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Introduction

I’m going to be talking about the
tempered representation theory of real
reductive groups, more or less as in
Harish-Chandra’s work. This was never
far from the attention of Dick and the
operator algebras group at Penn.

I want to show how C⇤-algebra techniques can help clarify
some basic principles in the theory, especially those related to
the dichotomy between discrete series and continuous series of
representations.

I also want to indicate one feature of tempered representation
theory (not the only one!) that is a bit of a puzzle from the
C⇤-point of view.



Harish-Chandra and Unitary Representation Theory

Recall Plancherel’s formula: if f is a test function on the line,
and if

bf (s) =
Z 1

�1
f (x)e�isx dx ,

then
f (0) =

1
2⇡

Z 1

�1
bf (s) ds.

In the 1950’s, Segal proved a version of this for (suitable) locally
compact groups:

f (e) =
Z

bG
Trace

�
⇡(f )

�
dµ(⇡)

Here bG is the unitary dual of G, and µ is the Plancherel
measure for G.







Harish-Chandra and Unitary Representation Theory

Harish-Chandra made the Plancherel formula completely
explicit for real reductive groups.

For instance, when G = SL(2,R), Harish-Chandra’s formula is

f (e) =
X

n 6=0

Trace
�
⇡n(f )

�
· |n|

+
1
2

Z 1

0
Trace

�
⇡even

s (f )
�
· s tanh(⇡s/2) ds

+
1
2

Z 1

0
Trace

�
⇡odd

s (f )
�
· s coth(⇡s/2) ds.

(Actually this special case was obtained earlier, by Bargmann.)



Primer on Reductive Groups

Definition
A real reductive group is a closed, (almost) connected
subgroup of some GL(n,R) with the property that

g 2 G , gtranspose 2 G.

Examples
SL(n,R), SO(p, q), Sp(2n,R), etc.

Notation
• K = O(n) \ G = max. compact subgroup
• A = max. commuting group of positive-definite elts in G

Theorem
G = KAK .



Some Examples

If G = SL(n,R), then

K = SO(n)
A = positive diagonal matrices

It is often important to divide up A into
smaller parts—chambers and the
walls between them. When
G = SL(3,R) there are 6 of them. For
instance the shaded area is

A+ = {diag (a, b, c) : a > b > c }

One has

G = K · A+ · K .



C*-Algebras and Representations

Definition
The group C⇤-algebra C⇤

(G) is the (universal) completion of
the convolution algebra of test functions on G into a C⇤-algebra.

Theorem
Each unitary representation ⇡ of G integrates to a C⇤-algebra
representation:

⇡(f ) =
Z

G
f (g)⇡(g) dg

f Moreover all representations of C⇤
(G) (as bounded operators

on Hilbert spaces) come this way.



Tempered Representations

For the most part Harish-Chandra studied only tempered
representations, and so shall we:

Definition
The reduced group C⇤-algebra C⇤

r (G) is the image of C⇤
(G) in

the representation of G by left translation on L2
(G).

So the reduced C⇤-algebra is a quotient of C⇤
(G).

Definition
A unitary representation of G is tempered if

As a representation of C⇤
(G), it factors through C⇤

r (G).
, Its matrix coefficients (functions on G) decay sufficiently

rapidly at infinity.
, It decomposes into irreducible unitary representations in

the support of the Plancherel measure.



Discrete Series and Continuous Series

Let’s consider G = SL(2,R) for a moment. As we saw in the
Plancherel formula, there are:

discrete series ⇡n

and
continuous series ⇡even/odd

s

in the tempered dual.

The continuous series are built from homogeneous functions

h(av) = |a|is�1sign(a)"h(v)

on the plane.

The discrete series are perhaps a bit more complicated . . .



Discrete Series from the C*-Algebra Perspective

. . . but the discrete series are easily defined abstractly, using
C⇤-algebra theory.

Definition (Standard)
A tempered irreducible representation is a discrete series
representation if it is isolated in the tempered dual.

Definition (Interesting)
A tempered irreducible representation is a discrete series
representation if it is associated to the ideal in C⇤

r (G) consisting
of elements that act as compact operators on L2

(G)
� for every

� 2 bK .

Here L2
(G)

� is the �-isotypical part of L2
(G) for the right action

of K on L2
(G).



Remedial Lesson in C*-Algebra Theory

Each ideal in a C⇤-algebra, J / A, determines a open subset of
the dual of A (the irreducible representations of A up to
equivalence): �

[⇡] : ⇡|J 6= 0
 

These are all the open subsets of the dual.

Theorem
The discrete series ideal (according to the standard definition)
consists precisely of elements in C⇤

r (G) that act as compact
operators on L2

(G)
� for every � 2 bK .



Discrete Series and Hilbert’s Integral Operators

For a manifold M, the compact operators on L2
(M) more or less

correspond to the integral operators

(Th)(x) =
Z

M
k(x , y)h(y) dy

with k(x , y) smooth and compactly supported, as studied by
Hilbert and Schmidt.

