Math 508

Problem set 1, due September 11, 2018 Dr. Epstein

The material covered in this problem set comes from Chapter 1 of Strichartz.

Standard Problems

These problems do not need to be handed in.

- 1. Show that there is no real number x such that $x^2 = -1$.
- 2. Prove by induction: If a_1, \ldots, a_n are real numbers, then

$$|a_1 + \dots + a_n| \le |a_1| + \dots + |a_n|.$$
 (1)

3. Recall that for a pair of integers (m, n) with $n \neq 0$, we define the equivalence class

$$[(m,n)] = \{(m',n') : mn' = m'n\}.$$
(2)

Show that for two pairs (m, n), (p, q) either [(m, n)] = [(p, q)] or $[(m, n)] \cap [(p, q)] = \emptyset$.

Problems to Hand In

Your solutions to the following problems should be carefully written up *in English*: Use complete sentences and paragraphs.

- 1. Let P and Q be statements; explain why the truth of $P \Rightarrow Q$ is equivalent to the truth of $\neg Q \Rightarrow \neg P$.
- 2. The set theoretic difference $A \setminus B$ is defined by

$$A \setminus B = \{ x \in A : x \notin B \}. \tag{3}$$

If A, B are subsets of the same "universe," then show that $A \setminus B = A \cap B^c$. Prove the following formulæ for sets:

$$(A \cap B)^{c} = A^{c} \cup B^{c},$$

$$(A \cup B)^{c} = A^{c} \cap B^{c},$$

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C),$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

$$(4)$$

3. Remember that a set A is countably infinite if there is a bijective map $f: \mathbb{N} \to A$.

Use mathematical induction to prove that every *finite* subset of $\mathbb N$ has a smallest element. (You may not use the well ordering principle!) Show that every subset of $\mathbb N$ is either finite, or countably infinite, and then show that there is no infinite set with cardinality less than that of $\mathbb N$.

- 4. Is the set of all *finite* subsets of \mathbb{N} countable, or uncountable? You must prove your answer.
- 5. Suppose that $r = \frac{a}{b} < 1$ is a positive rational number. Let

$$a_1 = \min\{q \in \mathbb{N} : \frac{1}{q} \le \frac{a}{b}\}. \tag{5}$$

- (a) Show that $0 \le aa_1 b < a$.
- (b) Recursively, for $1 \le j$, assume that we have found $\{a_1, \ldots, a_j\}$, $(a_1$ is define above) and that

$$r - \frac{1}{a_1} - \dots - \frac{1}{a_i} > 0,$$

then define

$$a_{j+1} = \min\{q \in \mathbb{N} : \frac{1}{q} \le \frac{a}{b} - \frac{1}{a_1} - \dots - \frac{1}{a_i}\}.$$
 (6)

Show that $a_{j+1} > a_j$.

(c) Conclude that every rational number between 0 and 1 can be represented as

$$r = \frac{1}{a_1} + \dots + \frac{1}{a_n}$$

where $\langle a_j \rangle$ is strictly increasing.

- (d) Can you show that this representation is never unique?
- 6. The notation $\mathbb{Q}[x]$ denotes the set of polynomials in x with rational coefficients.
 - (a) Prove that the set $\mathbb{Q}[x]$ is countable.
 - (b) A number x that satisfies p(x) = 0 for a $p \in \mathbb{Q}[x]$ is called algebraic. How large is the the set of algebraic numbers?