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Synonyms

Magnetic resonance imaging; Radiological imaging;
Ultrasound; X-ray computed tomography

Description

Medical imaging is a collection of technologies for
noninvasively investigating the internal anatomy and
physiology of living creatures. The prehistory of mod-
ern imaging includes various techniques for physical
examination, which employ palpation and other exter-
nal observations. Though the observations are indirect
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and require considerable interpretation to relate to
the internal state of being, each of these methods is
based on the principle that some observable feature
differs between healthy and sick subjects. While new
technologies have vastly expanded the collection of
available measurements, this basic principle remains
the central tenet of medical imaging.

Modern medical imaging is divided into different
modalities according to the physical principles un-
derlying the measurement process. These differences
in underlying physics lead to contrasts in the images
that reflect different aspects of anatomy or physiol-
ogy. The utility of a modality is largely governed
by three interconnected considerations: contrast, res-
olution, and noise. Contrast refers to the physical or
chemical distinctions that produce the image itself, and
the magnitude of these differences in the reconstructed
image. Resolution is usually thought of as the size of
the smallest objects discernible in the image. Finally
noise is an inevitable consequence of real physical
measurements. The ratio between the size of the signal
and the size of the noise which contaminates it, called
SNR, limits both the contrast and resolution attainable
in any reconstructed image.

Technological advances in the nineteenth and twen-
tieth centuries led to a proliferation of methods for
medical imaging. The first such advances were the
development of photographic imaging, and the dis-
covery of x-rays. These were the precursors of pro-
jection x-rays, which led, after the development of
far more sensitive solid-state detectors, to x-ray to-
mography. Sonar, which was used by the military to
detect submarines, was adapted, along with ideas from
radar, to ultrasound imaging. In this modality high-
frequency acoustic energy is used as a probe of inter-
nal anatomy. Taking advantage of the Doppler effect,
ultrasound can also be used to visualize blood flow,
see [7].

Nuclear magnetic resonance, which depends on the
subtle quantum mechanical phenomenon of spin, was
originally developed as a spectroscopic technique in
physical chemistry. With the advent of powerful, large,
high-quality superconducting magnets, it became fea-
sible to use this phenomenon to study both internal
anatomy and physiology. In its simplest form the con-
trast in MRI comes from the distribution of water
molecules within the body. The richness of the spin-
resonance phenomenon allows the use of other exper-
imental protocols to modulate the contrast, probing
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many aspects of the chemical and physical environ-
ment.

The four imaging modalities in common clinical use
are (1) x-ray computed tomography (x-ray CT), (2) ul-
trasound (US), (3) magnetic resonance imaging (MRI),
and (4) emission tomography (PET and SPECT). In
this article we only consider the details of x-ray CT
and MRI. Good general references for the physical
principles underlying these modalities are [4,7].

There are also several experimental techniques,
such as diffuse optical tomography (DOT) and
electrical impedance tomography (EIT), which, largely
due to intrinsic mathematical difficulties, have yet to
produce useful diagnostic tools. A very promising
recent development involves hybrid modalities, which
combine a high-contrast (low-resolution) modality
with a high-resolution (low-contrast) modality. For
example, photo-acoustic imaging uses infrared light
for excitation of acoustic vibrations and ultrasound for
detection, see [1].

Each measurement process is described by a math-
ematical model, which in turn is used to “invert” the
measurements and build an image of some aspect of the
internal state of the organism. The success of an imag-
ing modality relies upon having a stable and accurate
inverse algorithm, usually based on an exact inversion
formula, as well as the availability of sufficiently many
measurements with an adequate signal-to-noise ratio.
The quality of the reconstructed image is determined
by complicated interactions among the size and quality
of the data set, the available contrast, and the inversion
method.

X-Ray Computed Tomography

The first “modern” imaging method was the projection
x-ray, introduced in the late 1800s by Roentgen. X-rays
are a high-energy form of electromagnetic radiation,
which pass relatively easily through the materials com-
monly found in living organisms. The interaction of x-
rays with an object B is modeled by a function pp(x),
called the attenuation coefficient. Here X is a location
within B. If we imagine that an x-ray beam travels
along a straight line, £, then Beer’s law predicts that
1(s), the intensity of the beam satisfies the differential
equation:
dl

— = —pp(x(s)1(s).

