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ABSTRACT

ON THE ORBITAL RIGIDITY CONJECTURE AND SUSTAINED P-DIVISIBLE

GROUPS

Tao Song

Ching-Li Chai

The orbital rigidity phenomenon for p-divisible groups was first discovered by Ching-Li

Chai, motivated by the Hecke orbit conjecture. Later, the general orbital rigidity conjecture

was formulated and the second case of this conjecture was proved by Ching-Li Chai and

Frans Oort. In this thesis we prove the third case of this conjecture.

iv



Contents

1 Introduction 1

1.1 The Orbital Rigidity Conjecture: First Example . . . . . . . . . . . . . . . 1

1.2 What is a Sustained p-Divisible Group . . . . . . . . . . . . . . . . . . . . . 2

1.3 Tate-linear Formal Subvarieties . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The Orbital Rigidity Conjecture: General Form . . . . . . . . . . . . . . . . 6

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Sustained p-Divisible Groups 9

2.1 p-Divisible Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sustained p-Divisible Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Stable Homomorphism Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Sustained Deformation Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Biextension and 3-Slopes Case 21

3.1 Biextension Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Sustained Deformation Spaces as Biextensions . . . . . . . . . . . . . . . . . 23

3.3 Strongly Non-trivial Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



3.4 Mumford’s Trivialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Tate-linear Nilpotent Groups of type A and 4-Slopes Case 33

4.1 4-slopes Case Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Coordinates in 4-slopes Case . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Trivialization of Universal Torsors . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Tate-linear Nilpotent Groups of type A . . . . . . . . . . . . . . . . . . . . 53

4.5 Tate-linear nilpotent groups of type A: Rank = 3 case . . . . . . . . . . . . 59

4.6 Tate-linear nilpotent groups of type A: Rank = 4 Case . . . . . . . . . . . . 61

4.7 Admissible Subgroups and Tate-Linear Subvarieties . . . . . . . . . . . . . . 65

4.8 Statement of The Orbital Rigidity Conjecture . . . . . . . . . . . . . . . . . 75

5 The Orbital Rigidity Conjecture: 3-Slopes Case 76

5.1 Admissible Subgroups and Tate-linear Subvarieties in 3-Slopes Case . . . . 77

5.2 The Orbital Rigidity Conjecture Three Slopes Case . . . . . . . . . . . . . . 79

5.3 Equivariant Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 An Auxiliary Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Inseparable Isogenies That Dominante A Purely Inseparable Morphism . . . 91

6 The Orbital Rigidity 4 Slopes Case: First Result 93

6.1 A Closed Form Formula for the Action on E: 4-Slopes Case . . . . . . . . . 94

6.2 Tempered Perfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Proof of The First Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Further Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



7 The Main Theorem 119

7.1 Compatibility of Trivialization . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Existence of Admissible Subgroups . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 The Case When π|W is Isomorphic . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



Chapter 1

Introduction

1.1 The Orbital Rigidity Conjecture: First Example

The first case of the orbital rigidity conjecture is the following theorem proved in [Cha08].

Theorem 1.1.1. Let E be a p-divisible formal group over an algebraically closed field k of

characteristic p. If W is a reduced irreducible closed formal subscheme of X which is stable

under a strongly non-trivial action of a subgroup G of Aut(E), where Aut(E) consists of

all group automorphisms of X. Then W is a p-divisible subgroup of E.

Here the assumption of G acting strongly non-trivially on E means that for every open

subgroup U ⊂ G and every pair Y1 ( Y2 of U -invariant p-divisible subgroups of E, the

action of U on Y2/Y1 is non-trivial.

To better understand how this relates to moduli spaces of Abelian varieties and in which

way we can generalize theorem 1.1.1, we need to recall the concept of sustained p-divisible

groups as introduced in [CO22].
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1.2 What is a Sustained p-Divisible Group

In a nutshell, a p-divisible group X → S over a base scheme S of characteristic p is sus-

tained if its pn-torsion subgroup schemesX[pn]→ S are constant locally in the flat topology

of S, for every natural number n. For a precise definition, see 2.2.1.

Let X be a p-divisible group over the base field κ, and we define the sustained defor-

mation space of X, denoted by Defsus(X), to be the subfunctor of Def(X) that consists

of only sustained p-divisible groups. As it turns out:

• Defsus(X) has a natural structure as a smooth formal variety for any p-divisible

groups X0/κ.

• Defsus(X) can be ‘built-up’ from some p-divisible groups together with some bilinear

pairings. Informally speaking, Defsus(X) possesses some ‘linear structure’.

To get a better sense of the geometry of Defsus(X), let K ∈ N, and let X =
∏K
i=1Xi

where Xi are isoclinic p-divisible groups with slope si, and assume that s1 > s2 > ... > sK .

Case 1. If K = 2, then Defsus(X) is an isoclinic p-divisible of slope s1 − s2.

Case 2. If K = 3, then Defsus(X) can be built up from three p-divisible groups Defsus(Xi ×

Xj), ∀1 ≤ i < j ≤ 3, and these three p-divisible groups are glued together by a family

of bilinear pairings one for each n ∈ N

〈, 〉n : Defsus(X1 ×X2)[pn]×Defsus(X2 ×X3)[pn]→ Defsus(X1 ×X3)[pn]

See 3.4.3 for a precise description. In fact, Defsus(X) has a biextension structure in

the sense of 3.1.1.
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Remark 1.2.1. In fact, these ‘linear structures’ on Defsus(X) generalize the Serre-Tate

coordinates: if A is an ordinary abelian variety over k = k̄ an algebraically closed field of

characteristic p, and X = A[p∞] the p-divisible group of A, then

Defsus(X) = Def(X)

where Def(X) is the deformation space of X. As X has two slopes {0, 1}, in this case

Defsus(X) is a formal torus, and this formal torus structure is precisely the Serre-Tate

coordinates on Def(X).

Remark 1.2.2. The definition of sustained p-divisible groups generalizes the concept of

geometrically fiberwise constant p-divisible groups, and helps to illuminate the structural

properties of central leaves, for precise definitions of geometrically fiberwise constant p-

divisible groups and central leaves, see [Oor04].

Remark 1.2.3. The definition of central leaves was motivated by the Hecke orbit conjecture.

A special case of the Hecke orbit conjecture says the following: letM be a PEL type Shimura

variety over Fp. Let x0 ∈ M(Fp). Let C(x0) be the central leaf of x0, that is locus of all

points of M having ‘the same p-adic invariants as x0’. Then the prime-to-p Hecke orbit

H(p) ·x0 of x0 is dense in the central leaf C(x0) containing x0. See [Cha05] for more details.

The notions of sustained p-divisible groups and sustained deformation spaces provide a

connection between 1.1.1 and deformation spaces of p-divisible groups when we substitute

the p-divisible group E as in 1.1.1 by Defsus(X) where X = X1 ×X2 with Xi isoclinic of

different slopes.

Somewhat surprising, this ’orbital rigidity’ phenomenon as described in 1.1.1 seems to

hold in a much broader context. To formulate the general form of 1.1.1, we need to define

3



a family of special subvarieties of Defsus(X). This is the notion of Tate-linear formal

subvarieties.

1.3 Tate-linear Formal Subvarieties

Let K ∈ N, X =
∏K
i=1Xi where Xi are isoclinic p-divisible groups with slope si over a field

κ of characteristic p , and assume that s1 > s2 > ... > sK .

• As it turns out, we can associate to X a projective system of finite group schemes

Autst(X) = lim←−
n

Autst(X)n

where Autst(X)n are finite group schemes over the base field κ. Moreover, let

DefAutst(X)-torsor

be the deformation functor of left Autst(X)-torsors, then

DefAutst(X)-torsor ' Defsus(X)

• Let H ′ ⊂ Autst(X) be an admissible subgroup. For the precise definition of admissible

subgroups see 4.7.3. The contraction product that sends each H ′ torsor F to the

Autst(X) torsor Autst(X) ∧H′ F induces a morphism

ΦH′↪→DefAutst(X)-torsor
: DefH′-torsors → DefAutst(X)-torsor

Definition 1.3.1. A formal subvariety E′ of Defsus(X) is called a Tate-linear formal

subvariety if there exists an admissible subgroup H ′ such that the schematic image of

ΦH′↪→DefAutst(X)-torsor
is E′.

4



Remark 1.3.2. We give two examples: let X =
∏K
i=1Xi where Xi isoclinic p-divisible

groups with slopes si such that s1 > s2... > sK .

Case 1. If K = 2, then Defsus(X) is a p-divisible group. In this case, the set of Tate-linear

formal subvarieties coincides with the set of p-divisible subgroups of Defsus(X).

Case 2. If K = 3, then Defsus(X) is ‘built up’ by three p-divisible groups Defsus(Xi ×

Xj), ∀1 ≤ i < j ≤ 3 and a family of bilinear pairings 〈, 〉n. In this case each Tate-

linear formal subvariety is ‘built up’ by certain p-divisible subgroups H ′ij of Defsus(Xi×

Xi),∀1 ≤ i < j ≤ 3 that satisfy certain constrains given by 〈, 〉n.

Remark 1.3.3. Readers familiar with the notion of Shimura varieties might find the notion

of Tate-linear formal subvarieties similar to the notion of Shimura subvarieties: both Tate-

linear subvarieties and Shimura subvarieties come from subgroups (in this case H ′) of the

bigger groups (in this case Autst(X)) that define the ambient spaces.

Remark 1.3.4. One way to obtain Tate-linear formal subvarieties of Defsus(X) is to

deform not only the p-divisible group X but also some extra structures on X (e.g. a polar-

ization of X) in a ‘sustained manner’ See [CO22] especially Chapter 6 for more informa-

tion. This provides an extra layer of similarity between Tate-linear formal subvarieties and

Shimura subvarieties: Let Ag be the Shimura variety corresponding to the symplectic group

Sp2g, then roughly speaking, each Shimura subvarieties of Ag is the sublocus on which the

restriction of the universal Abelian scheme carries some extra Hodge cycles of given shape,

see [Mum69] for the precise statement.
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1.4 The Orbital Rigidity Conjecture: General Form

Now we can state the orbital rigidity conjecture in its general form:

Let K ∈ N, X =
∏K
i=1Xi with Xi isoclinic with slopes si over an algebraically closed

field κ of charcateristic p, and assume that s1 > s2 > ... > sK . Let E = Defsus(X), which

is a smooth formal scheme over κ. Let G ⊂ Ãut(E) be a closed subgroup, acting strongly

non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme of E

stable under the action of G. Then W is a Tate-linear formal subvariety of E. Here:

• Ãut(E) is a subgroup of Autscheme(E) that consists of automorphisms of E that pre-

serves certain ‘linear structure’ of E in some sense. For precise definition see 4.4.8.

• The definition of a strongly non-trivial action is given in 3.3.1. Roughly speaking, a

strongly-nontrivial action means the following: the action of Ãut(E) acts on all the

Jordan-Holder components of Defsus(X), with each component a p-divisible group.

The action is strongly non-trivial if the action on each component is strongly non-

trivial in the sense of 1.1.1.

When X a p-divisible group with two slopes, the conjecture 1.4 was proved in [Cha08].

When X is a p-divisible group with three slopes, the conjecture 1.4 was proved in [CO22].

The main result of this thesis is to prove the conjecture 1.4 when X has four slopes, that is

the following:

Theorem 1.4.1. Let X =
∏4
i=1Xi with Xi isoclinic with slopes si and assume that s1 >

s2 > s3 > s4 over an algebraically closed field κ of characteristic p ≥ 5. Let E = Defsus(X),

which is a smooth formal subvariety over κ. Let G be a closed subgroup of Ãut(E), acting

6



strongly non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme

of E stable under the action of G. Then W is a Tate-linear formal subvariety of E.

Remark 1.4.2. The actual statement of the main result 4.8.2 is slightly more general than

1.4.1.

1.5 Structure of the Thesis

Some key components of this thesis are:

• In chapter 2, we collect some basic definitions and properties of sustained p-divisible

groups, following [CO22].

• In chapter 3 and chapter 5, we discuss the structure of Defsus(X) when X = X1 ×

X2×X3 and the orbital rigidity conjecture in this case. This serves as the ’induction

hypothesis’ for the case when X has four slopes.

• In chapter 4, we prove the main structural theorem of Defsus(X) when X =
∏4
i=1Xi,

which roughly says that a suitable closed subscheme En of Defsus(X) can be trivial-

ized using some p-divisible groups and several families of bilinear pairings. See 4.2.1

for the precise statement. This result serves as the main entry point of analyzing the

action for Ãut(E) on E.

