) \, dy$$

where $k(x, y) = f(xy^{-1})$ which is not compactly supported.

So the existence of discrete series is a bit of a miracle!

Parabolic Induction, or Transfer

On to the continuous series . . . and back to the subgroup $A \subseteq G$ (of positive diagonal matrices, let's say) ...

Fix a one-parameter subgroup in A, $a(t) = \exp(tH)$, and write

$$L = \left\{ \begin{array}{ll} g \in G : a(t) \cdot g \cdot a(-t) = g \quad \forall t \end{array} \right\}$$
$$N = \left\{ \begin{array}{ll} g \in G : a(t) \cdot g \cdot a(-t) \to e, \quad t \to +\infty \end{array} \right\}$$

Example

Let
$$G = SL(2, \mathbb{R})$$
. If $a(t) = \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix}$, then
 $L = \{ \begin{bmatrix} a \\ a^{-1} \end{bmatrix} \}$ and $N = \{ \begin{bmatrix} 1 \\ b & 1 \end{bmatrix} \}$

In general, *L* normalizes *N*, and so *L* acts on the right on G/N.

Parabolic Induction, or Transfer

The test functions on the homogeneous space G/N may be completed to a C^* -bimodule (or correspondence) $C_r^*(G/N)$.

The transfer or parabolic induction functor

 $H \longmapsto C^*_r(G/N) \otimes_{C^*_r(L)} H$

takes tempered representations of L to tempered representations of G.

Definition

For *H* irreducible, these are the *continuous series* representations of *G*.

Why continuous? Since $\{a(t)\}$ is a central subgroup of *L*, any such representation can be rescaled by a character of $\{a(t)\}$.

Theorem

Every tempered irreducible representation of G is either a discrete series representation (mod center) or a summand of the transfer of a discrete series representation (mod center).

I want to explain why the theorem is true—the C^* -algebra viewpoint is very helpful here.

Geometry and Noncommutative Geometry

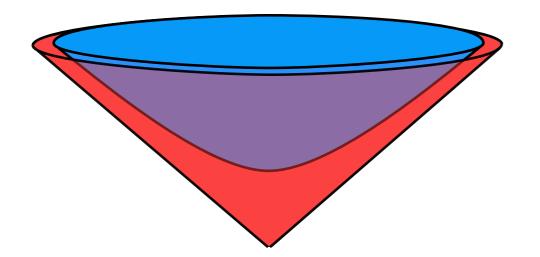
The idea is to translate the geometric or dynamic information encoded in the definition of $N \dots$

... into a Hilbert-space theoretic statement ... which will be equivalent to the theorem.

Fundamental fact:

$$a(t) \cdot K \cdot a(-t) \longrightarrow (K \cap L) \cdot N \qquad (t \to +\infty)$$

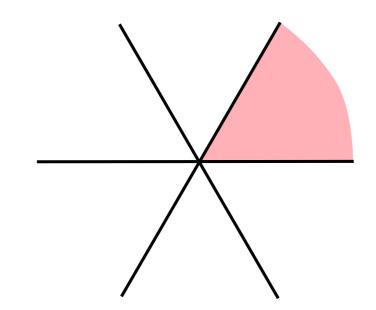
A reinterpretation: Keeping in mind that $\{a(t)\}$ normalizes *L* and *N*, $G/(L \cap K)N$ and G/K are asymptotically equivalent to one another as *G*-spaces.



The picture shows G/K (blue) and $G/(K \cap L)N$ (red) embedded in \mathfrak{g}^* as coadjoint orbits in the example where $G = SL(2, \mathbb{R})$.

Remark

To approximate G/K by some G/($K \cap L$)N towards infinity in G/K in different directions, one needs to use different {a(t)} and different L, N.

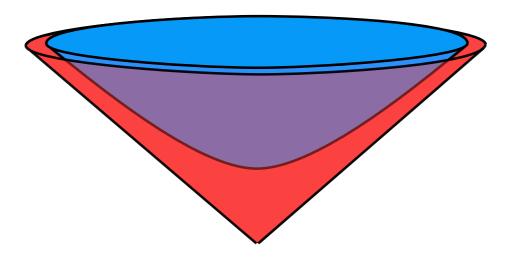


The case where $G = SL(3, \mathbb{R})$: $G = K \cdot \overline{A_+} \cdot K$.

Hilbert Space Theory

Theorem

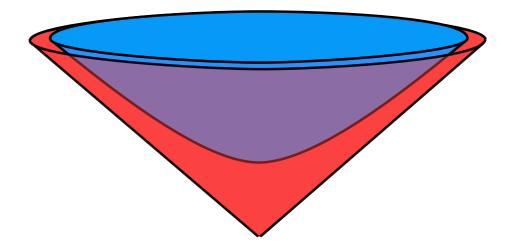
If an element of $C_r^*(G)$ acts trivially on each $L^2(G/N)$, then it acts as a compact operator on $L^2(G)^{\sigma}$ for every $\sigma \in \widehat{K}$.



Theorem

The mutual kernel of the representations of $C_r^*(G)$ on the spaces $L^2(G/N)$ is precisely the discrete series ideal in $C_r^*(G)$.

An Asymptotic Inclusion of Representations



Conjugation by $\{a(t)\}$ gives rise to a one-parameter group action

$$U_t \colon L^2(G/(K \cap L)N) \longrightarrow L^2(G/(K \cap L)N)$$

and an *asymptotic inclusion* of representations

$$V_t \colon L^2(G/(K \cap L)N) \longrightarrow L^2(G/K)$$

It is possible to extract a formula for the Plancherel meansure from this (work with Qijun Tan, following Weyl's Plancherel formula Sturm-Liouville operators)

An Adjoint C*-Bimodule

Theorem (Work with Pierre Clare and Tyrone Crisp)

- There is an adjoint Hilbert C^{*}_r(L)-C^{*}_r(G)-bimodule C^{*}_r(N\G).
- There is a natural isomorphism

$$\operatorname{Hom}_{G}(H, C_{r}^{*}(G/N) \otimes_{C_{r}^{*}(L)} K) \\ \cong \operatorname{Hom}_{L}(C_{r}^{*}(N \setminus G) \otimes_{C_{r}^{*}(G)} H, K).$$

The parabolic restriction functor

$$H \mapsto C^*_r(N \setminus G) \otimes_{C^*_r(G)} H$$

is a two-sided adjoint to parabolic induction (*c.f.* Frobenius reciprocity and Bernstein's second adjunction).

Theorem

Fix a irreducible representation σ of K. There are at most finitely many discrete series representations of G that include σ .

This is a consequence of Harish-Chandra's classification work on the discrete series. It plays an essential role in desribing the tempered dual as a (noncommutative) topological space.

Is there a geometric/noncommutative geometric proof?

There is an analogous theorem in the context of p-adic groups, due to Bernstein. It uses similar geometry to what was used earlier ... plus the fact that the Hecke convolution algebras that arise in p-adic groups are Noetherian.

An equivalent formulation:

Theorem

Fix a irreducible representation σ of K. The representation $L^2(G)^{\sigma}$ includes at most finitely many discrete series representations.

This is plausible enough: the representation $L^2(G)^{\sigma}$ "mostly looks like" a combination of the spaces $L^2(G/N)^{\sigma|_{K\cap L}}$... and there is only a compact part that does not.

But I don't know how to devise a proper argument along these lines.

Thank you