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ABSTRACT

Mixed Carlitz Motives and Colored Multizeta Values in Characteristic p

Yao-Rui Yeo

Ching-Li Chai, Advisor

This thesis studies characteristic p multizeta values, which are function field

analogs of the Euler-Riemann multizeta values. The objective of this thesis is two-

fold. We first explicitly construct the category of mixed Carlitz motives, which is

a counterpart to the category of mixed Tate motives in characteristic zero. After

that, we identify specific mixed Carlitz motives, and use them to derive algebraic

independence properties of colored multizeta values. The former includes all known

t-motives related to multizeta values, while the latter complements results in the

literature on algebraic relations between multizeta values.
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Chapter 1

Introduction

1.1 Overview of classical case

The Euler-Riemann multizeta value is defined for a list of positive integers s1, . . . , sr,

with s1 ≥ 2, as

ζER(s1, . . . , sr) =
∑

n1>···>nr≥1

1

ns11 · · ·nsrr
.

More generally, for a positive integer N , let µN be the N th roots of unity. Then

the Euler-Riemann colored multizeta value for ε1, . . . , εr ∈ µN and s1, . . . , sr ∈ Z≥1,

with (ε1, s1) 6= (1, 1), is defined in [26] as

ζERs1,...,sr(ε1, . . . , εr) =
∑

n1>···>nr≥1

εn1
1 · · · εnrr
ns11 · · ·nsrr

.

These special values has connections to physics and enumeration problems, and a

main goal is to understand algebraic relations between the Euler-Riemann multizeta

values. Many relations between them are known, and one can either construct
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these relations combinatorially, or understand them better by reinterpreting them

as periods of mixed Tate motives (see [33] for a collection of examples). However,

almost nothing is known about algebraic independence. For example, we still do

not know if ζER(3) is transcendental!

Despite this, conjectures on algebraic relations between Euler-Riemann mul-

tizeta values has been formulated. For example, it is believed that the values

π, ζER(3), ζER(5), . . . at odd positive integers greater than 1 are algebraically in-

dependent over Q, and so is the set of multiple-zeta values ζER(s1, . . . , sr) with

si ∈ {2, 3} and s1 · · · sr forming a Lyndon word (see [33, Conjecture 12]). As far as

we know, no such conjectures has been formulated for colored multizeta values.

Analogs of these multizeta values in the function field case has been defined,

and are called Thakur’s multizeta values and colored multizeta values respectively

in this thesis. In stark contrast to the number field case, not many explicit linear

relations between them are known, but one can construct arbitrarily large subsets

of multizeta values that are algebraically independent. These questions in the case

of Thakur’s zeta values are solved completely in [9], and work has been done for

multizeta values in higher depth. One consequence of this thesis is a generalization

of these results to colored multizeta values.
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1.2 Outline

In this thesis we will study the structure of certain t-motives and apply them to

algebraic independence of multizeta values in characteristic p. The idea is to carry

out a function field analog of a similar program in the case of number fields; see

[16, 17] for an exposition.

Section 2 contains some background in t-motives that is essential to our dis-

cussion. Of upmost importance is the concept of uniformizability (Section 2.3),

which is needed to interpret multizeta values as periods of certain t-motives. The

main tool to analyze multizeta values after this interpretation is the motivic Galois

group (Section 2.4). A general framework for the concepts surrounding t-motives is

Hodge-Pink theory, and we will highlight some aspects of it that is related to our

discussions later (Section 2.5).

Section 3 defines mixed Carlitz motives (Definition 3.1.1). This is a subclass

of those t-motives that are successive extensions of tensor products of the Carlitz

module. The category of mixed Carlitz motives is motivated from Hodge-Pink

theory and the examples in [3, 5, 9, 19, 22], and all the special values studied

in this thesis (and in the literature) can be realized as periods of certain mixed

Carlitz motives. This category satisfies basic properties such as closure under tensor

products and direct sums (Proposition 3.1.2), and we explicitly compute the period

matrices for them (Theorem 3.2.2).

Section 4 can be split into two parts. The first half defines our main object of
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study: multizeta values and multipolylogarithms (Definition 4.1.2). These multi-

zeta values are special values of Goss’s analytic continuation of the Euler-Riemann

multizeta function for function fields in [18], and generalizes Thakur’s definition in

[27]. We will discuss some geometrical and combinatorial properties of them, such

as their interpretations as periods of mixed Carlitz motives, their shuffle relations,

and the decomposition of multizeta values into multipolylogarithms (Sections 4.1

and 4.2). The next half studies linear independence properties of multipolyloga-

rithms by way of the motivic Galois group (Sections 4.3 and 4.4), and applies this

to infer algebraic independence of large classes of colored multizeta values, defined

by

ζs1,...,sr(ε1, . . . , εr) =
∑

deg(a1)>···>deg(ar)≥0
ai∈A+

ε
deg(a1)
1 · · · εdeg(ar)

r

as11 · · · asrr
,

where si are positive integers, εi ∈ F×q and A+ denotes the set of monic polynomials

in Fq[θ]. Thakur’s multizeta values are the colored multizeta values with εi = 1 for

all i. Furthermore, in case r = 1 Carlitz had indirectly computed that ζ(q−1)n(1)

is a Fq(θ)-rational multiple of π̃(q−1)n, where π̃ is the “fundamental period” of the

so-called Carlitz module. Our main results concerning colored multizeta values are

stated in Section 4.5 (Theorems 4.5.9, 4.5.12, 4.5.13, and a recipe before Theorem

4.5.12), and will follow from the steps carried out in proving the following.

Theorem (c.f. Corollary 4.5.10). Let Zn = {π̃, ζs(ε) : 1 ≤ s ≤ n and ε ∈ F×q }.

4



Then

trdegk k(Zn) = 1−
⌊

n

q − 1

⌋
+

⌊
n

p(q − 1)

⌋
+ (q − 1)

(
n−

⌊
n

p

⌋)
.

The results we obtained are an extension of work done on Thakur’s multizeta

values in [9, 21, 34]. In particular, it subsumes results in these references as special

cases, and we were motivated to obtain such a result due to recent work of [19]

proving transcendence of colored multizeta values. After this, we conclude Section

4 with some remarks on writing down linear relations using known ones in [24, 30, 31]

(Section 4.6).

Section 5 is the final section, and discusses some future directions of research

stemming from our work.
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Chapter 2

Background

2.1 List of notations

Below is a list of frequently used notation we will use throughout the thesis.

Notation Meaning

q a fixed power of a prime p

F arbitrary field extension of Fq that is perfect

F (t)[σ, σ−1] ring defining t-motives (c.f. Definition 2.2.2)

A Fq[θ], with θ transcendental over Fq

A+ monic polynomials in A

k Fq(θ)

k∞ Fq((1
θ
)), i.e. completion of k with respect to the valuation ∞

C∞ completion at ∞ of a fixed algebraic closure of k∞
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k a fixed algebraic closure of k in C∞

| · | a fixed absolute value on C∞ with |θ| = q

·(i) the ith Frobenius twist (c.f. Definition 2.2.1)

C⊗n Carlitz motive (c.f. Example 2.2.6)

Ω(t) Carlitz function (c.f. Definition 2.3.6)

π̃ Carlitz period; function field analog of π (c.f. Definition 2.3.7)

T Tate algebra of C∞[[t]]

L fraction field of T

li
∏i

j=1(t− θqj) if i > 0, and 1 if i = 0 (c.f. Definition 4.1.2)

Li li evaluated at t = θ (c.f. Definition 4.1.2)

Φ matrix for the σ-action of a t-motive (c.f. Definition 2.2.4)

Ψ period matrix of a t-motive (c.f. Definition 2.3.4)

ΓM motivic Galois group of a t-motive M (c.f. Definition 2.3.9)

ζ~s(~x) multizeta values; MZ (c.f. Definition 4.1.2)

~ε tuple of elements εi in F×q

γi fixed (q − 1)st root in C∞ of an element εi ∈ F×q

Li~s(~ε, ~z) multipolylogarithms; MP (c.f. Definition 4.1.2)

r depth of an arbitrary MZ or MP (c.f. Definition 4.1.2)

w weight of an arbitrary MZ or MP (c.f. Definition 4.1.2)

Γs Carlitz gamma (c.f. Definition 4.1.5)

Hn(t) Anderson-Thakur polynomials (c.f Theorem 4.1.6)
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ζ~s(~ε) colored multizeta values; CMZ (c.f. Definition 4.5.1)

Li~s(~ε, ~u) colored multipolylogarithms; CMP (c.f. Definition 4.5.1)

2.2 Definitions of t-motives

The main goal of this section and the next is to sketch the main ideas of Papanikolas

in [22], inserting in comments from other related papers as necessary. Let F be a

field extension of k = Fq(θ) that is perfect. The fields F we are most interested in

is the function field complex numbers C∞, and the algebraic closure k of k in C∞.

Definition 2.2.1. For every f =
∑

j fjt
j ∈ F [[t]], define the ith Frobenius twist to

be

f (i) :=
∑
j

f q
i

j t
j.

Definition 2.2.2. The ring F [t, σ] is the non-commutative ring defined by the

relations

tσ = σt, ft = tf, σf = f (−1)σ; f ∈ F [t].

The ring F (t)[σ, σ−1] is the ring consisting of finite sums
∑

i fiσ
i and satisfying the

same relations above.

We define three kinds of t-motives over F in Definitions 2.2.3–2.2.5.

Definition 2.2.3. A pre t-motive is a left F (t)[σ, σ−1]-module that is of finite

dimension over F (t). Morphisms between pre t-motives are left F (t)[σ, σ−1]-module

homomorphisms.
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Definition 2.2.4. An effective t-motive is a left F [t, σ]-module M that is finite free

over F [t] and satisfying the following condition for one (and hence all) F [t]-basis m

of M : if Φ is the matrix corresponding to the σ-action, so that σ ·m = Φm, then

det Φ = c(t − θ)s for some c ∈ F× and nonnegative integer s. Morphisms between

effective t-motives are left F [t, σ]-module homomorphisms.

Definition 2.2.5. An Anderson t-motive is an effective t-motive M that is also

finite free over F [σ], and satisfying

(t− θ)nM ⊂ σM for n >> 0.

Morphisms between Anderson t-motives are left F [t, σ]-module homomorphisms.

Remark. Our definitions of t-motives are sometimes called dual t-motives in the

literature.

The tensor product of two pre t-motives M,M ′ over F [t] is denoted M ⊗M ′

with diagonal σ-action: σ(m⊗m′) = σ(m)⊗ σ(m′).

Example 2.2.6. Here are three key motives we will deal with.

• The trivial motive 1 is the free rank-one F [t]-module F [t] with trivial σ-action

σ(f) = f (−1). This is effective but not Anderson.

• The Carlitz motive C is the Anderson t-motive F [t] with σ-action σ(f) =

(t− θ)f (−1).

• The motive C⊗n is the n-fold tensor product of C over F [t], which we also

call a Carlitz motive. Here σ(f) = (t− θ)nf (−1).
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Let T o be the (exact) category of effective t-motives with left F [t, σ]-module

homomorphisms as morphisms. Because of the noncommutativity of F [t, σ], the

Hom sets in T o are modules over Fq[t] and not F [t]. In fact, for any effective t-

motives M,N ∈ T o, the set HomT o(N,M) is a finite free Fq[t]-module. This can

be seen by a straightforward argument showing that the map

HomT o(N,M)⊗Fq F −→ HomF [t](N,M)

is injective, where the right hand side is the free F [t]-module consisting of all F [t]-

linear maps from N to M .

Furthermore, the category T o is a full subcategory of the category of all F [t, σ]-

modules, but is not an abelian category: the multiplication by t map t : 1 −→ 1

has trivial kernel and cokernel, but the morphism is not invertible. We will fix this

later by enlarging the Hom set and defining a new category T .

Now let N and M be effective t-motives, and denote their σ-actions by σN and

σM . After fixing F [t]-bases n and m, call their respective matrices ΦN,n and ΦMm,

so that

σN · n = ΦN,nn.

