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ABSTRACT

Mixed Carlitz Motives and Colored Multizeta Values in Characteristic p

Yao-Rui Yeo

Ching-Li Chai, Advisor

This thesis studies characteristic p multizeta values, which are function field
analogs of the Euler-Riemann multizeta values. The objective of this thesis is two-
fold. We first explicitly construct the category of mixed Carlitz motives, which is
a counterpart to the category of mixed Tate motives in characteristic zero. After
that, we identify specific mixed Carlitz motives, and use them to derive algebraic
independence properties of colored multizeta values. The former includes all known
t-motives related to multizeta values, while the latter complements results in the

literature on algebraic relations between multizeta values.

il



Contents

(1 _Introduction|

[2.4  The motivic Galois group| . . . .. .. ... ... ...

2.5 Aside: Some aspects of Hodge-Pink theory| . . . . . . .

B Mixed Carliiz Motives

[3.1 The category of mixed Carlitz motives| . . . . . . . ..

[3.2  Explicit period computations for mixed Carlitz motives|

[4  Application to Colored Multizeta Values|

v

15

19

20

24

24

26

30



4.1  Multizeta values and multipolylogarithms|. . . . . . . .. . ... .. 30
4.2 Some combinatorial properties| . . . . . ... .00 37
[4.3  Linear relations on polylogarithms|. . . . . . . . ... ... ... .. 41
4.4 Algebraic independence of multipolylogarithms|. . . . . . . . . . .. 47
{4.5 Implications on colored multizeta values . . . . ... ... ... .. 53
4.6 Remarks on linear refations . . . . ... ... ... ... ... ... 64
[5__Future Directions| 71
b.l Adelic multizeta values . . . . . . . ..o oo 71
6.2 Some other classes of multizeta values . . . . . . . . ... ... ... 73



Chapter 1

Introduction

1.1 Overview of classical case

The Euler-Riemann multizeta value is defined for a list of positive integers sq, ..., s,,

with s; > 2, as

CFR(sy,...,5,) = Z S !

1 S .
n PR n s
ny>->np>1 1 T

More generally, for a positive integer N, let uy be the N** roots of unity. Then
the Euler-Riemann colored multizeta value for €q,...,e, € py and sq,...,8, € Z>1,
with (e1,$1) # (1,1), is defined in [20] as

ni Ny
CER ( ) _ €1 &,
$1,0ensSr Elye-yEp) = 1 . P
nl ... n/r’!
ni>-->n,>1
These special values has connections to physics and enumeration problems, and a
main goal is to understand algebraic relations between the Euler-Riemann multizeta

values. Many relations between them are known, and one can either construct

1



these relations combinatorially, or understand them better by reinterpreting them
as periods of mixed Tate motives (see [33] for a collection of examples). However,
almost nothing is known about algebraic independence. For example, we still do
not know if (¥%(3) is transcendental!

Despite this, conjectures on algebraic relations between Euler-Riemann mul-
tizeta values has been formulated. For example, it is believed that the values
7, CER(3), CFE(5),... at odd positive integers greater than 1 are algebraically in-
dependent over @, and so is the set of multiple-zeta values (F%(sy,...,s,) with
s; € {2,3} and sq - - - 5, forming a Lyndon word (see [33, Conjecture 12]). As far as
we know, no such conjectures has been formulated for colored multizeta values.

Analogs of these multizeta values in the function field case has been defined,
and are called Thakur’s multizeta values and colored multizeta values respectively
in this thesis. In stark contrast to the number field case, not many explicit linear
relations between them are known, but one can construct arbitrarily large subsets
of multizeta values that are algebraically independent. These questions in the case
of Thakur’s zeta values are solved completely in [9], and work has been done for
multizeta values in higher depth. One consequence of this thesis is a generalization

of these results to colored multizeta values.



1.2 Outline

In this thesis we will study the structure of certain t-motives and apply them to
algebraic independence of multizeta values in characteristic p. The idea is to carry
out a function field analog of a similar program in the case of number fields; see
[16], [1I7] for an exposition.

Section 2 contains some background in ¢-motives that is essential to our dis-
cussion. Of upmost importance is the concept of uniformizability (Section ,
which is needed to interpret multizeta values as periods of certain ¢-motives. The
main tool to analyze multizeta values after this interpretation is the motivic Galois
group (Section . A general framework for the concepts surrounding ¢t-motives is
Hodge-Pink theory, and we will highlight some aspects of it that is related to our
discussions later (Section [2.5).

Section 3 defines mixed Carlitz motives (Definition [3.1.1)). This is a subclass
of those t-motives that are successive extensions of tensor products of the Carlitz
module. The category of mixed Carlitz motives is motivated from Hodge-Pink
theory and the examples in [3, B O 19, 22], and all the special values studied
in this thesis (and in the literature) can be realized as periods of certain mixed
Carlitz motives. This category satisfies basic properties such as closure under tensor
products and direct sums (Proposition , and we explicitly compute the period
matrices for them (Theorem (3.2.2)).

Section 4 can be split into two parts. The first half defines our main object of



study: multizeta values and multipolylogarithms (Definition 4.1.2)). These multi-
zeta values are special values of Goss’s analytic continuation of the Euler-Riemann
multizeta function for function fields in [18], and generalizes Thakur’s definition in
[27]. We will discuss some geometrical and combinatorial properties of them, such
as their interpretations as periods of mixed Carlitz motives, their shuffle relations,
and the decomposition of multizeta values into multipolylogarithms (Sections
and . The next half studies linear independence properties of multipolyloga-
rithms by way of the motivic Galois group (Sections and , and applies this
to infer algebraic independence of large classes of colored multizeta values, defined

by

cdeglan) ., degfar)

Y

CSl,...,ST(E:l, e 781”) — Z

deg(a1)>-->deg(ar)>0
a;€EAL

a‘il . .aﬁr

where s; are positive integers, €; € F* and A, denotes the set of monic polynomials
in IF,[6]. Thakur’s multizeta values are the colored multizeta values with ¢; = 1 for
all . Furthermore, in case r = 1 Carlitz had indirectly computed that (—1),(1)
is a F,(#)-rational multiple of 74~1" where 7 is the “fundamental period” of the

so-called Carlitz module. Our main results concerning colored multizeta values are

stated in Section (Theorems [4.5.9} 4.5.12} |4.5.13} and a recipe before Theorem

4.5.12)), and will follow from the steps carried out in proving the following.

Theorem (c.f. Corollary 4.5.10). Let 2, = {7,((e) : 1 < s <nande € Fy}.



Then

o1 g - o )

The results we obtained are an extension of work done on Thakur’s multizeta
values in [9] 21) [34]. In particular, it subsumes results in these references as special
cases, and we were motivated to obtain such a result due to recent work of [19]
proving transcendence of colored multizeta values. After this, we conclude Section
4 with some remarks on writing down linear relations using known ones in [24} 30} 31]
(Section [4.6)).

Section 5 is the final section, and discusses some future directions of research

stemming from our work.



Chapter 2

Background

2.1 List of notations

Below is a list of frequently used notation we will use throughout the thesis.

Notation | Meaning

q a fixed power of a prime p

F arbitrary field extension of IF, that is perfect

F(t)[o,07'] | ring defining ¢t-motives (c.f. Definition [2.2.2

A [F,[0], with 6 transcendental over I,
Ay monic polynomials in A

k F,(0)

koo F,((3)), i.e. completion of k with respect to the valuation oo
Coo completion at oo of a fixed algebraic closure of k4



a fixed algebraic closure of k in C

a fixed absolute value on C., with |0| = ¢

the i'" Frobenius twist (c.f. Definition [2.2.1

Carlitz motive (c.f. Example [2.2.6

Carlitz function (c.f. Definition [2.3.6

Carlitz period; function field analog of 7 (c.f. Definition [2.3.7

Tate algebra of C[[t]]

fraction field of T

[T._,(t —07)if i > 0, and 1 if i = 0 (c.f. Definition 4.1.2

j=1

l; evaluated at t = 6 (c.f. Definition [4.1.2

matrix for the o-action of a t-motive (c.f. Definition [2.2.4

period matrix of a t-motive (c.f. Definition [2.3.4

motivic Galois group of a t-motive M (c.f. Definition [2.3.9

multizeta values; MZ (c.f. Definition

tuple of elements ¢; in F

4.1.2

fixed (¢ — 1)* root in C of an element &; € F

multipolylogarithms; MP (c.f. Definition {4.1.2

depth of an arbitrary MZ or MP (c.f. Definition

weight of an arbitrary MZ or MP (c.f. Definition

Carlitz gamma (c.f. Definition [4.1.5

Anderson-Thakur polynomials (c.f Theorem

4.1.2

4.1.2

4.1.6




(&) colored multizeta values; CMZ (c.f. Definition 4.5.1

Liz(&,4) | colored multipolylogarithms; CMP (c.f. Definition 4.5.1

2.2 Definitions of t-motives

The main goal of this section and the next is to sketch the main ideas of Papanikolas
in [22], inserting in comments from other related papers as necessary. Let F' be a
field extension of k = F (6) that is perfect. The fields ' we are most interested in

is the function field complex numbers C, and the algebraic closure k of k in Cu.

Definition 2.2.1. For every f =}, fit/ € F([t]], define the it" Frobenius twist to

be
FO=3
J
Definition 2.2.2. The ring F[t,o] is the non-commutative ring defined by the
relations
to=ot, ft=tf, of=f"Vo; f € F[t].
The ring F'(t)[o, 0" is the ring consisting of finite sums Y, f;0" and satisfying the

same relations above.

We define three kinds of t-motives over F' in Definitions 2.2.3-2.2.9]

Definition 2.2.3. A pre t-motive is a left F(t)[o,o0']-module that is of finite
dimension over F(t). Morphisms between pre ¢t-motives are left F'(¢)[o, 0~!]-module

homomorphisms.



Definition 2.2.4. An effective t-motive is a left F'[t,o]-module M that is finite free
over F[t] and satisfying the following condition for one (and hence all) F'[t]-basis m
of M: if ® is the matrix corresponding to the o-action, so that ¢ - m = &m, then
det @ = ¢(t — 6)® for some ¢ € F* and nonnegative integer s. Morphisms between

effective t-motives are left F'[t, o]-module homomorphisms.

Definition 2.2.5. An Anderson t-motive is an effective t-motive M that is also

finite free over F'[o], and satisfying
(t—6)"M C oM for n >> 0.