• Also in chapter 4, we define the notion of Tate-linear nilpotent groups of type A.

Here the name ’type A’ is inspired by the notion of simple Lie algebra of type A. The

category of Tate-linear nilpotent groups of type A slightly generalized the category of

projective system of group schemes of the form Autst(X) where X =
∏K
i=1Xi with

7



Xi isoclinic. Let H be a Tate-linear nilpotent group of type A, we will show that

DefH-torsor possesses geometric structure that is similar to Defsus(
∏K
i=1Xi). Hence

we may substitute Defsus(X) by DefH-torsor in the conjecture 1.4. The upshot is

that this bigger category (i.e. consists of all the DefH-torsor) is closed under certain

operations, thus allowing us to perform some reductions.

• In chapter 6, we recall the definition of tempered perfection as defined in [CO22].

This is a technique that Ching-Li Chai and Frans Oort used in their proof of the

orbital rigidity conjecture for the three slopes case. The idea is that for each n ∈ N

and certain susbcheme En ⊂ Defsus(X), the action of gn ∈ Ãut(E) can be written

down explicitly for gn sufficiently closed to the identity. Tempered perfection allows

us to ’glue’ this family of information together when we vary n. We show that this

tempered perfection technique can also be used in our case to prove similar results,

in particular theorem 6.3.2 and theorem 6.4.6.

• In chapter 7, we prove that the existence of a formal subvariety W invariant under

G ⊂ Ãut(X) imposes certain Lie bracket conditions, see 7.3.4. Finally, we prove the

main result in 7.4.1.

8



Chapter 2

Sustained p-Divisible Groups

We recall the definition and some useful facts of p-divisible groups and collect some defini-

tions and facts about sustained p-divisible groups as given in [CO22].

2.1 p-Divisible Groups

Definition 2.1.1. Fix a prime number p, a positive integer h, and a commutative ring R.

A p-divisible group of height h over R is a codirected diagram (Gv, iv)v∈N where each Gv is

a finite commutative group scheme over S of order pvh that also satisfies the property that

0→ Gv
iv→ Gv+1

pv→ Gv+1

is exact. In other words, the maps of the system identify Gv with the kernel of multiplication

by pv in Gv+1. Note that these conditions imply that

Im(pv : Gv+1 → Gv+1) = ker(p)

as subschemes of Gv+1.

9



Remark 2.1.2. We can also define the notion of a p-divisible group over an arbitrary

scheme S. See for example [Mes72].

Example 2.1.3. Let R be a commutative ring, and let X be an abelian scheme over R of

dimension g, then for each n ∈ N the miltiplication map by pn has kernel X[pn] which is a

finite group scheme pver R of order p2gn. The natural inclusion satisfiy the conditions for

the limit lim−→
n

X[pn] to be a p-divisible group of height 2g.

Theorem 2.1.4. (Serre-Tate Theorem) Let κ be a field of characteristic p. Let A be an

abelian variety over κ. Let DefA be the deformation functor of A, that is the functor that

sends every artinian local ring (R,m)/κ to the set

{
(Ã, ϕ) : Ã an abelian scheme over R,ϕ : A×κ R/m

'→ Ã×R R/m
}
/ ∼

Let A[p∞] be the p-divisible group of A, and let DefA[p∞] be the deformation functor of

A[p∞]. Then there is a natural isomorphism of functors between DefA and DefA[p∞].

Definition 2.1.5. (Isogeny of p-divisible groups) Let P1, P be p-divisible groups over

a base scheme S. A homomorphism f : P1 → P2 is called an isogeny if f is surjective

and that ker(f) is a finite scheme over S. We say two p-divisible P1, P2 are isogeneous if

there exists an isogeny f : P1 → P2. Note that if such f exists, then there exists a isogeny

g : P2 → P1.

Definition 2.1.6. (Isoclinic p-divisible groups) A p-divisible group P over a field κ

of characteristic p is called isoclinic with slope λ ∈ [0, 1] ∩ Q if P is isogeneous to another

10



p-divisible P1 such that there exists s, t ∈ N with

λ = s

t
,

ker(FrobtP1) = ker([p]sP1)

here FrobP1 is the relative Frobenius of P1.

Theorem 2.1.7. (T. Zink) A p-divisible group P over a field κ. Then there exists natural

number m and a unique filtration 0 = P0 ⊂ P1.. ⊂ Pm = P such that

• Each Pi is a p-divisible subgroup of P .

• Pi+1/Pi is an isoclinic p-divisible group over κ.

• Let si be the slope of Pi/Pi−1, then

1 ≥ s1 > ... > sm ≥ 0

such a filtration is called the slope filtration of P .

Proof. See [Zin01].

Definition 2.1.8. (Slopes of a p-divisible group) Let P be a p-divisible group over a

field k. Let 0 = P0 ⊂ P1.. ⊂ Pm = P be the slope filtration of P and si be the slope of

Pi/Pi−1. The slopes of P is the set {si : 1 ≤ i ≤ m}.

2.2 Sustained p-Divisible Groups

Definition 2.2.1. Let κ ⊃ Fp be a field, and let S be a κ scheme.

11



(i) (Strongly sustained p-divisible groups) A p-divisible group X/S is κ-strongly

sustained if there exists a p-divisible group X0/κ such that for every n ∈ N there

exists a faithfully flat morphism S1,n → S and an S1,n-isomorphism

X0[pn]×Spec(κ) S1,n
∼→ X[pn]×S S1,n

A p-divisible group X → S with the above property is said to be strongly κ-sustained

over S model on X0, and X0 is said to be a κ-model of X → S.

(ii) (Sustained p-divisible groups) A p-divisible group X/S is κ-sustained if ∀n ∈ N

there exists a faithfully flat morphism S2,n → S×κS and an S2,n isomorphism

(X[pn]×S0 S)×S×κS S2,n
∼→ (S ×S0 X[pn])×S×κS S2,n

Lemma 2.2.2. (Slope Filtration of Sustained p-divisible group) Let κ be a field of

characteristic p. Let X a p-divisible group over κ. Let S an κ scheme and X a κ-strongly

sustained p-divisible group over S modeled on X. Let 0 = X0 ( X1.. ( Xm = X be the

slope filtration of X in the sense of 2.1.7. Then there exists a canonical slope filtration

0 = X0 ( X1.. ( Xm = X in the sense that

• Each Xi is a κ-strongly sustained p-divisible subgroup of X modeled on Xi.

• The quotient Xi+1/Xi is κ-strongly sustained modeled on Xi+1/Xi. In fact

Xi+1/Xi ' Xi+1/Xi ×κ S

Remark 2.2.3. In fact, slope filtration exists when X is κ-sustained (instead of κ-strongly

sustained). See [CO22] especially Chapter 6 for more details.

12



2.3 Stable Homomorphism Schemes

Definition 2.3.1. (Stable Hom scheme of p-divisible groups) Let κ ⊃ Fp be a field

and let Y,Z be p-divisible groups over κ. We summarize the definition of Homst(Y, Z), the

stable hom scheme between Y,Z.

(i) For every n we have a commutative affine group scheme

Hom(Y [pn], Z[pn])

of finite type over κ, which represents the functor

S → HomS(Y [pn]S , Z[pn]S)

on the category of all κ-schemes S. In the rest of 2.3.1 we will shorten the notation

Hom(Y [pn], Z[pn]) to Hn(Y, Z).

(ii) There exist natural restriction map

rn,n+i : Hn+i → Hn

and corestriction map

ιn+i,n : Hn → Hn+i

and these maps satisfy

(a) ιn+i+j,n+i ◦ ιn+i,n = ιn+i+j,n and rn,n+i ◦ rn+i,n+i+j = rn,n+i+j for all n, i, j ∈ N.

(b) rn,n+i ◦ ιn+i,n = [pi]Hn, ιn+i,n ◦ rn,n+i = [pi]Hn+i for all n, i ∈ N, where [pi]Hm

denote the endomrophism ”multiplication by pi” on Hm.

(c) ιn+j,n ◦ rn,n+j = rn+j,n+i+j ◦ ιn+i+j,n+i for all n, i, j ∈ N.

13



(iii) For any m,n ∈ N, denote by

Im(rn,n+m : Hn+m(Y, Z)→ Hn(Y,Z)

the image in Hn(Y,Z) of the homomorphism rn,n+m in the sense of fppf sheaves of

abelian groups.

(a) There exists a natural number n0 such that the image

Im(rn,n+m : Hn+m(Y, Z)→ Hn(Y,Z)

is a finite subgroup scheme of Hn(Y,Z) and

Im(rn,n+m : Hn+m(Y, Z)→ Hn(Y,Z) = Im(rn,n+n0 : Hn+n0(Y,Z)→ Hn(Y, Z)

for all m ≥ n0.

(b) Let Gn(Y,Z) := Im(rn,n+m : Hn+m(Y, Z) → Hn(Y,Z) for every n ∈ N,m ≥ n0

where n0 is defined in part (a). For all m ≥ n, the co-restriction homomorphism

ιn,m : Hm(Y,Z)→ Hn(Y, Z) induces a monomorphism

jn,m : Gm(Y,Z) ↪→ Gn(Y, Z)

Similarly the restriction homomorphism rm,n : Hn(Y,Z) → Hm(Y, Z) induces a

epimorphism

πm,n : Gn(Y,Z) � Gm(Y, Z)

for all n ≥ m.

(c) For all n, i ∈ N, the sequence

0→ Gi(Y,Z) jn+i,i−→ Gn+i(Y,Z) πn,n+i−→ Gn(Y,Z)→ 0
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is short exact, and the composition n+i,n ◦πn,n+i is equal to [pi]Gn(Y,Z). In other

words the triple

(Gn(Y, Z), jn+i,n, πn+i,n)n,i∈N =: Hom′div(Y,Z)

is a p-divisible group over κ, and Gn(Y,Z) is the kernel of the endomorphism

[pn] of Hom′div(Y, Z).

Notations 2.3.2. We will use Homst(Y, Z) to denote the p-divisible group Homdiv(Y,Z).

We collect some properties of Homst(Y,Z).

Proposition 2.3.3. Let κ ⊃ Fp be the base field, Y, Z be p-divisible groups over κ. We

further assume that both Y, Z are isoclinic with slope sY , sZ and of dimension dY , dZ . Then

1. If sY > sZ , then Homst(Y, Z) = 0.

2. if sY ≤ sZ , then Homst(Y,Z) is isoclinic of slope sZ − sY .

3. If sY = sZ , then Homst(Y, Z) is an etale p-divisible group.

Definition 2.3.4. (Stable isomorphism schemes of p-divisible groups) Let S be a

scheme over κ ⊃ Fp. Let Y,Z be κ-sustained p-divisible groups over S. We summarize the

definition of Isomst(Y,Z), the stable isomorphism scheme between Y,Z. This definition is

parallel to 2.3.1.

(i) For every n we have a commutative affine group scheme

Isom(Y [pn], Z[pn])

of finite type over κ, which represents the functor

S → IsomS(Y [pn]S , Z[pn]S)
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on the category of all κ-schemes S. In the rest of 2.3.1 we will shorten the notation

Isom(Y [pn], Z[pn]) to In(Y, Z).

(ii) There exist natural restriction map

rn,n+i : In+i → In

(iii) For any m,n ∈ N, denote by

Im(rn,n+m : In+m(Y, Z)→ In(Y,Z)

the image in Hn(Y,Z) of the homomorphism rn,n+m in the sense of fppf sheaves of

abelian groups.

(a) There exists a natural number n0 such that the image

Im(rn,n+m : In+m(Y, Z)→ In(Y,Z)

is a finite subgroup scheme of In(Y,Z) and

Im(rn,n+m : In+m(Y, Z)→ In(Y,Z) = Im(rn,n+n0 : In+n0(Y, Z)→ In(Y,Z)

for all m ≥ n0.

(b) Let Kn(Y,Z) := Im(rn,n+m : In+m(Y, Z) → In(Y,Z) for every n ∈ N and

m ≥ n0. The restriction homomorphism rm,n : In(Y,Z) → Im(Y, Z) induces a

epimorphism

πm,n : Kn(Y,Z) � Km(Y, Z)

for all n ≥ m.
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(iv) The stable isomorphism scheme of Y,Z, denoted by Isomst(Y,Z) is the projective

system

Isomst(Y, Z) := lim←−
n

Kn(Y,Z)

where the connecting morphisms are rm,n. We will also use the notation Isomst(Y,Z)n

to denote Kn(Y, Z).