(Similarly σM ·m = ΦM,mm). Note that N and M are determined up to isomor-

phism by ΦN,n and ΦM,m.

Consider the group Ext1
T o(N,M) of extensions of M by N , with group structure

given by Baer sum. It is easy to check the following.
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• An extension [E] ∈ Ext1
T o(N,M) is specified by a matrixΦM,m 0

e ΦN,n


for some e.

• If [E], [E ′] ∈ Ext1
T o(N,M) are classes corresponding to matricesΦM,m 0

e ΦN,n

 and

ΦM,m 0

e′ ΦN,n

 ,
then [E] + [E ′] is the class corresponding to the matrixΦM,m 0

e + e′ ΦN,n

 .
• Let 0 −→ M −→ E −→ N −→ 0 be an exact sequence corresponding to

[E] ∈ Ext1
T o(N,M). For any a ∈ Fq[t], consider the pushout diagram

M E

M M ta E

a·

of t-motives. If [M ] corresponds to the matrixΦM,m 0

e ΦN,n

 ,
then [M ta E] corresponds to the matrixΦM,m 0

ae ΦN,n

 .
11



Hence Ext1
T o(N,M) has an Fq[t]-module structure defined by Baer sums and Carte-

sian pushouts.

Proposition 2.2.7. Let M,N as above.

(a) Fix a choice of F [t]-bases n,m of N,M , and identify any homomorphism

u : N −→M with the matrix U ∈ Matn×m(F [t]) satisfying u(n) = Um. Then

there is a Fq[t]-module isomorphism

hn,m : HomT o(N,M)
∼−→
{
U ∈ Matn×m(F [t]) : ΦN,nU = U (−1)ΦM,m

}
,

and HomT o(N ⊗ C,M ⊗ C) = HomT o(N,M).

(b) There is an Fq[t]-module isomorphism

en,m : Ext1
T o(N,M)

∼−→ M⊕n

(σMIn − ΦN,n)M⊕n

where n = rankF [t] N and m = rankF [t] M . (The product ΦN,nM
⊕n above is

defined by identifying M with Mat1×m(F [t]) via the chosen F [t]-basis m of

M .)

Remark. Explicitly, writing m = (b1, . . . , bm), we use the identification ιm : M −→

Mat1×m(F [t]) given by ιm(c1b1 + · · ·+ cmbm) = (c1, . . . , cm). This is extended to an

identification ιm : M⊕n −→ Matn×m(F [t]), and we make sense of multiplying ΦN,n

by an element of M⊕n by viewing this element as an element of Matn×m(F [t]) under

ιm.

Proof of Proposition 2.2.7. (a) This is a straightforward computation.
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(b) Assume E is equivalent to M ⊕N in Ext1
T o(N,M). Then there is a commu-

tative diagram as below.

1 M E N 1

1 M M ⊕N N 1

B

In matrix notation, we require

B =

Im 0

V In

 , V ∈ Matn×m(F [t]),

and for B to be a morphism, by part (a) we requireΦM 0

e ΦN


Im 0

V In

 =

 Im 0

V (−1) In


ΦM 0

0 ΦN

 .
This is equivalent to V ΦM + e = ΦNV

(−1). Thus E is equivalent to M ⊕N if and

only if e satisfies the relation

e = −ΦNV + V (−1)ΦM

for some V ∈ Matn×m(F [t]). We are done by observing that, for the basis m of M

giving rise to ΦM , there is an Fq[t]-module homomorphism

Matn×m(F [t]) −→ M⊕n

(σMIn − ΦN)M⊕n
— x1 —

...

— xn —

 7−→ (x1 ·m, . . . ,xn ·m)

having kernel the Fq[t]-module consisting of all matrices satisfying the same relation

as e above.
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Remark. Let us note the immediate corollary

Ext1
T o(1,M) ∼= M/(σM − 1)M,

which is mentioned in [12], and credited to an unpublished manuscript of Ander-

son. In [23], Papanikolas and Ramachandran has also given an interpretation of

Ext1
T o(N,M) using the language of biderivations.

Definition 2.2.8. Define the category T of effective t-motives with objects the

same ones as T o and Hom sets

HomT o(−,−)⊗Fq [t] Fq(t).

Proposition 2.2.9 ([22, Proposition 3.4.5]). For M,N ∈ T , there is an isomor-

phism of Fq(t)-spaces

HomT o(M,N)⊗Fq [t] Fq(t) −→ Hompre t-motives(M(t), N(t)),

where M(t) = F (t)⊗F [t] M with σ-action σ(α⊗m) = α(−1)⊗ σ(m) for all m ∈M .

2

We can now define the internal Hom in the category of pre t-motives P , defined

as HomF (t)(M,N) with σ-action

σ(f) = σN ◦ f ◦ σ−1
M .

(Note that this internal Hom cannot be constructed in T , since an “inverse” to

the Carlitz module does not exist there.) With this, we define the dual of an

14



effective t-motive M by M∨ = HomF (t)(M,1). The dual also lies in P , and satisfies

M∨∨ = M .

Example 2.2.10. The dual C∨ of the Carlitz motives C is an object in P , and is

isomorphic to F (t) with σ-action

σ(f) = (t− θ)−1f (−1).

Let us also define the category A to be the full subcategory of T with objects

consisting of Anderson t-motives. Then, by Proposition 2.2.9, there is a natural

embedding A ↪−→ P .

Theorem 2.2.11 ([22, Theorem 3.4.9]). The category P is a rigid abelian Fq(t)-

linear tensor category. If we write P as the category of pre t-motives, then A ↪−→ P

is fully faithful. 2

Proposition 2.2.12 ([25, Theorem 7.4.2]). For all effective t-motives M and N ,

Ext1
T (M,N) = Ext1

T o(M,N)⊗Fq [t] Fq(t)

ExtiT (M,N) = 0 for i > 1. 2

2.3 Uniformizable t-motives

From now on till the end of the thesis, we will concentrate on the case F = k. Let

T be the Tate algebra of C∞[[t]], which is the subalgebra of C∞[[t]] consisting of all

power series
∑

i≥0 cit
i in C∞[[t]] satisfying |ci| → 0 as i → ∞. Also let L be the

field of fractions of T.

15



Definition 2.3.1. Let M be a pre t-motive over k, and let MB := (M ⊗k(t) L)σ.

Then M is uniformizable if the natural map

hM : MB ⊗Fq(t) L −→M ⊗k(t) L

is an isomorphism.

The definition of uniformizability is a generalization of Anderson’s notion of rigid

analytic triviality, where he showed in [1] that the exponential map of an Anderson

t-motive M is surjective if and only if M is uniformizable. Exponential maps are

particular useful for us in the case of Carlitz motives as it gives us a computation of

Carlitz’s zeta values at “even” integers; see the discussion before Proposition 4.5.5.

Proposition 2.3.2 ([22, Proposition 3.3.9]). Assume that the Anderson t-motive

M has rank m, and fix a F [t]-basis m of M . If Φ ∈ Matm×m(k[t]) is the matrix

corresponding to the σ-action of M with respect to m, then M is uniformizable if

Ψ(−1) = ΦΨ

for some Ψ ∈ GLm(L). Furthermore, the entries of Ψ−1m forms a k-basis for MB.

2

Remark. In the remainder of this thesis, if Ψ(−1) = ΦΨ, we will say that Φ is

uniformizable by Ψ, or that Ψ is a uniformizer of Φ.

Proposition 2.3.3 ([2, Proposition 3.1.3]). Let E be the subring of the Tate algebra

T consisting of all elements that is entire on C∞. If M is a uniformizable t-motive,

16



then there exists a Ψ as above such that Ψ ∈ GLm(E). In particular, Ψ ∈ GLm(T).

2

Definition 2.3.4. The Ψ in the above proposition is called a period matrix of a

uniformizable t-motive M with respect to Φ. The periods of Ψ are the entries of

Ψ|t=θ.

Example 2.3.5. The trivial motive 1 is uniformizable with Ψ = [1].

Example 2.3.6. The Carlitz motive C is uniformizable. Carlitz [6] indirectly con-

structed the C∞-entire function

Ω = Ω(t) = (−θ)−
q
q−1

∞∏
i=1

(
1− t

θ(i)

)

and showed that Ω(−1) = (t − θ)Ω. (Here we fix a choice of (q − 1)st root for −θ.)

Thus the matrix Ψ = [Ω] uniformizes C, as Φ = [t − θ] with respect to the basis

{1}. Similarly, Ψ = [Ωn] uniformizes C⊗n as Φ = [(t− θ)n].

It is possible for a t-motive to be non-uniformizable, though the constructions

of these are contrived; see [1, Section 2.2] for an example.

Here is a definition that will be useful later on.

Definition 2.3.7. The Carlitz period is defined to be

π̃ :=
1

Ω(θ)
= −θ(−θ)

1
q−1

∞∏
i=1

(
1− θ

θ(i)

)−1

,

where we fix a choice of (q − 1)st root for −θ.
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In [32], it was proven that the Carlitz period is transcendental over Fq(θ).

Theorem 2.3.8 ([22, Theorem 3.3.15]). Let R be the category of uniformizable

pre t-motives over k. Then R is a neutral Tannakian category with fiber functor

ω : P 7−→ PB, where PB is defined in Definition 2.3.1. 2

Following [22], define S to be the strictly full Tannakian subcategory of R

generated by the Anderson t-motives A.

Definition 2.3.9. Let M ∈ S, and let SM be the strictly full Tannakian subcate-

gory of S generated by M . (That is, SM consists of all objects in S isomorphic to

subquotients and finite direct sums of t-motives of the form M⊗α ⊗ (M∨)⊗β.) By

the Tannakian formalism, the motivic Galois group Γ = ΓM of M is defined to be

the affine group scheme over Fq(t) such that, for every commutative algebra R over

Fq(t), the group of R-points of ΓM is

ΓM(R) = Aut⊗SM (ω(R)),

where ω(R) is the base change of ω to R over Fq(t). This is a linear algebraic group

over Fq(t).

The next section explain how one can compute ΓM explicitly via difference

equations.
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2.4 The motivic Galois group

In this section we summarize the main facts on computing the motivic Galois group;

details can be found in [22]. We fix the following notations:

• J = Fq(t) and K = k(t) and L = L;

• M is a fixed effective t-motive over k of rank r + 1;

• ΓM is the motivic Galois group of M obtained via Tannakian formalism;

• Φ is the matrix defining the σ-action of M after fixing a basis;

• Ψ is a period matrix of M satisfying the uniformizability rule Ψ(−1) = ΦΨ.

Let Ψij be the (i, j)th entry of Ψ. We make the following two definitions.

• Consider the K-algebra map

v : K[Xij,
1

det(X)
] −→ L

Xij 7−→ Ψij.

We define Z to be the schematic closure of the map Spec(v) : Spec(L) −→

GL
r+1
/
K

. In other words, Z = Spec(K[Xij,
1

det(X)
]/ ker v), and is a closed

subgroup scheme of GL
r+1
/
K

.

• Consider the matrices Ψ1,Ψ2 ∈ GLr+1(L⊗k L) defined by

(Ψ1)ij = Ψij ⊗ 1, (Ψ2)ij = 1⊗Ψij.
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Now let Ψ̃ = Ψ−1
1 Ψ2, and consider the J-algebra map

µ : J [Xij,
1

det(X)
] −→ L⊗k L

Xij 7−→ Ψ̃ij.

We define Γ to be the schematic closure of the map Spec(µ) : Spec(L⊗kL) −→

GL
r+1
/
J
. In other words, Γ = Spec(J [Xij,

1
det(X)

]/ kerµ), and is a closed

subgroup scheme of GL
r+1
/
J
.

Theorem 2.4.1 ([22]). The following are true.

• Γ is isomorphic to ΓM over J .

• For any positive integer n, there is a natural J-isomorphsm ϕn : ΓC⊗n
∼−→ Gm.

• Let E be the subfield of C∞ generated by the entries of Ψ|t=θ over k. Then

trdegk E = dim ΓM .