Morphisms between Anderson t-motives are left F'[t, o]-module homomorphisms.

Remark. Our definitions of t-motives are sometimes called dual ¢-motives in the

literature.

The tensor product of two pre t-motives M, M’ over F[t] is denoted M & M’

with diagonal g-action: o(m @ m’) = o(m) ® a(m/').

Example 2.2.6. Here are three key motives we will deal with.
e The trivial motive 1 is the free rank-one F'[t]-module F'[t] with trivial o-action
o(f) = fCY. This is effective but not Anderson.
e The Carlitz motive C' is the Anderson t-motive F[t] with o-action o(f) =
(t - 0)fD.
e The motive C®" is the n-fold tensor product of C over F[t], which we also
call a Carlitz motive. Here o(f) = (t — )" f(=1).

9



Let 7° be the (exact) category of effective t-motives with left F[t, o]-module
homomorphisms as morphisms. Because of the noncommutativity of F[t,o], the
Hom sets in 7° are modules over FF,[t] and not F[t]. In fact, for any effective ¢-
motives M, N € T°, the set Homyo(N, M) is a finite free F[t]-module. This can

be seen by a straightforward argument showing that the map
Homyo (N, M) ®p, F — Hompp (N, M)

is injective, where the right hand side is the free F'[t]-module consisting of all F'[t]-
linear maps from N to M.

Furthermore, the category 77 is a full subcategory of the category of all F'[t, o]
modules, but is not an abelian category: the multiplication by ¢ map ¢ : 1 — 1
has trivial kernel and cokernel, but the morphism is not invertible. We will fix this
later by enlarging the Hom set and defining a new category T .

Now let V and M be effective t-motives, and denote their o-actions by oy and
oy After fixing F[t]-bases n and m, call their respective matrices @y, and ®p/m,
so that

OoN -1 = CI)NJ]H.

(Similarly op - m = ®ppym). Note that N and M are determined up to isomor-
phism by @y, and P/ m.
Consider the group Ext%-o(N , M) of extensions of M by N, with group structure

given by Baer sum. It is easy to check the following.

10



An extension [E] € Ext},(N, M) is specified by a matrix

Drrm 0
(] (I)N,n
for some e.

If [E], [E'] € Ext]»(N, M) are classes corresponding to matrices

CI)M,m 0 CDM,m 0
and ,
e Dyn e  Pyn

then [E] 4 [E'] is the class corresponding to the matrix

Pym O

et+e Oy,
Let 0 — M — E — N — 0 be an exact sequence corresponding to
[E] € Exty(N, M). For any a € F,[t], consider the pushout diagram

M———-F

ai l

M— MU, E

of t-motives. If [M] corresponds to the matrix

then [M U, E] corresponds to the matrix
Brrm O
ae DPyp

11



Hence Extl-, (N, M) has an F,[t]-module structure defined by Baer sums and Carte-

sian pushouts.

Proposition 2.2.7. Let M, N as above.
(a) Fiz a choice of F[t]-bases n,m of N, M, and identify any homomorphism
u: N — M with the matriz U € Mat, x,,,(F[t]) satisfying u(n) = Um. Then

there is a Fy[t]-module isomorphism
Bom: Homyo(N, M) = {U € Matyun(F[t]) : @xnl = Uy},

and Homy-(N ® C, M ® C') = Homyo(N, M).

(b) There is an Fy[t]-module isomorphism

MeEn

enm: Extio(N, M) = (on . — D)

where n = rankpy N and m = rankpy M. (The product DN n M above is
defined by identifying M with Maty .., (F[t]) via the chosen F[t]-basis m of

M.)

Remark. Explicitly, writing m = (by,...,b,,), we use the identification tp,: M —
Maty xpm (F[t]) given by tm(ciby + -+ 4 ¢mbm) = (c1, ..., ¢n). This is extended to an
identification ty: M%" — Mat, . (F[t]), and we make sense of multiplying @y,

by an element of M®" by viewing this element as an element of Mat,, ,,(F'[t]) under
Lm-
Proof of Proposition[2.2.7]. (a) This is a straightforward computation.

12



(b) Assume FE is equivalent to M & N in Exti, (N, M). Then there is a commu-

tative diagram as below.

1 s M s B s N |

In matrix notation, we require

I, 0O
B = , V€ Mat,xm (Ft]),

vV I,

and for B to be a morphism, by part (a) we require

e Oy| |V I, VED Ll 0 &y
This is equivalent to V&, + e = OyVED, Thus F is equivalent to M @ N if and

only if e satisfies the relation
e=—dyV + VD,

for some V' € Mat,, . (F[t]). We are done by observing that, for the basis m of M

giving rise to @y, there is an [Fy[t]-module homomorphism

Men
(UM]n — (I)N)M@n

Mat,sm (F[t]) —

— X, —

having kernel the [F[t]-module consisting of all matrices satisfying the same relation

as e above. O

13



Remark. Let us note the immediate corollary
Extl (1, M) 2 M/(op — 1) M,

which is mentioned in [12], and credited to an unpublished manuscript of Ander-
son. In [23], Papanikolas and Ramachandran has also given an interpretation of

Ext},-o(N , M) using the language of biderivations.

Definition 2.2.8. Define the category T of effective t-motives with objects the

same ones as 7° and Hom sets
Homyo(—, —) @, Fq(t).

Proposition 2.2.9 ([22, Proposition 3.4.5]). For M, N € T, there is an isomor-

phism of F,(t)-spaces
HOIHTo(M, N) ®Fq[t} ]Fq (t) — Hompre t—motives(M(t)7 N(t))v

where M(t) = F(t) ®@py M with o-action o(a®@m) = a"Y @ a(m) for allm € M.

O

We can now define the internal Hom in the category of pre t-motives P, defined

as Hompq (M, N) with o-action

o(f) =ono foo,}.

(Note that this internal Hom cannot be constructed in 7, since an “inverse” to
the Carlitz module does not exist there.) With this, we define the dual of an

14



effective t-motive M by MY = Homp) (M, 1). The dual also lies in P, and satisfies

MYV = M.
Example 2.2.10. The dual CV of the Carlitz motives C' is an object in P, and is
isomorphic to F(t) with o-action
o(f) = (t—0)~ V.
Let us also define the category A to be the full subcategory of T with objects

consisting of Anderson ¢t-motives. Then, by Proposition [2.2.9, there is a natural

embedding A — P.

Theorem 2.2.11 ([22, Theorem 3.4.9]). The category P is a rigid abelian Fy(t)-
linear tensor category. If we write P as the category of pre t-motives, then A — P

18 fully faithful. a
Proposition 2.2.12 ([25, Theorem 7.4.2]). For all effective t-motives M and N,
Exty-(M, N) = Extyo (M, N) @, Fq(t)

Ext’-(M,N) =0 fori > 1. O

2.3 Uniformizable t-motives

From now on till the end of the thesis, we will concentrate on the case F' = k. Let
T be the Tate algebra of C.[[t]], which is the subalgebra of C[[t]] consisting of all
power series Yo cit’ in Cool[t]] satisfying [c;| — 0 as i — co. Also let IL be the
field of fractions of T.

15



Definition 2.3.1. Let M be a pre t-motive over k, and let M? := (M 5 L)7-

Then M is uniformizable if the natural map
har - MP @,y L — M &gy L
is an isomorphism.

The definition of uniformizability is a generalization of Anderson’s notion of rigid
analytic triviality, where he showed in [1] that the exponential map of an Anderson
t-motive M is surjective if and only if M is uniformizable. Exponential maps are
particular useful for us in the case of Carlitz motives as it gives us a computation of

Carlitz’s zeta values at “even” integers; see the discussion before Proposition 4.5.5|

Proposition 2.3.2 ([22, Proposition 3.3.9]). Assume that the Anderson t-motive
M has rank m, and fir a F[t]-basis m of M. If ® € Mat,,m(k[t]) is the matriz

corresponding to the o-action of M with respect to m, then M is uniformizable if
v = o0

for some U € GL,,(IL). Furthermore, the entries of V~'m forms a k-basis for MB.

|

Remark. In the remainder of this thesis, if U1 = ®¥, we will say that ® is

uniformizable by ¥, or that W is a uniformizer of ®.

Proposition 2.3.3 (|2, Proposition 3.1.3]). Let E be the subring of the Tate algebra
T consisting of all elements that is entire on Cy. If M is a uniformizable t-motive,

16



then there exists a U as above such that ¥ € GL,,(E). In particular, ¥ € GL,,(T).

O

Definition 2.3.4. The V¥ in the above proposition is called a period matriz of a
uniformizable t-motive M with respect to ®. The periods of U are the entries of

U|i—g.
Example 2.3.5. The trivial motive 1 is uniformizable with W = [1].

Example 2.3.6. The Carlitz motive C' is uniformizable. Carlitz [6] indirectly con-

structed the C-entire function
Q=) = (o T (1-
- - o 0

and showed that QY = (t — )Q. (Here we fix a choice of (¢ — 1)* root for —6.)
Thus the matrix ¥ = [Q2] uniformizes C, as & = [t — 0] with respect to the basis

{1}. Similarly, ¥ = [Q"] uniformizes C®" as ® = [(t — 0)"].

It is possible for a t-motive to be non-uniformizable, though the constructions
of these are contrived; see [1, Section 2.2] for an example.

Here is a definition that will be useful later on.

Definition 2.3.7. The Carlitz period is defined to be

=1

where we fix a choice of (¢ — 1)% root for —6.

17



In [32], it was proven that the Carlitz period is transcendental over F,(6).

Theorem 2.3.8 (|22, Theorem 3.3.15]). Let R be the category of uniformizable
pre t-motives over k. Then R is a neutral Tannakian category with fiber functor

w: P+ P8 where PP is defined in Definition|2.3.1, O

Following [22], define S to be the strictly full Tannakian subcategory of R

generated by the Anderson t-motives A.

Definition 2.3.9. Let M € §, and let S, be the strictly full Tannakian subcate-
gory of § generated by M. (That is, Sy; consists of all objects in S isomorphic to
subquotients and finite direct sums of t-motives of the form M®* @ (MY)®5.) By
the Tannakian formalism, the motivic Galois group I' = T'j; of M is defined to be
the affine group scheme over [F, () such that, for every commutative algebra R over

IF,(t), the group of R-points of Iy is
Ty (R) = Autg (w ),

where w®) is the base change of w to R over F,(t). This is a linear algebraic group

over Fy(t).

