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1 Introduction

Over the past fifty years the processes and techniques
of medical imaging have undergone a veritable explo-
sion, calling into service increasingly sophisticated
mathematical tools. Mathematics provides a language
to describe the measurement processes that lead, even-
tually, to algorithms for turning the raw data into
high-quality images. There are four principal modali-
ties in wide application today: x-ray computed tomog-
raphy (x-ray CT), ultrasound, magnetic resonance imag-
ing (MRI), and emission tomography (positron emission
tomography (PET) and single-photon emission com-
puted tomography (SPECT)). Each modality uses a dif-
ferent physical process to produce image contrast: x-
ray CT produces a map of the x-ray attenuation coeffi-
cient, which is strongly correlated with density; ultra-
sound images are produced by mapping absorption
and reflection of acoustic waves; in their simplest form,
magnetic resonance images show the density of water
protons, but the subtlety of the underlying physics pro-
vides many avenues for producing clinically meaning-
ful contrasts in this modality; PET and SPECT give spa-
tial maps of the chemical activity of metabolites, which
are bound to radioactive elements. It has recently been
found useful to merge different modalities. For exam-
ple, a fused MRI/PET image shows metabolic activity
produced by PET, at a fairly low spatial resolution,
against the background of a detailed anatomic image
produced by MRI. Figure 1 shows a PET image, a PET
image fused with a CT image, and the CT image as well.

In this article we consider mathematical aspects
of PET, whose underlying physics we briefly explain.
Positron emission is a mode of radioactive decay stem-
ming from the reaction

proton — neutron + positron + neutrino + energy. (1)

Two isotopes, of clinical importance, that undergo this
type of decay are F!8 and C!!. The positron, which
is the positively charged antiparticle of the electron,
is typically very short-lived as it is annihilated, along
with the first electron it encounters, producing a pair
of 0.511 MeV photons. This usually happens within a
millimeter or two of the site of the radioactive decay.
Due to conservation of momentum, these two photons
travel in nearly opposite directions along a straight line

(see figure 2). The phenomenon of pair annihilation
underlies the operation of a PET scanner.

A short-lived isotope that undergoes the reaction
in (1) is incorporated into a metabolite, e.g., fluo-
rodeoxyglucose, which is then injected into the patient.
This metabolite is taken up differentially by vari-
ous structures in the body. For example, many types
of cancerous tumors have a very rapid metabolism
and quickly take up available fluorodeoxyglucose. The
detector in a PET scanner is a ring of scintillation crys-
tals that surrounds some portion of the patient. The
high-energy photon interacts with the crystal to pro-
duce a flash of light. These flashes are fed into photo-
multiplier tubes with electronics that localize, to some
extent, where the flash of light occurred and measure
the energy of the photon that produced it. Finally, dif-
ferent arrival times are compared to determine which
events are likely to be “coincidences,” caused by a sin-
gle pair annihilation. Two photons detected within a
time window of about 10 nanoseconds are assumed
to be the result of a single annihilation event. The
measured locations of a pair of coincident photons
then determines a line. If the photons simply exited
the patient’s body without further interactions, then
the annihilation event must have occurred somewhere
along this line (see figure 2). It is not difficult to imag-
ine that sufficiently many such measurements could be
used to reconstruct an approximation for the distribu-
tion of sources, a goal which is facilitated by a more
quantitative model.

2 A Quantitative Model

Radioactive decay is usually modeled as a Poisson ran-
dom process. Recall that Y is a Poisson random variable
of intensity A if
Ake-a

Xl (2)
A simple calculation shows that E[Y] = A and Var[Y] =
A as well. Let H denote the region within the scanner
that is occupied by the patient, and, for p € H, let p(p)
denote the concentration of radioactive metabolite as
a function of position. If p is measured in the correct
units, then the probability of k decay events originating
from a small volume dV centered at p, in a time interval
of unit length, is

Prob(Y = k) =

ka-p(p)
% dv 3)

Decays originating at different spatial locations are
regarded as independent events.