Notations 2.3.5. Let X be a p-divisible group over κ ⊃ Fp. Then the stable automorphism

scheme of X, that is Isomst(X,X), will be denoted by Autst(X).

2.4 Sustained Deformation Spaces

We have the following:

Lemma 2.4.1. (Definition and Smoothness of sustained deformation space) Let

X be a p-divisible group over κ ⊃ Fp. The function Defsus(X) : Artk → Sets, sending each

Artinian local augmented κ algebra (S, e) to the set

{(XS , ϕ) : XS strongly κ-sustained ,XS ×e Spec(κ) ϕ→ X an isomorphism}/ ∼

is representable by a smooth formal scheme. We will denote this smooth formal scheme

again by Defsus(X).

Proof. For proof see [CO22] Chapter 6.

Lemma 2.4.2. (Relation between Defsus and Homst)
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1. When X = Y × Z with Y,Z isoclinic, then there is a natural isomorphism

ι : Homst(Y, Z) ∼→ Defsus(X)

2. When there is a exact sequence

0→ Y → X → Z → 0

with Y, Z isoclinic, then Defsus(X) has a natural Homst(Y,Z) torsor structure.

Proposition 2.4.3. (’Kummer theory’ construction of stable Hom to sustained

deformation) Let X,Y be isoclinic p-divisible groups over a field κ of characteristic p with

slopes sX , sY respectively and that sX < sY . Let f be a functorial point of Homst(X,Y ).

Let X×(1,f)Y be the sustained deformation of X×Y corresponding to ι(f) ∈ Defsus(X×Y ).

Then:

(a) Let f ∈ Homst(X[pn], Y [pn]). Consider the Kummer sequence

0→ X[pn]→ X
[pn]X→ X → 0

and consider the pushout diagram with respect to the homomorphism

f ∈ Homst(X[pn], Y [pn])

Let X ×(1,f) Y be the p-divisible group that fits into this push out diagram, that is

0 X[pn] X X 0

0 Y [pn] X ×(1,f) Y X 0

f

[pn]X

=
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Then

X ×(1,f) Y ' X × Y/Γ−f

where Γ−f is the graph of −f . This is the coproduct of X,Y with respect to (1, f) :

X[pn]→ X × Y in the category of group schemes, hence the notation. Note that this

is well defined for f ∈ Homst(X,Y ) = lim−→Homst(Xn, Yn), where Xn = X[pn], Yn =

Y [pn]. Moreover, if f ∈ Homst(Xn, Yn) for a given n. Then

(X ×(1,f) Y )[pm] = ker(φm+n : Xn+m ⊕ Yn+m → Yn)
(x,−f(x) : x ∈ Xn) (2.4.1)

where φm+n(x, y) = [pm] · f(x) + [pm] · y.

(b) Given f̃n+m ∈ Homst(Xm+n, Ym+n) a lifting f , that is

[pm]f̃n+m = fn

we can define a morphism Ψm
f̃

by the following diagram:

X[pm+n]× Y [pm] ker(φm+n : Xn+m ⊕ Yn+m → Yn)

X[pm]× Y [pm] (X ×(1,f) Y )[pm]

[pn]X × idY

(xm+n, ym)→ (xm+n,−fm+n(xm+n) + ym)

Ψm
f̃

/(x,−f(x)) : x ∈ Xn

In fact, this morphism Ψm
f̃

is an isomorphism of truncated p-divisible groups.

Proof. Part (a) follows from the definition of X ×(1,f) Y . Part (b) is an easy exercise.

Definition 2.4.4. Let G be a group value functor on the big fpqc site over a Spec(κ) where

κ ⊃ Fp a field. We define the deformation functor of G-torsors, denoted by DefG-torsor, to

be the functor that sends every Artinian local algebra (R,m) over κ to the set

19



{
(G, ϕ) : G is a G-torsor over R and ϕ : G ×R R/m

'7→ G×κ R/m
}
/ ∼

Theorem 2.4.5. (Sustained deformation space and deformation space of Autst-

torsors are isomorphic) Let X0 be a p-divisible group over a field κ ⊃ Fp. Let

Φ : Defsus(X0) 7→ DefAutst(X)-torsor

be the morphism that sends every functorial point X̃ over an artinian local algebra R

to Isomst(X0 ×κ R, X̃). Note that there is a natural left Autst(X0) torsor structure on

Isomst(X0 ×κ R, X̃) given by precomposing with an element in Autst(X0). Then

(a). Φ is an isomorphism of functors.

(b). The inverse of Φ can be described explicitly as: for every Autst(X0)-torsor T , Φ−1(T )

is given by the contracted product with X0, that is

Φ−1(T ) = X0 ×Aut
st(X0) T

Proof. See [CO22].
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Chapter 3

Biextension and 3-Slopes Case

In this chapter, we recall the definition of a biextension, then we show that Defsus(X) is a

biextension when X =
∏3
i=1Xi with Xi isoclinic with mutually different slopes, see 3.2.2.

Finally, we construct a ‘trivialization’ of such Defsus(X) in 3.4.3. Note that Mumford

constructed similar ‘trivialization’ for general biextensions of p-divisible groups in [Mum68],

but our method utilizes the moduli interpretation and allows us to generalize to other cases.

3.1 Biextension Basic

We use the following definition of bi-extensions of abelian groups as given in [Mum68].

Definition 3.1.1. (bi-extensions of abelian groups) Let A,B,C be 3 abelian groups. A

bi-extension of B×C by A will denote a set F on which A acts freely, together with a map

F
π→ B × C
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making B × C into the quotient F/A, together with 2 laws of composition:

+1 : F ×B F → F

+2 : F ×C F → F

There are subject to the requirements:

(a) for all b ∈ B, F ′b := π−1(b × C) is an abelian group under +1, π is a surjective

homomorphism of F ′b onto C, and via the action of A on F ′b, A is isomorphic to the

kernel of π;

(b) for all c ∈ C,F 2
c := π−1(B × c) is an abelian group under +2, π is a surjective

homomorphism of F 2
c onto B, and via the action of A on F 2

c , A is isomorphic to the

kernel of π.

(c) given x, y, u, v ∈ F such that

π(x) = (b1, c1)

π(y) = (b1, c2)

π(u) = (b2, c1)

π(v) = (b2, c2)

then

(x+1 y) +2 (u+1 v) = (x+2 u) +1 (y +2 v)

Definition 3.1.2. (bi-extensions of group functors) If F,G,H are three group functors

from the category of R-algebras to the category of abelian groups, a biextension of G × H

by F is a fourth functor K such that for every K-algebra S, K(S) is a biextension of
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G(S)×H(S) by F (S) and for every R homomorphism S1 → S2, the map K(S1)→ K(S2)

is a homomorphism of bi-extensions (in the obvious sense). In particular, if F,G,H are

formal groups, this gives us a biextension of formal groups.

Example 3.1.3. Let A be an abelian variety over a field k. Let Â be the dual of A. Let

P be the Poincare line bundle over A× Â. Let T be the total space of P and let Z be the

zero section. Then there is a biextension structure on T −Z. This is a biextension of A× Â

by Gm. See [MRM74] for more details.

3.2 Sustained Deformation Spaces as Biextensions

Definition 3.2.1. Let X =
∏3
i=1Xi with Xi isoclinic of slopes si and assume s1 > s2 > s3.

Let E = Defsus(X). We will define a free H13 action on E, that is a morphism

∗E : H13 × E → E

which satisfies the axioms of being a H13 action, as follows: Let e ∈ E(R) and let X

be the pullback of the universal sustained p-divisible group by e : Spf(R) → E, that is

X is a p-divisible group over R that is κ-strongly sustained modeled on X. Let f13 ∈

Homst(X1[pN ], X3[pN ]) for some N ∈ N(R). Let

0 ⊂ X3 ⊂ X2 ⊂ X1 = X

be the slope filtration of X where Xi are p-divisible groups over R. That is X fits in an

exact sequence

0→ X2 → X → X/X2 → 0
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Then there exists M ∈ N with M ≥ N , φ ∈ Homst((X/X2)[pM ],X2[pM ])(R) such that

X = X/X2 ×(1,φ) X2

As f13 ∈ Homst(X1[pN ], X3[pN ])(R) ⊂ Homst(X1[pM ], X3[pM ])(R), and that

X/X2 ' X1 ×κ R by a natural isomorphism

0→ X3 ×κ R
ι→ X2 → X2/X3 → 0

Let ι ◦ f13 be the composition

ι ◦ f13 : X/X2 ' X1 ×κ R[pM ] f13−→ X3 ×κ R[pM ] ι→ X2

Finally, we define the action of f13 on e by

∗E(f13, e) = X/X2 ×(1,φ+ι◦f13) X2

It is easy to verify that this is a group action, and it is clear that

∗E(f13, e) = e ⇐⇒ f13 = 0

hence the action is free.

Lemma 3.2.2. (Biextension Structure on Defsus(X)) Let X =
∏3
i=1Xi with Xi

isoclinic of slopes si over a field κ of characteristic p and assume s1 > s2 > s3. Let

E = Defsus(X).

(a). We define a projection map π : E → Defsus(X1 ×X2)×Defsus(X2 ×X3) as follows:

let X ∈ E be a functorial point. Let 0 ⊂ X3 ⊂ X2 ⊂ X1 = X be the slope filtration of

X . We define π by sending X to

X/X3 ×X2 ∈ B = Defsus(X1 ×X2)×Defsus(X2 ×X3)

Then π is a faithful morphism.
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(b). π : E → B is invariant under the H14 action, that is for h13 ∈ H13(R), e ∈ E(R),

π(e) = π(∗E(h13, e))

Moreover, let π̃ : E/H13 → B = H12 ×H23 be the morphism induced by π, then π̃ is

an isomorphism.

(c). E is a biextension of Defsus(X1 ×X2)×Defsus(X2 ×X3) by Defsus(X1 ×X3).

Proof. For (a), it suffices to show that for R/κ an Artinian local ring, f = (fn12, f
n
23) ∈

(H12[pn] × H23[pn])(R) there exists an faithfully flat cover R′ over R, and e ∈ E(R) such

that

π(e) = fR′

We construct e,R′ as follows: let f2n
23 ∈ H23[p2n](R′) for some Artinian local ring R′ faith-

fully flat over R such that

[pn]H23(f2n
23 ) = (fn23)R′

Let

Ψn
f2n

23
: X2[pn]×X3[pn]→ (X2 ×(1,fn23) X3)[pn]

the isomorphism over R′ constructed using f2n
23 by the procedure in 2.4.3. Let F be the

composition

Fn : X1[pn]
((fn12)R′ ,0)
−→ X2[pn]×X3[pn]

Ψn
f2n

23−→ (X2 ×(1,fn23) X3)[pn]

Let e ∈ E(R′) be the R′ point that correspond to the p-divisible

X1 ×(1,Fn) (X2 ×(1,fn23) X3)
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then

π(e) = fR′

We have proved (a).

For (b), to show that E/H13 ' H12 × H23, it suffices to show that for n ∈ N and

f = (f12, f23) ∈ (H12[pn]×H23[pn])(R), the set teoretic preimage

π−1(f) ⊂ E(R)

is a H13(R) torsor. Given e, e′ ∈ π−1(f) ⊂ E(R). Let X ,X ′ be the sustained p-divisible

groups corresponding to e, e′ respectively. Let 0 ⊂ X3 ⊂ X2 ⊂ X1 = X and 0 ⊂ X ′3 ⊂ X ′2 ⊂

X ′1 = X ′ be the slope filtrations of X ,X ′ respectively. As π(e) = π(e′) = f ,

X2 ' X ′2

Let M ∈ N, φ, φ′ ∈ Homst((X/X2)[pM ],X2[pM ])(R) such that

X = X/X2 ×(1,φ) X2,

X ′ = X/X2 ×(1,φ) X2

As π(e) = π(e′), the morphism φ− φ′ : X/X2[pM ]→ X2[pM ] factors through X3 ↪→ X , i.e.

φ− φ′ ∈ Homst(X/X2[pM ],X3[pM ])(R),

∗E(φ− φ′, e′) = e

We have proved that π−1(f) is a H13(R) torsor.

For (c), fix R/κ an Artinian local algebra. Let X be a κ-strongly sustained p-divisible

group over R modeled on X. Let 0 = X0 ⊂ X1 ⊂ X2 ⊂ X3 = X be the slope filtration of X .