The next section explain how one can compute I'j; explicitly via difference

equations.

18



2.4 The motivic Galois group

In this section we summarize the main facts on computing the motivic Galois group;
details can be found in [22]. We fix the following notations:

e J=TF,(t) and K = k(t) and L = L;

e M is a fixed effective t-motive over k of rank r + 1;

e [')/ is the motivic Galois group of M obtained via Tannakian formalism;

e ® is the matrix defining the o-action of M after fixing a basis;

e VU is a period matrix of M satisfying the uniformizability rule (-1 = ®W.
Let ¥;; be the (4,7)" entry of U. We make the following two definitions.

e Consider the K-algebra map

1
K[ X ———] - L
v KX ),

Xij — \I/Z]

We define Z to be the schematic closure of the map Spec(v): Spec(L) —
GLr+1/K' In other words, Z = Spec(K|[X,j, #(X)]/ker v), and is a closed

subgroup scheme of GLT+1 /K.

e Consider the matrices ¥y, Wy € GL, 41 (L ®j L) defined by

(V1) =V, ® 1, (Vy)i; = 1@ U,

19



Now let U = U, 'y, and consider the J-algebra map

1
I X, ——— — L@ L

Xij — \IJU
We define I to be the schematic closure of the map Spec(u): Spec(L®yL) —

’z —det%X)] /kerp), and is a closed

GLr+1/J' In other words, I' = Spec(J[X;

subgroup scheme of GLT+1 /J.

Theorem 2.4.1 ([22]). The following are true.

I' is isomorphic to I'y; over J.
For any positive integer n, there is a natural J-isomorphsm ¢, : Doon — G,y,.
Let E be the subfield of Co, generated by the entries of ¥|,—g over k. Then

trdegz £ = dim I'y,.

Z is stable under right multiplication by K x ;I', and is a torsor for K x; T’

over K.

[ is geometrically connected and smooth over J = F,(t). g

2.5 Aside: Some aspects of Hodge-Pink theory

The final section of the background will be devoted to summarizing some aspects

of Hodge-Pink theory [20], applied to the case of t-motives. This will not be needed

for the remainder of the thesis, and is here to indicate the existence of a framework

generalizing t-motives and uniformization.
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In this section, we will briefly discuss purity and mixedness, as well as the

comparison theorem between Betti and de-Rham cohomology.

Definition 2.5.1. Let M be a pre t-motive over k, and let
M = Mc,, ®ac,, Co,

where Mc = Cy, Q% M and Ac,, = Cy, ®F, A.
e M is pure if there exists integers d and r, with » > 0, and a C..-lattice L of
M such that

o"L =tL.

In this case, the weight of M is defined to be wt(M) = —d/r.
o M is mized if it possesses an increasing weight filtration by pre t-motives W, M

indexed by i € Q, such that each graded pieced Gr, M = W,M/J W, M

W <p

is a pure pre t-motive of weight u, and } rankg,) Gr, M = rankg,) M.

It is clear that tensor products of two pure pre t-motives M, M’ (over the base

ring F'[t]) is still pure: if
o'L=t'L and o L =¢'L,
then L ® L' is a lattice of M ® M’ satisfying
ol (L& [') = '+ L & ).
In particular wt(M ® M') = wt(M) + wt(M’). Using this fact, the tensor product

21



of two mixed pre t-motives N, N is again mixed, with weight filtration

WuN@N)= Y (W.N)e (W,N).

WAp'=p

More properties on purity and mixedness can be found in [20, Proposition 4.10].
We highlight two important ones. Firstly, any morphism between mixed pre t-
motives as k(t)[o, o~ ]-modules actually respects the weight filtration, so we can
use the same definition of morphisms in Section for the mixed case. Secondly,

the weight filtration of a mixed ¢t-motive M is uniquely determined by M itself.

Example 2.5.2. By the uniformization theorem for Drinfeld modules (see [27,
Theorem 2.4.2]), any Anderson t-motive M over k with rankg,; M = 1 is pure of
weight —1/r, where r = rankg[t} M. In particular, by the above discussion, the

Carlitz motive C®™ of Example is pure of weight —n.

It turns out that mixed uniformizable pre t-motives also forms a neutral Tan-

nakian category.

Theorem 2.5.3 ([20, Theorem 4.23]). Let MP be the category of mized uniformiz-
able pre t-motives. Then MP s a neutral Tannakian category with fiber functor

w: P+ P8 where PP is defined in Definition|2.3.1| O

Let M be a mixed uniformizable pre t-motive. Then dimp, ;) M B — dimg(t) M by
[20, Lemma 4.16] or [22, Proposition 3.3.8]. In particular, M? is of finite F,(¢)-rank,

and we can define Betti and de Rham cohomologies as follows.
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Definition 2.5.4. For a mixed uniformizable pre t-motive M, its Betti cohomology

and de Rham cohomology are defined to be
Hp(M,Cs) = M” @p,;) Cos  and  Hup(M,Cy) := Mc_ /JMc,,
where Mc, = Cy @M, and J is the maximal ideal in Ap generated by 0®@1—1®86.

With this, the uniformization map hj; in Definition [2.3.1] can be reformulated
in Hodge-Pink theory as an analog of the comparison theorem between Betti and

de Rham cohomology.

Theorem 2.5.5 ([20, Lemma 4.18, Theorem 4.36]). Let M is a mized uniformizable

pre t-motive. Then there is a canonical isomorphism
hp.ar : HB(M> (Coo) — HdR(Ma (Coo)

defined by hp ar := hy (mod J), where hyy is the uniformization map in Definition
2.3.1. Furthermore, if we choose a basis for M with the matrix for its o-action being
D, and if U is its period matriz, then hpar can be written in coordinates as W',

|
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Chapter 3

Mixed Carlitz Motives

3.1 The category of mixed Carlitz motives

In this section we propose a definition for the function field counterpart of mixed
Tate motives. This category is motivated from the examples in [3], 5] 9] [19] 22], and

also includes our examples in Section

Definition 3.1.1. Let M be an object in the category P satisfying the following

condition: there exists n € Z such that M ® C®" is k-isomorphic to the object in
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P attached to an Anderson t-motive represented by a o-matrix of the form

(t— o)
an(t— O (t— )

¢ = asq (t — (9)”1 a32(t — 9)"2 (t — 9)”3

a1 (t— 0" apa(t— 0 ap(t—0) - (t—0)™

where n; € Zs for all 4, and a;; € k[t] for all i, j. Such a pre t-motive M is a mized
Carlitz motive if ® further satisfies the following two conditions:
e the natural numbers n; satisfy ny >ng > --- > n, > 0;

o ifn;=nj=---=nj4, thena,, =0for j <v<u<j+1

Note that a mixed Carlitz motive is an object in the category of successive
extensions of tensor products of Carlitz motives. Let C be the category of mixed

Carlitz motives, with Hom sets defined by

HomF[t](_a _) ®1Fq[t] Fq(t>‘

Proposition 3.1.2. A mized Carlitz motive is mized in the sense of Definition
[2.5.1. Furthermore:
e the direct sum and tensor product of two mixed Carlitz motives is still a mixed
Carlitz motive;
o C is a rigid F,(t)-linear tensor category;
e the map C — MP from C to the category MP of mixed uniformizable pre
t-motives s fully faithful, and C is a full Tannakian subcategory of MP.
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Proof. The first assertion is clear by the discussion in Section and straightfor-
ward computation with the matrices defining mixed Carlitz motives. The proof of
the second and third assertions are the same as the ones given in [22] for Proposi-
tion and Theorem [2.2.11] since morphisms respects weight filtrations by [20,

Proposition 4.10(g)]. O

3.2 Explicit period computations for mixed Car-

litz motives

In this section, we explicitly compute the period matrix for a mixed Carlitz motive.

This is motivated by the computations of [3].

Lemma 3.2.1. Let U € Mat,(k[t]) be a square matriz with nonzero determinant.

Consider the F[t]-module
S={VeCQL.(T): VY =UV}.
If S is nonempty, then S is a GL,(F,[t])-torsor.
Proof. Fix W € S. For any other T" in .S, consider
G=WT.
Then, by invertibility of U in k(t), one gets

GV =a.
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Note that the entries of GG are still in T, so the above is only possible if G has entries

in F,[t]. Thus T'= WG with G € GL,(F,[t]). O
Theorem 3.2.2. Mized Carlitz motives over k are uniformizable.

Remark. In fact, the period matrix of a mixed Carlitz motive can be explicitly
determined from its o-matrix. This will be demonstrated in the procedure described

in the proof.

Proof of Theorem[3.2.9 Preserve the notations of Definition We can replace
M by M @ C®" for n >> 0 without loss of generality, so as to ensure n; > 0 in the
matrix ®. The proof proceed by induction on the k[t]-rank r of our mixed Carlitz
motive M.

As the case r = 0 is trivial, assume r > 1. Then M can be written in matrix

form as _ -
(t—6)™
as (t —0)™
Dy
aq (t —6)™

where @, is a mixed Carlitz submotive. By induction there exists ¥, € GL,_; with
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\112‘1) = ®,U,. We now seek a matrix ¥ of the form

A

e

8,

such that 3; € T and U~V = ®¥. Thus we need

(-1 _
=

and by Lemma we can pick f; = Q™. A computation tells us that necessarily

(t—0)"5,

By ag (t — 6)™
=Y + ®,
ng_l) ar1 (t - g)nl
Writing i i
52,1
q)s - )
Sr1 Sror—1

with s, ; € k[t], we need to solve the equations

/Bé_l) = ay Q1" (t — 0)" + 591

fa

B

55_1) = az Q" (t — 0)™ + 53102 + S3203

BV = 4 QU (t — )™ + 5,182 + Srr—1By
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Let us solve for (5 first. Let v = max{1,|so1|}, where |s2;| is the maximum among
all the absolute values of its coefficients. Then, as €2 is an entire function in T, we
can write ag Q" (t — 0)™ = A(t) + B(t), where

e A(t) is a polynomial in k[t];

e B(t) is an element in T with coefficients all having valuation at most 1/v2.
Then a solution to 3, is 8, = 83 + (3, where

e [31 is a solution to #(=Y = A(t) + sy, which exists in k[t];

e (32 is a solution to ™Y = B(t) + sq7.

