Math 508

Problem set 6, due October 23, 2018

Dr. Epstein

The material on this problem set comes from Chapter 3 and Section 4.1 in **The Way of Analysis**.

You should do the following problems, but you do not need to hand in your solutions:

- 1. Let (a, b) and (c, d) be two intervals. What are the possibilities for the intersection, $(a, b) \cap (c, d)$, and the union, $(a, b) \cup (c, d)$?
- 2. Give an example to show that the infinite union of closed sets need not be closed.
- 3. Which subsets of \mathbb{R} are both closed and open?
- 4. Let A be an open set. When is the closure of A a compact set?
- 5. Find the limit points of the set $\{n + \frac{1}{m} | m, n \in \mathbb{N}\}.$
- 6. Let $A \subset \mathbb{R}$. Show that x is a limit point of A if and only if there is a sequence $\langle x_n \rangle \subset A$, with $x_n \neq x_m$ for $n \neq m$, such that

$$\lim_{n\to\infty}x_n=x.$$

7. Show that a finite union of compact sets is compact.

The following problems should be carefully written up and handed in:

- 1. Let A be a subset of \mathbb{R} and let A' be its set of limit points. Show that A' is a closed set.
- 2. Let U be an open set, show that $U \setminus \{x_1, \dots, x_n\}$ is always open. Is this true if we remove a countable subset from U?
- 3. Let A be a subset of \mathbb{R} and define

$$d_A(x) = \inf\{|x - y| : y \in A\}.$$

For $\epsilon > 0$ define the set $A_{\epsilon} = \{x : d_A(x) < \epsilon\}$. Prove that A_{ϵ} is open. What is $\bigcap_{\epsilon > 0} A_{\epsilon}$?

- 4. Let $A \subset \mathbb{R}$ be a compact set with infinitely many points. Show that A has a limit point.
- 5. Suppose that A and B are compact subsets of \mathbb{R} such that $A \cap B = \emptyset$. Show that there are open sets $U \supset A$ and $V \supset B$ such that $U \cap V = \emptyset$.
- 6. Let A, B, and C be sets and assume that $f : B \to C$ and $g : A \to B$ are functions. For $a \in A$, the composition $f \circ g(a)$ is defined to be f(g(a)). Show that for a set $W \subset C$ the inverse image $(f \circ g)^{-1}(W) = g^{-1}(f^{-1}(W))$.
- 7. Using the $\epsilon \delta$ definition of continuity, prove that the function defined on $[0, \infty)$ by $f(x) = \sqrt{x}$ is continuous.