The natural projection

π12 : Defsus(X)→ Defsus(X1 ×X2)
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can be described as sending X ∈ Defsus(X)(R) to X2 ∈ Defsus(X1 × X2)(R). Then we

have a natural extension of p-divisible groups

0 −→ X2 −→ X −→ X/X2 −→ 0

that is

X ∈ Ext1(X/X2,X2)(R)

thus the Baer sum structure on Ext group induces an relative group structure on Defsus(X)

with respect to the projection map π12.

Similarly, we have another relative group structure induced by the Baer sum on

Ext1(X1,X/X1)

with respect to the projection map

π23 : Defsus(X)→ Defsus(X2 ×X3)

Now it is an easy exercise to check that these two relative group structures satisfy the

axioms as defined in 3.1.1.

3.3 Strongly Non-trivial Action

We collect the definition and some basic properties of a strongly non-trivial action, see [CO22]

Chapter 7 for proofs and more details.

Definition 3.3.1. Let X be a p-divisible group over a field κ ⊃ Fp. Let k be an algebraic

closure of κ and let Xk = X×κ k. Let G be a finite dimensional p-aidc Lie group. Let W (k)

be the Witt ring of k and D∗(Xk) the covariant Dieudonne module of Xk. A continuous
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homomorphism ρ : G → Aut(X) = End(X)× of G on X is said to be strongly non-trivial

if the associated W (k)⊗Q-linear representation

dρ : Lie(G)→ EndW (k)⊗Q(D∗(Xk)Q)

of the Lie algebra of G on D∗(Xk)Q does not contain the trivial representation of Lie(G)

as a subquotient.

Remark 3.3.2. In the notation of 3.3.1, a continuous homomorphism ρ : G→ Aut(X) is

strongly non-trivial if and only if there exists a finite number of finite sequences (wi,1, ..., wi,ni)

in Lie(G), for i = 1, ..., r and ni ≥ 1 for all i, such that

r∑
i=1

dρ(wi,1) ◦ dρ(wi,ni) ∈ End0(X)×

Definition 3.3.3. Let X =
∏3
i=1Xi with Xi isoclinic of slope si, and assume that s1 >

s2 > s3. Let Hij = Homst(Xi, Xj), ∀1 ≤ i < j ≤ 3. Let E = Defsus(X), which is a

biextension of H12 × H23 by H13. Let G ⊂ Autbi−ext(E) be a closed p-adic subgroup. We

the action of G on E is strongly non-trivial if the induced action on each Hij is strongly

non-trivial, in the sense of 3.3.1, for all 1 ≤ i < j ≤ 3.

3.4 Mumford’s Trivialization

Definition 3.4.1. Let X = X1×X2×X3 a p-divisible group over a field κ of characteristic p

with Xi isoclinic. Let si = Slope(Xi) and we assume that s1 > s2 > s3. Let E = Defsus(X).

Then E has a natural structure as a biextension of Homst(X1, X2) × Homst(X2, X3) by

Homst(X1, X3), as described in 3.2.2. Denote by

Hij := Homst(Xi, Xj),∀1 ≤ i < j ≤ 3
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see 2.3.1 and 2.3.2 for the definition of Homst. Let π : E → H12 × H23 the natural

projection. Let En = π−1(H12[pn]×H23[pn]). We will define a morphism

ψn : H12[pn]×H23[p2n]×H13 → En

as follows:

Fix R/κ an Artinian local ring. Let f = (fn12, f
2n
23 , f

n
13) ∈ (H12[pn] × H23[p2n] × H13)(R).

We will write down an element of E(R) using f in the following steps:

(a) given f2n
23 ∈ H23[p2n](R), denote fn23 := [pn]f2n

23

(b) By 2.4.3.(b), we can construct from f2n
23 an isomorphism of truncated p-divisible groups

Ψn
f2n

23
: X2[pn]×X3[pn]→ X2 ×f

n
23 X3

(c) Let F = (Ψn
f2n

23
) ◦ (fn12, f

n
13) be the morphism from X1[pn] to (X2 ×f X3)[pn] given by

the composition

F : X1
(fn12,f

n
13)

−→ X2[pn]×X3[pn]
Ψn
f2n

23−→ (X2 ×f X3)[pn] (3.4.1)

(d) Given F , we can define a point in E(R), denote it by Xf , by

Xf := X1 ×(1,F ) (X2 ×(1,fn23) X3)

(e) We can now define a morphism

ψn : H12[pn]×H23[p2n]×H13[pn]→ En

by sending f to Xf .
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(f) It is easy to check that ψn is H13[pn] equivarient, in the sense that if fn13
′ ∈ H13[pn]

another functorial point, then

ψ((fn12, f
2n
23 , f

n
13 + fn13

′)) = ∗E(fn13
′, ψn(f))

where ∗E corresponds to the H13 torsor structure on E, see 3.2.1.

(g) Now we extend the source of ψn from H12[pn] × H23[p2n] × H13[pn] to H12[pn] ×

H23[p2n]×H13 by

ψn((fn12, f
2n
23 , f13)) = ∗E(f13, ψn((fn12, f

2n
23 , 0))

for f13 ∈ H13 a functorial point.

Remark 3.4.2. We will refer to ψn as Mumford’s trivialization, as Mumford constructed

similar morphisms for biextensions of p-divisible groups in [Mum68].

Theorem 3.4.3. Notation as in 3.4.1. Let f = (fn12, f
2n
23 , f13) and f ′ = (fn12

′, f2n
23
′, f ′13) be

two functorial points of H12[pn]×H23[p2n]×H13. Let En ⊂ E and ψn : H12[pn]×H23[p2n]×

H13 → En as defined in 3.4.1. For n ∈ N, Let

〈, 〉n : H12[pn]×H23[pn]→ H13[pn]

the bihomomorphism given by

〈fn12, f
n
23〉n = fn23 ◦ fn12 ∈ H13[pn] = Homst(X1[pn], X3[pn])

for all fn12 ∈ H12[pn] = Homst(X1, X2)[pn], fn23 ∈ H23[pn] = Homst(X2, X3)[pn] both func-

torial points. Then:
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(a). (Gluing Data) ψn(f) = ψn(f ′) if and only if

fn12 = fn12
′, [pn]f2n

23 = [pn]f2n
23
′

f13 − f ′13 = 〈fn12, f
2n
23 − f2n

23
′〉n

(b). The morphism ψn is faithfully flat.

Proof. For (a), as ψn respect the H13 torsor structure, see 3.2.1(f)(g), it suffices to prove

(a) under the assumption that f13, f
′
13 ∈ H13[pn]. Let F, F ′ as in 3.2.1(d) that corresponds

to f, f ′ respectively, that is

ψn(f) = X1 ×(1,F ) (X2 ×(1,fn23) X3)

ψn(f ′) = X1 ×(1,F ′) (X2 ×(1,fn23) X3)

then ψn(f) = ψn(f ′) ⇐⇒ F = F ′. By 3.2.1(c), we have the following diagram that defines

F :

X2[p2n]×X3[pn] ker(X2[p2n]×X3[p2n] Φn−→ X3[pn])

X1 X2[pn]×X3[pn] (X2 ×(1,fn23) X3)[pn]
(fn12, f

n
23)

F

Ψn
f2n

23

πfn23[pn]H12 × idH23

(x2n
2 , xn3 )→ (x2n

2 , f2n
23 (x2n

2 ) + xn3 )

where

• Φn : X2[p2n] × X3[p2n] → X3[pn] is defined as sending (x2n
2 , x2n

3 ) to fn23([pn]x2n
2 ) −

[pn]x2n
3 , for x2n

2 ∈ X2[p2n], x2n
3 ∈ X3[p2n] both functorial points.
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• πfn23
: ker(X2[p2n]×X3[p2n] Φn−→ X3[pn])→ (X2×(1,fn23)X3)[pn] the natural projection

map, see 2.4.3.

• x2n
2 is a pn root of xn2 .

We can similarly write down a diagram for F ′. Now an easy diagram chasing shows that

F = F ′ ⇐⇒ fn13 − fn13
′ = 〈fn12, f

2n
23 − f2n′

23 〉n

We have proved (a).

For (b), first we note that the morphism ψn is H13 equivariant, by 3.2.1(f)(g). By ignoring

the H13 component, ψn induces a morphism

ψn : H12[pn]×H23[p2n]→ En/H13 ' H12[pn]×H23[pn]

and it is easy to check that ψn = idH12 × [pn]H23 , so ψn is faithfully flat. Hence ψn is also

faithfully flat.

Corollary 3.4.4. Notation as in 3.4.3. Then for each n ∈ N, the morphism

ψn,homo : H12[p2n]×H23[p2n]×H13
([pn]H12 ,id,id)
−→ H12[pn]×H23[p2n]×H13

ψn−→ Fn

is faithfully flat, and for f = (f2n
12 , f

2n
23 , f13), f ′ = (f2n

12
′, f2n

23
′, f ′13) ∈ H12[p2n]×H23[p2n]×H13,

ψn,homo(f) = ψn,homo(f ′) ⇐⇒

f2n
12 − f2n

12
′ ∈ H12[pn], f2n

23 − f2n
23
′ ∈ H23[pn] and f13 − f ′13 = 〈[pn]f2n

12 , f
2n
23 − f2n

23
′〉n

Proof. Obvious.
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Chapter 4

Tate-linear Nilpotent Groups of

type A and 4-Slopes Case

In this chapter we first prove a similar result to 3.4.3 for the case when X =
∏4
i=1Xi with Xi

isoclinic with mutually different slopes. Then we define the concept of Tate-linear nilpotent

groups of type A.

We first set up some notation used throughout this section.

Notations 4.0.1. (Set up of Sustained Deformation Space 4 Slopes Case)

• Let X =
∏4
i=1Xi be a p-divisible group with 4 slopes over a base field κ of characteristic

p, here each Xi is isoclinic with slope si and we assume that s1 > s2 > s3 > s4.

• Let E = Defsus(X), which is a smooth formal scheme over κ by 4.4.6.

• Let B = Defsus(X1×X2×X3)×Defsus(X2×X3)Defsus(X2×X3×X4). Note that both

Defsus(X1 ×X2 ×X3) and Defsus(X2 ×X3 ×X4) are biextensions.
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• Let H14 = Defsus(X1 ×X4) a p-divisible group.

• We will show that E has a natural H14 torsor structure and E/H14 ' B in 4.1.1. Let

π : E → B the projection map as defined in 4.1.3.

We will define for each n ∈ N a subscheme En ⊂ E and Bn ⊂ B that fit into the

following diagram:

En E

Bn B

π

⊂

⊂

π

To define En and Bn, we need the following notations/facts:

(a) Let Hij := Homst(Xi, Xj) =
n
Homst(Xi[pn], Xj [pn]) ' Defsus(Xi ×Xj),∀i < j. We

denote by Hn
ij := Hij [pn]. For all 1 ≤ i < k < j ≤ K and n ∈ N, let

〈, 〉ikj,n : Hik[pn]×Hkj [pn]→ Hij [pn]

the bilinear pairing given by composition.

(b) Note that Defsus(X1 ×X2 ×X3) is a biextension, same is Defsus(X2 ×X3 ×X4).

(c) For n ∈ N, let ψ13,n : Hn
12 ×H2n

23 ×H13 → Defsus(X1 ×X2 ×X3)n

be the trivializations defined in 3.4.3. Denote by B13 := Defsus(X1 ×X2 ×X3),

B13,n := img(ψn13). For n,m ∈ N, denote

B13,n[pm] := ψ13,n(Hn
12 ×H2n

23 ×Hm
13)

Similarly let ψ24,n : H2n
23 ×Hn

34 ×H24 → Defsus(X2 ×X2 ×X4), and B24, B24,n and

B24,n[pm] are similarly defined.
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(d) With these notations B = B13 ×H23 B24. We define

Bn := B13,n[pn]×H23 B24,n[pn]

which is a finite subscheme of B. Let

En = π−1(Bn)

An = Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4

4.1 4-slopes Case Basic

Definition 4.1.1. (Definition of the H14 torsor structure on E) Notation as in 4.0.1.

We define an H14 action on E = Defsus(X), that is a morphism

∗E : H14 × E → E

as follows: let R/κ an Artinian local ring. Let N ∈ N and h14 ∈ H14[pN ](R). Let X be a

κ-strongly sustained p-divisible group over R modeled on X, that is X ∈ E(R). Let

0 ⊂ X4 ⊂ X3 ⊂ X2 ⊂ X1 = X

be the slope filtration of X . We have a short exact sequence

0→ X2 → X → X/X2 → 0

Then there exists M ∈ N with M ≥ N and

F ∈ Hom(X/X2[pM ],X2[pM ])(R)

s.t.