For a group G, the convolution operator on L2
(G) associated to

a test function f is

(f ? h)(x) =
Z

G
k(x , y)h(y) dy

where k(x , y) = f (xy�1
) which is not compactly supported.

So the existence of discrete series is a bit of a miracle!



Parabolic Induction, or Transfer

On to the continuous series . . . and back to the subgroup A ✓ G
(of positive diagonal matrices, let’s say) ...

Fix a one-parameter subgroup in A, a(t) = exp(tH), and write

L =
�

g 2 G : a(t) · g · a(�t) = g 8t
 

N =
�

g 2 G : a(t) · g · a(�t) ! e, t ! +1
 

Example
Let G = SL(2,R). If a(t) =

h
et

e�t

i
, then

L =
� ⇥ a

a�1

⇤ 
and N =

� ⇥
1
b 1

⇤  

In general, L normalizes N, and so L acts on the right on G/N.



Parabolic Induction, or Transfer

The test functions on the homogeneous space G/N may be
completed to a C⇤-bimodule (or correspondence) C⇤

r (G/N).

The transfer or parabolic induction functor

H 7�! C⇤
r (G/N)⌦C⇤

r (L) H

takes tempered representations of L to tempered
representations of G.

Definition
For H irreducible, these are the continuous series
representations of G.

Why continuous? Since {a(t)} is a central subgroup of L, any
such representation can be rescaled by a character of {a(t)}.



Harish-Chandra/Langlands Principle

Theorem
Every tempered irreducible representation of G is either a
discrete series representation (mod center ) or a summand of
the transfer of a discrete series representation (mod center ).

I want to explain why the theorem is true—the C⇤-algebra
viewpoint is very helpful here.

Remark
Every G is a product G = Z ⇥ �G of a central vector group and
a reductive group with compact center.



Geometry and Noncommutative Geometry

The idea is to translate the geometric or dynamic information
encoded in the definition of N . . .

. . . into a Hilbert-space theoretic statement . . . which will be
equivalent to the theorem.



The Geometry

Fundamental fact:

a(t) · K · a(�t) �! (K \ L) · N (t ! +1)

A reinterpretation: Keeping in mind that {a(t)} normalizes L
and N, G/(L \ K )N and G/K are asymptotically equivalent to
one another as G-spaces.

The picture shows G/K (blue)
and G/(K \ L)N (red) embeded
in g⇤ as coadjoint orbits in the
example where G = SL(2,R).



More Geometry

Remark
To approximate G/K by some G/(K \ L)N towards infinity in
G/K in different directions, one needs to use different {a(t)}
and different L, N.

The case where G = SL(3,R):

G = K · A+ · K .



Hilbert Space Theory

Theorem
If an element of C⇤

r (G) acts trivially on each L2
(G/N), then it

acts as a compact operator on L2
(G)

� for every � 2 bK .

Theorem
The mutual kernel of the representations of C⇤

r (G) on the
spaces L2

(G/N) is precisely the discrete series ideal in C⇤
r (G).



An Asymptotic Inclusion of Representations

Conjugation by {a(t)} gives rise to a one-parameter group
action

Ut : L2
(G/(K \ L)N) �! L2

(G/(K \ L)N)

and an asymptotic inclusion of representations

Vt : L2
(G/(K \ L)N) �! L2

(G/K )

It is possible to extract a formula for the Plancherel meansure
from this (work with Qijun Tan, following Weyl’s Plancherel
formula Sturm-Liouville operators) . . .



An Adjoint C*-Bimodule

Theorem (Work with Pierre Clare and Tyrone Crisp)

• There is an adjoint Hilbert C⇤
r (L)-C⇤

r (G)-bimodule
C⇤

r (N\G).
• There is a natural isomorphism

HomG
�
H,C⇤

r (G/N)⌦C⇤
r (L) K

�

⇠= HomL
�
C⇤

r (N\G)⌦C⇤
r (G) H,K

�
.

The parabolic restriction functor

H 7�! C⇤
r (N\G)⌦C⇤

r (G) H

is a two-sided adjoint to parabolic induction (c.f. Frobenius
reciprocity and Bernstein’s second adjunction).



The Problem of Uniform Admissibility

Theorem
Fix a irreducible representation � of K . There are at most
finitely many discrete series representations of G that include �.

This is a consequence of Harish-Chandra’s classification work
on the discrete series. It plays an essential role in desribing the
tempered dual as a (noncommutative) topological space.

Is there a geometric/noncommutative geometric proof?

There is an analogous theorem in the context of p-adic groups,
due to Bernstein. It uses similar geometry to what was used
earlier . . . plus the fact that the Hecke convolution algebras that
arise in p-adic groups are Noetherian.



Uniform Admissibility

An equivalent formulation:

Theorem
Fix a irreducible representation � of K . The representation
L2

(G)
� includes at most finitely many discrete series

representations.

This is plausible enough: the representation L2
(G)

� “mostly
looks like” a combination of the spaces L2

(G/N)
�|K\L . . . and

there is only a compact part that does not.

But I don’t know how to devise a proper argument along these
lines.



Thank you