Solve for 32 by doing a telescoping sum to obtain
B3 = B + 51 BO(1) + spas51 B (1) + -+

which converges by assumption on B(t). The rest of the the §; are solved iteratively
in the same fashion.

By Lemma [3.2.1] once we have computed such a uniformizer ¥ for ®, we can
obtain any other uniformizer via right multiplication with a matrix in GL,(F,[t]).
If we choose another set of basis for M, the associated o-matrix ® transforms by
d — SCEVPS—! for some matrix S, and so its associated uniformizer changes by

U — S7hy, [l
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Chapter 4

Application to Colored Multizeta

Values

4.1 Multizeta values and multipolylogarithms

We finally define multizeta values and multipolylogarithms. The latter has already
been defined in [7] in relation to Thakur’s multizeta values (i.e. for ¢; = 1). For

easier notation, we introduce the following product.

Definition 4.1.1. For any nonnegative integer i, define an element [; € AJt] =
F,[0]]t] by

[T_,(t—609) ifi>0;

1 ifi =0.

Also define L; := l;];—.
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In the definition below, our absolute value | - | is normalized by |0| = q.

Definition 4.1.2. Fix a positive integer r, and let § = (s1,...,s,) be a list of
positive integers.
e For 7 € (k)" satisfying |z;| = 1 for all 4, the multizeta value (or MZ) (+(Z) is
the element of C,, defined by
degar) | deg(ar)

2\ . Iy
Cg(x) T Z a‘;l e air ’

deg(a1)>+->deg(ar)>0
aieAJ,-

where A, denotes the set of monic polynomials in A = IF[6].

e For &€ (FX)" and 7' € (k™) satisfying |z| < gi-T for all 4, define an element
of the Tate algebra T by

PRI S &

5.5
i1>>0.>0 " tr

where the [;’s are defined in Definition m The multipolylogarithm (or MP)
Liz(€, Z) associated to £ and Z'is defined to be Liz(&) Z) := Lg(&], 2)|1=¢. In case
r =1, we will call an MP a polylogarithm.

For both the MZs and MPs, its depth is r, and its weight is w := s1 + - - - + S,.

The condition imposed on & in the definition of our multizeta values is to ensure
we have a well-defined period interpretation (Proposition [4.1.7). We have only
defined MPs for £ a tuple of elements of (¢ — 1) roots of unity as this is sufficient

for our applications.

Remark. Note that the expression Lz(£) Z) can be formally expressed as an element
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in C[[t]] by applying the identity

1 ] t 2 .
—o0 g\ Tgo Tgop ) 20

(The right hand side of this identity converges on the interval [t| < |#)] = ¢'.)

—

We now explain why Lz(&, 2) converges whenever |t| < [#(V)| = ¢%; in particular,

Lz(£)2) € T, and it makes sense to define MPs by evaluating Lg(€, 2) at t = 6. To

see this, let 7 € C be such that |7| < ¢, and let l; ; := l;|—,. Then

= g 1@y,

Preserving the notations in the above definition, this implies

o . (i1) (ir)
g’fz§ v -aﬁzfn ") _ qq%'fl(sl+-~+sr) 1] 1 2]
lfllﬂ_ . l(is:yT qgill qgill Y

and the above expression approaches 0 as i1 > --- > 4, > 0 approaches co.

Definition [4.1.2] generalizes the MZ and MP considered in [4], and are special
values of Goss’s analytic continuation in [I§]. In particular, Thakur’s multizeta

values are the values

Go(1) = Z ﬁ'

deg(ar)>>deg(a,)>0
a;€EAL

Remark. No functional equation for the MZ is known. If we consider the MZ at
negative integers, it turns out that the infinite sum reduces to a finite sum, and a
study of the depth 1 case was done in [2§].

We will study combinatorial properties of the MPs and MZs in the next section.
For now we concern ourselves with realizing MPs and MZs as periods of special
mixed Carlitz motives.
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Polylogarithms as periods

For a family of polylogarithms Li, (e, 21), ..., Li,(€m, 2m) of the same weight n,
we can use an analogous construction in [22] to identify them as periods of mixed
Carlitz motives. Let us first observe that, as ¢; is a (¢— 1) root of unity, the power

series defining the polylogarithms satisfy the functional equation

— E;
0y

Lnfes )™ = 2 (t— o)

Hence, if we define 7; to be a fixed (¢ — 1)* root of &;, we see that ”yi(*l)ei = ;, and

one gets the following.

Proposition 4.1.3. The function L, (e;, z;) above satisfies the functional equations

- — Vi
(i Lin (&4, Zz))( N = (%‘Zz‘)( D+ (t— ) Ly(gi, 2i).

Consequently, the mized Carlitz motive defined by

(t—0)"

() E =) 1
@ =

(Ymzm) TV (t — 0)" 1

1s uniformizable by
Qn

Y1 Ln(e1, 20)Q" 1

g’ pr—

TYm Ln<5myzm>Qn 1
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Proof. The equality W'=Y = ®W¥ is immediate by the functional equations for poly-

logarithms (Equation {4.1.1)) and © (Example [2.3.6]). O

Multipolylogarithms as periods

For an MP Liz(€, Z), we can identify a mixed Carlitz motive such that this MP

appears as the bottom right entry of its period matrix. Let us introduce the notation
Sij = (85,8541, 5 8i01), 1 <j<i<r41, (4.1.2)

and similarly for &; and Zj;. Observe that, if we write L; ; = L, (£}, Zi;), then

-1
(1) _ € rEier )

8‘] “ e 81_1
(t — @)5j+"'+5i—2 i=1j T (t _ 9)5j+"'+81'_1 1,5

Define 7; to be a fixed (¢ — 1) root of ¢; as before

Proposition 4.1.4. The L, ;’s above satisfy the functional equations

ey R G oy
TN S e e o T ) A e | Al (2 W T
(7] ’YZ—ILZ,]> - (t . 0)5j+“'+5i—2 Lz—l,y + (t — 0)5j+“'+5i71 Ll,]’

Consequently, the mixed Carlitz motive defined by

(t — ‘9)81+---+sr
(")/121)(—1) (t _ 9)81+-..+Sr (t . 9)52+"'+Sr
¢= (’7222)(—1)(t _ 9)82+"‘+8r

(t— )

(rz) D= 0) 1

34




s uniformizable by

Qsittsr
71L21951+“'+57' Os2ttsr
. 7172L31981+---+sr 72L32Q32+”'+3T
Vit Vo1 L QT gy Ly g QS Qs
T ,}/TLT+171981+~'+ST Y2 PYTLT+1,2QS2+W+ST e W/TLTJrlQST 1

Proof. The equality (-1 = ®U is immediate by the functional equations for mul-

tipolylogarithms (Equation [4.1.2]) and Q (Example [2.3.6)). ]

Multizeta values as periods

The realization of (%) as periods has essentially been done in [19]. We will recap
it here. In order to do this, we need to make use of the following. For every

nonnegative integer 7, define

[T25(69 — 6Dy if i > 0;

j=0
D, =
1 ifi=0.

Definition 4.1.5. Let n be a non-negative integer. The Carlitz gamma is defined

to be
Fn+1 = HDznzv

where n = Y. n;q" is the g-adic expansion of n.
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Theorem 4.1.6 ([4]). There is a sequence of nonzero polynomials H,(t) € Alt]
satisfying

(Hs_lQS)(d)

23

Z :
)
as
t=0 deg(a)=d
a€A+

where s > 1, d >0, Q = Q(t) is the function in Example and A, is the set

of monic polynomials in A. Further, regarding H,, as an element in F,[t][6],
deg, H, < "
Because of the above theorem, the formal sums

Lz‘,j = Z x?i(HSi_IQsi)(di) . xda (Hsj_IQsj)(d]-)

J
di>-d;>0

are the key to giving a period interpretation for multizeta values. If each xp € Cy

satisfies |xj| = 1, then these formal sums L* converges in Cy|[t] by the bound on

degy Hj, .

Proposition 4.1.7. For each x; € k" satisfying |z;| = 1, fix a solution y; € k to

the equation

:L,§¢+1
qa __ 2 —
U

Then the mized Carlitz motive defined by

(t _ 0)31+"'+3r
AR ) R (G
o = yé_l)Hé;j} (t _ 8)82""""‘1‘57‘

(t — 0)

g VHT (- 0)

36




s uniformizable by

| s+ tsr -
yy LB1Qse s (s2+tsr
U =
Ui Y LTI gy L2TTIQS L Qe
| u g LY Yoy LT eyl 1

Moreover, the nontrivial coefficients of W satisfy

T 25'+1+~~~+s Yi Yl s, 5j - L
yl ij J r — 7’%51'4-“""57“ Csj-‘rl,i <$J+1,Z>7
t=60

where Tji1,; = (x;,...,%5).

Proof. The first part of the proposition is a straightforward computation, and the

second part is a consequence of Theorem [4.1.6], since

T, Ty,

IwI = WQ}HM (fjJrl,i)
t=6

and Q|t:9 = ﬁ_l. ]

4.2 Some combinatorial properties

In this section we discuss combinatorial properties of MZs and MPs. These are

generalizations of various results in [7, 13], 19} 29].
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Shuffle relations

As a consequence of the inclusion-exclusion principle, the product of two MPs is a

linear combination of MPs, and the same holds for MZs.

Proposition 4.2.1. The MPs satisfy shuffle relations of the form
Liz(&, 2) Lig(¢,2") = Z Ligws (Ep.07, Zor ),
(0,)eV

where the notations in the right hand side are defined as follows. For each positive
integer v satisfying max{r,r'} <r" <r+7r', let V,n be the set of all tuples (¥, ")
such that U (resp. U') can be obtained from § (resp. §') by inserting r"" — r (resp.

" —1') zeros in all possible ways. Then

V.= U ‘/r”-

max{r,r/} v/ <r-tr

If (0,7") € V, then UW U is the result after removing all the zeros in the vector sum

U+ 0. For each (U,V") € V', we then declare the
(

. th . — = - .
£; if the i coordinate of UW U is s;;

i coordinate of & = £l if the i'" coordinate of TW V' is s};

ksjsﬁc if the it coordinate of T WV is s; + s},

The variables z, . obey the same rule as above, replacing all €’s by z’s. |

Proposition 4.2.2. Consider two MZs ((%),(z (&) of depths r,r’, such that all
entries of £ and &' have absolute values at most 1. Then the product (3(Z)(z(Z")
can be written as a “shuffle relation”, i.e. an Fy-linear combination of MZs. O
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It is not easy to explicitly write down the coefficients for an arbitrary MZ shuffle
relation. However, [13] has computed the shuffle relation for the product of two

MZs with depth 1:

Cs(x)Cs’ (.I'/) = Cers’ (l’l’l)

+ X (D) e (D)) Gt

0<j<s+s’
q—1[j

Explicit relations for colored multizeta values (see Definition [4.5.1)) in low depths

are also given in [19].