• Z is stable under right multiplication by K ×J Γ, and is a torsor for K ×J Γ

over K.

• Γ is geometrically connected and smooth over J = Fq(t). 2

2.5 Aside: Some aspects of Hodge-Pink theory

The final section of the background will be devoted to summarizing some aspects

of Hodge-Pink theory [20], applied to the case of t-motives. This will not be needed

for the remainder of the thesis, and is here to indicate the existence of a framework

generalizing t-motives and uniformization.
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In this section, we will briefly discuss purity and mixedness, as well as the

comparison theorem between Betti and de-Rham cohomology.

Definition 2.5.1. Let M be a pre t-motive over k, and let

M̂ = MC∞ ⊗AC∞
C∞,

where MC∞ = C∞ ⊗k[t] M and AC∞ = C∞ ⊗Fq A.

• M is pure if there exists integers d and r, with r > 0, and a C∞-lattice L of

M̂ such that

σrL = tdL.

In this case, the weight of M is defined to be wt(M) = −d/r.

• M is mixed if it possesses an increasing weight filtration by pre t-motives WµM

indexed by µ ∈ Q, such that each graded pieced GrµM = WµM/
⋃
µ′<µWµ′M

is a pure pre t-motive of weight µ, and
∑

µ rankk(t) GrµM = rankk(t) M .

It is clear that tensor products of two pure pre t-motives M,M ′ (over the base

ring F [t]) is still pure: if

σrL = tdL and σr
′
L′ = td

′
L′,

then L⊗ L′ is a lattice of M ⊗M ′ satisfying

σdd
′
(L⊗ L′) = trd

′+r′d(L⊗ L′).

In particular wt(M ⊗M ′) = wt(M) + wt(M ′). Using this fact, the tensor product
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of two mixed pre t-motives N,N ′ is again mixed, with weight filtration

Wµ(N ⊗N ′) =
∑

µ′+µ′′=µ

(WµN)⊗ (WµN
′).

More properties on purity and mixedness can be found in [20, Proposition 4.10].

We highlight two important ones. Firstly, any morphism between mixed pre t-

motives as k(t)[σ, σ−1]-modules actually respects the weight filtration, so we can

use the same definition of morphisms in Section 2.2 for the mixed case. Secondly,

the weight filtration of a mixed t-motive M is uniquely determined by M itself.

Example 2.5.2. By the uniformization theorem for Drinfeld modules (see [27,

Theorem 2.4.2]), any Anderson t-motive M over k with rankk[σ] M = 1 is pure of

weight −1/r, where r = rankk[t] M . In particular, by the above discussion, the

Carlitz motive C⊗n of Example 2.2.6 is pure of weight −n.

It turns out that mixed uniformizable pre t-motives also forms a neutral Tan-

nakian category.

Theorem 2.5.3 ([20, Theorem 4.23]). LetMP be the category of mixed uniformiz-

able pre t-motives. Then MP is a neutral Tannakian category with fiber functor

ω : P 7−→ PB, where PB is defined in Definition 2.3.1. 2

Let M be a mixed uniformizable pre t-motive. Then dimFq(t) M
B = dimk(t)M by

[20, Lemma 4.16] or [22, Proposition 3.3.8]. In particular, MB is of finite Fq(t)-rank,

and we can define Betti and de Rham cohomologies as follows.
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Definition 2.5.4. For a mixed uniformizable pre t-motive M , its Betti cohomology

and de Rham cohomology are defined to be

HB(M,C∞) := MB ⊗Fq(t) C∞ and HdR(M,C∞) := MC∞/JMC∞ ,

where MC∞ = C∞⊗k[t]M , and J is the maximal ideal in AR generated by θ⊗1−1⊗θ.

With this, the uniformization map hM in Definition 2.3.1 can be reformulated

in Hodge-Pink theory as an analog of the comparison theorem between Betti and

de Rham cohomology.

Theorem 2.5.5 ([20, Lemma 4.18, Theorem 4.36]). Let M is a mixed uniformizable

pre t-motive. Then there is a canonical isomorphism

hB,dR : HB(M,C∞) −→ HdR(M,C∞)

defined by hB,dR := hM (mod J), where hM is the uniformization map in Definition

2.3.1. Furthermore, if we choose a basis for M with the matrix for its σ-action being

Φ, and if Ψ is its period matrix, then hB,dR can be written in coordinates as Ψ−1.

2
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Chapter 3

Mixed Carlitz Motives

3.1 The category of mixed Carlitz motives

In this section we propose a definition for the function field counterpart of mixed

Tate motives. This category is motivated from the examples in [3, 5, 9, 19, 22], and

also includes our examples in Section 4.1.

Definition 3.1.1. Let M be an object in the category P satisfying the following

condition: there exists n ∈ Z such that M ⊗ C⊗n is k-isomorphic to the object in
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P attached to an Anderson t-motive represented by a σ-matrix of the form

Φ =



(t− θ)n1

a21(t− θ)n1 (t− θ)n2

a31(t− θ)n1 a32(t− θ)n2 (t− θ)n3

...
...

...
. . .

ar1(t− θ)n1 ar2(t− θ)n2 ar3(t− θ)n3 · · · (t− θ)nr


where ni ∈ Z≥0 for all i, and aij ∈ k[t] for all i, j. Such a pre t-motive M is a mixed

Carlitz motive if Φ further satisfies the following two conditions:

• the natural numbers ni satisfy n1 ≥ n2 ≥ · · · ≥ nr ≥ 0;

• if nj = nj+1 = · · · = nj+l, then auv = 0 for j ≤ v < u ≤ j + l.

Note that a mixed Carlitz motive is an object in the category of successive

extensions of tensor products of Carlitz motives. Let C be the category of mixed

Carlitz motives, with Hom sets defined by

HomF [t](−,−)⊗Fq [t] Fq(t).

Proposition 3.1.2. A mixed Carlitz motive is mixed in the sense of Definition

2.5.1. Furthermore:

• the direct sum and tensor product of two mixed Carlitz motives is still a mixed

Carlitz motive;

• C is a rigid Fq(t)-linear tensor category;

• the map C ↪−→ MP from C to the category MP of mixed uniformizable pre

t-motives is fully faithful, and C is a full Tannakian subcategory of MP.
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Proof. The first assertion is clear by the discussion in Section 2.5 and straightfor-

ward computation with the matrices defining mixed Carlitz motives. The proof of

the second and third assertions are the same as the ones given in [22] for Proposi-

tion 2.2.9 and Theorem 2.2.11, since morphisms respects weight filtrations by [20,

Proposition 4.10(g)].

3.2 Explicit period computations for mixed Car-

litz motives

In this section, we explicitly compute the period matrix for a mixed Carlitz motive.

This is motivated by the computations of [3].

Lemma 3.2.1. Let U ∈ Matr(k[t]) be a square matrix with nonzero determinant.

Consider the Fq[t]-module

S = {V ∈ GLr(T) : V (−1) = UV }.

If S is nonempty, then S is a GLr(Fq[t])-torsor.

Proof. Fix W ∈ S. For any other T in S, consider

G = W−1T.

Then, by invertibility of U in k(t), one gets

G(−1) = G.
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Note that the entries of G are still in T, so the above is only possible if G has entries

in Fq[t]. Thus T = WG with G ∈ GLr(Fq[t]).

Theorem 3.2.2. Mixed Carlitz motives over k are uniformizable.

Remark. In fact, the period matrix of a mixed Carlitz motive can be explicitly

determined from its σ-matrix. This will be demonstrated in the procedure described

in the proof.

Proof of Theorem 3.2.2. Preserve the notations of Definition 3.1.1. We can replace

M by M ⊗C⊗n for n >> 0 without loss of generality, so as to ensure ni ≥ 0 in the

matrix Φ. The proof proceed by induction on the k[t]-rank r of our mixed Carlitz

motive M .

As the case r = 0 is trivial, assume r ≥ 1. Then M can be written in matrix

form as 

(t− θ)n1

a21(t− θ)n1

... Φs

ar1(t− θ)n1


where Φs is a mixed Carlitz submotive. By induction there exists Ψs ∈ GLr−1 with
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Ψ
(−1)
s = ΦsΨs. We now seek a matrix Ψ of the form

β1

β2

... Ψs

βr


such that βi ∈ T and Ψ(−1) = ΦΨ. Thus we need

β
(−1)
1 = (t− θ)n1β,

and by Lemma 3.2.1 we can pick β1 = Ωn1 . A computation tells us that necessarily
β

(−1)
2

...

β
(−1)
r

 = Ωn1


a21(t− θ)n1

...

ar1(t− θ)n1

+ Φs


β2

...

βr

 .

Writing

Φs =


s2,1

...
. . .

sr,1 · · · sr,r−1

 ,

with si,j ∈ k[t], we need to solve the equations

β
(−1)
2 = a21Ωn1(t− θ)n1 + s2,1β2

β
(−1)
3 = a31Ωn1(t− θ)n1 + s3,1β2 + s3,2β3

...

β(−1)
r = ar1Ωn1(t− θ)n1 + sr,1β2 + sr,r−1βr.
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Let us solve for β2 first. Let v = max{1, |s21|}, where |s21| is the maximum among

all the absolute values of its coefficients. Then, as Ω is an entire function in T, we

can write a21Ωn1(t− θ)n1 = A(t) +B(t), where

• A(t) is a polynomial in k[t];

• B(t) is an element in T with coefficients all having valuation at most 1/v2.

Then a solution to β2 is β2 = β1
2 + β2

2 , where

• β1
2 is a solution to x(−1) = A(t) + s2,1x, which exists in k[t];

• β2
2 is a solution to x(−1) = B(t) + s2,1x.

Solve for β2
2 by doing a telescoping sum to obtain

β2
2 = B(1)(t) + s

(1)
2,1B

(2)(t) + s
(1)
2,1s

(2)
2,1B

(3)(t) + · · · ,

which converges by assumption on B(t). The rest of the the βi are solved iteratively

in the same fashion.

By Lemma 3.2.1, once we have computed such a uniformizer Ψ for Φ, we can

obtain any other uniformizer via right multiplication with a matrix in GLr(Fq[t]).

If we choose another set of basis for M , the associated σ-matrix Φ transforms by

Φ −→ S(−1)ΦS−1 for some matrix S, and so its associated uniformizer changes by

Ψ −→ S−1Ψ.
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Chapter 4

Application to Colored Multizeta

Values

4.1 Multizeta values and multipolylogarithms

We finally define multizeta values and multipolylogarithms. The latter has already

been defined in [7] in relation to Thakur’s multizeta values (i.e. for εi = 1). For

easier notation, we introduce the following product.

Definition 4.1.1. For any nonnegative integer i, define an element li ∈ A[t] =

Fq[θ][t] by

li :=


∏i

j=1(t− θ(j)) if i > 0;

1 if i = 0.

Also define Li := li|t=θ.
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In the definition below, our absolute value | · | is normalized by |θ| = q.

Definition 4.1.2. Fix a positive integer r, and let ~s = (s1, . . . , sr) be a list of

positive integers.

• For ~x ∈ (k
×

)r satisfying |xi| = 1 for all i, the multizeta value (or MZ) ζ~s(~x) is

the element of C∞ defined by

ζ~s(~x) :=
∑

deg(a1)>···>deg(ar)≥0
ai∈A+

x
deg(a1)
1 · · ·xdeg(ar)

r

as11 · · · asrr
,

where A+ denotes the set of monic polynomials in A = Fq[θ].

• For ~ε ∈ (F×q )r and ~z ∈ (k
×

)r satisfying |zi| < q
qsi
q−1 for all i, define an element

of the Tate algebra T by

L~s(~ε, ~z) :=
∑

i1>···>ir≥0

εi11 z
(i1)
1 · · · εirr z

(ir)
r

ls1i1 · · · l
sr
ir

,

where the li’s are defined in Definition 4.1.1. The multipolylogarithm (or MP)

Li~s(~ε, ~z) associated to ~ε and ~z is defined to be Li~s(~ε, ~z) := L~s(~ε, ~z)|t=θ. In case

r = 1, we will call an MP a polylogarithm.