X = X/X2 ×(1,F ) X2
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Let

ιM : X4[pM ] ↪→ X2[pM ]

the natural embedding. As

X4 ' X4 ×κ R

X/X2 ' X1 ×κ R

the element

h14 ∈ Homst(X1[pN ], X4[pN ])(R)

⊂ Homst(X1[pM ], X4[pM ])(R)

⊂ Hom(X1[pM ], X4[pM ])(R)

gives rise to an element

h̃14 : X/X2[pM ]→ X4[pM ]

let

ιM ◦ h̃14 : X/X2[pM ]→ X2[pM ]

and we define the torsor structure

∗E : H14 × E → E

by

∗E(h14,X ) := X/X2 ×(1,F+ιM◦h̃14) X2 ∈ E(R)

It is easy to check that this gives rise to an action of H14 on E, and as

∗E(h14,X ) = X ⇐⇒ ιM ◦ h̃14 ⇐⇒ h14 = 0

this action is free.
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Remark 4.1.2. The definition of the H14 action on E is a complete analogy of 3.2.1.

Lemma 4.1.3. Notation as in 4.0.1. Then the following statements hold:

(a). Let π : E → B be the morphism defined as follows: Fix R/k an Artinian local ring.

Let X ∈ E(R), that is X is a p-divisible group over R strongly sustained modeled on

X. Let

0 ⊂ X4 ⊂ X3 ⊂ X2 ⊂ X1 = X

be the slope filtration of X . Define π as sending X to

X1/X3⊗X2 ∈ B(R) = Defsus(X1×X2×X3)×Defsus(X2×X3)Defsus(X2×X3×X4)(R)

Then π is faithful.

(b). Let π : E → B as in (a). Then π is invariant under the H14 action. That is

π(∗E(h14, e)) = π(e) for all h14 ∈ H14(R), E(R). Moreover, let π̄ : E/H14 → B the

morphism induced by π, as π is H14 invariant. Then π̄ is an isomorphism.

Proof. The proof is entirely parallel to 3.2.2(a) and (b).

4.2 Coordinates in 4-slopes Case

The main goal of this section is to prove 4.2.1, which generalizes Mumford’s trivialization

of biextensions as described in 3.1.

The main result in this section is 4.2.1. We first give a comparison between the result

in 4.2.1 and Mumford’s trivialization of biextensions given in 3.4.3 in the following table:
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F = Defsus(
∏3
i=1 Xi) a biextension E = Defsus(

∏4
i=1 Xi)

H12, H23, H13 p-divisible groups Hij , 1 ≤ i < j ≤ 4, p-divisible groups

π : F → H12 ×H23 projection π : E → B projection

Fn ⊂ F En ⊂ E

π(Fn) = H12[pn]×H23[pn] π(En) = Bn = B13,n[pn]×H23 B24,n[pn]

ψn : H12[pn]×H23[pn]×H13 → Fn, ∀n ∈ N ψn : An → En, ∀n ∈ N

Fn ⊂ Fn+1, Fn = F En ⊂ En+1, En = E

gluing data of ψn as in 3.4.3 gluing data of ψn as in 4.2.1

Table 4.1: Comparison between two trivializations

Now we state the main result of this section:

Theorem 4.2.1. Let An, En as in 4.0.1.(d). Then there exists a morphism ψn : An → En.

Moreover we can write down the gluing data for ψn: let f = (fij), f ′ = (f ′ij) ∈ An(R) for a

fixed Artinian local k algebra R/k. then ψn(f) = ψn(f ′) if and only if

fn12 = fn
′

12 , f
n
23 = fn

′
23 , f

n
34 = fn

′
34 , (4.2.1)

fn13 − fn
′

13 − 〈f2n
23 − f2n′

23 , fn12〉 = 0, (4.2.2)

fn24 − fn
′

24 − 〈fn34, f
2n
23 − f2n′

23 〉n = 0, (4.2.3)

fn14 − fn
′

14 − 〈f2n
34 − f2n′

34 , fn13〉n + 〈−(f2n
24 − f2n′

24 ) + 〈f2n
34 , f

3n
23 − f3n′

23 〉2n, fn12〉n = 0 (4.2.4)

Proof. We use the following notations/facts:

(a) We fix R/k an Artinian local ring.

(b) We use xni to denote an element in Xi[pn] and fnij to denote an element in Hij [pn].

(c) We have natural bilinear pairings

<,>ikj,n: Hik[pn]×Hkj [pn]→ Hij [pn]
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given by compositions. These bilinear pairings will sometimes be denoted simply by

◦ when it’s clear from the context.

We will define a morphism ψn : An → En. The idea here is pretty simple: we use 2.4.3

to construct a trivialization of (X1 ×X2 ×X3 ×X4)[pn] one component at a time.

(a) Let

g2n : (X2 ×f
n
23 X3)[p2n]

(Ψ2n
f3n

23
)−1

−−−−−−→ (X2 ×X3)[p2n] (f24,f34)−−−−−→ X2n
4 (4.2.5)

where (Ψ2n
f3n

23
) : (X2 × X3)[p2n] 7→ (X2 ×f

n
23 X3)[p2n] an isomorphism as defined in

2.4.3(b).

(b) Given g2n we can define

Ψn
g2n : (X2 ×f

n
23 X3)[pn]×X4[pn]→ (X2 ×f

n
23 X3)×gn X4)[pn]

by 2.4.3, here

gn = [pn]g2n = g2n|n-th level (4.2.6)

(c) Given

f2n
23 = [pn]f3n

23 = f3n
23 |2n-th level

once again by 2.4.3 we can define

Ψn
f2n

23
× idX4 : (X2 ×X3)[pn]→ (X2 ×f

n
23 X3)[pn]

(d) Denote by

F = Ψn
g2n ◦ (Ψn

f2n
23
× idX4) : (X2 ×X3 ×X4)[pn]→ ((X2 ×f

n
23 X3)×gn X4)[pn]

(e) Let

F̃ = (fn12, f
n
13, f

n
1,4) ◦ F : X1 → (X2 ×f

n
23 X3)×gn X4)[pn] (4.2.7)
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(f) To summarize, we have the following diagram.

Xn
1 (X2 ×X3 ×X4)[pn]

(X2 ×f
n
23 X3)[pn]×X4[pn]

(Xfn23
2 X3)[pn]×gn X4[pn]

fn12 × fn13 × fn14

F̃

Ψn
f2n

23
× idX4

F

Ψn
g2n

(g) finally we define ψn by sending f ∈ An(R) to

Xf := X1 ×F̃ [(X2 ×f
n
23 X3)×gn X4)] ∈ En(R) (4.2.8)

We then get rid of the restriction fn1,4 ∈ Hn
1,4 using the H1,4 torsor structure on E.

This finishes the definition of ψn : An → En.

To write down the gluing data: let

f, f ′ ∈ An(R) = (Hn
1,2 ×Hn

1,3 ×Hn
1,4 ×H3n

2,3 ×H2n
3,4 ×H2n

2,4)(R)

Let

(F̃ , g2n), (F̃ ′, , g2n′)

be the data we used to construct Xf , Xf ′ , see 4.2.5, 4.2.6 and 4.2.7. Then

Xf = Xf ′ ⇐⇒ F̃ = F̃ ′, gn = gn
′
, fn23 = fn

′
23

Note that the conditions

gn = gn
′
, fn23 = fn

′
23
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are precisely the conditions forXf , Xf ′ to be isomorphic after modulo the slope filtration

corresponding to X1. In other words, let π2,4 : E = Defsus(X) → Defsus(X2 ×X3 ×X3)

then

gn = gn
′
, fn23 = fn

′
23

⇐⇒ fn23 = fn
′

23 , f
n
34 = fn

′
34 , f

n
24 − fn

′
24 = fn34 ◦ (f2n

23 − f2n′
23 )

⇐⇒ π2,4(Xf ) = π2,4(Xf ′)

Now we write down the condition for F̃ = F̃ ′.

We adopt the following notation, if X a p-divisible group and xn ∈ X[pn], then xm is a

lifting of xn to X[pm] for m ≥ n.

By 2.4.1 we have

[(X2 ×f
n
23 X3)×gn X4][pn] =

ker(ker(X
3n
2 ×X

3n
3 )→Xn

3
Γ−fn23

×X2n
4 → X2n

4 )

Γ−gn
(4.2.9)

Let xmi := fm1i (xm1 ), ∀i ∈ {2, 3, 4}, then the morphism

F̃ : X1[pn]→ [(X2 ×f
n
23 X3)×gn X4][pn]

defined in 4.2.7, can be described as:

F̃ : xn1 → (xni := fn1i(x1))i∈{2,3,4} → (x3n
2 , x2n

3 − f3n
23 (x3n

2 ), xn4 − f2n
34 (x2n

3 )− f2n
24 (x2n

2 ))

where (x3n
2 , x2n

3 −f3n
23 (x3n

2 ), xn4 −f2n
34 (x2n

3 )−f2n
24 (x2n

2 )) is understood as an element in the

right hand side of 4.2.9.

Now the it’s a matter of elementary algebra to write down the conditions for F̃ = F̃ ′ :

F̃ = F̃ ′ mod X3, X4 ⇐⇒ f12 = f ′12
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which is the first equation of 4.2.1. We can similarly derive the other two equations of 4.2.1.

F̃ = F̃ ′ mod X4 ⇐⇒ (x2n
2 − x2n′

2 , xn3 − xn3 ′ − f2n
23 (x2n

2 ) + f2n
23
′(x2n

2
′)) ∈ Γ−fn23

or equivalently,

x2n
2 − x2n

2
′ = (f2n

12 − f2n
12
′)(xn1 ) ∈ [pn], (4.2.10)

−fn23(x2n
2 − x2n

2
′) = xn3 − xn3 ′ − f2n

23 (x2n
2 ) + f2n

23
′(x2n

2
′) (4.2.11)

Rewrite the RHS of 4.2.11 as

xn3 − xn3 ′ − f2n
23 (x2n

2 − x2n
2
′)− (f2n

23 − f2n
23
′)(x2n

2
′)

and notice that

f2n
23 (x2n

2 − x2n
2
′) = fn23(x2n

2 − x2n
2
′)

as x2n
2 − x2n

2
′ ∈ [pn] and f2n

23 is a lifting of fn23, equation 4.2.11 becomes

xn3 − xn3 ′ − (f2n
23 − f2n

23
′)(xn2 ′) = 0

i.e.

fn13 − fn13
′ − (f2n

23
′ − f2n

23
′) ◦ fn12 = 0

which is precisely the second equation of 4.2.1. Here we use the fact that

f2n
23 (x2n

2
′)− f2n

23
′(x2n

2
′) = (f2n

23 − f2n
23
′)(xn2 ′)

where the element (f2n
23 − f2n

23
′) is understood as in H23[pn]. We can similarly derive the

third equation of 4.2.1.

Finally, after unwinding definitions, we have F̃ = F̃ ′ if and only if

xn4 − xn4 ′ − (f2n
34 (x2n

3 )− f2n′
34 (x2n

3
′))− (f2n

24 (x2n
2 )− f2n

24
′(x2n′

2 ))

=− f24(x3n
2 − x3n′

2 )− f23(x2n
3 − x2n

3
′ − f3n

23 (x3n
2 ) + f3n

23
′(x3n

2
′))
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after some reorganization together with the fact that xmi = fm1i (xm1 ),∀i ∈ {2, 3, 4} this is

precisely the last equation of 4.2.1. We have proved this lemma.

Lemma 4.2.2. (Basic Properties of ψn) Notation as in 4.2.1.

(a). Let ∗̃ be the trivial H14 torsor structure on An = Hn
1,2×Hn

1,3×H1,4×H3n
2,3×H2n

3,4×H2n
2,4.

Let Fn be the schematic image of ψn. Then ∗̃ descents to a H14 torsor structure on

Fn, which we denote by ∗Fn, that is

∗Fn : H14 × Fn → Fn a torsor structure

and the diagram

H14 ×An An

H14 × Fn Fn

H14 × En En

∗̃

idH14 × ψon ψon

∗Fn

idH14 × ρn ρn

∗En

where

• ρn : Fn ↪→ En the embedding morphism.

• ∗En the morphism corresponding to the H14 torsor structure on En.

• ψon is the morphism An → Fn corresponding to ψn, as Fn is defined as the

schematic image of ψn.