Prob(k;p) =
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Figure 1 (a) A PET “heat map” image; (b) the image in (a) fused with the CT scan of the same section shown in (c). From
the fused image it is apparent that the increased uptake of fluorodeoxyglucose, indicated by the yellow arrow, is in the gall
bladder and is not the result of bowel activity. Images courtesy of Dr. Joel Karp, Hospital of the University of Pennsylvania.
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Figure 2 A radioactive decay leading to a positron-electron
annihilation, exiting along #pg, which is detected as a
coincidence event at P and Q in the detector ring.

Assume, for the moment, that

(i) there are many decay events, so that we are justi-
fied in replacing this probabilistic law by its mean,
p(p),

(ii) the high-energy photons simply exit the patient
without interaction, and

(iii) we are equally likely to detect a given decay event
on any line passing through the source point.

Let fpq be the line joining the two detector positions
P and Q where photons are simultaneously detected.
With these assumptions we see that by counting up the
coincidences observed at P and Q we are finding an
approximation to the line integral

Xp(lpo) = L p(p)dl,
PQ

here dl is the arc length along the line £pq . This is noth-
ing other than a sample of the three-dimensional x-ray

Figure 3 The lines in the plane 1y are labeled by 0, the
angle the normal makes with the x-axis, and s, the distance
from the line to the origin.

transform of p, which, if it could be approximately mea-
sured with sufficient accuracy, for a sufficiently dense
set of lines, could then be inverted to produce a good
approximate value for p. This is essentially what is
done in X-RAY CT [??].

For the moment, we restrict our attention to lines that
lie in a plane 1y intersecting the patient and choose
coordinates (x, Yy, z) so that myp = {z = zo}. The lines
in this plane are parametrized by an angle 0 € [0, 1]
and a real number s, with

Lo ={(scos0,ssinb,zy) + t(—sinb,cos0,0):
t € (—00,00)}

(see figure 3). In terms of s and 0, the two-dimensional
x-ray transform is given by the integral

Xp(s,0,z9) = I p((scos@,ssind, zg)

+t(—sin@,cos0,0)) dt.

The inverse of this transform is usually represented
as a composition of two operations: a filter acting on
Xp(s,0,zp) in the s variable, followed by the back-
projection operator. If g (s, 0) is a function on the space
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of lines in a plane, then the filter operation can be rep-
resented by Fg(s,0) = 0sH g(s, 0), where H is a con-
stant multiple of the Hilbert transform acting in the s
variable. The back-projection operator X*g defines a
function of (x,y) € 1 that is the average of g over all
lines passing through (x, y):

™
X*g(x,y) = %L) g(xcos 6 + ysinb,0) do.

Putting together the pieces we get the filtered back-
projection (FBP) operator, which inverts the two-
dimensional x-ray transform: p(x, y,z9) = [X* o F] -
Xp. By using this approach for a collection of parallel
planes, the function p could be reconstructed in a vol-
ume. This provides a possible method for reconstruc-
tion of PET images, and indeed the discrete implemen-
tations of this method have been extensively studied. In
the early days of PET imaging this approach was widely
used, and it remains in use today. Note, however, that
using only data from lines lying in a set of parallel
planes is very wasteful and leads to images with low
signal to noise ratio.

Assumption (i) implies that our measurement is
a good approximation to the x-ray transform of p,
Xp(s,0,zp).Because of the very high energies involved
in positron emission radioactivity, only very small
amounts of short-lived isotopes can be used. The mea-
sured count rates are therefore low, which leads to mea-
surements dominated by Poisson noise that are not a
good approximation to the mean. Because the FBP algo-
rithm involves a derivative in s, the data must be signif-
icantly smoothed before this approach to image recon-
struction can be applied. This produces low-resolution
images that contain a variety of artifacts due to system-
atic measurement errors, which we describe below.