For both the MZs and MPs, its depth is r, and its weight is w := s1 + · · ·+ sr.

The condition imposed on ~x in the definition of our multizeta values is to ensure

we have a well-defined period interpretation (Proposition 4.1.7). We have only

defined MPs for ~ε a tuple of elements of (q − 1)st roots of unity as this is sufficient

for our applications.

Remark. Note that the expression L~s(~ε, ~z) can be formally expressed as an element
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in C∞[[t]] by applying the identity

1

t− θ(j)
= − 1

θ(j)

(
1 +

t

θ(j)
+

t2

(θ(j))2
+ · · ·

)
, i > 0.

(The right hand side of this identity converges on the interval |t| < |θ(j)| = qq
j
.)

We now explain why L~s(~ε, ~z) converges whenever |t| < |θ(1)| = qq; in particular,

L~s(~ε, ~z) ∈ T, and it makes sense to define MPs by evaluating L~s(~ε, ~z) at t = θ. To

see this, let τ ∈ C∞ be such that |τ | < qq, and let li,τ := li|t=τ . Then

|li,τ | = q
qs
q−1

(qs−1).

Preserving the notations in the above definition, this implies∣∣∣∣∣εi11 z(i1)
1 · · · εirr z

(ir)
r

ls1i1,τ · · · l
sr
ir,τ

∣∣∣∣∣ = q
q
q−1

(s1+···+sr)

(
|z1|
q
qs1
q−1

)(i1)(
|zr|
q
qs1
q−1

)(ir)

,

and the above expression approaches 0 as i1 > · · · > ir ≥ 0 approaches ∞.

Definition 4.1.2 generalizes the MZ and MP considered in [4], and are special

values of Goss’s analytic continuation in [18]. In particular, Thakur’s multizeta

values are the values

ζ~s(~1) =
∑

deg(a1)>···>deg(ar)≥0
ai∈A+

1

as11 · · · asrr
.

Remark. No functional equation for the MZ is known. If we consider the MZ at

negative integers, it turns out that the infinite sum reduces to a finite sum, and a

study of the depth 1 case was done in [28].

We will study combinatorial properties of the MPs and MZs in the next section.

For now we concern ourselves with realizing MPs and MZs as periods of special

mixed Carlitz motives.
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Polylogarithms as periods

For a family of polylogarithms Lin(ε1, z1), . . . ,Lin(εm, zm) of the same weight n,

we can use an analogous construction in [22] to identify them as periods of mixed

Carlitz motives. Let us first observe that, as εi is a (q−1)st root of unity, the power

series defining the polylogarithms satisfy the functional equation

Ln(εi, zi)
(−1) = z

(−1)
i +

εi
(t− θ)n

Ln(εi, zi) (4.1.1)

Hence, if we define γi to be a fixed (q− 1)st root of εi, we see that γ
(−1)
i εi = γi, and

one gets the following.

Proposition 4.1.3. The function Ln(εi, zi) above satisfies the functional equations

(γi Ln(εi, zi))
(−1) = (γizi)

(−1) +
γi

(t− θ)n
Ln(εi, zi).

Consequently, the mixed Carlitz motive defined by

Φ =



(t− θ)n

(γ1z1)(−1)(t− θ)n 1

...
. . .

(γmzm)(−1)(t− θ)n 1


is uniformizable by

Ψ =



Ωn

γ1 Ln(ε1, z1)Ωn 1

...
. . .

γm Ln(εm, zm)Ωn 1


.
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Proof. The equality Ψ(−1) = ΦΨ is immediate by the functional equations for poly-

logarithms (Equation 4.1.1) and Ω (Example 2.3.6).

Multipolylogarithms as periods

For an MP Li~s(~ε, ~z), we can identify a mixed Carlitz motive such that this MP

appears as the bottom right entry of its period matrix. Let us introduce the notation

~sij = (sj, sj+1, . . . , si−1), 1 ≤ j < i ≤ r + 1, (4.1.2)

and similarly for ~εij and ~zij. Observe that, if we write Li,j = L~sij(~εij, ~zij), then

L
(−1)
i,j =

εj · · · εi−2z
(−1)
i−1

(t− θ)sj+···+si−2
Li−1,j +

εj · · · εi−1

(t− θ)sj+···+si−1
Li,j.

Define γi to be a fixed (q − 1)st root of εi as before

Proposition 4.1.4. The Li,j’s above satisfy the functional equations

(γj · · · γi−1Li,j)
(−1) =

γj · · · γi−2(γi−1zi−1)(−1)

(t− θ)sj+···+si−2
Li−1,j +

γj · · · γi−1

(t− θ)sj+···+si−1
Li,j,

Consequently, the mixed Carlitz motive defined by

Φ =



(t− θ)s1+···+sr

(γ1z1)(−1)(t− θ)s1+···+sr (t− θ)s2+···+sr

(γ2z2)(−1)(t− θ)s2+···+sr . . .

. . . (t− θ)sr

(γrzr)
(−1)(t− θ)sr 1


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is uniformizable by

Ψ =



Ωs1+···+sr

γ1L21Ωs1+···+sr Ωs2+···+sr

γ1γ2L31Ωs1+···+sr γ2L32Ωs2+···+sr

...
...

. . .

γ1 · · · γr−1Lr,1Ωs1+···+sr γ2 · · · γr−1Lr,2Ωs2+···+sr · · · Ωsr

γ1 · · · γrLr+1,1Ωs1+···+sr γ2 · · · γrLr+1,2Ωs2+···+sr · · · γrLr+1Ωsr 1


Proof. The equality Ψ(−1) = ΦΨ is immediate by the functional equations for mul-

tipolylogarithms (Equation 4.1.2) and Ω (Example 2.3.6).

Multizeta values as periods

The realization of ζ~s(~x) as periods has essentially been done in [19]. We will recap

it here. In order to do this, we need to make use of the following. For every

nonnegative integer i, define

Di =


∏i−1

j=0(θ(i) − θ(j)) if i > 0;

1 if i = 0.

Definition 4.1.5. Let n be a non-negative integer. The Carlitz gamma is defined

to be

Γn+1 =
∏
i

Dni
i ,

where n =
∑

i niq
i is the q-adic expansion of n.
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Theorem 4.1.6 ([4]). There is a sequence of nonzero polynomials Hn(t) ∈ A[t]

satisfying

(Hs−1Ωs)(d)

∣∣∣∣
t=θ

=
Γs
π̃s

∑
deg(a)=d
a∈A+

1

as
,

where s ≥ 1, d ≥ 0, Ω = Ω(t) is the function in Example 2.3.6, and A+ is the set

of monic polynomials in A. Further, regarding Hn as an element in Fq[t][θ],

degθHn ≤
qn

q − 1
.

Because of the above theorem, the formal sums

Li,j :=
∑

di>···dj≥0

xdii (Hsi−1Ωsi)(di) · · ·xdjj (Hsj−1Ωsj)(dj)

are the key to giving a period interpretation for multizeta values. If each xk ∈ C∞

satisfies |xk| = 1, then these formal sums Li,j converges in C∞[t] by the bound on

degθHsk .

Proposition 4.1.7. For each xi ∈ k
×

satisfying |xi| = 1, fix a solution yi ∈ k to

the equation

yq − xsi+1
i

(x
(i)
i )si

y = 0.

Then the mixed Carlitz motive defined by

Φ =



(t− θ)s1+···+sr

y
(−1)
1 H

(−1)
s1−1(t− θ)s1+···+sr (t− θ)s2+···+sr

y
(−1)
2 H

(−1)
s2−1(t− θ)s2+···+sr . . .

. . . (t− θ)sr

y
(−1)
r H

(−1)
sr−1(t− θ)sr 1


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is uniformizable by

Ψ =



Ωs1+···+sr

y1L
1,1Ωs2+···+sr Ωs2+···+sr

...
...

. . .

y1 · · · yr−1L
1,r−1Ωsr y2 · · · yr−1L

2,r−1Ωsr · · · Ωsr

y1 · · · yrL1,r y2 · · · yrL2,r · · · yrL
r,r 1


.

Moreover, the nontrivial coefficients of Ψ satisfy

yi · · · yjLi,jΩsj+1+···+sr
∣∣∣∣
t=θ

=
yi · · · yjΓsi · · ·Γsj

π̃si+···+sr
ζ~sj+1,i

(~xj+1,i),

where ~xj+1,i := (xi, . . . , xj).

Proof. The first part of the proposition is a straightforward computation, and the

second part is a consequence of Theorem 4.1.6, since

Li,j
∣∣∣∣
t=θ

=
Γsi · · ·Γsj
π̃si+···+sj

ζ~sj+1,i
(~xj+1,i)

and Ω|t=θ = π̃−1.

4.2 Some combinatorial properties

In this section we discuss combinatorial properties of MZs and MPs. These are

generalizations of various results in [7, 13, 19, 29].
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Shuffle relations

As a consequence of the inclusion-exclusion principle, the product of two MPs is a

linear combination of MPs, and the same holds for MZs.

Proposition 4.2.1. The MPs satisfy shuffle relations of the form

Li~s(~ε, ~z) Li~s′(~ε
′, ~z′) =

∑
(~v,~v′)∈V

Li~v]~v′(~εv,v′ , ~zv,v′),

where the notations in the right hand side are defined as follows. For each positive

integer r′′ satisfying max{r, r′} ≤ r′′ ≤ r + r′, let Vr′′ be the set of all tuples (~v,~v′)

such that ~v (resp. ~v′) can be obtained from ~s (resp. ~s′) by inserting r′′ − r (resp.

r′′ − r′) zeros in all possible ways. Then

V :=
⋃

max{r,r′}≤r′′≤r+r′
Vr′′ .

If (~v,~v′) ∈ V , then ~v ]~v′ is the result after removing all the zeros in the vector sum

~v + ~v′. For each (~v,~v′) ∈ V , we then declare the

ith coordinate of ~εv,v′ :=



εj if the ith coordinate of ~v ] ~v′ is sj;

ε′k if the ith coordinate of ~v ] ~v′ is s′k;

εjε
′
k if the ith coordinate of ~v ] ~v′ is sj + s′k.

The variables zv,v′ obey the same rule as above, replacing all ε’s by z’s. 2

Proposition 4.2.2. Consider two MZs ζ~s(~x), ζ~s′(~x
′) of depths r, r′, such that all

entries of ~x and ~x′ have absolute values at most 1. Then the product ζ~s(~x)ζ~s′(~x
′)

can be written as a “shuffle relation”, i.e. an Fq-linear combination of MZs. 2
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It is not easy to explicitly write down the coefficients for an arbitrary MZ shuffle

relation. However, [13] has computed the shuffle relation for the product of two

MZs with depth 1:

ζs(x)ζs′(x
′) = ζs+s′(xx

′)

+
∑

0<j<s+s′

q−1|j

(
(−1)s−1

(
j − 1

s− 1

)
+ (−1)s

′−1

(
j − 1

s′ − 1

))
ζs+s′−j,j(xx

′, 1).

Explicit relations for colored multizeta values (see Definition 4.5.1) in low depths

are also given in [19].

Multizeta values in terms of multipolylogarithms

For our eventual goal of proving some algebraic independence results on MZs, we

will need the following result.

Proposition 4.2.3. Let ~ε ∈ (F×q )r. For i = 1, . . . , r, also let Ci be the set of all

coefficients for the polynomial Hsi−1(t) in Theorem 4.1.6, and let

U := {~u = (u1, . . . , ur) : ui ∈ Ci for all i}.

Then there exists a~u ∈ A, indexed by ~u ∈ U , such that

ζ~s(~ε) =
1

Γs1 · · ·Γsr

∑
~u

a~u Li~s(~ε, ~u).

Furthermore, each a~u is a nonnegative power of θ.

Proof. Consider the convergent function

L(t) =
∑

d1>···dr≥0

εd11 (Hs1−1Ωs1)(d1) · · · εdrr (Hsr−1Ωsr)(dr).
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Then, by Theorem 4.1.6,

L(θ) =
Γs1 · · ·Γsr
π̃s1+···+sr

ζ~s(~ε).