(b). The following diagram commutes:
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An+1 = Hn+1
1,2 ×H

n+1
1,3 ×H1,4 ×H3(n+1)

2,3 ×H2(n+1)
3,4 ×H2(n+1)

2,4 En+1

Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n+2
2,3 ×H2n+1

3,4 ×H2n+1
2,4 En+1

An = Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4 En

ψn+1

ψn+1

↪→

idH12×H13 × [pn]H24×H34 × [p2n]H23

=

↪→

ψn

(c). Let B13 = Defsus(X1 × X2 × X3) and B24 = Defsus(X2 × X3 × X4) both biexten-

sions. Let ψ13,n, ψ24,n, B13,n[pn], B24,n[pn] and Bn as defined in 4.0.1(c),(d). Then the

following diagram commutes:

An = Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4 En

Hn
1,2 ×Hn

1,3 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4 Bn

H12[pn]×H23[p2n]×H13[pn]×H34[pn]×H24[pn] Bn

ψn

π̂14 π

ψn

idH12×H13 × [pn]H23×H24×H34 =

ψ13,n ⊗H23 ψ24,n

where

• π̂14 is the natural projection.

• ψn is the natural morphism induced by ψn.

• ψ13,n ⊗H23 ψ24,n is the tensor product of ψ13,n and ψ24,n over H24.

Proof. Proof of (b) and (c) is left as an exercise. We now prove (a).
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It suffices to show that

ρn ◦ ψn ◦ ∗̃ = ∗En ◦ (idH14 × ρn) ◦ (idH14 × ψn)

Let h14 ∈ H14[pn], f = (fn12, f
3n
23 , f

2n
34 , f

n
13, f

2n
24 , f

n
14) ∈ An, both functorial points over

the same Artinian local algebra R/κ. Recall that in (f) starting from f we constructed

F, F̃ ,Ψn
f2n

23
, gn, g2n,Ψn

g2n that fit in the diagram:

Xn
1 (X2 ×X3 ×X4)[pn]

(X2 ×f
n
23 X3)[pn]×X4[pn]

(X2 ×f
n
23 X3)[pn]×gn X4[pn]

fn12 × fn13 × fn14

F̃

Ψn
f2n

23
× idX4

F

Ψn
g2n

Note that the vertical sequence of the diagram does not depend on the fn14 component.

Now by definition

∗̃(h14, f) = (fn12, f
3n
23 , f

2n
34 , f

n
13, f

2n
24 , f

n
14 + hn14)

Let F ′, F̃ ′,Ψn
f2n

23

′,Ψn
g2n
′ be the morphisms correspond to ∗̃(h14, f) = (fn12, f

3n
23 , f

2n
34 , f

n
13, f

2n
24 , f

n
14+

hn14). Then we have

F = F ′

hence

F̃ − F̃ ′ = (0, 0, fn14 − (f14 + hn14))Xn
1→(X2×X3×X4)[pn] ◦ F

Let

Π23 : (X2 ×f
n
23 X3)[pn]×gn X4[pn]→ X2 ×f

n
23 X3)[pn]
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the natural projection, then it is easy to see that the composition

X4[pn] ↪→ (X2 ×X3 ×X4)[pn] F−→ (X2 ×f
n
23 X3)[pn]×gn X4[pn] Π23−→ (X2 ×f

n
23 X3)[pn]

is the trivial morphism, and that the following diagram commutes

X4[pn]

X4[pn] (X2 ×X3 ×X4)[pn] (X2 ×f
n
23 X3)[pn]×gn X4[pn]

(X2 ×f
n
23 X3)[pn]

↪→

=

F

↪→

Π23

then the morphism F̃−F̃ ′, as a morphism from X1[pn] to X2×f
n
23X3)[pn]×gnX4[pn], factors

through X4[pn] ↪→ (X2 ×f
n
23 X3)[pn]×gn X4[pn]; As a morphism from X1[pn] to X4[pn],

F̃ − F̃ ′ = fn14 − (f14 + h14)n = −hn14

This means precisely that

ρn ◦ ψn ◦ ∗̃(hn14, f) = ∗En ◦ (idH14 × ρn) ◦ (idH14 × ψn)(hn14, f)

by the definition of H14 torsor structure on En, see 4.1.1. We have proved (a).

Theorem 4.2.3. Notation as in 4.2.1. The morphism ψn : An → En is faithfully flat.

Proof. By 4.2.2.(c), we have a commutative diagram

An En

Hn
1,2 ×Hn

1,3 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4 Bn

ψn

π̂14 π
ψn

where

• π̂14 : An → Hn
1,2 ×Hn

1,3 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4 is the natural projection.
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• ψn : Hn
1,2 × Hn

1,3 × H3n
2,3 × H2n

3,4 × H2n
2,4 → Bn the morphism induced by ψn. ψn is

faithfully flat by 4.2.2.(c).

• ψn is H14 equivariant by 4.2.2.(a).

Hence ψn is faithfully flat.

Corollary 4.2.4. Recall En is a H14 torsor over Bn. Denote by [pnH14
]∗En the contraction

product induced by [pnH14
], that is

[pnH14 ]∗En = H14 ∧H14
[pn]
→ H14 En

By definition [pnH14
]∗En is also a H14 torsor over Bn. Then [pnH14

]∗En is a trivial H14 torsor,

that is [pnH14
]∗En = Bn ×H14.

Proof. By 4.2.1 En can be trivialized by

An = Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4

with gluing data lies in Hn
1,4, therefore [pn]∗En can also be trivialized by

Hn
1,2 ×Hn

1,3 ×H1,4 ×H3n
2,3 ×H2n

3,4 ×H2n
2,4

with gluing data in [pn]Hn
1,4 = 0, i.e. [pn]∗En is trivial, i.e. there exists an morphism

Tcan : Bn ×H14
'−→ [pn]∗En

Corollary 4.2.5. Let ηn : En → [pn]∗En
T−1
can−→ Bn × H14

prH14−→ H1,4 where En → [pn]∗E is

the natural map induced by [pn]H1,4. Then

ηn+1|En = [p]H1,4 ◦ ηn|En (4.2.12)
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Proof. An easy corollary of 4.2.2(b).

We rewrite the trivialization as in 4.2.1 in a more homogeneous way.

Corollary 4.2.6. Let

An = (H12 ×H23 ×H34)[p3n]× (H13 ×H23)[p2n]×H14,

let

Πn = ([p2n]H12 , idH23 , [pn]H34 , [pn]H13 , idH24 , idH14) : An −→ An

the natural morphism. Then the morphism

ψn,homo := Πn ◦ ψn : An → En

is faithfully flat and finite, as both Πn and ψn are. Moreover, for

f = (f3n
12 , f

3n
23 , f

3n
34 , f

2n
13 , f

2n
24 , f14), f ′ = (f3n

12
′, f3n

23
′, f3n

34
′, f2n

13
′, f2n

24
′, f ′14) ∈ An

ψn,homo(f) = ψn,homo(f ′)

if and only if

fn12 = fn
′

12 , f
n
23 = fn

′
23 , f

n
34 = fn

′
34 ,

f2n
13 − f2n′

13 − 〈f3n
23 − f3n′

23 , f3n
12 〉3n = 0,

f2n
24 − f2n′

24 − 〈f3n
34 , f

3n
23 − f3n′

23 〉3n = 0,

f14 − f ′14 − 〈f3n
34 − f3n′

34 , f2n
13 〉3n + 〈−(f2n

24 − f2n′
24 ) + 〈f3n

34 , f
3n
23 − f3n′

23 〉3n, f3n
12 〉3n = 0

here we adopt the following notation: supscript means level in the corresponding p-divisible

group, i.e. fkij is an element in Hij [pk]; If m ≤ n and fnij ∈ Hij [pn], then fmij := [pn−m]fnij

which is an element in Hij [pm].
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Proof. An obvious corollary of 4.2.1.

Remark 4.2.7. The coordinate system in 4.2.6 has the following advantage against 4.2.1:

all the bilinear pairings involve are at level 3n, and the level of fij only depends on j − i.

4.3 Trivialization of Universal Torsors

Notations 4.3.1. We use the following notations in this section:

(a) X =
∏K
i=1Xi be a p-divisible group with Xi isoclinic of slope si, and that s1 < s2.. <

sK . Here K ∈ {3, 4}.

(b) E = Defsus(X) = DefAutst(X)-torsor

(c) Autst(X)n := Autst(X[pn]).

(d) Hij := Homst(Xi, Xj), Hn
ij := Homst(Xi, Xj)[pn].

(e) Let X be the universal sustained p-divisible group over E and let Xn := X [pn].

Lemma 4.3.2. Following the notations as in 4.3.1 and let K = 3. Let ψn : Hn
12 ×H2n

23 ×

H13 → En be Mumford’s trivialization. Denote by

En[pn] := ψ(Hn
12 ×H2n

23 ×Hn
13)

Let φn be the following morphism:

φn : H2n
12 ×H3n

23 ×H2n
13

([p]nH12
,[p]nH23

,[p]nH13
)

−→ Hn
12 ×H2n

23 ×Hn
13

ψn−→ En[pn]

Then X|En[pn] ×En[pn],φn (H2n
12 ×H3n

23 ×H2n
13 ) is isomorphic to X[pn]× (H2n

12 ×H3n
23 ×H2n

13 ).

That is the Xn|En[pn] can be trivialized when pullbacked to H2n
12 ×H3n

23 ×H2n
13 by φn. Moreover

we can compute the gluing data of this trivialization.
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Proof. Fix a Artinian local k algebra R. Let

f = (f2n
12 , f

3n
23 , f

2n
13 ) ∈ (H2n

12 ×H3n
23 ×H2n

13 )(R)

As φn(f) ∈ En[pn](R), let

Xf := Xn|R,φn(f)

We now trivialize Xf by the following steps:

1. We first define a morphism F2n as in the following commutative diagram:

X1[p2n] X2[p2n]×X3[p2n]

(X2 ×f
2n
23 X3)[p2n]

f2n
12 × f2n

13

F2n Ψf3n
23

Define Fn as the restriction of Fn to X1[pn], that is

Fn := [pn]F2n : X1[pn]→ (X2 ×f
n
23 X3)[pn]

2. We can show that

Xf = X1[pn]×Fn (X2 ×f
n
23 X3)[pn]

This part is left as an exercise.

3. Recall the construction Ψ as in 2.4.3. then

Tf = (X1×X2×X3)[pn]
Ψn
f2n

23→ X1[pn]×(X2×f
n
23X3)[pn]

(idX1 ,Ψ
n
F2n

)
→ X1×Fn(X2×f

n
23X3)[pn]

(4.3.1)
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is an isomorphism between (X1 ×X2 ×X3)[pn] × R and Xf . As these constructions

are functorial, we obtain a morphism

T : (X1×X2×X3)[pn]×En[pn],φn (H2n
12 ×H3n

23 ×H2n
13 )→ Xn×En[pn],φn (H2n

12 ×H3n
23 ×H2n

13 )

To write down the gluing data, consider another element f ′ = (f2n′
12 , f3n′

23 , f2n′
13 ) such that

φn(f) = φn(f ′)

we can similarly define Tf ′ , and the gluing data between f and f ′ is

T−1
f ′ ◦ Tf ∈ Aut

st(X[pn])

some tedious computation similar to 4.2.1 shows that

T−1
f ′ ◦ Tf =


1 f2n

12 − f2n′
12 f2n

13 − f2n′
13 − < f3n

23 − f3n′
23 , f2n

12 >2n

0 1 f2n
23 − f2n′

23

0 0 1


note that as φn(f) = φn(f ′) we have

fn13 − fn
′

13+ < f2n
23 − f2n′

23 , fn12 >n= 0

hence T−1
f ′ ◦ Tf is an element in Autst(X[pn]).

Lemma 4.3.3. Notations as in 4.3.1 and let K = 4. Let ψn : An → En be as in 4.2.1, and

φn : H2n
12 ×H2n

13 ×H14 ×H4n
23 ×H3n

34 ×H3n
24

([pnHij ])1≤i<j≤4
−→ An

ψn−→ En

and

En[pn] := φn(H2n
12 ×H2n

13 ×H2n
14 ×H4n

23 ×H3n
34 ×H3n

24 )
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Then

Xn|En[pn] ×En[pn],φn (H2n
12 ×H2n

13 ×H2n
14 ×H4n

23 ×H3n
34 ×H3n

24 )

is isomorphic to

X[pn]×En[pn],φn (H2n
12 ×H2n

13 ×H2n
14 ×H4n

23 ×H3n
34 ×H3n

24 )

Moreover, we can compute the gluing data of this trivialization. This result is an analogy

of 4.3.2.

