Two parties are fighting over inheritance (say $100)
Two parties are fighting over inheritance (say $100)
- Party A claims $100
- Party B claims $50
Inheritance

- Two parties are fighting over inheritance (say $100)
 - Party A claims $100
 - Party B claims $50
- How should one split the $100?
Two Methods

Two Methods:

- Equal division
Two Methods

Two Methods:
- Equal division
 - Both parties get $50
Two Methods

Two Methods:

- **Equal division**
 - Both parties get $50
 - All parties get the same amount

- **Proportional Division**
 - Party A gets $67
 - Party B gets $33
 - Parties get the proportion of what they claimed to the sums of all claims

Resolution depends on social customs
Two Methods

Two Methods:
- Equal division
 - Both parties get $50
 - All parties get the same amount
- Proportional Division
Two Methods:

▶ Equal division
 ▶ Both parties get $50
 ▶ All parties get the same amount

▶ Proportional Division
 ▶ Party A gets $67
 ▶ Party B gets $33
Two Methods

Two Methods:

▶ Equal division
 ▶ Both parties get $50
 ▶ All parties get the same amount

▶ Proportional Division
 ▶ Party A gets $67
 ▶ Party B gets $33
 ▶ Parties get the proportion of what they claimed to the sums of all claims

Resolution depends on social customs
Two Methods:

- **Equal division**
 - Both parties get $50
 - All parties get the same amount

- **Proportional Division**
 - Party A gets $67
 - Party B gets $33
 - Parties get the proportion of what they claimed to the sums of all claims

- Resolution depends on social customs
This is an example of a *fair division* problem:

- Want to split some goods *fairly* among some people
Fair Division

This is an example of a **fair division** problem:

- Want to split some goods *fairly* among some people
- Goods can be:
Fair Division

This is an example of a **fair division** problem:

- Want to split some goods *fairly* among some people
- Goods can be:
 - divisible: can split goods into any proportions (money)
This is an example of a **fair division** problem:

- **Want to split some goods *fairly* among some people**
- **Goods can be:**
 - divisible: can split goods into any proportions (money)
 - indivisible: cannot split goods into any proportions ({piano, car, dog})
This is an example of a **fair division** problem:

- Want to split some goods *fairly* among some people
- Goods can be:
 - divisible: can split goods into any proportions (money)
 - indivisible: cannot split goods into any proportions (\{piano, car, dog\})
- Not all people have to value the same goods the same way
Fair Division

This is an example of a fair division problem:

- Want to split some goods fairly among some people
- Goods can be:
 - divisible: can split goods into any proportions (money)
 - indivisible: cannot split goods into any proportions (\{piano, car, dog\})
- Not all people have to value the same goods the same way
- People may have different levels of entitlement
Fair Division

This is an example of a **fair division** problem:

- Want to split some goods *fairly* among some people
- Goods can be:
 - divisible: can split goods into any proportions (money)
 - indivisible: cannot split goods into any proportions ({piano, car, dog})
- Not all people have to value the same goods the same way
- People may have different levels of entitlement
- Can divide inheritance, chores, business profits, Berlin, cake, …
Fair Division

- Let $u_i(X_j)$ be the value that person i assigns to j’s division
Fair Division

- Let $u_i(X_j)$ be the value that person i assigns to j’s division
- Fairness can be measured by:
 - simple fair division: $u_i(X_i) \geq \frac{1}{n}$
 - envy-free: $u_i(X_i) \geq u_i(X_j)$
 - equitable: $u_i(X_i) = u_j(X_j)$
 - Pareto optimal: no other division would make someone else better off without making someone else worse off
- Problem: Someone getting everything, and everyone else getting nothing, is Pareto optimal
Fair Division

- Let $u_i(X_j)$ be the value that person i assigns to j’s division
- Fairness can be measured by:
 - simple fair division: $u_i(X_i) \geq \frac{1}{n}$
Let $u_i(X_j)$ be the value that person i assigns to j’s division

Fairness can be measured by:

- simple fair division: $u_i(X_i) \geq \frac{1}{n}$
- envy-free: $u_i(X_i) \geq u_i(X_j)$
Fair Division

Let $u_i(X_j)$ be the value that person i assigns to j’s division

Fairness can be measured by:

- simple fair division: $u_i(X_i) \geq \frac{1}{n}$
- envy-free: $u_i(X_i) \geq u_i(X_j)$
- equitable: $u_i(X_i) = u_j(X_j)$
Let $u_i(X_j)$ be the value that person i assigns to j’s division.