15 = ey
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Medical Imaging, Fig. 1 A projection x-ray image (Image
courtesy: Dr. Ari D. Goldberg)

Here x(s) is the point along the line, £, and s is arc-
length parametrization. If the intersection £ N B lies
between Spin and smax, then Beer’s law predicts that:

Smax

IOu[
toe () © == [ pnixtsnas

2)

Smin

Early x-ray images recorded the differential atten-
uation of the x-ray beams by different parts of the
body, as differing densities on a photographic plate. In
the photograph highly attenuating regions appear light,
and less dense regions appear dark. An example is
shown in Fig. 1. X-ray images display a good contrast
between bone and soft tissues, though there is little
contrast between different types of soft tissues. While
the mathematical model embodied in Beer’s law is not
needed to interpret projection x-ray images, it is an
essential step to go from this simple modality to x-ray
computed tomography.
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X-ray CT was first developed by Alan Cormack in
the early 1960s, though the lack of powerful computers
made the idea impractical. It was rediscovered by God-
frey Hounsfield in the early 1970s. Both received the
Nobel prize for this work in 1979, see [6]. Hounsfield
was inspired by the recent development of solid-state
x-ray detectors, which were more sensitive and had
a much larger dynamic range than photographic film.
This is essential for medical applications of x-ray CT,
as the attenuation coefficients of different soft tissues in
the human body differ by less than 3 %. By 1971, solid-
state detectors and improved computers made x-ray
tomography a practical possibility.

The mathematical model embodied in Beer’s law
leads to a simple description of the measurements
available in an x-ray CT-machine. Assuming that we
have a monochromatic source of x-rays the measure-
ment described in (2) is the Radon (in two dimensions),
or x-ray transform (in three dimensions) of the attenu-
ation coefficient, pp (x). For simplicity we consider the
two-dimensional case.

The collection, £, of oriented lines in R2 is conve-
niently parameterized by S' x R, with (¢, ) corre-
sponding to the oriented line:

06 = {t(cosh,sinf) + s(—sinh,cosh) : s € R}

(3)
The Radon transform can then be defined by:
Rpp(t,0) = / pp(t(cosB,sin6)
o
~+ s(—sin 8, cos 0))ds. @)

The measurements made by an x-ray CT-machine are
modeled as samples of Rpp(¢, ). The actual physi-
cal design of the machine determines exactly which
samples are collected. The raw data collected by an x-
ray CT-machine can be represented as a sinogram, as
shown in Fig. 2. The reconstructed image is shown in
Fig. 3.

The inversion formula for the Radon transform is
called the filtered back-projection formula. It is derived
by using the Central Slice theorem:

Theorem 1 (Central Slice Theorem) The Radon
transform of p, Rp, is related to its two-dimensional
Fourier transform, F p, by the one-dimensional Fourier
transform of Rp in't :

Medical Imaging, Fig. 2 Radon transform data, shown as a
sinogram, for the Shepp—Logan phantom. The horizontal axis is
0 and the vertical axis ¢

Medical Imaging, Fig. 3 Filtered back-projection reconstruc-
tion of the Shepp-Logan phantom from the data in Fig. 2

o0
7’570(1, 0)= / Rpo(t,0)e™""dt = Fp(t(cos 6, sin §)).
—00

)

This theorem and the inversion formula for the
two-dimensional Fourier transform show that we can
reconstruct pp by first filtering the Radon transform:

o0
1 — .
GRps (1.60) = 5 / Ron(r.0)e" |rldr.  (6)
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and then back-projecting, which is R*, the adjoint of
the Radon transform itself:

PB(X,Y):% / GRpp(((cosB.sinb), (x,y)).0)do.
0

(N

The filtration step Rpp — GRpp is implemented
using a fast Fourier transform. The multiplication
by |r| in the frequency domain makes it mildly
ill-conditioned; nonetheless the high quality of the
data available in a modern CT-scanner allows for
stable reconstructions with a resolution of less than
a millimeter. As a map from a function g(¢,6) on £
to functions on R2, back-projection can be understood
as half the average of g on the set of lines that pass
through (x, y). A detailed discussion of x-ray CT can
be found in [2].