Proof. We sketch the proof, as the proof is pretty similar to 4.3.2.

Given

f = (f2n
12 , f

2n
13 , f

2n
14 , f

4n
23 , f

3n
24 , f

3n
34 )

f ′ = (f2n′
12 , f2n′

13 , f2n′
14 , f4n′

23 , f3n′
24 , f3n′

34 )

both elements in (H2n
12 ×H2n

13 ×H14 ×H4n
23 ×H3n

34 ×H3n
24 )(R) for some fixed Artinian local

ring R such that φn(f) = φn(f ′). Let

Xf = Xf ′ = Xn|R,φ(f)

Using f, f ′ we can write down Tf , Tf ′ both isomorphisms

X[pn]→ Xf

in a similar way as in 4.3.1, and we define

h = h(f, f ′) = (hij)4×4 = T−1
f ′ ◦ Tf

h is an element in

Autst(X)n = {(hij)i,j , hij ∈ Hij [pn] ∀1 ≥ i < j ≤ 4, hii = 1, hij = 0 ∀i > j}
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Now similar computation shows:

h12 = f2n
12 − f2n

12
′, h23 = f2n

23 − f2n′
23 , h34 = f2n

34 − f2n′
34 (4.3.2)

h13 = f2n
13 − f2n′

13 − < f3n
23 − f

3n]
23 , f

2n
12 >2n, (4.3.3)

h24 = f2n
24 − f2n′

24 − < f3n
24 − f

3n]
24 , f

2n
34 >2n, (4.3.4)

h14 = f2n
14 − f2n′

14 − (f3n
34 − f3n′

34 ) ◦ f2n
13 + [−(f3n

24 − f3n′
24 ) + f3n

34 ◦ (f4n
23 − f4n′

23 )] ◦ f2n
12 (4.3.5)

Remark 4.3.4. As a byproduct, X =
∏4
i=1Xi a p-divisible group over a field k/Fp with Xi

isoclinic, we can use the above gluing data to write down the universal sustained deformation

of X over E = Defsus(X). That is, at nth level, we start with the trivial

An ×X[pn]

and use ψn as define in 4.2.1 and the gluing data as in 4.3.3 to obtain a ’truncated sustained

p-divisible group’ over En = ψn(An). Let n → ∞ we obtain a sustained p-divisible group

over κ modeled on X over the base E.

4.4 Tate-linear Nilpotent Groups of type A

In this section we extend the category of projective systems Autst(X) = lim←−Aut
st(X)n

where X =
∏4
i=1X p-divisible group with Xi isoclinic of slopes si and s1 < s2 < s3 < s4 to

a slightly bigger category.

In the following discussion, we use Hij to denote a p-divisible group. In particular, we

are not assuming that there exists Xi, Xj s.t.

Hij = Defsus(Xi ×Xj)
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Fix K ∈ N. Let Hij be p-divisible groups over the base field κ of characteristic p, ∀1 ≤ i <

j ≤ K and let

〈, 〉ikj,nHik[pn]×Hkj [pn]→ Hij [pn]

bilinear pairings such that

• We have

〈〈xij,n, xjk,n〉ijk,n, xkl,n〉ikl,n = 〈xij,n, 〈xjk,n, xkl,n〉jkl,n〉ijl,n (4.4.1)

for all 1 ≤ i < j < k < l ≤ K and xij,n, xjk,n, xkl,n functorial points of Hij [pn], Hjk[pn]

and Hkl[pn] respectively.

• the following diagram commutes

Hik[pn]×Hkj [pn] Hij [pn]

Hik[pn+1]×Hkj [pn+1] Hij [pn+1]

<,>ikj,n

[p]nHik × [p]nHkj [p]Hij

<,>ikj,n+1

Consider

Ln :=
⊕

1≤i<j≤K
Hij [pn]

Then:

• 〈, 〉ikj,n naturally gives rise to an multiplication on Ln, which will be denoted by ∗n,

as follows: for h = (hij)1≤i<j≤K , h
′ = (h′ij)1≤i<j≤K both functorial points of Ln, we
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define

h ∗n h′ = (h̃ij)1≤i<j≤K

where

h̃ij =
∑

k s.t. i<k<j
〈hik, hkj〉ikj,n

This multiplication structure is associative by 4.4.1. It is also nilpotent in the sense

that for every x ∈ Ln,

xK = x ∗n x... ∗n x︸ ︷︷ ︸
K times

= 0

• This ring structure ∗n on Ln also induces a Lie algebra structure [, ]n on Ln, by

[h, h′]n = h ∗n h′ − h′ ∗n h

• Let

L :=
n
Ln

where the transition map Ln+1 → Ln is simply [p] and the projective limit takes place

in the big fpqc site over Spec(κ). Then ∗n’s induce an associative algebra structure ∗

on L and all the [, ]n’s induce a Lie bracket [, ] on L.

• The algebra structure ∗n on Ln also induces an group structure on Ln, denoted by ·,

by the formula

h1 · h2 = h1 + h2 + h1 ∗ h2

for all functorial points h1, h2 ∈ Ln. We will denote this group by Hn. The group

structure on L induced by ∗ is defined similarly and we denote this group by H.
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• Let

πn+1,n : Hn+1 → Hn

given by [p]Lie(Hn). Then πn+1,n is a group homomorphism and

H = lim←−
n

Hn

where the transition maps are those induced by πn+1,n.

• We will use the notation

Lie(Hn) := Ln,

Lie(H) := L

Definition 4.4.1. Let T be the system that consists of

• A family of p-divisible groups (Hij)1≤i<j≤K

• bilinear pairings 〈, 〉ijk,n, ∀1 ≤ i < j < k ≤ K,n ∈ N

and assume the conditions as in 4.4.1 are satisfied; The group H is called the Tate-linear

nilpotent group of type A associated to T and (Lie(H), [, ]) is called the Lie algebra of H.

We will use the notation H = lim←−Hn or H = (Hij)1≤i<j≤K to denote a Tate-linear nilpotent

group of type A.

Definition 4.4.2. A Tate-linear nilpotent group of type A of rank K is called pure if for

each (i, j), the p-divisible group Hij is isoclinic.

Definition 4.4.3. A pure Tate-linear nilpotent group of type A of rank K is called perfect

if sij + sjk = sik∀1 ≤ i < j < k ≤ K, where sij is the slope of Hij.
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Example 4.4.4. Let X =
∏4
i=1Xi with Xi isoclinic of slope si and assume s1 < s2 < s3 <

s4. Let

Hij = Homst(Xi, Xj)

and

〈, 〉ijk,n : Homst(Xi, Xj)[pn]×Homst(Xj , Xk)[pn]→ Homst(Xi, Xk)[pn]

the natural bilinear pairing. Then the system (Hij)1≤i<j≤4 together with 〈, 〉ijk,n forms a

perfect and pure Tate-linear nilpotent group of type A of rank 4.

Remark 4.4.5. Tate-linear nilpotent groups of type A of rank 3 or 4 that are perfect and

pure are the main object of interests in this thesis.

Given a Tate-linear nilpotent group of type A H = lim←−Hn, we can consider the universal

deformation space of H torsors, and we have the following

Lemma 4.4.6. The universal deformation space of lim←−Hn torsors is smooth.

Proof. See [CO22], especially Chapter 6.

Definition 4.4.7. Let lim←−Hn = ((Hij)1≤i<j≤K , <,>ijk,n), lim←−H
′
n = ((H ′ij)1≤i<j≤K , <,>

′
ijk,n

) be two Tate-linear nilpotent groups of type A of rank K. A homomorphism of general sus-

tained liear groups

f : lim←−Hn → lim←−H
′
n

is a family of homomorphisms (fij)1≤i<j≤K :

fij : Hij → H ′ij
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that respect all the Weil pairings, that is for all 1 ≤ i < j < k ≤ K and n ∈ N, we have

commutative diagrams

Hij [pn]×Hjk[pn] Hik[pn]

H ′ij [pn]×H ′jk[pn] H ′ik[pn]

<,>ijk,n

fij × fjk
<,>′ijk,n

fik

Note that such a family (fij) naturally induces a projective system of group homomorphisms

fn : Hn → H ′n

Since the construction H → DefH−tor is functorial, such a homomorphism also induces

f∗ : DefH−tor → DefH′−tor

Definition 4.4.8. Let H be a Tate-linear nilpotent group of type A. The automorphism

group of H, denoted by Autsus(H) or simply Aut(H) is the group of automorphisms over

κ, in the sense of 4.4.7, from H to itself.

To see the geometric meaning of this definition, we have the following:

Theorem 4.4.9. Let X = X1×X2×X3 with Xi isoclinic of slope si and s1 > s2 > s3. Let

Hij = Homst(Xi ×Xj), ∀1 ≤ i < j ≤ 3

For all n ∈ N, let

〈, 〉n : H12[pn]×H23[pn]→ H13[pn]

be the natural pairing. Let H = (Hij)1≤i<j≤3 be the Tate-linear nilpotent group of type A

corresponding to these data.Note that Defsus(X) = DefAutst(X)torsor = DefHtorsor. Then

Autbiext(E) = Autsus(H)

Proof. See [CO22] Chapter 10.
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4.5 Tate-linear nilpotent groups of type A: Rank = 3 case

Let H = Hn with components (Hij)1≤i<j≤3 be a Tate-linear nilpotent group of type A of

rank 3.

We will construct a trivialization of DefH-torsor that is similar to 3.4.3. To do that:

• Let An = H12[pn]×H23[p2n]×H13, the relations in 3.4.3 gives us a descent data, that

is there exists a scheme EH,n and a faithfully flat morphism

ψn : An → EH,n

let EH := EH,n.

• Consider H12[p2n]×H23[p3n]×H14×Hn. The equation in 4.3 gives us a descent data:

H12[p2n]×H23[p3n]×H14 ×Hn → HH,n

where THn is a Hn torsor over EH,n.

• For any fixed n0 ∈ N, and all n ≥ n0 integers, consider the Hn bundle Tn,n0 :=

THn |EH,n0
over EH,n0 , where the restriction is via the natural embedding EH,n0 ↪→

EH,n. The projective limit

Tn0 :=
n
Tn,n0

is then a H torsor over EH,n0 . Finally, let

TH :=
n0
Tn0
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then TH is a H torsor over EH . Hence we have a natural morphism

f : EH → DefH-torsor

induced by the H torsor over EH .

Theorem 4.5.1. Notation as above. The morphism f : EH → DefH-torsor is an isomor-

phism of formal schemes. In particular, theorem 3.4.3 is valid when we substitute Defsus(X)

with DefH-torsor.

Proof. We will prove this result in several steps.

Step 1. We first show that EH is a smooth formal variety. It is easy to see that the trivial

H13 torsor structure descents to a H13 torsor structure to EH,n with EH,n/H13 '

H12[pn] × H23[pn], hence by taking inductive limit we obtain a H13 torsor structure

over EH with EH/H12 ×H23. Hence EH is smooth.

Step 2. As DefH-torsor is also smooth by 4.4.6, it suffices to show that the the morphism

f : EH → DefH-torsor induces an isomorphism between tangent spaces.

Step 3. Consider the following commutative diagram

H13 EH H12 ×H23

H13 DefHn H12 ×H23

central fiber

f |H13 = idH13 f fπ

central fiber

To show that f induces an isomorphism between tangent spaces, it suffices to show

that fπ is an isomorphism. Note that we are not assuming f is H13 equivariant.
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Step 4. The morphism fπ is induced by the following H12 × H23 bundle over fπ: for each

n ∈ N, let Bn = H12[p2n]×H23[p3n], consider the trivial H12[pn]×H23[pn] torsor over

Bn, together with the gluing data

(h2n
12 , h

3n
12 , h̃

n
12, h̃

n
23) ∼ (h2n

12
′, h3n

12
′, h̃n12

′, h̃n23)′

⇐⇒ hn12 − hn12
′ = h2n

12 − h2n
12
′ and hn23 − hn23

′ = h2n
23 − h2n

23
′

for all (h2n
12 , h

3n
12 , h̃

n
12, h̃

n
23) and (h2n

12
′, h3n

12
′, h̃n12

′, h̃n23
′) functorial points of Bn×(H12[pn]×

H23[pn]), thus fπ|H12 is the natural isomorphism

H12 ' Def
n
H12[pn]-torsor

same with fπ|H23 . Hence fπ is an isomorphism. We have finished the proof.