On the other hand, as Ω(−1) = (t− θ)Ω,

L(t)

Ωs1+···+sr
=

∑
d1>···dr≥0

εd11 H
(d1)
s1−1 · · · εdrr H

(dr)
sr−1

ls1d1 · · · l
sr
dr

,

where

ld =


∏d

j=1(t− θ(j)) if d > 0;

1 if d = 0.

Hence, letting t = θ, one obtains the relation

Γs1 · · ·Γsrζ~s(~ε) =
∑

d1>···dr≥0

εd11 H
(d1)
s1−1(θ) · · · εdrr H

(dr)
sr−1(θ)

Ls1d1 · · · L
sr
dr

.

We now see that a~u is a power of θ from the power of t’s in the H
(dj)
sj−1’s.

Non-vanishing properties

Before discussing algebraic independence properties, let us show the following non-

vanishing properties to ensure that all colored multizeta values and colored multi-

polylogarithms are nontrivial (see Definition 4.5.1 for definitions of these two terms).

Proposition 4.2.4. Let ~s = (s1, . . . , sr) be an arbitrary list of positive integers.

For every ~x ∈ (C×∞)r satisfying |xi| = 1 for all i,

ζ~s(~x) 6= 0.
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Proof. Write

ζ~s(~x) =
∑

d1>···>dr≥0

xd11 · · · xdrr Sd1(s1) · · ·Sdr(sr),

where

Sdi(si) =
∑

deg(a)=di
a∈A+

1

asi
.

Then, as degθ Sd(s) ≥ degθ Sd+1(s) > 0 by [29],

|ζ~s(~x)| ≥ |Sr−1(s1) · · ·S0(sr)| > 0,

giving us what we want.

Remark. By a similar proof strategy, for every ~ε ∈ (F×q )r and ~z ∈ (C×∞)r satisfying

|zi| = 1 for all i,

Li~s(~ε, ~z) 6= 0.

To see this, observe that 0 < degθ Li < degθ Li+1, and so a direct estimate implies

|Li~s(~ε, ~z)| ≥
∣∣∣∣ 1

Ls1r−1 · · · Lsr0

∣∣∣∣ > 0.

4.3 Linear relations on polylogarithms

Throughout this section, fix a positive integer m. For each i = 1, . . . ,m, also fix

choices εi ∈ F×q and zi ∈ k satisfying |zi| < q
qsi
q−1 . In addition, fix a choice of (q−1)st

root γi for each εi.

Let us consider a collection of polylogarithms

P = {γ1 Lin(ε1, z1), . . . , γm Lin(εm, zm)}
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of the same weight n, multiplied by γi’s. Recall that we gave a period interpretation

for this collection of polylogarithms in Proposition 4.1.3. Let Φ and Ψ be as defined

in this Proposition, and let Γ be its associated motivic Galois group. We now use

the technique of [22, Section 6] to show that defining polynomials of Γ gives us all

the k-linear relations on P . We will use Theorem 2.4.1 throughout this argument

without explicitly mentioning it.

Let J = Fq(t). By definition of Ψ and the construction of Γ, it is clear that we

have an inclusion

Γ(R) ⊂


∗ 0

∗ Im

 ∈ Mat(k+1)×(k+1)(R)


for any J-algebra R. Furthermore, as the mixed Carlitz motive Φ contains a tensor

product of a Carlitz motive (corresponding to the top-left entry of Φ), there is a

epimorphism over J

Γ −� Gm

by the top-left entry, giving rise to an exact sequence

1 −→ V −→ Γ −→ Gm −→ 1.

Notice that V is the unipotent subgroup of Γ, and is a vector group over J of

dimension k. In fact,

V (J) ⊂


1 0

∗ Im

 ∈ Mat(k+1)×(k+1)(J)

 .
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Additionally, V is a vector group over J : the product of two elements is linear on

the non-trivial coordinates, and if α ∈ Γ(J) has image a ∈ Gm(J), then

α−1

1 0

v Im

α =

 1 0

av Im

 .
Lemma 4.3.1. V is a linear subspace of Gk

a over J .

Proof (c.f. Lemma A.2 of [9]). Note that the induced map d : Lie Γ −→ LieGm is

nonzero since the map is nontrivial when restricted to the upper-left corner of the

matrix. Furthermore, ker(d) = LieV . By smoothness of Γ and Gm over J ,

dimJ Lie Γ = dim Γ and dimJ LieGm = dimGm = 1,

and so

dimJ LieV = dimV.

Thus V is smooth and defined over J . Since V is also a vector group over J , this

means V is defined by linear forms over J .

If we now fix a matrix

ω =



b0

b1 1

...
. . .

bm 1


∈ Γ(J), b0 ∈ J× \ F×q ,

the Zariski closure of the cyclic group generated by ω in Γ is the line L connecting ω

to the identity matrix Ik+1. As Γ is absolutely irreducible and V is of codimension
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1, we conclude that Γ is the linear space spanned by V and L. Thus, if F1, . . . , Fl

are linear polynomials in J [X1, . . . , Xm] defining V , and ω is as above, then

Gi(X0, . . . , Xm) := (b0 − 1)Fi(X1, . . . , Xm)− Fi(b1, . . . , bm)(X0 − 1)

is a set of linear polynomials defining Γ. Furthermore, using the fact the Z is a

Γ-torsor by the map defined in 2.4.1, one also sees that the linear polynomials

Hi(X0, . . . , Xm) := Gi(X0, . . . , Xm)− fiX0

defines Z for some determined fi ∈ J . These Hi are the polynomials giving us

linear relations on polylogarithms as the construction of Z is based on the entries

of Ψ. Recall that P is our collection of polylogarithms of the same weight n.

Proposition 4.3.2. Fix one of the Fi’s above, and write Fi = c1X1 + · · · + cmxm

with ci ∈ Fq(t)×.

(a) Each polynomial Gi gives rise to the relation

(b0(θ)− 1)
k∑
i=1

ci(θ)γi Lin(εi, zi)−
k∑
i=1

bi(θ)ci(θ)π̃
n = 0,

where the bi are the nontrivial entries of ω.

(b) Every k-linear relation among {π̃n}∪P is a linear combination of the relations

G1, . . . , Gl above. In fact,

dim Γ = dimk Spank{{π̃n} ∪ P}.

Proof. (a) By definition of Z, substituting the first column of Ψ into Hi = Gi−fX0

gives

Gi (Ω
n,Ωnγ1 Ln(ε1, z1), . . . ,Ωn Ln(εm, zm)) = fΩn.
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Using the functional equation for polylogarithms (Proposition 4.1.3) and the defi-

nition of Gi gives

f (−1)(Ωn)(−1) = fiΩ
n − Fi(b1, . . . , bn)Ωn

+ ΩnGi((t− θ)n − 1, (γ1z1)(−1)(t− θ)n, · · · , (γmzm)(−1)(t− θ)n).

Since Ω(−1) = (t− θ)Ω, the above gives

(t− θ)f (−1) − fi = Gi((t− θ)n − 1, (γ1z1)(−1)(t− θ)n, · · · , (γmzm)(−1)(t− θ)n)

− Fi(b1, . . . , bn).

Notice this implies that fi has no pole at t = θ. Otherwise f (−1) would have a pole

at t = θ(−1), and the relation above shows that f would have a pole here as well.

Iterating shows f has poles at θ( − i) for all positive integers i, contradicting the

fact that f is a rational function. The same argument shows that f
(
i − 1) has no

poles at t = θ. This implies that we can evaluate the relation above at t = θ to get

f(θ) = −Gi(−1, 0, . . . , 0) + Fi(b1, . . . , bn)|t=θ

= −
m∑
i=1

ci(θ)bi(θ).

Therefore, the first relation we started with now becomes

Gi (Ω
n,Ωnγ1 Ln(ε1, z1), . . . ,Ωnγm Ln(εm, zm)) |t=θ = −

m∑
i=1

ci(θ)bi(θ)π̃
−n.

An elementary manipulation implies the desired relation.

(b) Let N = Spank{{π̃n} ∪ P}. Since defining polynomials of Γ gives linear

relations on {π̃} ∪ P ,

codim Γ ≥ codimkN,
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implying dimkN ≤ dim Γ. On the other hand,

dimkN ≥ trdegk k({π̃} ∪ P) = dim Γ,

implying dim Γ = dimkN .

Corollary 4.3.3. Preserve the notations of the above Proposition. If P is linearly

independent over k, then P is algebraically independent over k. In this case,

trdegk k(Lin(ε1, z1), . . . ,Lin(εm, zm)) = |P|,

and each Lin(εi, zi) is transcendental over k.

Proof. Let N = Spank{{π̃n}∪P}, so that m ≤ dimkN ≤ m+ 1. Also let P be the

field extension of k by adjoining the elements of {π̃n} ∪ P . Since γi ∈ k,

P = k(π̃n,Lin(ε1, z1), . . . ,Lin(εm, zm)).

Now, recall that dimkN = dim Γ = trdegk P . Thus we are done if {π̃n} ∪ P is a

linearly independent set over k. If π̃n is a k-linear combination of elements in P ,

then

P = k(Lin(ε1, z1), . . . ,Lin(εm, zm))

and trdegk P ≥ m, and we are done once again.

Corollary 4.3.4. Let F ∈ k[X1, . . . , Xm] be a degree 1 polynomial, and suppose

f = F (γ1 Lin(ε1, z1), . . . , γm Lin(εm, zm))

is nonzero. Assume P = {γ1 Lin(ε1, z1), . . . , γm Lin(εm, zm)} is linearly independent

over k. Then f is transcendental over k.
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Proof. Immediate by the previous Corollary, after replacing any element of P by

f .

We have only displayed the existence of linear relations between polylogarithms

of the same weight in this section. The next section tells us that we should not

expect to get nontrivial linear relations between polylogarithms of different weights.

4.4 Algebraic independence of

multipolylogarithms

The purpose of this section is to prove some results on MPs. The entirety of this

section consists of Lemmas that we will use for the next section.

Lemma 4.4.1. Let V ⊂ Gm
a be an algebraic group of dimension zero, and assume

V is stable under the Gm-action defined by

a · (x1, . . . , xm) = (an1x1, . . . , a
nmxm) ∀a ∈ k×.

Then V ≡ 1 over k.

Proof. Gm(k) is an infinite set.

Lemma 4.4.2. Consider distinct positive integers n1, . . . , nd not divisible by p. For

each ni, fix distinct εi1, . . . , ε
i
li
∈ F×q and their (q − 1)st roots γi1, . . . , γ

i
li

. Consider a

family fni,1, . . . , fni,li of MPs:

fni,j = γij Lni(ε
i
j, z

i
j), zij ∈ k.
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If π̃ni , fni,1|t=θ, . . . , fni,li |t=θ is k-linearly independent for each i, then the set

{π̃, fni,j|t=θ : 1 ≤ i ≤ d, 1 ≤ j ≤ li}

is algebraically independent over k.

Proof. Let the indexing set be I = {(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ li} with lexicographic

ordering ≤. Any tuple (i.j) in this proof will be assumed to be in I.

Consider the t-motive associated to each fni,j

Φi,j =

 (t− θ)ni 0

(γijz
i
j)

(−1)(t− θ)ni 1


with uniformization

Ψi,j =

 Ωni 0

fni,jΩ
ni 1

 .
Now, for any tuple (k, l), define

M(k, l) = C ⊕
⊕

(i,j)≤(k,l)

Φi,j and Mk(l) = C ⊕
⊕
j≤l

Φk,j

where C is the Carlitz t-motive. (Here Mk(l) is the slice of M(k, l) corresponding

to fnk,1, . . . , fnk,lk .) Also define Γ(k, l) and Γk(l) to be the motivic Galois groups of

M(k, l) and Mk(l). Then Γ(k, l) and Γk(l) are constructed from

[Ω]⊕
⊕

(i,j)≤(k,l)

Ψi,j and [Ω]⊕
⊕
j≤l

Ψk,j.