Fairness can be measured by:

- simple fair division: $u_i(X_i) \geq \frac{1}{n}$
- envy-free: $u_i(X_i) \geq u_i(X_j)$
- equitable: $u_i(X_i) = u_j(X_j)$
- Pareto optimal: no other division would make someone else better off without making someone else worse off
Fair Division

Let $u_i(X_j)$ be the value that person i assigns to j’s division

Fairness can be measured by:

- simple fair division: $u_i(X_i) \geq \frac{1}{n}$
- envy-free: $u_i(X_i) \geq u_i(X_j)$
- equitable: $u_i(X_i) = u_j(X_j)$
- Pareto optimal: no other division would make someone else better off without making someone else worse off

Problem:
Fair Division

- Let $u_i(X_j)$ be the value that person i assigns to j’s division
- Fairness can be measured by:
 - simple fair division: $u_i(X_i) \geq \frac{1}{n}$
 - envy-free: $u_i(X_i) \geq u_i(X_j)$
 - equitable: $u_i(X_i) = u_j(X_j)$
 - Pareto optimal: no other division would make someone else better off without making someone else worse off
 - Problem: Someone getting everything, and everyone else getting nothing, is Pareto optimal
Three Wives

A rule in the Talmud:

- Man is married to three women

If estate worth is 100, each wife receives 33\frac{1}{3} (this agrees with equal division)

If estate worth is 300, the wives receive 50, 100, 150 (this agrees with proportional division)

If estate worth is 200, the wives receive 50, 75, 75 (???)

Is there a coherent rule that outlines these cases?

Solved by game theorists in 1985
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)

Problem: estate is not worth 600

- If estate worth is 100, each wife receives 33.33 (this agrees with equal division)
- If estate worth is 300, the wives receive 50, 100, 150 (this agrees with proportional division)
- If estate worth is 200, the wives receive 50, 75, 75

Is there a coherent rule that outlines these cases?

Solved by game theorists in 1985
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600

Solved by game theorists in 1985
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
 - If estate worth is 100, each wife receives $33\frac{1}{3}$ (this agrees with equal division)
 - If estate worth is 300, the wives receive 50, 100, 150 (this agrees with proportional division)
 - If estate worth is 200, the wives receive 50, 75, 75 (???)
- Is there a coherent rule that outlines these cases?
 - Solved by game theorists in 1985
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
 - If estate worth is 100, each wife receives $33 \frac{1}{3}$ (this agrees with equal division)
 - If estate worth is 300, the wives receive 50, 100, 150 (this agrees with proportional division)
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
 (this agrees with equal division)
 - If estate worth is 300, the wives receive 50, 100, 150
 (this agrees with proportional division)
 - If estate worth is 200, the wives receive 50, 75, 75
 (???)
A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
 - If estate worth is 100, each wife receives 33\(\frac{1}{3}\) (this agrees with equal division)
 - If estate worth is 300, the wives receive 50, 100, 150 (this agrees with proportional division)
 - If estate worth is 200, the wives receive 50, 75, 75 (???)
- Is there a coherent rule that outlines these cases?
Three Wives

A rule in the Talmud:

- Man is married to three women
- Upon husband’s death, each wife is to receive 100, 200, 300 (zuz)
- Problem: estate is not worth 600
 - If estate worth is 100, each wife receives 33\frac{1}{3}
 (this agrees with equal division)
 - If estate worth is 300, the wives receive 50, 100, 150
 (this agrees with proportional division)
 - If estate worth is 200, the wives receive 50, 75, 75
 (???)
- Is there a coherent rule that outlines these cases?
 - Solved by game theorists in 1985
Equal Division of Contested Sums

- Trying to fairly divide amongst two people
Equal Division of Contested Sums

- Trying to fairly divide amongst two people
- Idea:
 - Give everyone their uncontested amounts
Equal Division of Contested Sums

- Trying to fairly divide amongst two people
- Idea:
 - Give everyone their uncontested amounts
 - Split contested amount in half
Equal Division of Contested Sums

- Two parties are trying to split 100

 - Party A receives 75
 - Party B receives 25
Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100

A receives 75
B receives 25
Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50
Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50
- Using equal division of contested sums, how much does each party receive?