Multizeta values in terms of multipolylogarithms

For our eventual goal of proving some algebraic independence results on MZs, we

will need the following result.

Proposition 4.2.3. Let &€ (Fy)". Fori=1,...,r, also let C; be the set of all

coefficients for the polynomial Hy,_1(t) in Theorem[{.1.6, and let
U:={u=(uy,...,u;) :u; €C; for all i}.
Then there exists az € A, indexed by u € U, such that

1
(s(8) = T, T,

Toa

Furthermore, each ag is a nonnegative power of 6.
Proof. Consider the convergent function

Lit)= 3 e (Hya @)W e (1, 0) ),

di>--dr >0
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Then, by Theorem [4.1.6,

r, T,
L) = — s, G(9)-

On the other hand, as QY = (t — 6)1,

L(t) Z 5(1hHs(f1—)1 - 'EgTH;dr—)l
Qsitotse SR L ’
d1>-dy>0 di dr

where

[15_,(t—09) ifd>0;
lg =

1 if d=0.

Hence, letting t = 6, one obtains the relation

dl (dl) d (d'r)
e'H 0)---e"H 0
Fsl R FSTCE'(&?) — § 1 51—1( ) r sr—l( )

L350 L5
d1>+dp>0 di dr

We now see that az is a power of § from the power of ¢’s in the ngi)l’s. ]

Non-vanishing properties

Before discussing algebraic independence properties, let us show the following non-
vanishing properties to ensure that all colored multizeta values and colored multi-

polylogarithms are nontrivial (see Definition for definitions of these two terms).

Proposition 4.2.4. Let § = (s1,...,s,) be an arbitrary list of positive integers.

For every ¥ € (CX)" satisfying |z;| = 1 for all i,
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Proof. Write
(D)= > af e alSy(s1) - Sa (),

where

deg(a)=d;
a€A4

Then, as deg, Sy(s) > degy Sar1(s) > 0 by [29],
|G(Z)] = [Sr-1(s1) -+~ Solsr)] > 0,
giving us what we want. O

Remark. By a similar proof strategy, for every £ € (Fy)" and 7 € (C%)" satisfying
|z;] = 1 for all 1,

Liz(£)2) # 0.
To see this, observe that 0 < degy £; < degy L;+1, and so a direct estimate implies

1

| > 0.
L Ly

Lis( 2| > ‘

4.3 Linear relations on polylogarithms

Throughout this section, fix a positive integer m. For each ¢ = 1,...,m, also fix
choices ¢; € F)* and 2; € k satisfying |2] < go-7. In addition, fix a choice of (g—1)*
root ~; for each ¢;.

Let us consider a collection of polylogarithms

P ={v Lix(e1,21), -+, Ym Lin(Em, 2m) }
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of the same weight n, multiplied by v;’s. Recall that we gave a period interpretation
for this collection of polylogarithms in Proposition [£.1.3] Let ® and ¥ be as defined
in this Proposition, and let I' be its associated motivic Galois group. We now use
the technique of [22 Section 6] to show that defining polynomials of I' gives us all
the k-linear relations on P. We will use Theorem throughout this argument
without explicitly mentioning it.

Let J =F,(t). By definition of ¥ and the construction of I', it is clear that we

have an inclusion

P(R) C c Mat(k+1)x(k+1) (R)
x I,
for any J-algebra R. Furthermore, as the mixed Carlitz motive ® contains a tensor
product of a Carlitz motive (corresponding to the top-left entry of @), there is a

epimorphism over J

r — G,

by the top-left entry, giving rise to an exact sequence
11—V —-IT—G, — 1

Notice that V is the unipotent subgroup of I', and is a vector group over J of

dimension k. In fact,

V(J) C € Mat(s1)x (k1) ()

x L
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Additionally, V is a vector group over J: the product of two elements is linear on

the non-trivial coordinates, and if o € I'(J) has image a € G,,(J), then

Lemma 4.3.1. V is a linear subspace of G¥ over J.

Proof (c.f. Lemma A.2 of [9]). Note that the induced map d : Liel' — Lie G,,, is
nonzero since the map is nontrivial when restricted to the upper-left corner of the

matrix. Furthermore, ker(d) = Lie V. By smoothness of I" and G,,, over J,
dimy LieI’ = dim I’ and dim; Lie G,, = dimG,, = 1,

and so

dimy LieV = dim V.

Thus V is smooth and defined over J. Since V is also a vector group over .J, this

means V' is defined by linear forms over J. n

If we now fix a matrix

bo

by 1
w= e I'(J), bo € J*\Fy,

b 1
the Zariski closure of the cyclic group generated by w in I' is the line L connecting w

to the identity matrix Ix.1. As I' is absolutely irreducible and V' is of codimension
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1, we conclude that I" is the linear space spanned by V and L. Thus, if Fi,... | F]

are linear polynomials in J[Xj, ..., X,,| defining V', and w is as above, then
Gi(X(]a s 7Xm) = (bo - 1)FZ<X17 SR 7Xm) - E(bla SR 7bm)(X0 - 1)

is a set of linear polynomials defining I". Furthermore, using the fact the Z is a

I'-torsor by the map defined in [2.4.1] one also sees that the linear polynomials
Hi(XO; e ,Xm) = GZ‘(X07 e ,Xm) - szO

defines Z for some determined f; € J. These H; are the polynomials giving us
linear relations on polylogarithms as the construction of Z is based on the entries

of W. Recall that P is our collection of polylogarithms of the same weight n.

Proposition 4.3.2. Fix one of the F;’s above, and write F; = c1 X1+ -+ + ¢t
with ¢; € Fy(t)*.

(a) Each polynomial G; gives rise to the relation

k k

(bo(6) = 1))~ il0)yi Lin(es, 2:) — Y bi(0)c;(0)7" = 0,

i=1 i=1

where the b; are the nontrivial entries of w.
(b) Every k-linear relation among {7" }UP is a linear combination of the relations

G, ...,G above. In fact,
dimI' = dimy, Span, {{7"} U P}.

Proof. (a) By definition of Z, substituting the first column of ¥ into H; = G; — f Xy
gives
Gi (0, "1 L(er, 21), -, Q" Lo(Ems 2m)) = Q.
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Using the functional equation for polylogarithms (Proposition [4.1.3) and the defi-

nition of G; gives
FEV@OQMED = £, — Fy(by, ..., b,)Q"

FQG(E = 0" = 1, (02) = )"+ () V= )"
Since Q- = (¢t — 0)Q, the above gives

(t—0)fD = fi = Gi((t = 0)" — 1, (12) Ot = 0)" () O — O)")
— Fi(by,...,by).

Notice this implies that f; has no pole at t = 6. Otherwise f(-1) would have a pole
at t = 01, and the relation above shows that f would have a pole here as well.
Iterating shows f has poles at §¢ — 1) for all positive integers 4, contradicting the
fact that f is a rational function. The same argument shows that fi( — 1) has no

poles at t = #. This implies that we can evaluate the relation above at t = 6 to get
f0) =—-G;(—1,0,...,0) + F;(b1,...,b,)|i=0
== ci(0)bi(0).
i=1

Therefore, the first relation we started with now becomes

m

G; (Qn, 0"y Ln(517 21)7 o Ln(gmv Zm)) |t:0 = - Z Ci(e)bi(g)ﬁ_n-

=1

An elementary manipulation implies the desired relation.
(b) Let N = Span, {{7"} U P}. Since defining polynomials of I" gives linear
relations on {7} U P,
codimI' > codimy, NV,
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implying dimy N < dimI'. On the other hand,
dimy, N > trdegz k({7#} UP) = dimT,
implying dimI' = dimy N. [

Corollary 4.3.3. Preserve the notations of the above Proposition. If P is linearly

independent over k, then P is algebraically independent over k. In this case,

trdegy k(Li,(g1,21), - ., Lin(em, 2m)) = |P|,
and each Li,(;, z;) is transcendental over k.

Proof. Let N = Span, {{7"} UP}, so that m < dimy N < m+ 1. Also let P be the
field extension of k& by adjoining the elements of {#"} U P. Since 7; € k,

P = k(7" Liy(1,21), - - -, Lin(Em, 2m))-

Now, recall that dimy N = dimI" = trdeg; P. Thus we are done if {7"} UP is a
linearly independent set over k. If ©” is a k-linear combination of elements in P,
then

P = k(Liy(1,21), ..., Lin(Em, 2m))
and trdegz P > m, and we are done once again. O

Corollary 4.3.4. Let F € E[Xl, .., Xm] be a degree 1 polynomial, and suppose

f - F(’Yl Lin(€1, Z1)7 sy Ym Lin(gm’ Zm))

is nonzero. Assume P = {7y Li,(e1,21), ., Ym Lin(€m, 2m)} is linearly independent
over k. Then f is transcendental over k.
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Proof. Immediate by the previous Corollary, after replacing any element of P by

S O

We have only displayed the existence of linear relations between polylogarithms
of the same weight in this section. The next section tells us that we should not

expect to get nontrivial linear relations between polylogarithms of different weights.

4.4 Algebraic independence of

multipolylogarithms

The purpose of this section is to prove some results on MPs. The entirety of this

section consists of Lemmas that we will use for the next section.

Lemma 4.4.1. Let V C G be an algebraic group of dimension zero, and assume

V' is stable under the G,,-action defined by
a-(T1,...,xy) = (@"x,...,a"",) Vaek.

Then V =1 over k.

Proof. G,,(k) is an infinite set. O
Lemma 4.4.2. Consider distinct positive integers ny, ..., ng not divisible by p. For
each n;, fix distinct €%, . .. ,5}; € Fy and their (q — 1)%t roots i, . .. ,7;'1,. Consider a

family fo, 1, .., foi0, of MPs:

Fog =7 L, (€5, 2)), 2t e k.

)
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[f ﬁ-niv fniyl

t=05-- - fm,li =

{ﬁ-a fnz,j t=0

1<i<d1<j<l}
is algebraically independent over k.