By construction,

Γ(k, l) ⊂

[a]⊕
⊕

(i,j)≤(k,l)

ani 0

xij 1

 : a, xij ∈ k


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and

Γk(l) ⊂

[a]⊕
⊕
j≤l

ank 0

xkj 1

 : a, xij ∈ k

 .

Due to Theorem 2.4.1, it suffices to show that the left inclusion is an equality. We

will achieve this by doing induction on (k, l) with respect to the ordering on I.

By assumption, the inclusions above are equalities for Γ(1, j) and Γk(j) across

all possible j’s (and a fixed k). Let (k, l) ≥ (2, 1), and let (k′, l′) to be the element

preceding (k, l) under the ordering ≤. Then

(k′, l′) =


(k, l − 1) if l 6= 1;

(k − 1, lk−1) if l=1.

We now have injections

M(k′, l′)

C M(k, l)

Mk(l)

where the inclusion of C is to every mixed Carlitz motive in the direct sum (not

just the natural inclusion). By Tannakian duality, we get surjections

Γ(k′, l′)

Gm Γ(k, l)

Γk(l)

π′

π

ψ

ψkπ′′
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where the kernels of π, π′, π′′ lie in the unipotent radical of the respective groups.

Letting V = kerπ, and similarly for V ′ and V ′′, we have a commutative diagram

1 V ′′ Γk(l) Gm 1

1 V Γ(k, l) Gm 1

1 V ′ Γ(k′, l′) Gm 1

ψk|V

ψ|V

ψk

ψ

By assumption V ′′ =
∏

j≤lGa, and by induction V ′ =
∏

(i,j)≤(k,l) Ga, and these

isomorphisms are via the coordinates xij.

The action of Gm on V (and similarly for V ′ and V ′′) via the short exact sequence

above is via conjugation:

a · v = ã−1vã, where ã is a lift of a to Γ(k, l).

A computation tells us that, on the coordinates xij, the action is

a · xij = anixij.

Now, notice that the difference between the coordinates defining Γ(k, l) and

Γ(k′, l′) is just xkl, so it follows that

dim Γ(k′, l′) ≤ dim Γ(k, l) ≤ Γ(k′, l′) + 1.

Hence it suffices to show that dim Γ(k′, l′) 6= dim Γ(k, l). The rest of the proof

follows the strategy of [21, Theorem 4.2].

Assume that dim Γ(k′, l′) = dim Γ(k, l). Then the commutative diagram above

implies dim kerψ|V = 0, whence kerψ|V ≡ 1 by Lemma 4.4.1. Hence ψ|V is a
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bijection, and there is a surjective Gm-homomorphism

ϕ : V ′
ψ|−1
V−−→ V

ψk|V−−−→ V ′′.

For each (i, j) 6= (k, l) with i 6= k, let Vij be the subvariety of V defined by

xi′,j′ = 0 if (i′, j′) 6= (i, j), (k, l),

and define V ′ij ⊂ V ′ using the same equations. Then

Vij ⊂ G⊕2
a and V ′ij ⊂ Ga.

Via the bijection, this implies that dimVij = 1. Hence [15, Corollary 1.8] tells us

that Vij is defined by a polynomial of the form

p(xij, xkl) =

d1∑
α=0

fαx
peα

kl −
d2∑
β=0

fβx
p
eβ

ij ∈ k[xij, xkl].

If d1 > 0, then by normality of Vij any point (xij, xkl) ∈ Vij must also satisfy the

polynomial

p(a · xij, a · xkl)− ankp
ed1 p(xij, xkl)

of lower xkl-degree. Hence, by iterating, every point in Vij satisfies a polynomial of

the form

f(xij, xkl) = xp
e

kl −
d2∑
β=0

fβx
p
eβ

ij .

We now contend that ϕ|Vij ≡ 0. If not, there is some (xij, xkl) on Vij such that

ϕ(xij, xkl) = xkl 6= 0. Hence using the polynomial f to write

xkl =

(
d2∑
β=0

fβx
p
eβ

ij

)p−e
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and using the fact that ϕ is equivariant under Gm, we get the equality(
d2∑
β=0

fβ(anixij)
p
eβ

)p−e

= ank

(
d2∑
β=0

fβx
p
eβ

ij

)p−e

.

Comparing coefficients gives us nip
ed2−e = nk, a contradiction by assumptions on

the ni’s. Hence ϕ|Vij ≡ 0.

Recall Vij was defined for (i, j) 6= (k, l) with i 6= k, and (k′, l′) was the tuple

preceding (k, l) with respect to ≤. Hence ϕVij ≡ 0 for all such i implies

ϕ

 ∏
(i,j)≤(k′,l′)

i=k

Ga

 = ϕ(Gl−1
a ) = V ′′.

But V ′′ =
∏

j≤lGa has dimension l, a contradiction.

Lemma 4.4.3 (c.f. [21, Theorem 4.3]). Let s1, . . . , sr be positive integers, and let

ε1, . . . , εr ∈ F×q . If the set

{π̃,Lis1(ε1, z1), . . . ,Lisr(εr, zr)}

is algebraically independent over k, then so is the set

{π̃,Li~sij(~εij, ~zij) : 1 ≤ j < i ≤ r + 1},

where we write ~εij = (εj, εj+1, . . . , εi−1) and ~zij = (zj, zj+1, . . . , zi−1).

Proof. By assumption the set

{π̃, γ1 Lis1(ε1, z1), . . . , γr Lisr(εr, zr)}
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is algebraically independent over k, where γi is a fixed (q − 1)st root of εi. Then,

by considering the mixed Carlitz motives of Proposition 4.1.4, and using the same

proof as in [21, Theorem 4.3], we get algebraic independence of

{π̃, γj · · · γi−1 Li~sij(~εij, ~zij) : 1 ≤ j < i ≤ r + 1},

as desired.

4.5 Implications on colored multizeta values

In this section we study colored multizeta values. Let us preserve the notations in

Section 4.1.

Definition 4.5.1. Fix a positive integer r, and let ~s = (s1, . . . , sr) be a list of

positive integers. Also consider a list ~ε = (ε1, . . . , εr) of elements in F×q .

• The colored multizeta value (or CMZ) associated to ~s and ~ε is defined to be

ζ~s(~ε).

• Let ~u = (u1, . . . , ur) be a list of elements in A. The colored multipolylogarithm

(or CMP) associated to ~s and ~u is defined to be Li~s(~ε, ~u).

There are two points of view for this definition. One is that colored multizeta

values are special values of Goss’s analytic continuation of ζ~s(~1) in [18]. The other

is that these are multizeta values twisted by C∞-Hecke characters A×/k× −→ C×∞

of the form

(a)v 7−→
∏
v

εlog |a|v , ε ∈ F×q .
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Note that the CMZs includes the Thakur multizeta values ζ~s(~1) as special cases, and

that both the CMZs and CMPs lie in k∞. The definition of CMP is also motivated

by the relation in Proposition 4.2.3. We now list some known results related to the

CMZs.

• In [34], transcendence of Carlitz zeta values (i.e. depth 1 Thakur multizeta

values) was established by using elements of [4].

• In [9], algebraic independence of Carlitz zeta values was shown by extending

methods of [22].

• In [7], transcendence of Thakur multizeta values was established by extending

methods of [2].

• In [24, 30, 31], some linear relations between Thakur multizeta values are

given. Of particular note is that the list {~s} in such relations satisfy q − 1|si

or p|si for some entry in a tuple ~s.

• In [8], some computations on linear relations between zeta values of the form

ζ(s,t)(1, 1) were done. In particular, the k-linear space spanned by such zeta

values of a fixed weight was shown to be related to special points of certain

t-modules.

• In [21], algebraic independence of large subsets of Thakur multizeta values

was shown by extending methods of [9].

• In [19], transcendence of CMZs was established by extending methods of [7].

The final goal of this thesis is to add the following bullet point in the above list:
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• Find large subsets of CMZs that are algebraically independent.

Along the way, we obtain a few results listed in the papers above as corollaries. Let

us first make three easy observations.

Lemma 4.5.2. Let w be a positive integer not divisible by q − 1. Let Pw =

{γi Liw(εi, ui)} be a finite collection of CMPs of weight w that are k-linearly in-

dependent. Then {π̃w} ∪ Pw is k-linearly independent.

Proof. If |Pw| = 1 then the result follows as CMPs are in k∞ by definition but not

γ−1πw (due to the (−εθ)
w
q−1 term). If |Pw| > 1, assume there is a nontrivial relation

c0π̃w +
∑
i

ciγi Liw(εi, ui) = 0, ci ∈ k.

Fix any α, and consider

cα Liw(εα, uα) = −γ−1
α

(
c0π̃w +

∑
i 6=α

ciγi Liw(εi, ui)

)
.

Then both sides of the equation equals 0 since the left hand side is in k∞ but not

the right hand side. The result follows by induction.

Lemma 4.5.3. Let ζw(ε) be a CMZ of weight w not divisible by q− 1, and let γ be

a (q − 1)st root of ε. Then γζw(ε) is linearly independent with π̃w over k.

Proof. Any such CMZ lies in k∞, but not γ−1π̃w due to the (−ε−1θ)
w
q−1 term.

Lemma 4.5.4. Let εi run through all elements of F×q , and let γi be a fixed (q− 1)st

root of εi. Then the set {γ1, . . . , γq−1} is linearly independent over k∞.
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Proof. Let G = Gal(Fqq−1/Fq), and consider a minimal dependence
∑

α cαγα = 0

with cα ∈ k∞ of length at least two (length one is trivial). Pick any two γi, γj

appearing in this linear dependence. As εi/εj 6= 1 for i 6= j, there exists σ ∈ G such

that

σ(γi)

σ(γj)
6= γi
γj
.

Also, as σ(γα) = ωαγα, where ωα is a (q − 1)st root of unity, the quotient σ(γα)/γα

lies in F×q . Now, after lifting σ to the unique element in Gal(Fqq−1((1
θ
)), k∞), we

compute

0 =
σ(γi)

γi

∑
α

cαγα − σ

(∑
α

cαγα

)
=
∑
α

cα

(
σ(γi)

γi
− σ(γα)

γα

)
γα

This is a shorter relation among the γα’s, a contradiction.

Depth 1 CMZs

Let us recall a consequence of Carlitz’s work in [6], which says that

ζ(q−1)n(1) =
B(q−1)n

Γ(q−1)n+1

π̃(q−1)n,

where the Bn’s are the Bernoulli-Carlitz numbers defined by the Carlitz exponential

series:

z

expC(z)
=
∞∑
n=0

Bn
zn

Γn+1

.

(A explicit computation of this can be found in [27, Theorem 5.2.1].) In the general

setting of CMZs however, we do not know how to compute these values. We now

show algebraic independence between them and π̃ instead. Most interesting results
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we obtain will have the assumption that the weight w is not divisible by q − 1 and

p. This is due to the observation above, the fact that π̃q−1 lies in k∞, and that

ζpn(ε) = ζn(εq/p)p.

Proposition 4.5.5. Each ζn(ε) is transcendental over k.

Proof. Each ζn(ε) is nonzero by Proposition 4.2.4, and ζn(ε) can be written as a

k-linear combination of CMPs by Proposition 4.2.3. We are now done by Corollary

4.3.4.

Proposition 4.5.6. If n is not divisible by q−1, then ζn(ε) and π̃ are algebraically

independent over k.

Proof. Consider the set P of all CMPs appearing the expression in Proposition

4.2.3. Then

Spank{{π̃n} ∪ γP} = Spank{{π̃n} ∪ γP ∪ {γζn(ε)}},

where γ is a (q−1)st root of ε. Choose a maximal subset S of P such that {π̃n}∪S

is linearly independent, which is possible by Lemma 4.5.2. Then Lemma 4.4.2

implies {π̃n} ∪ S is algebraically independent over k. By using Proposition 4.2.3,

we can replace any element of S by γζn(ε) to form S ′. Then {π̃n} ∪ S ′ is still a

transcendence basis over k, implying what we want.