At this point it is useful to have a more accurate
description of the scanner and the measured data. We
model the detector as a cylindrical ring surrounding
the patient, which is partitioned into a finite set of
regions {d1,...,dn}. The scanner can localize a scintil-
lation event as having occurred in one of these regions,
which we heretofore refer to as detectors. This instru-
ment design suggests that we divide the volume inside
the detector ring into a collection of tubes, {T;;}, with
each tube defined as the union of lines joining points in
d; to points in d; (see figure 4). A measurement n;; is
the number of coincidence events observed by the pair
of detectors (d;, d;). The simplest interpretation of n;;
is as a sample of a Poisson random variable with mean

Detector ring

Figure 4 The detector ring is divided into finitely many
detectors of finite size. Each pair (d;, d;) defines a tube T;;
in the region occupied by the patient. This region is divided
into boxes {by}.

proportional to
| xot). @
br CTyj

Below we will see that this interpretation requires
several adjustments.

Assumption (ii) fails as the photons tend to interact
quite a lot with the bulk of the patient’s body. Large
fractions of the photons are absorbed, or scattered,
with each member of an annihilation pair meeting its
fate independently of the other. This leads to three
distinct types of measurement errors.

Randoms. These are coincidences that are observed by
a pair of detectors but that do not correspond to a
single annihilation event. These can account for 10-
30% of the observed events (see figure 5(a)).

Scatter. If one or both photons is/are scattered and
then both are detected, this may register as a coin-
cidence at a pair of detectors (d;,d;), but the anni-
hilation event did not occur at a point lying near T;;
(see figure 5(b)).

Attenuation. Most photon pairs (often 95%) are simply
absorbed, leading to a substantial underestimate of
the number of events occurring along a given line.
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Figure 5 The measurement process in PET scanners is
subject to a variety of systematic errors. (a) Randoms are
detected coincidences that do not result from a single decay
event. (b) Scatter is the result of one or both of the pho-
tons scattering off an object before being detected as a
coincidence event, but along the wrong line.

Below we discuss how the effects of these sorts of mea-
surement errors can be incorporated into the model
and the reconstruction algorithm. To get quantita-
tively meaningful, artifact-free images, these errors
must be corrected before application of any image-
reconstruction method.

Assumption (iii) is false in that the detector array,
which is usually a ring of scintillation counters, only
encloses part of the patient. Many lines through the
patient will therefore be disjoint from the detector, or
only intersect it at one end. This problem can, to some
extent, be mitigated by only using observations coming
from lines that lie in planes that intersect the detec-
tor in a closed curve. If the detector is a section of a
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cylinder, then each point p lies in a collection of such
planes {1y 4} whose normal vectors {vy ¢} fill a disk
Dy lying on the unit sphere. If p¥®(p) denotes the
approximate value for p(p) determined using the FBP
algorithm in the plane 71y ¢, then an approximate value
with improved signal to noise ratio is obtained as the
average:

1
ﬁjp PV (p) dS(y, ),
14 4

where dS(y, ¢) is the spherical areal measure. A par-
ticular implementation of this idea that is often used
in PET scanners goes under the name of the “Col-
sher filter.” Other methods use a collection of paral-
lel two-dimensional planes to reconstruct an approx-
imate image from which the missing data for the
three-dimensional x-ray transform can then be approx-
imately computed.

In addition to these inherent physical limitations on
the measurement process, there are a wide range of
instrumentation problems connected to the detection
and spatial localization of high-energy photons, as well
as the discrimination of coincidence events. Effective
solutions to these problems are central to the success
of a PET scanner, but they are beyond the scope of this
article.

plp) =

3 Correcting Measurement Errors

To reconstruct images that are quantitatively meaning-
ful and reasonably free of artifacts, the measured data
{n;;} must first be corrected for randoms, scatter, and
attenuation (see figure 5). This requires both additional
measurements and models for the processes that lead
to these errors.

