Math 508

Problem set 7, due October 30, 2018

Dr. Epstein

The material on this problem set comes from Chapter 4 in **The Way of Analysis**.

You should do the following problems, but you do not need to hand in your solutions:

1. Suppose that f and g are functions defined in [0, 1] that satisfy a Lipschitz condition: there are constants M_f , M_g so that for all $x, y \in [0, 1]$

(1)
$$|f(x) - f(y)| \le M_f |x - y| \text{ and } |g(x) - g(y)| \le M_g |x - y|.$$

Show that f + g satisfies the same kind of estimate, possibly with a different constant.

2. Let $f: D \to E$ be a function, and let $A, B \subset E$. Show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

The following problems should be carefully written up and handed in:

1. Suppose that f is a function defined on [0, 1] that satisfies

$$|f(x) - f(y)| \le 5|x - y|^{\frac{1}{4}}.$$

Prove that f is continuous and give an explicit formula for δ as a function of ϵ .

2. Suppose that f is a uniformly continuous function defined on $[0, 1] \cap \mathbb{Q}$. Show that there is a unique continuous function F defined on [0, 1] so that

$$F(x) = f(x)$$
 for every $x \in [0, 1] \cap \mathbb{Q}$.

Is this still true if we just assume that f is continuous, but not uniformly continuous. Why or why not?

3. Let f_1, \ldots, f_n be continuous functions defined on \mathbb{R} . Show that the set

$$A = \{x : f_1(x) \ge 0, \dots, f_n(x) \ge 0\}$$
 is closed,

and the set

$$B = \{x : f_1(x) > 0, \dots, f_n(x) > 0\}$$
 is open.

4. Let f be a uniformly continuous function defined on \mathbb{R} . Show that there are positive constants C, M so that

$$|f(x)| \le C + M|x|.$$

5. Show that if f and g are uniformly continuous *and* bounded on a domain D, then the function $f \cdot g$ is as well. Give an example to show that this may be false if one of the functions is not bounded.

1

- 6. Suppose that a < b are finite and that f is a uniformly continuous function defined on (a,b). Show that $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist, and that f has an extension as a continuous function defined on [a,b].
- 7. Suppose that f is a continuous function on a compact set K. Show that either there is an $x \in K$ such that f(x) = 0, or there is a positive number c so that $|f(x)| \ge c$ for all $x \in K$.