Lemma 4.5.7. Fix a positive integer n not divisible by q − 1, and fix distinct

ε1, . . . , εm ∈ F×q . For each i, consider a nonzero linear sum of CMPs of same
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weight n and εi:

fi = ai1γi Lin(εi, u1) + · · ·+ aimγi Lin(εi, um), aij ∈ k for all j.

Then π̃n, f1, . . . , fm is linearly independent over k. In particular, {π̃n, γζn(ε) : ε ∈

F×q } is linearly independent over k.

Proof. By Lemma 4.5.2, it suffices to show that the fi’s are linearly independent

over k. This is immediate by Lemma 4.5.4, as fi = γigi with gi ∈ k∞.

Using the same notation as the above Lemma, the same proof can be used to

show the following.

Lemma 4.5.8. If n is a positive integer divisible by q− 1, and ε1, . . . , εm ∈ F×q are

distinct, then f1, . . . , fm is linearly independent over k. In particular, {πn, γζn(ε) :

ε ∈ F×q \ {1}} is linearly independent over k. 2

We now consider depth 1 CMZs of different weights.

Theorem 4.5.9. Let n be a positive integer. The following set is algebraically

independent over k:

{π̃} ∪
{
ζs(ε) :

1 ≤ s ≤ n with q − 1 - s and p - s,
ε ∈ F×q

}
∪
{
ζ(q−1)s(ε) :

1 ≤ s ≤ n with p - s,
ε ∈ F×q \ {1}

}
.

Proof. Let P ′s,ε be the set of all CMPs of weight at most n appearing in the expres-

sion in Proposition 4.2.3 for ζs,ε, and consider a maximal subset of Ps,ε such that
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{πs} ∪ Ps,ε is linearly independent over k. By applying Lemmas 4.5.7 or 4.5.8, the

elements within each of the subsets

{π̃s} ∪
⋃

q−1-s and p-s,
ε∈F×q

Ps,ε and {π̃(q−1)s} ∪
⋃
p-s,

ε∈F×q \{1}

P(q−1)s,ε

are linearly independent over k for all 1 ≤ s ≤ n. Hence the union

{π̃} ∪
⋃

1≤s≤n

 ⋃
q−1-s and p-s,

ε∈F×q

Ps,ε

 ∪ ⋃
1≤s≤n

 ⋃
p-s,

ε∈F×q \{1}

P(q−1)s,ε


is algebraically independent over k by Lemma 4.4.2. The theorem follows after

replacing any element of Ps,ε by γζs,ε, and any element of P(q−1)s,ε by γζ(q−1)s,ε.

Corollary 4.5.10. Let Zn = {π̃, ζs(ε) : 1 ≤ s ≤ n and ε ∈ F×q }. Then

trdegk k(Zn) = 1−
⌊

n

q − 1

⌋
+

⌊
n

p(q − 1)

⌋
+ (q − 1)

(
n−

⌊
n

p

⌋)
.

Proof. Counting using inclusion-exclusion principle.

The main point of Theorem 4.5.9 is the assertion that attaching any nontrivial

C∞-Hecke character of the sort described at the start of this section to a Carlitz

zeta value adds another algebraically independent number to the set

{π̃, ζs(1) : 1 ≤ s ≤ n with q − 1 - s and p - s},

which was first shown in [9] to be the largest possible algebraically independent set

among Carlitz’s zeta values with bounded weight.
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General CMZs

We start with an example.

Example 4.5.11. Let s1, s2 ≥ 1 not divisible by q−1 and p, and let ε1, ε2 ∈ F×q such

that, if s1 = s2, then ε1 6= ε2. For each εi let γi be a (q−1)st root of εi. Furthermore,

let H(i) be the set consisting of all coefficients of the Anderson-Thakur polynomials

Hsi−1.

For each i ∈ {1, 2}, Proposition 4.2.4 implies that ζsi(εi) is nonzero. Us-

ing Proposition 4.2.3, this implies the existence of some ui ∈ H(i) such that

Lisi(εi, ui) 6= 0. Identify such a ui, and consider the set

S ′′ =


{π̃s, γ1 Lis(ε1, u1), γ2 Lis(ε2, u2)} if s1 = s2 = s;

{π̃s1 , π̃s2 , γ1 Lis1(ε1, u1), γ2 Lis2(ε2, u2)} if s1 6= s2.

In case s1 = s2 = s, notice that S ′′ is linearly independent over k by Lemmas 4.5.2

and 4.5.7. Now, by Lemma 4.4.2, the following set is algebraically independent over

k:

S ′ = {π̃, γ1 Lis1(ε1, u1), γ2 Lis2(ε2, u2)}.

Furthermore, by Lemma 4.4.3, the set

S = {π̃,Lis1(ε1, u1),Lis2(ε2, u2),Lis1s2(ε1, ε2, u1, u2)}

is algebraically independent over k. Consider the collection

T ′ = {π̃,Lis1(ε1, α),Lis2(ε2, β),Lis1s2(ε1, ε2, γ, δ) : α, γ ∈ H(1), β, δ ∈ H(2)}.
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This set might not be algebraically independent, but we can pick a largest alge-

braically independent subset T ⊂ T ′ such that T contains S. After that, we can

replace the last three elements of T using Proposition 4.2.3 such that

{π, ζs1(ε1), ζs2(ε2), ζs1,s2(ε1, ε2)} ⊂ T,

implying algebraic independence of the CMZs above.

Using the ideas in the example, let us give a recipe to generate a subset of CMZ.

Recipe to generate algebraically independent CMZs. This is five-step pro-

cess to generate a set MZ of algebraically independent CMZs over k, if we are

given a list of positive integers and elements of F×q .

I. Choose distinct positive integers s1, . . . , sr not divisible by p. Fix the ordering.

II. For each i = 1, . . . , r, choose distinct elements εi1, . . . , εimi of F×q , such that if

q − 1|si then none of the εij equals 1. Fix the ordering.

III. Define the ordered string

S = (s1, . . . , sm1+···+mr)

which is some permutation of the multiset {m1 · s1, . . . ,mr · sr}.

IV. Define another ordered string

E = (ε1, . . . , εm1+···+mr)

as follows. For each i = 1, . . . , r, let α1, . . . , αmi be the indices of S with

sαj = si for all j. Then let εα1 , . . . , εαmi be a some permutation of the elements

εi1, . . . , εimi .
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V. Consider the set

MZ = {π̃} ∪ {ζ~sij(~εij) : 1 ≤ i ≤ j ≤ m1 + · · ·+mr}.

where ~sij = (si, . . . , sj) and ~εij = (εi, . . . , εj). Then this set is algebraically

independent over k.

The set MZ given in the recipe above will be algebraically independent over

k, and this can be easily shown using a similar proof as given in Theorem 4.5.9.

Let P ′si,εi be the set of all CMPs of weight at most n appearing in the expression

in Proposition 4.2.3 for ζsi(ε
i), and consider a maximal subset of Psi,εi such that

{πs} ∪ Psi,εi is linearly independent over k. By applying Lemmas 4.5.7 or 4.5.8,

each subset

{π̃s} ∪
⋃
si=s

Psi,εi

is linearly independent over k for all s ∈ {s1, . . . , sr}. Hence the union

{π̃} ∪
⋃
i

Psi,εi

is algebraically independent over k by Lemma 4.4.2. The theorem follows by apply-

ing Lemma 4.4.3, and using Proposition 4.2.3 again to replace relevant CMPs by

CMZs.

We single out two potentially interesting suchMZ. The second one generalizes

[21, Theorem 1.1] (on finding large algebraically independent subsets of Thakur’s

multizeta values).
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Theorem 4.5.12. Fix a positive integer r with r ≤ q− 1. Let s1, . . . , sr be distinct

positive integers not divisible by p, and let εi,1, . . . , εi,r ∈ F×q be distinct, such that

if q − 1|si then none of the εij equals 1. Then the union of the following sets is

algebraically independent over k:

{π̃},

{ζs1(ε1,i), . . . , ζsr(εr,i) : 1 ≤ i ≤ r},

{ζsj ,sj+1
(εj,i, εj+1,i) : 1 ≤ j ≤ r − 1, 1 ≤ i ≤ r},

{ζsj ,sj+1,sj+2
(εj,i, εj+1,i, εj+2,i) : 1 ≤ j ≤ r − 2, 1 ≤ i ≤ r},

...

{ζs1,...,sr(ε1,i, . . . , εr,i) : 1 ≤ i ≤ r}.

Proof. Set

S = (s1, . . . , sr, s1, . . . , sr, . . . , s1, . . . , sr),

E = (ε11, . . . , εr1, ε12, . . . , εr2, . . . , ε1r, . . . , εrr),

where S and E are the strings appearing in the recipe above.

Theorem 4.5.13. Consider si, εij, S, E as in the recipe above. Then the set {π̃} ∪

{ζ~sij(~εij)} is algebraically independent over k, where

S = (s1, . . . , s1, s2, . . . , s2, . . . , sr, . . . , sr),

E = (ε11, . . . , ε1m1 , ε21, . . . , ε2m2 , . . . , εr1, . . . , εrmr).

Proof. Immediate by the recipe above.
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Corollary 4.5.14. Let q 6= 2 and r ≥ 2, and let

• k1 be k adjoining all CMZs of depth 1;

• kr be k1 adjoining all CMZs of depth r.

Then trdegk1 kr =∞.

Proof. As q 6= 2, there are infinitely many positive integers not divisible by q − 1

and p. Let Z′ be this set. For any positive integer l ≥ r, let s1, . . . , sl be the first

l terms of Z′. Then Theorem 4.5.13 gives rise to l − r CMZs of depth r that is

algebraically independent with one another and all the CMZs of depth 1. We are

done as l can be made arbitrarily large.

4.6 Remarks on linear relations

Note that, if we let k≤w be the field k adjoining all CMZs of weight at most w, then

the algebraic independence Theorems above gives us a crude bound

trdegk(k≤w) ≥ 1 +
r(q − 1)(r(q − 1) + 1)

2
, r =

⌊√
w +

1

4
− 1

2

⌋
.

This restricts the number of relations between the CMZs. In order to cut down the

transcendence degree of k≤w, we will need to write down explicit algebraic relations.

For example, a trivial one mentioned before is

ζpn(ε) = ζn(εq/p)p,

and a non-trivial one is the shuffle relation (Proposition 4.2.2).
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Work of Rodŕıguez-Thakur

In [24, 30], nontrivial linear relations between Thakur’s multizeta values has been

written down. As εq−1 = 1 for any ε ∈ F×q , many of these relations applies to the

CMZ case as well. We record some of the linear relations here.

• For m ≤ q,

ζm,m(q−1)(ε1, 1) =
1

Lm1
ζmq(ε1).

• If u = qn −
∑s

i=1 q
ki and v = (q − 1)qn, then

ζu,v(ε1, 1) =
(−1)s

Lqn1

s∏
i=1

(t(n−ki) − t)(ki)ζqn+1−
∑s
i=1 q

ki (ε1)

• Writing [k] = θ(k) − θ, here are four relations with no constraints:

ζ1,q2−1(ε1, 1) =

(
1

L1

+
1

L2

)
ζq2(ε1),

ζ2q−1,(q−1)(q2+q−1)(ε1, 1) =
1− (t(2) − t)(1)

Lq+1
1 L

q−1
2

ζq3(ε1),

ζq2−(q−1),(q−1)(q2+1)(ε1, 1) =
1− (t(2) − t)(1))

Lq2−1
1 L2

ζq3(ε1),

ζ1,q−1,(q−1)q,...,(q−1)qn(ε1, 1, . . . , 1) =
(−1)n+1

[1](n)[2](n−1) · · · [n+ 1](0)
ζqn+1(ε1).

Before discussing the next example, the following definitions are needed. For any

positive integer d, and two strings ~s = (s1, . . . , sr) ∈ Z≥1 and ~ε = (ε1, . . . , εr) ∈ F×q ,

define two finite sums

Sd;~s(~ε) :=
∑

d=deg(a1)>···>deg(ar)≥0
ai∈A+

ε
deg(a1)
1 · · · εdeg(ar)

r

as11 · · · asrr
,

S<d;~s(~ε) :=
∑
d′<d

Sd′;~s(~ε)
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We will call the sums above power sums. The power sums are related to CMZs by

ζ~s(~ε) =
∞∑
d=0

Sd,~s(~ε).