3.1 Randoms

We first discuss how to correct for randoms. Let R;;
denote the number of coincidences detected on the pair
(d;,d;) that are not caused by a decay event in T;;. In
practice, coincidences are considered to be two events
that are observed within a certain time window T (usu-
ally about 10 nanoseconds). In addition to coincidences
between two detectors, the numbers of single counts,
{n;}, observed at {d;} are recorded. In fact, the number
of “singles” is usually one or two orders of magnitude
larger than the number of coincidences. From the mea-
sured number of singles observed over a known period
of time we can infer rates of singles events {7;} for each
detector. Assuming that each of these singles processes
is independent, a reasonable estimate for the number
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of coincidences observed on the detector pair (d;,d;)
over the course of T units of time that are actually ran-
doms is R;j = TTr;rj. A somewhat more accurate esti-
mate is obtained if one accounts for the decay of the
radioactive source.

There are other measurement techniques for esti-
mating R;;, though these estimates tend to be rather
noisy. Simply subtracting R;; from n;; can increase
the noise in the measurements and also change their
basic statistical properties. There is a useful technique
for replacing R;; with a lower-variance estimate. Let
A be a collection of contiguous detectors including d;
that are joined to dj, and let B be a similar collection,
including d, that are joined to d;. Suppose that Run
are estimates for the randoms detected in the pairs
{(dn,dm): n € B, m € A}. The expression

Ié" _ [zmeARim][anB RTU]
ij =

ZmeA, neB Rmn

provides an estimate for R;; with reduced noise vari-
ance.

3.2 Scatter

The next source of error we consider is scatter, which
results from one or both photons in the annihilation
pair scattering off some matter in the patient before
being recorded as a coincidence at a pair of detectors
(di,dj). If the scattering angle is not small, then the
annihilation event will not have occurred in expected
tube T;;. Some part of n;;, which we denote S;;, there-
fore corresponds to radioactive decays that did not
occur in Tjj. Scattered photons tend to lose energy,
so many approaches to estimating the amount of scat-
ter are connected to measurement of the energies of
detected photons. Depending on the design of the scan-
ner, scatter can account for 15-40% of the observed
coincidences. There are many methods for estimat-
ing the contribution of scatter but most of them are
related to the specific design of the PET scanner and
are therefore beyond the purview of this article.

3.3 Attenuation

Once contributions from randoms and scatter have
been removed to obtain corrected observations 7i;; =
nij — R;ij — Sij, we still need to account for the fact that
many photon pairs are simply absorbed. This process
is described by Beer’s law, which is the basis for x-ray
CT. Suppose that an annihilation event takes place at a
point po within the patient, and that the photons travel

along the rays £, and £_ originating at po. The atten-
uation coefficient is a function u(p) defined through-
out the patient’s body such that the probabilities of
detecting photons traveling along £.. are

P, =exp(—L udl).

As we only “count” coincidences, and the two pho-
tons are independent, the probability of observing the
coincidence is simply the product

P,P_ =exp ( - Ludl),

where ¢ = £, U {_. In other words, the attenuation
of coincidence counts due to photons traveling along
¢ does not depend on the location of the annihilation
event along this line! This factor can therefore be mea-
sured by observing the fraction of photons, of the given
energy, emitted outside the patient’s body that pass
through the patient along £ and are detected on the
opposite side.

For each pair (d;, d;) we can therefore determine an
attenuation coefficient g;;. The extent of the intersec-
tion of T;; with the patient’s body has a marked effect
on the size of g;;, which can range from approximately
1 for tubes lying close to the skin to approximately 0.1
for those passing through a significant part of the body.
The corrected data, which is passed to a reconstruction
algorithm, is therefore

Nij = Rij _ nij —Rij = Sij.
dij dij

In addition to the corrections described above, there
are a variety of adjustments that are needed to account
for measurement errors attributable to the details of
the behavior of the detector and the operation of the
electronics. Applying an FBP algorithm to the corrected
data, we can obtain a discrete approximation pf®(p)
to p(p). In the next section we describe iterative algo-
rithms for PET image reconstruction. While the FBP
algorithm is linear, and efficient, iterative algorithms
allow for incorporation of more information about the
measurement process and are better suited to low
signal to noise ratio data.