Proof. Let the indexing set be I = {(i,7) : 1 <i < d,1 < j < [;} with lexicographic
ordering <. Any tuple (i.5) in this proof will be assumed to be in I.

Consider the t-motive associated to each f,, ;

(t — )™ 0
q)i,j =
(i) =0 1

with uniformization

Now, for any tuple (k,[), define

=Co P @, and M) =CeP o,

(i.7)<(k,0) i<l

where C'is the Carlitz t-motive. (Here My (1) is the slice of M(k,[) corresponding
t0 faeds - -y fup.-) Also define I'(k, 1) and 'y (1) to be the motivic Galois groups of

M (k,l) and M(l). Then T'(k,l) and T';(1) are constructed from

@ U, and Q] ® @ Wy ;.

(i,5)< (kD) i<l

By construction,

I'(k, 1) C < [a]l @ ta,my €k



and

a™ 0 _
Tw(l) C § la] & P ca,xy €k

J=l T 1

Due to Theorem [2.4.1], it suffices to show that the left inclusion is an equality. We
will achieve this by doing induction on (k,[) with respect to the ordering on I.

By assumption, the inclusions above are equalities for T'(1, j) and T'x(j) across
all possible j's (and a fixed k). Let (k,l) > (2,1), and let (k',1’) to be the element

preceding (k, 1) under the ordering <. Then

(hl—1)  ifl#1;
(klal,) =

(k—1,lx—q) if1=1.
We now have injections

M (K,

1)
N
C < > M(k,1)
\ ()/
{

My
where the inclusion of C' is to every mixed Carlitz motive in the direct sum (not

just the natural inclusion). By Tannakian duality, we get surjections

INUAND)
G 4 B Lk, 1)
i A
Lx(1)
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where the kernels of 7, 7/, 7" lie in the unipotent radical of the respective groups.

Letting V' = ker 7, and similarly for V/ and V", we have a commutative diagram

1 > V" > T'k(1) > G, > 1
1 >V > T'(k, 1) > G, > 1

fro
(K,

1 % > D(K'T) > Gy, > 1
By assumption V" = ngl G,, and by induction V' = H(i7j)§(k7l) Gy, and these
isomorphisms are via the coordinates x;;.
The action of G,,, on V' (and similarly for V' and V") via the short exact sequence

above is via conjugation:
a-v=a va, where ais a lift of a to I'(k, ).
A computation tells us that, on the coordinates z;;, the action is
a-xy; = a"x;.

Now, notice that the difference between the coordinates defining I'(k,[) and

C(K',1') is just g, so it follows that
dimT(K, ') < dim T'(k, 1) < T(K', ') + 1.

Hence it suffices to show that dimI'(k',1") # dimT'(k,1). The rest of the proof
follows the strategy of [21, Theorem 4.2].

Assume that dimI'(k',{") = dim I'(k,{). Then the commutative diagram above
implies dimker|y = 0, whence kert|y, = 1 by Lemma [4.4.1f Hence ¢|y is a
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bijection, and there is a surjective G,,-homomorphism

pr VU vy

For each (i, j) # (k,l) with ¢ # k, let V;; be the subvariety of V' defined by
vy = 0if (7, 5') # (4,9), (k, 1),
and define V/; C V' using the same equations. Then
Vi; € Gy? and V}; C G,

Via the bijection, this implies that dimV;; = 1. Hence [15, Corollary 1.8] tells us

that Vj; is defined by a polynomial of the form

do
EB p—
p(ij, Twa) Z farh)" — Z foal; € klwij, mw).

B=0
If dy > 0, then by normality of V;; any point (z;5, ) € Vi; must also satisfy the
polynomial

€d
pla-zij,a- ) —a™? " p(ai, o)

of lower zy-degree. Hence, by iterating, every point in V;; satisfies a polynomial of

the form
f(xljaxk’l _xkl Zfﬁ$zj :
We now contend that ¢[y;, = 0. If not, there is some (z;;, z;) on Vj; such that

©(wij, xy) = xy # 0. Hence using the polynomial f to write
da p
e
o= (o)
B=0

o1

—e



and using the fact that ¢ is equivariant under G,,, we get the equality

—e

d2 p d2
(z f<>> - (z f)
B=0 B=0

€

=

e

Comparing coefficients gives us n;p®2~¢ = n;, a contradiction by assumptions on

the n;’s. Hence ¢y, = 0.
Recall V;; was defined for (¢,7) # (k,1) with ¢ # k, and (k’,1") was the tuple

preceding (k, ) with respect to <. Hence y;, = 0 for all such 7 implies

2 H G, | = @(Gi;l) =V

(1,9) < (K1)
i=k

1=

But V" =], G, has dimension [, a contradiction. O

Lemma 4.4.3 (c.f. [21, Theorem 4.3]). Let s1,...,s, be positive integers, and let

€1,...,6r €F). If the set
{7, Lis, (e1,21), ..., Lis (e, 20) }
is algebraically independent over k, then so is the set
{7, Lig, (&5, 755) : 1 <j<i<r+1},
where we write €;; = (5,541, .- -,i—1) and Zjj = (Zj, Zj41, - - -5 Zi-1)-
Proof. By assumption the set

{ﬁ-a T L181 (517 21), e Ir Lisr(grv ZT)}
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is algebraically independent over k, where v; is a fixed (¢ — 1)* root of ;. Then,
by considering the mixed Carlitz motives of Proposition [4.1.4] and using the same

proof as in |21, Theorem 4.3], we get algebraic independence of
{7,795 vier Lig, (65, 255) 1 < j <i <r+1},

as desired. O

4.5 Implications on colored multizeta values

In this section we study colored multizeta values. Let us preserve the notations in

Section [4.]
Definition 4.5.1. Fix a positive integer r, and let § = (s1,...,s,) be a list of
positive integers. Also consider a list &= (¢1,...,&,) of elements in F).

e The colored multizeta value (or CMZ) associated to s and £ is defined to be
Cs()-
e Let 4 = (uy,...,u,) be alist of elements in A. The colored multipolylogarithm

(or CMP) associated to § and « is defined to be Liz(&, @).

There are two points of view for this definition. One is that colored multizeta
values are special values of Goss’s analytic continuation of (z(1) in [I8]. The other
is that these are multizeta values twisted by C.-Hecke characters A* /k* — CX

of the form

(a), — Helog“”“, ey
v
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Note that the CMZs includes the Thakur multizeta values g(f) as special cases, and
that both the CMZs and CMPs lie in k.. The definition of CMP is also motivated
by the relation in Proposition [£.2.3] We now list some known results related to the
CMZs.

e In [34], transcendence of Carlitz zeta values (i.e. depth 1 Thakur multizeta
values) was established by using elements of [4].

e In [9], algebraic independence of Carlitz zeta values was shown by extending
methods of [22].

e In [7], transcendence of Thakur multizeta values was established by extending
methods of [2].

o In [24, [30, B1I], some linear relations between Thakur multizeta values are
given. Of particular note is that the list {5} in such relations satisfy ¢ — 1|s;
or pl|s; for some entry in a tuple 3.

e In [§], some computations on linear relations between zeta values of the form
((s,p)(1,1) were done. In particular, the k-linear space spanned by such zeta
values of a fixed weight was shown to be related to special points of certain
t-modules.

e In [21], algebraic independence of large subsets of Thakur multizeta values
was shown by extending methods of [9].

e In [19], transcendence of CMZs was established by extending methods of [7].

The final goal of this thesis is to add the following bullet point in the above list:

54



e Find large subsets of CMZs that are algebraically independent.
Along the way, we obtain a few results listed in the papers above as corollaries. Let

us first make three easy observations.

Lemma 4.5.2. Let w be a positive integer not divisible by ¢ — 1. Let P, =
{7 Liw(es,u;)} be a finite collection of CMPs of weight w that are k-linearly in-

dependent. Then {7“} U P, is k-linearly independent.

Proof. 1f |P,| = 1 then the result follows as CMPs are in k., by definition but not

L7 (due to the (—ef)aT term). If |P,| > 1, assume there is a nontrivial relation
CoTw + Z ¢i7vi Liy (g4, u;) = 0, ¢ € k.

Fix any «, and consider

Ca Liw(Eas Ua) = =751 (coﬁw + Z civi L (&4, uz)> )
i#a

Then both sides of the equation equals 0 since the left hand side is in k,, but not

the right hand side. The result follows by induction. O]

Lemma 4.5.3. Let (,(¢) be a CMZ of weight w not divisible by ¢ — 1, and let ~ be

a (¢ — 1)* root of . Then v(y(g) is linearly independent with T over k.
Proof. Any such CMZ lies in ks, but not v 17% due to the (—e~'0)aT term. [

Lemma 4.5.4. Let ¢; run through all elements of F), and let 7; be a fived (¢ — 1)

q’

root of €;. Then the set {~,...,7,-1} is linearly independent over ko.
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Proof. Let G = Gal(F-1/F,), and consider a minimal dependence ) c¢,Ve = 0
with ¢, € koo of length at least two (length one is trivial). Pick any two 7;,;
appearing in this linear dependence. As ¢;/¢; # 1 for i # j, there exists o € G such

that

Also, as 0(7a) = WaYa, Where w, is a (¢ — 1)* root of unity, the quotient o(7y4) /7

lies in F. Now, after lifting o to the unique element in Gal(Fg-1((3)), ko), we

compute
o\ oY Ve
0= "5 o [ e :an( 1) _ ol ))%
This is a shorter relation among the ~,’s, a contradiction. O

Depth 1 CMZs
Let us recall a consequence of Carlitz’s work in [6], which says that

B —1)n ~(g—1)n
Clg—1n(1) = - (@=Dn_~(¢-1)
(g—1)n+1

I

where the B,,’s are the Bernoulli-Carlitz numbers defined by the Carlitz exponential

series:

z > Z
n
[ — E Bn
n=0

expe(2) o1

(A explicit computation of this can be found in [27, Theorem 5.2.1].) In the general
setting of CMZs however, we do not know how to compute these values. We now
show algebraic independence between them and 7 instead. Most interesting results
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we obtain will have the assumption that the weight w is not divisible by ¢ — 1 and

p. This is due to the observation above, the fact that 797! lies in k., and that

Gn () = GaleVP)P.
Proposition 4.5.5. Each (,(¢) is transcendental over k.