A receives 75
B receives 25
Equal Division of Contested Sums

- Two parties are trying to split 100
- Party A claims 100
- Party B claims 50
- Using equal division of contested sums, how much does each party receive?
 - A receives 75
 - B receives 25
Equal Division of Contested Sums

- Two parties are trying to split inheritance

 - If estate is worth 80, how much does each party receive?
 - Party A receives 40
 - Party B receives 40

 - If estate is worth 125, how much does each party receive?
 - Party A receives 50
 - Party B receives 75

 - If estate is worth 200, how much does each party receive?
 - Party A receives 50
 - Party B receives 150
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
 - A receives 40
 - B receives 40

- If estate is worth 125, how much does each party receive?
 - A receives 50
 - B receives 75

- If estate is worth 200, how much does each party receive?
 - A receives 50
 - B receives 150
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
 - A receives 40
 - B receives 40
- If estate is worth 125, how much does each party receive?
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
 - A receives 40
 - B receives 40
- If estate is worth 125, how much does each party receive?
 - A receives 50
 - B receives 75
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
 - A receives 40
 - B receives 40
- If estate is worth 125, how much does each party receive?
 - A receives 50
 - B receives 75
- If estate is worth 200, how much does each party receive?
Equal Division of Contested Sums

- Two parties are trying to split inheritance
- Party A claims 100
- Party B claims 300
- If estate is worth 80, how much does each party receive?
 - A receives 40
 - B receives 40
- If estate is worth 125, how much does each party receive?
 - A receives 50
 - B receives 75
- If estate is worth 200, how much does each party receive?
 - A receives 50
 - B receives 150
Three Wives

- Back to rule in the Talmud:

 - If estate worth is 100, each wife receives 33$rac{1}{3}$.
 - If estate worth is 300, the wives receive 50, 100, 150.
 - If estate worth is 200, the wives receive 50, 75, 75.

 The allotment of any two wives is split using the above rule!

 (three things to check in each case)

 Need method for when there are more than two parties
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $\frac{100}{3}$
 - If estate worth is 300, the wives receive 50, 100, 150
 - The allotment of any two wives is split using the above rule!
 (three things to check in each case)
- Need method for when there are more than two parties
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
 - If estate worth is 300, the wives receive 50, 100, 150
 - If estate worth is 200, the wives receive 50, 75, 75

Need method for when there are more than two parties.
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
 - If estate worth is 300, the wives receive 50, 100, 150
 - If estate worth is 200, the wives receive 50, 75, 75

The allotment of any two wives is split using the above rule!
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
 - If estate worth is 300, the wives receive 50, 100, 150
 - If estate worth is 200, the wives receive 50, 75, 75
- The allotment of any two wives is split using the above rule! (three things to check in each case)
Three Wives

- Back to rule in the Talmud:
- Wives claim 100, 200, 300
 - If estate worth is 100, each wife receives $33\frac{1}{3}$
 - If estate worth is 300, the wives receive 50, 100, 150
 - If estate worth is 200, the wives receive 50, 75, 75
- The allotment of any two wives is split using the above rule! (three things to check in each case)
- Need method for when there are more than two parties
Algorithm

Want algorithm for the equal division of contested sums between \(n \) claims

- Order claims from lowest to highest (from 1 to \(n \))
Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim

Give n money until their loss equals $n-1$'s loss (loss is money owed minus money given)

Give $n-1$ and n money until their loss equals $n-2$'s loss

Proceed until all losses are equal
Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
Algorithm

Want algorithm for the equal division of contested sums between \(n \) claims

- Order claims from lowest to highest (from 1 to \(n \))
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through \(n \) until 2 receives half of their claim
- Proceed until everyone has half of their claim
Algorithm

Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n-1$’s loss (loss is money owed minus money given)
Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n - 1$’s loss (loss is money owed minus money given)
- Give $n - 1$ and n money until their loss equals $n - 2$’s loss
Want algorithm for the equal division of contested sums between n claims

- Order claims from lowest to highest (from 1 to n)
- Divide estate equally until 1 receives half of their claim
- Divide estate equally among 2 through n until 2 receives half of their claim
- Proceed until everyone has half of their claim
- Give n money until their loss equals $n - 1$’s loss
 (loss is money owed minus money given)
- Give $n - 1$ and n money until their loss equals $n - 2$’s loss
- Proceed until all losses are equal
Equal Division of Contested Sums

- Suppose the estate is worth 550
Equal Division of Contested Sums

- Suppose the estate is worth 550
- How much do the parties receive using the algorithm?
Equal Division of Contested Sums

- Suppose the estate is worth 550
- How much do the parties receive using the algorithm?
 - $83\frac{1}{3}$, $183\frac{1}{3}$, and $283\frac{1}{3}$