4 TIterative Reconstruction Algorithms

While filtered back projection provides a good start-
ing point for image reconstruction in PET, the varying
statistical properties of different measurements can-
not be easily incorporated into this algorithm. A vari-
ety of approaches have been developed that allow for



the exploitation of such information. To describe these
algorithms we need to provide a discrete measurement
model that is somewhat different from that discussed
above. The underlying idea is that we are developing a
statistical estimator for the strengths of the Poisson
processes that produce the observed measurements.
Note that these measurements must still be corrected
as described in the previous section.

In the previous discussion we described the region,
H, occupied by the patient as a continuum, with p(p)
the strength of the radioactive decay processes, a con-
tinuous function of a continuous variable p € H. We
now divide the measurement volume into a finite col-
lection of boxes, {b1,...,bg}. The radioactive decay of
the tracer in box by is modeled as a Poisson process
of strength Ag. For each point p € H and each detec-
tor pair (d;,d;), we let c(p; i, j) denote the probability
that a decay event at p is detected as a coincidence in
this detector pair. The patient’s body will produce scat-
ter and attenuation that will in turn alter the values
of c(p;i,j) from what they would be in its absence,
i.e., the area fraction of a small sphere centered at p
intercepted by lines joining points in d; to points in d ;.

In the simplest case, the measurements {n;;} would
be interpreted as samples of Poisson random variables
with means

B
> pk;i, Ak,
k=1

where

p(k;i,j) = c(p;i, j)dp

Vit )
V(bk) Ju,
is the probability that a decay event in by is detected
in the pair (d;,dj). Here, V(by) is the volume of by.
Assuming that the attenuation coefficient does not vary
rapidly within the tube T;j, we can incorporate attenu-
ation into this model, as above, by replacing p (k;1, j)
with p(k;i,j) — 4qijp(k;i,j) = p*(k;i,j). Ignoring
scatter and randoms, the expected value of n;; would
then satisfy

B
E[nijl = Y. p*(k;i, )Ak = fij.
k=1
In this model, scatter and randoms are regarded as
independent Poisson processes, with means AS(i, j)
and A (i, j), respectively. Including these effects, we see
that the measurement n;; is then a sample of a Poisson
random variable with mean 7;; + AS(i, j) + A" (i, j). The
reconstruction problem is then to infer estimates for

PRINCETON COMPANION TO APPLIED MATHEMATICS PROOF

the intensities of the sources {Ay} from the observa-
tions {n;;}. There are a variety of approaches to solving
this problem.

First we consider the reconstruction problem ignor-
ing the contributions of scatter and randoms. The mea-
surement model suggests that we look for a solution,

(A¥,...,A}), to the system of equations
B
nij = > ptk;i, DAL
k=1

If the array of detectors is three dimensional, there are
likely to be many more detector pairs than boxes in the
volume. The number of such pairs is quadratic in the
number of detectors. This system of equations is there-
fore highly overdetermined, so a least-squares solution
is a reasonable choice. That is, A* could be defined as

B 2
A* = arg min > (nij - > pk; i,j)yk) )
{:0<md 45 k=1
Note that we constrain the variables {y}} to be non-
negative, as this is certainly true of the actual intensi-
ties. The least-squares solution can be interpreted as a
maximum-likelihood (ML) estimate for A, when the like-
lihood of observing n given the intensities y is given
by the product of Gaussians:

B 2
Lo =[Texo| = (niy - 3 petsion) |-
i,j k=1
Itis assumed that the various observations are samples
of independent processes. If we have estimates for the
variances {0;;} of these measurements, then we could
instead consider a weighted least-squares solution and
look for

B 2
. 1 .
A}, =argmin ) f<nij - > pk; l,])yk> .
{:0<md 45 Tij k=1
Because the data tends to be very noisy, in addi-
tion to the “data term” many algorithms include a
regularization term, such as

