Math 508

Problem set 8, due November 6, 2018

Dr. Epstein

Your solutions to these problems should be written in English: Use complete sentences and paragraphs.

For this week, read Sections 5.1-5.3 in **The Way of Analysis**.

You should do the following problems, but you do not need to hand in your solutions:

- 1. Show that if $f(x) = O(|x x_0|^2)$ as $x \to x_0$, then $f(x) = o(|x x_0|)$. Give an example to show that the converse is false.
- 2. Show that if $f(x) = O(|x x_0|^k)$ and $g(x) = O(|x x_0|^k)$ as $x \to x_0$, then $f(x) + g(x) = O(|x x_0|^k)$. Is the same true of "little-o?"

The following problems should be carefully written up and handed in:

- 1. Show that if $f(x) = O(|x x_0|^k)$ and $g(x) = o(|x x_0|^j)$ as $x \to x_0$, then $f(x) \cdot g(x) = o(|x x_0|^{k+j})$.
- 2. (a) Show that if $f(x) = O(|x x_0|^k)$ for a $1 \le k$, then

$$\frac{f(x)}{x - x_0} = O(|x - x_0|^{k-1}).$$

- (b) Show that if $f(x) = o(|x-x_0|)$, then f is differentiable at x_0 . What is $f'(x_0)$?
- (c) If $f(x) = O(|x x_0|)$, is f always differentiable at x_0 ? Give a proof or counterexample.
- 3. Suppose that f is a differentiable function defined on (-1, 1), with f(0) = 0. Let

$$g(x) = \frac{f(x)}{x}$$
 for $x \neq 0$.

Show that g has a continuous extension to x = 0. What is g(0)? Is g necessarily differentiable at 0? Give a proof or counterexample.

4. If f is a function defined on \mathbb{R} such that

$$(1) |f(x) - f(y)| \le M|x - y|^{\alpha}$$

for an $\alpha > 1$, then show that f is constant.

5. Construct a function f(x), defined on \mathbb{R} , which is not differentiable anywhere, but so that $f^2(x)$ is differentiable everywhere.

6. Let f be continous on [0, 1] and differentiable on (0, 1). Assume that the 1-sided derivatives

(2)
$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} \text{ and } f'_{-}(1) = \lim_{x \to 1^{-}} \frac{f(1) - f(x)}{1 - x}$$

both exist. If f assumes a maximum or minimum at an end-point, then what can we say about the 1-sided derivatives at that end-point? Be careful: what you can say depends on which end the max or min occurs at.