After communications with Thakur, and with computational help by Rodŕıguez,

the following linear relations between CMZs and Thakur’s multizeta values were

also discovered.

Example 4.6.1. Concentrate on the depth two case. Implicit in the proof of the

main theorems in [24] is the computation of various linear relations between power

sums. In particular, one can use the results of this paper to verify the following.

• If a = qn −
∑m

i=1 q
ki and b = (q − 1)qn, with 1 ≤ m < q and 1 ≤ ki < n, then

Sd;a,b(1, 1) =
(−1)m

Lqn1

m∏
i=1

[n− ki]q
kiSd−1;a+b(1).

• If a′ = m1q
n and b′ = m1(qn+1 − qn) +

∑m2

i=1(qn+1 − qki), with 0 ≤ ki ≤ n+ 1,

1 ≤ m1 < q, 0 ≤ m2 ≤ q −m1, then

Sd;a′,b′(1, 1) =
1

Lqnm1

1

Sd−1;a′+b′(1).

By observing that

Sd;α,β(−1, 1)

Sd−1;α+β(−1)
= − Sd;α,β(1, 1)

Sd−1;α+β(1)
,

summing the above equalities over d gives us

ζa,b(−1, 1) = −(−1)m

Lqn1

m∏
i=1

[n− ki]q
kiζa+b(−1);

ζa′,b′(−1, 1) = − 1

Lqnm1

1

ζa′+b′(−1).
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If we set q = 3, this shows that

ζα,β(−1, 1)

ζα+β(−1)

is rational for (α, β) ∈ {(1, 2), (1, 4), (1, 6), (1, 8), (2, 4), (2, 6)}. Interestingly enough,

computer calculations tells us that these are the only values in the range 1 ≤ α, β ≤

9 for which the above quotient is rational.

Todd’s method in the colored case

In [31], Todd explained how one can use the shuffle relation to generate new linear

relations among Thakur’s multizeta values from known ones. This can be extended

to the case of CMZs. To do this, we need a more refined version of the shuffle

relation presented in Proposition 4.2.2. In the remainder of this section, for every

integer l, we will always fix an ordering of all compositions of l.

Definition 4.6.2. Fix positive integers d and l, and let V = (V1, . . . , V2l−1) be the

fixed ordering of the 2k−1 compositions of l. Define the space of binary relations

Bl :=

{
(~a1, . . . ,~a2l−1 ,~b1, . . . ,~b2l−1) ∈ k|V1|+···+|V2l−1 |+|V1|+···+|V2l−1 | :

2l−1∑
i=1

∑
~ε∈(F×q )|Vi|

(ai,~εSd;Vi(~ε) + bi,~εSd+1;Vi(~ε)) = 0 for all d ∈ Z≥1

}
,

where each ~ai above is a vector of length (q−1)|Vi| with entries indexed by elements

of (F×q )|Vi|.

The above space is a colored analog of Todd’s spaces of linear relations, and is

motivated by the work of Rodriguez-Thakur in the previous section. For example,
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by [30] or a direct computation, if m ≤ q, one has the binary relation

Sd;mq(ε)− Lm1 Sd+1;m,m(q−1)(ε, 1) = 0,

which also gives rise to the relation

ζm,m(q−1)(ε, 1) =
1

Lm1
ζmq(ε).

Elements in the space Bl of binary relations do not necessarily give rise to a linear

relation among CMZs, and vice versa. Nevertheless, the main goal of this section

is to show that Bl is a source of producing linear relations among CMZs.

Lemma 4.6.3 ([19, Lemma 2.5 and Theorem 2.6]). Let ~s = (v1, . . . , vr) and

~s′ = (v′1, . . . , v
′
s) be strings of positive integers, and let ~ε = (ε1, . . . , εr) and ~ε′ =

(ε′1, . . . , ε
′
s) be strings of elements in F×q . Then

S<d;~s(~ε)S<d;~s′(~ε
′) =

∑
~s′′,~ε′′

f~s′′,~ε′′S<d;~s′′(~ε
′′)

Sd;~s(~ε)Sd;~s′(~ε
′) =

∑
~s′′,~ε′′

g~s′′,~ε′′Sd;~s′′(~ε
′′)

where the sums above are finite, and the coefficients f~s′′,~ε′′ , g~s′′,~ε′′ ∈ Fq are indepen-

dent of d. In particular, writing

∆j
s1,s2

=

(
(−1)s−1

(
j − 1

s− 1

)
+ (−1)s

′−1

(
j − 1

s′ − 1

))
,

one has

Sd;s(ε)Sd;s′(ε
′) = Sd;s+s′(εε

′) +
∑

0<j<s+s′

q−1|j

∆j
s,s′Sd;s+s′−j,j(εε

′, 1). 2
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Note that the Lemma above implies Proposition 4.2.2, and is an exercise on the

inclusion-exclusion principle. This Lemma also implies the following. Suppose we

have a binary relation

2l−1∑
i=1

∑
~ε∈(F×q )|Vi|

(ai,~εSd;Vi(~ε) + bi,~εSd+1;Vi(~ε)) = 0.

Choose a positive integer w and a composition W of w. Also fix a positive integer

D and E ∈ F×q
|W |

. Then

SD;W (E)
∑
d<D

2l−1∑
i=1

∑
~ε∈(F×q )|Vi|

(ai,~εSd;Vi(~ε) + bi,~εSd+1;Vi(~ε))


= SD;W (E)

2l−1∑
i=1

∑
~ε∈(F×q )|Vi|

(ai,~εS<D;Vi(~ε) + bi,~εSD;Vi(~ε))


=
∑
i,j

cXi,~εijSD;Xi(~εij),

where the coefficients cXj ,~εj ∈ k are independent of the choice of D by the shuffle

relation. Hence, by summing over D, one gets new linear relations among CMZs.

In general the new relations produced are complicated to describe, but we highlight

the following very special case as an example.

Proposition 4.6.4. Choose the composition W = (w) and a (q− 1)st root of unity

E = (ω). Suppose we have a binary relation

2l−1∑
i=1

∑
~ε∈(F×q )|Vi|

(ai,~εSd;Vi(~ε) + bi,~εSd+1;Vi(~ε)) = 0,

Write each Vi = (vi, V
′
i ), and assume q is large enough so that w + vi ≤ q for all i.
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Then the relation produced by applying the procedure described above is

2l−1∑
i=1

∑
~ε=(ε,~ε′)∈(F×q )|Vi|

(
(ai,~ε + bi,~ε)SD;w,Vi(w, ~ε) + bi,~εSD;w+vi,V ′i

(wε, ~ε′)
)

= 0.

In particular, one obtains the linear relation

2l−1∑
i=1

∑
~ε=(ε,~ε′)∈(F×q )|Vi|

(
(ai,~ε + bi,~ε)ζw,Vi(w, ~ε) + bi,~εζw+vi,V ′i

(wε, ~ε′)
)

= 0.

Proof. This follows by the computations

SD;w(ω)
∑
d<D

Sd;Vi(~ε) = SD;w(ω)S<D;Vi(~ε)

= SD;w,Vi(ω, ~ε)

and

SD;w(ω)
∑
d<D

Sd+1;Vi(~ε) = SD;w(ω)
(
S<D;Vi(~ε) + SD,vi(ε)S<D,V ′i (ε

′)
)

= SD;w,Vi(ω, ~ε) + SD;w+vi(ωε)S<D,V ′i (ε
′)

= SD;w,Vi(ω, ~ε) + SD;w+vi,Vi(ωε, ε
′).

The second-last equality comes from the well-known equality

Sd,a(1)Sd,b(1) = Sd,a+b(1) if a+ b ≤ q,

which is a special case of Lemma 4.6.3 that is known since Carlitz’s work.

Remark. One can remove the restriction on q completely in the proposition above

by using the second equality of Lemma 4.6.3, but at the expense of producing a

longer binary relation involving ∆j
w,ε.
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Chapter 5

Future Directions

5.1 Adelic multizeta values

We have studied properties of the colored multizeta values ζ~s(~ε), and these are all

elements in k∞. Let us now consider the case of Thakur multizeta values ζ~s(~1) =

ζ(~s).

In [10], the definition for multizeta values ζ(~s)v at every finite place v of A was

defined by realizing Carlitz multipolylogarithms as coordinates of a special point

under the logarithm map of a certain t-module. This is an element in the completion

kv of k at v, and one can ask about algebraic relations on these v-adic multizeta

values. An answer has been given very recently.

Theorem 5.1.1 ([11]). For any finite place v, the multizeta values ζ(~s)v satisfy the

algebraic relations over k that the ζ(~s) satisfy. In particular, they all satisfy the
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same shuffle relations.

Theorem 5.1.2 ([14]). For a Thakur multizeta value ζ(~s), its v-adic counterpart

ζ(~s)v is a v-adic integer for almost all finite place v.

Using this, we can define the adelic (Thakur) multizeta values. Let S be a finite

collection of finite places of A, let ΣS be the set of places of A that are not in S,

and let AS be the ring of adeles for A with respect to ΣS. (If [11, Conjecture 5.4.1]

is true, we can allow S to include the infinite place of A as well.)

Definition 5.1.3. Given a tuple of positive integers ~s = (s1, . . . , sr), the finite

adelic multizeta value is

ζAS(~s) := (ζ(~s)v)v∈ΣS ,

which is an element of AS.

We want to define a k-algebra using these finite adelic multizeta values. Consider

the set of finite adelic multizeta values

FAM :=
{
ζAS(~s) : ~s is a tuple of positive integers

}
.

By Theorem 5.1.1 the finite adelic multizeta values ζAS(~s) satisfy the same linear

relations as ζ(~s)v for each place v. Hence many linear algebraic relations carry over

to the adelic case. For example, let AMFAM be the k-algebra generated by the

elements of FAM. For w ≥ 1, also let AMFAM,w be the k-linear space spanned by

elements of FAM of weight w. Then there is a grading

AMFAM = k ⊕
∞⊕
w=1

AMFAM,w.
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This is because the k-algebra generated by all Carlitz multizeta values possesses

a weight grading (by [7] or [19]). Furthermore, by Theorem 4.5.13, we can find

arbitrarily large families of elements in AMFAM that are algebraically independent,

and if F is such a family, then there is an injection

k[x1, . . . , x|F|] ↪−→ AS.

Question 5.1.4. Can we construct adelic colored multizeta values and obtain sim-

ilar results?

At present we do not know how to do this. A main obstruction is the following.

The construction of the v-adic multizeta values in [10] makes use of the fact that

we can realize Carlitz multipolylogarithms as coordinates of a special point under

the logarithm map of a carefully written-down t-module. In the colored case, our

multipolylogarithms (Definition 4.1.2) do not seem to obey this due to the extra

terms ε
ij
j .

Question 5.1.5. Can we write down more linear relations between colored multi-

zeta values that is not implied by those from the noncolored case?

5.2 Some other classes of multizeta values

Everything discussed in this thesis is for multizeta values over A, or in other words,

multizeta values on the function field of P1
Fq . A natural question arises.
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Question 5.2.1. Can we obtain results for multizeta values over function fields for

curves of higher genera?

The definition of such multizeta values is given in [27, Section 5.1]. A possible

starting point is to do some tests on function fields of class number one, of which

there are only finitely many.

Here is another question that does not seem too tractable due to loss of sym-

metry. If we return back to the P1 case, we have indicated that colored multizeta

values are obtained by twisting multizeta values with special C∞-Hecke characters

(degree-preserving q-finite characters A×/k× −→ C×∞ with trivial conductor).

Question 5.2.2. Can we generalize the results in this thesis to multizeta values

twisted by other kinds of C∞-Hecke characters, or to coefficients of Eisenstein series

(as defined in [13])?
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