B
RY) =D > Ivk—wl?
k=1keN(k)
where for each k, the N (k) are the indices of the boxes
contiguous to by. The B-regularized solution is then
defined as

B 2
. 1 .
A 5 = arg min [Z — (nij - > pk; l,J)yk)
rosond by 5 Y k=1

+ PR |
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As noted above, these tend to be very large systems of
equations and are therefore usually solved via iterative
methods. Indeed, a great deal of the research effort in
PET is connected with finding data structures and algo-
rithms to enable solution of such optimization prob-
lems in a way that is fast enough and stable enough for
real-time imaging applications.

Given the nature of radioactive decay it is perhaps
more reasonable to consider an expression for the
likelihood in terms of Poisson processes. With

B
(i, ) () = 2. p*(k; i, ) vk,
k
we get the Poisson likelihood function

e HEDON (i, ) () 1™
Ly(y) =[] 151-;'] YT
i,j :

The expectation—maximization (EM) algorithm pro-
vides a means to iteratively find the nonnegative vector
that maximizes log L, (). After choosing a nonnega-
tive starting vector y©), the map from y ™ to y(m+1
is given by the formula

(m+1) _ . (m) 1 [

y p(k;i, jIng; ]
k koS ipaki, f) r

Sk pe(kii, )y
(5)
This algorithm has several desirable features. Firstly,
if the initial guess y© is positive, then the positiv-
ity condition on the components of 7™ is automatic.
Secondly, before convergence, the likelihood is mono-
tonically increasing; that is, L(y™)) < L(ym+D),
Note that if n;; = > p“(k;i,j)y,im) for all (i,j),
then ym+D) = 5 (M The algorithm defined in (5)
converges too slowly to be practical in clinical appli-
cations. There are several methods to accelerate its
convergence, which also include regularization terms.
We conclude this discussion by explaining how to
include estimates for the contributions of scatter and
randoms to 71;; in an ML reconstruction algorithm. We
suppose that n;; can be decomposed as a sum of three

terms:
B

nij = > pa(k;i, )Ak + Rij + Sij. (6)
k=1

With this decomposition, it is clear how to modify the
update rule in (5):
(m+1) _ _ (m) 1
Ve Y S ek, )
y [ p?(k;i, j)ni; ]
ij D2k pa(k; i, D™ +Rij + Si

230

Figure 6 Two reconstructions from the same PET data illus-
trating the superior noise and artifact suppression attain-
able using iterative algorithms: (a) image reconstructed
using the FBP algorithm and (b) image reconstructed using
an iterative ML algorithm. Images courtesy of Dr. Joel Karp,
Hospital of the University of Pennsylvania.

In addition to the ML-based algorithms, there are many
other iterative approaches to solving these optimiza-
tion problems that go under the general rubric of
“algebraic reconstruction techniques,” or ART. Figure 6
shows two reconstructions of a PET image: part (a) is
the result of using the FBP algorithm, while part (b)
shows the output of an iterative ML-EM algorithm.

5 Outlook

PET imaging provides a method for directly visualiz-
ing and spatially localizing metabolic processes. As is
clear from our discussion, the physics involved in inter-
preting the measurements and designing detectors is
rather complicated. In this article we have only touched
on some of the basic ideas used to model the mea-
surements and develop reconstruction algorithms. The
FBP algorithm gives the most direct method for recon-
structing images, but the images tend to have low res-
olution, streaking artifacts, and noise. One can eas-
ily incorporate much more of the physics into itera-
tive techniques based on probabilistic models, and this
should lead to much better images. Because of the large
number of detector pairs for three-dimensional vol-
umes, naive implementations of iterative algorithms
require vast computational resources. At the time of
writing, both reconstruction techniques and the modal-
ity as a whole are rapidly evolving in response to the
development of better detectors and faster computers,
and because of increased storage capabilities.
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