Proof. Each (,(¢) is nonzero by Proposition and (,(g) can be written as a
k-linear combination of CMPs by Proposition [4.2.3. We are now done by Corollary

434 O

Proposition 4.5.6. If n is not divisible by q—1, then (,(g) and T are algebraically

independent over k.

Proof. Consider the set P of all CMPs appearing the expression in Proposition

4.2.3] Then

Span; {{7"} U~yP} = Spany {{7"} UrP U{7Ca(e)}},

where 7y is a (¢ — 1)* root of £. Choose a maximal subset S of P such that {7"}US
is linearly independent, which is possible by Lemma 4.5.2l Then Lemma
implies {7} U S is algebraically independent over k. By using Proposition ,
we can replace any element of S by v(,(¢) to form &'. Then {7"} U S’ is still a

transcendence basis over k, implying what we want. O

Lemma 4.5.7. Fixz a positive integer n not divisible by ¢ — 1, and fix distinct
€1,...1Em € F;. For each ©, consider a nonzero linear sum of CMPs of same
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weight n and €;:
fi = a;17; Lin(gi, Ul) + -+ QimYi Lin(ﬁi, um), aij € k fO’I" all j

Then 7", f1,. .., fm s linearly independent over k. In particular, {7",v(,(g) : € €

IFqX} 18 linearly independent over k.

Proof. By Lemma [4.5.2] it suffices to show that the f;’s are linearly independent

over k. This is immediate by Lemma [4.5.4 as f; = v;9; with ¢; € k. O]

Using the same notation as the above Lemma, the same proof can be used to

show the following.

Lemma 4.5.8. If n is a positive integer divisible by q —1, and €1, ... e, € Fy are
distinct, then fi,..., fm is linearly independent over k. In particular, {m"™, v, (g) :

e € FX\ {1}} is linearly independent over k. O
We now consider depth 1 CMZs of different weights.

Theorem 4.5.9. Let n be a positive integer. The following set is algebraically

independent over k:

- 1<s<nwithq—11s andp{s,
mufee: pagiteamartsl

ith
o{cuner =2 ERNGL )

Proof. Let P;_ be the set of all CMPs of weight at most n appearing in the expres-

sion in Proposition for (5., and consider a maximal subset of P, . such that
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{m*} U Ps. is linearly independent over k. By applying Lemmas or 4.5.8] the

elements within each of the subsets

{#ru  |J P and  {FCYU | Plonse
pts

g—1fs and pts, ,
eeFy eeF\{1}

are linearly independent over k for all 1 < s < n. Hence the union

{muv Y U 7.lvU U Planse
pts

1<s<n q—lJ(s and p1’57 1<s<n ,
e€Fy eeF\{1}

is algebraically independent over k by Lemma m The theorem follows after

replacing any element of P, by 7(; ., and any element of Py,_1)s. by 7(q-1)se. [
Corollary 4.5.10. Let Z, = {7,(,(¢) : 1< s<n ande € F*}. Then
— n n n
trdogg R(Z,) = 1 {_J " {—J f(g-1 (n_ H) |
RH2) —1) - Ty p
Proof. Counting using inclusion-exclusion principle. m

The main point of Theorem [4.5.9]is the assertion that attaching any nontrivial
C'w-Hecke character of the sort described at the start of this section to a Carlitz

zeta value adds another algebraically independent number to the set
{7,((1): 1 <s<nwithq—1fsandpfs},

which was first shown in [9] to be the largest possible algebraically independent set

among Carlitz’s zeta values with bounded weight.
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General CMZs

We start with an example.

Example 4.5.11. Let s1, s > 1 not divisible by ¢—1 and p, and let €1, e, € F* such
that, if s; = s9, then e, # &5. For each ¢; let v; be a (¢—1)* root of &;. Furthermore,
let H(i) be the set consisting of all coefficients of the Anderson-Thakur polynomials
H,,_..

For each i € {1,2}, Proposition implies that (,(g;) is nonzero. Us-
ing Proposition this implies the existence of some w; € H(i) such that

Lig, (€4, u;) # 0. Identify such a u;, and consider the set

o {7, 7 Lis(e1,u1), o Lis(e2, ug) } if 51 = 59 = s;
{71, 792 v Lig, (€1, up), 2 Lis, (€2, u2) }  if 51 # so.
In case s; = sy = s, notice that S” is linearly independent over k by Lemmas [4.5.2
and [£.5.7] Now, by Lemma[4.4.2] the following set is algebraically independent over
k:

S" = {7, 1 Lis, (€1, u1), y2 Lis, (€2, ua) }.

Furthermore, by Lemma the set
S - {ﬁ-? LiS1 (817 u1)7 Lisz (827 u2)7 Lislsz (617 E2, U7, u?)}
is algebraically independent over k. Consider the collection

T' = {7, Lis, (e1, ), Lig, (g2, B), Lig,s, (€1, €2,7,9) : o,y € H(1), 8,6 € H(2)}.
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This set might not be algebraically independent, but we can pick a largest alge-

braically independent subset 7" C T’ such that T contains S. After that, we can

replace the last three elements of T" using Proposition [4.2.3| such that

{ﬂ-v C81 (51)7 CSz (82)7 <81,82 (517 €2>} - T7

implying algebraic independence of the CMZs above.

Using the ideas in the example, let us give a recipe to generate a subset of CMZ.

Recipe to generate algebraically independent CMZs. This is five-step pro-

cess to generate a set MZ of algebraically independent CMZs over k, if we are

given a list of positive integers and elements of F.

L.

IL.

I1I.

IV.

Choose distinct positive integers sy, .. ., s, not divisible by p. Fix the ordering.
For each i =1,...,r, choose distinct elements ;1 ..., €y, of F, such that if
q — 1|s; then none of the ¢;; equals 1. Fix the ordering.

Define the ordered string

which is some permutation of the multiset {my - s1,...,m, - s,.}.

Define another ordered string

as follows. For each i = 1,...,7, let ay,...,q,,, be the indices of S with
s% = g; for all j. Then let €*, ..., &% be a some permutation of the elements

Eily -+ Eimy-
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V. Consider the set
MZ = {7} U{Cu (") 1<i<j<my+-+m}

where 57 = (s,...,s’) and €Y = (¢',...,&7). Then this set is algebraically

independent over k.

The set MZ given in the recipe above will be algebraically independent over
k, and this can be easily shown using a similar proof as given in Theorem m

Let P’

stgt

be the set of all CMPs of weight at most n appearing in the expression
in Proposition for (,i(e"), and consider a maximal subset of Pg . such that

{m*} U Py i is linearly independent over k. By applying Lemmas or 4.5.8]

each subset

{7°} U U Pgi ci

st=s

is linearly independent over k for all s € {sq,...,s,}. Hence the union

{7 Ul P

is algebraically independent over k by Lemmam The theorem follows by apply-
ing Lemma |4.4.3| and using Proposition |4.2.3| again to replace relevant CMPs by
CMZs.

We single out two potentially interesting such M Z. The second one generalizes
[21, Theorem 1.1] (on finding large algebraically independent subsets of Thakur’s

multizeta values).
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Theorem 4.5.12. Fiz a positive integer r with r < q—1. Let sq,...,s, be distinct
positive integers not divisible by p, and let €;1,...,¢;, € F; be distinct, such that
if ¢ — 1|s; then none of the e;; equals 1. Then the union of the following sets is

algebraically independent over k:

{7},
{Csl (gl,i)7 R gsr(gr,i) 1 S { S T‘},
{<51)8j+1<5j,i7€j+1,i> 1<ji<r—11<i<r},

{C3j75j+175j+2 (5j7i7 €j+1,, €j+2,i) 1< j <r-— 27 1<i< T}7

{Csl,...,sr (51,2'7 LI aET,i) . 1 S Z S T}-

Proof. Set
S = (81, ey SpySly ey SpyeensS1yennsSp)y
E = (8117"'557“176127'"767’25"'7817"7""67"7“)7
where S and E are the strings appearing in the recipe above. O

Theorem 4.5.13. Consider s;,¢;;,5, E as in the recipe above. Then the set {7} U

{¢s:(8M)} is algebraically independent over k, where

S = (81 vy 1589« ce 382y eevy Spynvny Sp)y
E = (glla"'7€lm17€217"'7€2m27"'a€7’17"'7€7“mr)'
Proof. Immediate by the recipe above. m
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Corollary 4.5.14. Let ¢ # 2 and r > 2, and let
o ki be k adjoining all CMZs of depth 1;
e k. be k1 adjoining all CMZs of depth r.

Then trdegy, k, = oo.

Proof. As q # 2, there are infinitely many positive integers not divisible by ¢ — 1
and p. Let Z' be this set. For any positive integer [ > r, let sq,...,s; be the first
[ terms of Z'. Then Theorem gives rise to [ — r CMZs of depth r that is
algebraically independent with one another and all the CMZs of depth 1. We are

done as [ can be made arbitrarily large. O

4.6 Remarks on linear relations

Note that, if we let k<, be the field k adjoining all CMZs of weight at most w, then

the algebraic independence Theorems above gives us a crude bound

trdogg (ko) > 1+ "0 1><r<2q - { [oi 1 ﬁ - %J |

This restricts the number of relations between the CMZs. In order to cut down the

transcendence degree of k<,,, we will need to write down explicit algebraic relations.

For example, a trivial one mentioned before is

Con(2) = a7,
and a non-trivial one is the shuffle relation (Proposition [4.2.2)).
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Work of Rodriguez-Thakur

In [24], 130], nontrivial linear relations between Thakur’s multizeta values has been
written down. As e97! =1 for any ¢ € [y, many of these relations applies to the

CMZ case as well. We record some of the linear relations here.

e For m <,
1
Cm,m(q—l) (817 1) = ﬁ_mCmq(gl)-
1

o lfu=¢"—> 7  ¢"and v=(¢g—1)¢", then

— 1) 17 s _
Cnler 1) = T — 6 e (1)

i=1

e Writing [k] = §*) — 6, here are four relations with no constraints:

1 1
Cr2-1(e1,1) = (5_1 + £—2> C2(e1),

1 — (t@ — O

G —1,(g—1)(¢%+ 71)(517 1) - _ <3<<‘51)7
q—1,(¢—1)(¢>+q E‘f“ﬁg 1 q
1— (t® — )W)
(g1, -2+ (€1, 1) = L, (g (21),
(_1)n+1

CLa—1,(g=1)gs-s (=) (e, Lo, 1) = [1]™[2](n=1) ... [n + 1]© an+1(51).