Magnetic Resonance Imaging

Magnetic resonance imaging takes advantage of the
fact that the protons in water molecules have both an
intrinsic magnetic moment x and an intrinsic angular
momentum, J, known as spin. As both of these quan-
tum mechanical observables transform by the standard
representation of SO(3) on R3, the Wigner-Eckert
Theorem implies that there is a constant y, called the
gyromagnetic ratio, so that u = yJ. For a water proton
y =~ 42.5MHz/T. If an ensemble of water protons is
placed in a static magnetic field By, then, after a short
time, the protons become polarized producing a bulk
magnetization My. If p(x) now represents the density
of water, as a function of position, then thermodynamic
considerations show that there is a constant C for

which:
Cp(x)

My (x) ~ 3)

At room temperature (7 &~ 300°K) this field is quite
small and is, for all intents and purposes, not directly
detectable.

A clinical MRI scanner consists of a large
solenoidal magnet, which produces a strong,
homogeneous background field, By, along with coaxial
electromagnets, which produce gradient fields G(t) - x,
used for spatial encoding, and finally a radio-frequency
(RF) coil, which produces an excitation field, By (t),
and is also used for signal detection.
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The total magnetic field is therefore: B(x,t) =
Bo(x) + G(t) - x 4+ By(t). The response of the bulk
nuclear magnetization, M, to such a field is governed
by Bloch’s phenomenological equation:

aM
W(X’t) = yM(x, 1) x B(x,t) — (Tl(x))
I _ (! L
M (x.1) - Mo(x) (T2 (X)) ML), ()

Here M!l is the component of M parallel to By and
M- is the orthogonal component. The terms with
coefficients 7; and T, describe relaxation processes
which tend to relax M toward the equilibrium state Mj.
The components Ml and Mt relax at different rates
T, > T>. In most medical applications their values lie
in the range of 50ms—2s. The spatial dependence of
T1 and T, provides several possibilities for contrast in
MR-images, sometimes called 7;- or 7,-weighted im-
ages. Note that (9) is a system of ordinary differential
equations in time, ¢, and that the spatial position, x,
appears as a pure parameter.

Ignoring the relaxation terms for the moment and
assuming that B is independent of time, we see that (9)
predicts that the magnetization M(x) will precess
around the By (x) with angular velocity w = y||By(x)||.
This is the resonance phenomenon alluded to in the
name “nuclear magnetic resonance.” Faraday’s Law
predicts that such a precessing magnetization will
produce an E.M.F. in a coil C with

EMF % / M(x, 1) - n(x)dS, (10)
P

for X a surface spanning C. A simple calculation
shows that the strength of the signal is proportional
to w?, which explains the utility of using a very
strong background field. The noise magnitude in MR-
measurements is proportional to @, hence the SNR is
proportional to w as well.

For the remainder of this discussion we assume
that By is a homogeneous field of the form By =
(0,0, by). The frequency wy = yby is called the Lar-
mor frequency. The main magnet of a clinical scanner
typically has a field strength between 1.5 and 7T,
which translates to Larmor frequencies between 64 and
300 MHz.
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The RF-component of the field By (t) is assumed to
take the form:

(a(t) cos wot, a(t) sin wyt, 0),

with a () nonzero for a short period of time. As implied
by the notation, the gradient fields are designed to
have a linear spatial dependence, and therefore take the
form:

G(b) - x = (g1(D)x3 — g3(t)x1, g&2(t)x3, g1()x1

+g2(t)x2 + g3(t)x3). (1
Here g(t) = (g1(t), g2(t), g3(t)) is a spatially indepen-
dent vector describing the time course of the gradient
field. Typically ||g|| << by, which allows us to ignore
components of G orthogonal to By.

Assume that the object modeled by p(x) lies in a
region [—L, L]x[—L, L] x[—L, L]. Allowing the spins
to become polarized creates a bulk magnetization My
parallel to By, see ). As noted M is a tiny field,
which is essentially undetectable. An RF-field is then
turned on for a short period of time, usually in the
presence of a gradient field. At the end of this so-
called selective excitation, Bloch’s equation predicts
that the field M(x) remains in the equilibrium position
for x3 ¢ [a,b], whereas for x3 € [a,b], M(x) now
has a nontrivial M*-component, which precesses pro-
ducing a measurable signal. With a, possibly different,
gradient field turned on, the measured signal takes the
form:

L L b

s(t) ccwie!™ [ [ [ p(x1,x2,x3)
—L—La

e~ @NT8) dxydx dx,. (12)

The integral is the two-dimensional Fourier transform,
Fp(ky, kz), at spatial frequency (k1. k2) = 1y(g1. 82),
of the averaged spin-density:

b
p(x1,x2) = /P(xhxz,xs)dxs-

a

13)

The slice thickness, |b — a|, is typically several mil-
limeters. By sampling in time and repeating this pro-
cess with different gradients (g, g2), we can obtain
samples of Fp for frequencies in a neighborhood of

Medical Imaging, Fig. 4 A T1-weighted, spin-echo MR-image
of the brain, made on a scanner with 3T magnet. The slice
thickness (|6 — a| in (13)) is 3mm (Image courtesy of Dr. Ari
D. Goldberg)

(0,0). The extent of this neighborhood determines
the maximum resolution available in the reconstructed
image.

The reconstruction formula for MRI is simply the
inverse Fourier transform:

\8

_ 1
p(x1,x2) = 42

oo
/}_p(kl,kz)ei("l"l“LkZ*Z)dkldkz. (14)
—o0

8

As a unitary map it is intrinsically stable and very accu-
rately approximated by the discrete Fourier transform.
The main limitation in MR-imaging is noise, which
is controlled by repeated acquisition and signal aver-
aging. Using data acquired in approximately 10 min,
a low-noise image of the brain with an in-plane res-
olution of approximately 1 mm can be reconstructed,
see Fig. 4. For more on magnetic resonance imaging
see [3,5].
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Introduction

Finite difference method (FDM) and finite element
method (FEM) rely on a mesh (or stencil) to con-
struct the local approximation of functions and their
derivatives for solving partial differential equations
(PDEs). A few drawbacks are commonly encountered
in these methods: (1) time consuming in generating
good quality mesh in arbitrary geometry for desired
accuracy; (2) difficult in constructing approximations
with arbitrary order of continuity, making the solution
of PDE with higher-order differentiation or problems
with discontinuities difficult to solve; (3) tedious in
performing k- or p-adaptive refinement; and (4) in-
effective in dealing with mesh entanglement-related
difficulties (such as those in large deformation and
fragment-impact problems), among others.

The origin of meshfree methods (also called mesh-
less methods) can be traced back to the generalized
finite difference method [38, 54] and the smoothed
particle hydrodynamics (SPH) [24, 56], in which the

Meshless and Meshfree Methods

approximation of a function and its derivatives were
constructed based on a set of points that are not inter-
connected in the traditional sense. In the past 20 years,
meshfree methods have emerged into a new class
of computational methods with considerable success.
Meshfree methods all share a common feature: the
approximation of unknowns in the PDE is constructed
based on scattered points without mesh connectivity.
As shown in Fig. 1, the approximation function at point
Iin FEM is constructed from the element level natural
coordinate and then transformed to the global Carte-
sian coordinate, whereas the meshfree approximation
functions are constructed using only nodal coordi-
nate data at the global Cartesian coordinate directly.
These compactly supported meshfree approximation
functions form a partition of unity subordinated to the
open covering with controllable orders of continuity
and completeness. It becomes possible to relax the
strong tie between the quality of discretization and the
quality of approximation in FEM with this class of
approximation functions, and it significantly simplifies
the procedures in h-adaptivity. Special basis functions
can be embedded in the approximation to capture
essential characteristics in the approximated functions,
and arbitrary discontinuities can be introduced in the
approximation as well. This entry gives an overview
of several classes of meshfree approximation functions
and presents how these meshfree approximation func-
tions can be used to solve PDEs.

Function Approximation by a Set of
Scattered Points

Moving Least-Squares Approximation (MLS)

Let the domain of interest Q = Q U 9 be discretized
by a set of points § = {x;...xy,|x; € Q) with
corresponding point numbers that form a set Zg =
{I|x; € S}. The weighted local approximation of a
set of sample data {(x;,u;)};ezs near x, denoted by
uﬁ (x), is expressed as

Wi(x) =Y pi(x)bi(¥) = p' (x)b(®) ()

i=l1

where {p;(x)}/_, are the basis functions and
{bi(x)}}_, are the corresponding coefficients that
are functions of local position x. The coefficients