Before discussing the next example, the following definitions are needed. For any
positive integer d, and two strings 5= (s1,...,8,) € Z>; and € = (e1,...,¢,) € F,

define two finite sums

deg(a1)  deg(ar)
r

S =y S

al [N a[ﬁv'
d=deg(a1)>-->deg(a,)>0
a; €A

S<az(€) = Z Sar53(€)

d'<d

Y
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We will call the sums above power sums. The power sums are related to CMZs by

(5(8) = Sus(d).

After communications with Thakur, and with computational help by Rodriguez,
the following linear relations between CMZs and Thakur’s multizeta values were

also discovered.

Example 4.6.1. Concentrate on the depth two case. Implicit in the proof of the
main theorems in [24] is the computation of various linear relations between power
sums. In particular, one can use the results of this paper to verify the following.

e lfa=q"—> " ¢ and b= (¢—1)¢", with 1 <m < gand 1 <k; < n, then

(=D
Li

H[n - ki]qki Sdfl;a+b(1)'

=1

Sd;a,b(L 1) =

o If ' =myq" and b = my ("™ — ¢") + D72 (" — ¢F), with 0 < k; <n+1,

1§m1<Q70§m2§q_m17then

Sd;a’,b’(L 1) = Sd—l;a’+b’(1>-

£q7lml
1

By observing that

Sd;a,,é’(_l, 1) _ _ Sd;oz,/a’(L 1)
Sa—tia+6(—1)  Si—a+5(1)

summing the above equalities over d gives us

=)™ 1

Gaa(—1,1) = = [Tl = " a1
1 i=1

Com(—11) = (1)

ady(—L 1) = _L‘fnml a4+ (—



If we set ¢ = 3, this shows that

Caﬂ(_la 1)
§a+ﬁ(_1)

is rational for (o, B) € {(1,2),(1,4), (1,6), (1,8),(2,4), (2,6)}. Interestingly enough,
computer calculations tells us that these are the only values in the range 1 < «, 8 <

9 for which the above quotient is rational.

Todd’s method in the colored case

In [31], Todd explained how one can use the shuffle relation to generate new linear
relations among Thakur’s multizeta values from known ones. This can be extended
to the case of CMZs. To do this, we need a more refined version of the shuffle
relation presented in Proposition £.2.2] In the remainder of this section, for every

integer [, we will always fix an ordering of all compositions of [.

Definition 4.6.2. Fix positive integers d and [, and let V = (V4, ..., Vyu-1) be the

fixed ordering of the 2¥~! compositions of I. Define the space of binary relations

B, ::{<51, ey G-, 517 . ,521—1) e kil Vo ViVl
2l 1
> ) (eSavi(8) + bizSasrvi(€) = 0 for all d € Z>1}
=1 ge(F)IVil

where each a@; above is a vector of length (g — 1)|V"| with entries indexed by elements

of (F))IVil.

The above space is a colored analog of Todd’s spaces of linear relations, and is
motivated by the work of Rodriguez-Thakur in the previous section. For example,
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by [30] or a direct computation, if m < g, one has the binary relation
Sazmq(€) — L1"Sar1;mm(g-1)(€,1) = 0,

which also gives rise to the relation

1
Cm,m(qfl)(& 1) = @Cmq(g)'

Elements in the space B; of binary relations do not necessarily give rise to a linear
relation among CMZs, and vice versa. Nevertheless, the main goal of this section

is to show that B; is a source of producing linear relations among CMZs.

Lemma 4.6.3 ([19, Lemma 2.5 and Theorem 2.6]). Let § = (vy,...,v.) and

§ = (vy,...,v.) be strings of positive integers, and let & = (e1,...,&,) and & =

(€1, ...,€%) be strings of elements in F;*. Then

Scai8)Scaw (&) =Y fororScaw (&)

“Il ‘7/

5)5015 Z gz &1 Sa:an )

"Il ‘7/

where the sums above are finite, and the coefficients fs g, gsn 2 € F, are indepen-

dent of d. In particular, writing

= (s (7)),

one has

Sa;s(€)Sa;s () = Saysrsr(e€') + Z Aijslsd;s—&-s’—j,j(&f/, 1). O
0<j<s+s’
q—1j

68



Note that the Lemma above implies Proposition [4.2.2] and is an exercise on the
inclusion-exclusion principle. This Lemma also implies the following. Suppose we

have a binary relation

2l—1
(aieSav; (&) + b eSay1v,(€)) = 0.

i=1 ze(Fy)Vil
Choose a positive integer w and a composition W of w. Also fix a positive integer

D and € € IF;‘W‘. Then

2l1

Spw (€ Z Z Z (aieSav; (€) + s 2Say1,;(£))

d<D \ i=1 gg(F))IVil

2l 1
=Spw(€) [ X D (@eSpwi(€) + bieSpwi(©))
=1 ge(m;)IVil

- Z CX;.&ij SD§Xi (gij)v
,J

where the coefficients cx, -, € k are independent of the choice of D by the shuffle
relation. Hence, by summing over D, one gets new linear relations among CMZs.
In general the new relations produced are complicated to describe, but we highlight

the following very special case as an example.

Proposition 4.6.4. Choose the composition W = (w) and a (¢ — 1)* root of unity

E = (w). Suppose we have a binary relation
2l 1
Z Z (a; 254y, (€) + b; #Sar1,,(€)) = 0,
=1 ge(Fy Vil

Write each V; = (v;, V/), and assume q is large enough so that w + v; < q for all i.
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Then the relation produced by applying the procedure described above is

ol—1

Z Z ((ai,g—l- bi,z—?)SD;w,Vi (w, &) + bi,s”SD;w+vi,\/i/<w<€7 5’)) = 0.

=1 e=(e.)e®)Vil
In particular, one obtains the linear relation

ol—1

S > ((wie+ i) Cuv,(w,8) + by oo, vy (we, £)) = 0.

=1 e=(c,&)e(Fy)Vil

Proof. This follows by the computations

Spw(@) Y Savi(€) = Spau(@)S<pw, (€)

d<D

= SD;W,Vi (wv 5)
and

Spaw(@) Y Sar1v, () = Spaw(w) (S<pw; (&) + Spu,(€)S<pvr(e))

d<D

= Spaw,v;i (W, ) + Spjwto; (W5)5<D,Vi’ (€)

= Spw,v; (W, €) + Spwrto;, v (we, €).
The second-last equality comes from the well-known equality
Saa(1)Sap(1) = Sgass(l) if a+0 < g,
which is a special case of Lemma that is known since Carlitz’s work. O

Remark. One can remove the restriction on ¢ completely in the proposition above
by using the second equality of Lemma [£.6.3] but at the expense of producing a

longer binary relation involving A{u,e'
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Chapter 5

Future Directions

5.1 Adelic multizeta values

We have studied properties of the colored multizeta values (z(£), and these are all
elements in ks. Let us now consider the case of Thakur multizeta values (z(1) =
(3.

In [I0], the definition for multizeta values ((5), at every finite place v of A was
defined by realizing Carlitz multipolylogarithms as coordinates of a special point
under the logarithm map of a certain t-module. This is an element in the completion
k, of k at v, and one can ask about algebraic relations on these v-adic multizeta

values. An answer has been given very recently.

Theorem 5.1.1 ([L1]). For any finite place v, the multizeta values ((5), satisfy the

algebraic relations over k that the ((5) satisfy. In particular, they all satisfy the
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same shuffle relations.

Theorem 5.1.2 ([14]). For a Thakur multizeta value ((S), its v-adic counterpart

((8), is a v-adic integer for almost all finite place v.

Using this, we can define the adelic (Thakur) multizeta values. Let S be a finite
collection of finite places of A, let ¥g be the set of places of A that are not in S,
and let Ag be the ring of adeles for A with respect to ¥g. (If [11, Conjecture 5.4.1]

is true, we can allow S to include the infinite place of A as well.)

Definition 5.1.3. Given a tuple of positive integers § = (si,...,s,), the finite

adelic multizeta value is
CAS(E‘) = (C(g)v)véxsv

which is an element of Ag.

We want to define a k-algebra using these finite adelic multizeta values. Consider

the set of finite adelic multizeta values
FAM := {CAS(E') : §is a tuple of positive integers} .

By Theorem the finite adelic multizeta values (*s(5) satisfy the same linear
relations as ((5), for each place v. Hence many linear algebraic relations carry over
to the adelic case. For example, let AMpan be the k-algebra generated by the
elements of FAM. For w > 1, also let AMpan, be the k-linear space spanned by

elements of FAM of weight w. Then there is a grading

AMpan =k @ GB AMpant -

w=1
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This is because the k-algebra generated by all Carlitz multizeta values possesses
a weight grading (by [7] or [19]). Furthermore, by Theorem [4.5.13| we can find
arbitrarily large families of elements in AMpay that are algebraically independent,

and if F is such a family, then there is an injection
k?[:L‘l, C ,l’|_7:|] — Ag.

Question 5.1.4. Can we construct adelic colored multizeta values and obtain sim-

ilar results?

At present we do not know how to do this. A main obstruction is the following.
The construction of the v-adic multizeta values in [10] makes use of the fact that
we can realize Carlitz multipolylogarithms as coordinates of a special point under
the logarithm map of a carefully written-down ¢-module. In the colored case, our
multipolylogarithms (Definition do not seem to obey this due to the extra

7; .
terms ¢ jj .

Question 5.1.5. Can we write down more linear relations between colored multi-

zeta values that is not implied by those from the noncolored case?

5.2 Some other classes of multizeta values

Everything discussed in this thesis is for multizeta values over A, or in other words,

multizeta values on the function field of }P’]qu. A natural question arises.
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Question 5.2.1. Can we obtain results for multizeta values over function fields for

curves of higher genera?

The definition of such multizeta values is given in [27, Section 5.1]. A possible
starting point is to do some tests on function fields of class number one, of which
there are only finitely many.

Here is another question that does not seem too tractable due to loss of sym-
metry. If we return back to the P! case, we have indicated that colored multizeta
values are obtained by twisting multizeta values with special C,-Hecke characters

(degree-preserving g-finite characters A* /k* — CX with trivial conductor).

Question 5.2.2. Can we generalize the results in this thesis to multizeta values
twisted by other kinds of C,.-Hecke characters, or to coefficients of Eisenstein series

(as defined in [13])7
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