4.6 Tate-linear nilpotent groups of type A: Rank = 4 Case

In this part, we prove an analogy of 4.5.1 for Tate-linear nilpotent groups of type A of rank

4.

Let H = Hn with components (Hij)1≤i<j≤K be a Tate-linear nilpotent groups of type

A of rank K = 4. We will construct a trivialization of DefH-torsor similar to 4.2.1. To do

that:

• Let An = Hn
1,2×Hn

1,3×H1,4×H3n
2,3×H2n

3,4×H2n
2,4, the relations in 4.2.1 actually gives

us a descent data, that is there exists a scheme EH,n and a faithfully flat morphism

ψn : An → EH,n
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We can therefore define

EH :=
n
EH,n

• Similarly, the result in 4.3.3 gives us another descent data: let

(H2n
12 ×H2n

13 ×H14 ×H4n
23 ×H3n

34 ×H3n
24 )×Hn

the trivial Hn torsor over H2n
12 ×H2n

13 ×H14×H4n
23 ×H3n

34 ×H3n
24 , by 4.3.3, there exists

a Hn torsor over EH,n, which we denote by THn , and a faithfully flat morphism

ϕn : (H2n
12 ×H2n

13 ×H14 ×H4n
23 ×H3n

34 ×H3n
24 )×Hn → THn

• For any fixed n0 ∈ N, and all n ≥ n0 integers, consider let Tn,n0 := THn |EH,n0
, where

the restriction is via the natural embedding EH,n0 ↪→ EH,n. The projective limit

Tn0 :=
n
Tn,n0

is then a H torsor over EH,n0 . Finally, let

TH :=
n0
Tn0

then TH is a H bundle over EH .

Theorem 4.6.1. Notations as above. Then EH is the universal deformation space of Hn

torsors and TH is the universal H torsor over EH . In particular, the theorem 4.2.1 is valid

when we substitute Defsus(X) with DefH-torsor.

Proof. Let Ed be the universal deformation space of Hn, which is smooth by the 4.4.6.

Notice that H̄ := H/H14 is also a Tate-linear nilpotent group of type A, and we can
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similarly define EH̄ , TH̄n . We will denote B := EH/H14 = EH̄ . Let π : E → B the natural

morphism induced by H → H/H14.

By construction, EH has a H14 torsor structure and B has a natural H13 ×H24 torsor

structure over H12 ×H23 ×H34, hence B is smooth and therefore EH is smooth.

Since Ed is the universal deformation space of lim←−Hn torsor, and TH is a lim←−Hn bundle H

over E, we have a map

f : E → Ed

Similarly we have

fπ : B → DefH/H14

To prove that f is an isomorphism it suffices to prove that f induces an isomorphism

between the tangent spaces.

Consider the following commutative diagram, where both horizontal arrows are given by

the natural H14 torsor structure on E and Ed respectively. Note that we do not assume the

map f preserves the H14 torsor structure.

H14 EH B

H14 Ed = Deflim←−Hn Deflim←−Hn/H14

central fiber

id f fπ

central fiber

From this diagram, to prove that f induces an isomorphism between tangent spaces it

suffices to prove that fπ induces isomorphism between tangent spaces. But fπ fits into a
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similar diagram:

H13 ×H24 B H12 ×H23 ×H34

H13 ×H24 Def(lim←−Hn)/H14 H12 ×H23 ×H34

central fiber

id fπ g

central fiber

Let g be the right most vertical morphism in the above diagram. In light of the gluing

data as in 4.2.1 we use to construct E, this morphism g is obtained as follows: for each

Hij ∈ {H12, H23, H34}, each n ∈ N, we consider the Hij [pn] bundle over Hij [pn], denote it

by Hij,n:

Hij,n = Hn ×H2n/((hn, h2n) ∼ (h′n, h′2n) if h2n − h′2n ∈ Hij [pn] and hn − h′n = h2n − h′2n)

then it is easy to see that as we let n→∞ we obtain a universal Hij bundle over Hij , which

induces a map

gij : Hij → Hij

as Hij = DefHij−tor by Kummer theory, and

g =
∏

gij

By Kummer theory, this map g is an isomorphism. Hence fπ in diagram 4.7 induces an

isomorphism on tangent space and we have proved the theorem.

Definition 4.6.2. Given H = (Hij)1≤i<j≤4 a Tate-linear nilpotent group of type A of rank

4. We define:

• E = DefH-torsor. For each n ∈ N a subscheme En ⊂ E, and ψn, An as in 4.6.

• There is naturally a H14 action on E, and let B = E/H14.
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• The system H1,3 := (Hij)1≤i<j≤3 together with the bilinear pairings 〈, 〉123,n is natu-

rally a Tate-linear nilpotent group of type A of rank 3. Similarly we define H2,4.

• B13 := DefH1,3-torsor which is a biextension. Similarly we define B24. Note that

B = B13 ×H23 B24

• Let π123 : E → B13 and π234 : E → B24 the natural projection.

• Let π12 : E → H12, π23 : E → H23 and π34 : E → H34 the natural projections.

• As B13 is a biextension of H12 ×H23 by H13, for each n ∈ N, we have a subscheme

B13,n ⊂ B and a faithfully flat morphism

ψ13,n : H12[pn]×H23[p2n]×H14 → B13,n

as given in 3.4.3. Similarly we can define

ψ13,n,homo : (H12 ×H23)[p2n]×H13 → B13,n

as defined in 3.4.4.

4.7 Admissible Subgroups and Tate-Linear Subvarieties

Definition 4.7.1. (Nilpotent Filtration) Let H = (Hij)1≤i<j≤K be a Tate-linear nilpo-

tent group of type A of rank K. For all n ∈ Z, there is a filtration

0 = FK−1,n ⊂ FK−2,n.. ⊂ F0,n = Lie(Hn)

where

Fl,n = {(hij)1≤i<j≤K ,with hij ∈ Hij [pn] s.t. hij = 0, ∀j − i < l}
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Lemma 4.7.2. Notation as in 4.7.1. Then

(a) Each FK−1,n is an ideal of (Lie(Hn), [, ]n) , as well as a normal subgroup of Hn.

(b) For a fixed l ∈ Z≥0, Fl−1,n/Fl,n '
⊕

j−i=l−1
Hij [pn]. Let

Grknil(H) :=
n
(Fk,n/Fk+1,n) =

n
(
⊕
j−i=k

Hij [pn])

(c) By taking projective limit we naturally obtain a filtration

0 = FK−1 ⊂ FK−2.. ⊂ F0 = Lie(H)

of Lie(H).

(d)
⊕
k
Grknil(H) = Lie(H) as sheaves of Zp modules.

Proof. Once formulated, the proof of (a)-(d) are easy to check.

Definition 4.7.3. (Definition of Admissible Subgroups). Let H be a Tate-linear

nilpotent group of type A of rank K with Lie ring Lie(H) associated to the system Hij , ∀1 ≤

i < j ≤ K and bilinear pairings 〈, 〉ijk,n. An admissible subgroup of H is a cotorsion free

subgroup G of H. Equivalently, an admissible subgroup of H is a family of subgroups Gn of

Hn, for all n ∈ N, such that

• The natural homomorphism Gn+1 ↪→ Hn+1
πn+1,n−→ Hn factors through Gn and this

morphism Gn+1 → Gn is surjective.

• The projective system lim←−Gn is cotorsion free as a subgroup of lim←−Hn.

Definition 4.7.4. Let H be a Tate-linear nilpotent group of type A and let G ⊂ H an

admissible subgroup. Then there is a natural morphism ΦG↪→H : DefG-torsor → DefH-torsor
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defined as follows: let G be the universal G-torsor over DefG-torsor and let H be the universal

H-torsor over DefH-torsor. Let G ∧G H be the contraction product of G with respect to

G ↪→ H, in particular G ∧GH is a H torsor over DefG-torsor, therefore induces a morphism

ΦG↪→H : DefG-torsor → DefH-torsor.

Definition 4.7.5. Notation as in 4.7.3. Let H be a Tate-linear nilpotent group of type A

and Lie(H) be it’s Lie algebra. Let G ⊂ H be an admissible subgroup. Let

0 = FK−1 ⊂ FK−2.. ⊂ F0 = Lie(H)

be the filtration of Lie(H) as defined in 4.7.1. Let

0 = GK−1 ⊂ GK−2.. ⊂ G0

be the induced filtration on G, that is

Gl = G ∩ Fl, ∀l ∈ {0, 1, ...,K − 1}

Define Lie(G), the Lie ring of G, by

Lie(G) :=
⊕

l∈{0,1,...,K−2}
Gl/Gl+1

Clearly ⊕
l∈{0,1,...,K−2}

Gl/Gl+1 ⊂
⊕

l∈{0,1,...,K−2}
Fl/Fl+1 = Lie(H)

It is an easy exercise to check that Lie(G) is indeed a Lie subring of Lie(H).

Definition 4.7.6. Let H be a Tate-linear nilpotent group of type A and G ⊂ H an admis-

sible subgroup. Let Lie(G) be the Lie ring of G, which is a sheaf of Zp modules over the

big fpqc site over Spec(κ). The dimension of G, denoted dim(G), is the dimension of the

p-divisible group

Lie(G)⊗Q/Lie(G)
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as a smooth formal group.

Lemma 4.7.7. Notation as in 4.7.4, then

(a). The schematic image of ΦG↪→H is a smooth connected formal subvariety of DefH-torsor.

(b). ΦG↪→H is a finite morphism of smooth formal schemes.

(c). If moreover G is cotorsion free, then ΦG↪→H is a smooth embedding.

(d). Let EG = Im(ΦG↪→H). Then

dimEG = dim(G)

where dim(G) is as defined in 4.7.6.

Proof. Given in [Cha22].

Definition 4.7.8. (Definition of Tate-linear formal subvarieties). Let H be a Tate-

linear nilpotent group of type A and E the universal deformation space of H. A formal

subvariety W ⊂ E is called a Tate-linear formal subvariety if there exists an admissible

subgroup H ′ ⊂ H such that the schematic image of ΦG↪→H is W , see 4.7.4 for the definition

of ΦG↪→H .

Lemma 4.7.9. Let H be a Tate-linear nilpotent group of type A of rank K and let G ⊂ H

be an admissible subgroup. Let EG be the Tate-linear formal subvariety corresponding to

G. Let E = DefH-torsors and E′ ⊂ E a formal subvariety. Let T be the universal H-torsor

over E. If the structure group of T |E′ can be reduced to G, that is, if there is a G-torsor G

over E′ such that

H ∧G G ' T |E′
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where ∧ denotes the contraction product. Then

E′ ⊂ EG

Proof. The G-torsor G induces a map fG : E′ → DefG-torsor such that ΦG↪→H ◦ fG = idE′ ,

thus

E′ ⊂ Im(ΦG↪→H) = EG

and we have proved the lemma.

Definition 4.7.10. Let H,G be Tate-linear nilpotent groups of type A of rank K. Let

f : H → G be a homomorphism, in the sense of 4.4.7, and let fij : Hij → Gij be the ij

component of f , for all 1 ≤ i < j ≤ K. We say that f is an isogeny if all fij, as morphisms

between p-divisible groups, are isogenies.

Lemma 4.7.11. (Properties of isogeny) Let H,G be Tate-linear nilpotent groups of type

A of rank K. Let f : H → G be an isogeny. Let Φf : DefH-torsor → DefG-torsor be the

morphism induced by f . Then

(a) f is a finite faithfully flat morphism.

Lemma 4.7.12. (Quotient) Let H = (Hij , 〈, 〉ikj,n) be a Tate-linear nilpotent group

of type A of rank K as above. Let be i0, j0 integers such that 1 ≤ i0 < j0 ≤ K. Let

H ′i0,j0 ⊂ Hi0,j0 be a p-divisible subgroup. Assume that H ′i0j0 [pn], as a subgroup of Lie(H),

lies in the kernel of ∗; In other words, for all h′i0j0 ∈ H
′
i0j0 [pn], h ∈ Lie(H) functorial points,

h ∗ h′i0j0 = h′i0j0 ∗ h = 0, ∀h′i0j0 ∈ H
′
i0j0 , h ∈ Lie(H) (4.7.1)
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Condition 4.7.1 is equivalent to: for all k, l ∈ N such that j0 < k and 1 ≤ l < i0,

〈h′i0,j0 , hj0,k〉i0j0k,n = 0, ∀h′i0,j0 ∈ H
′
i0,j0 [pn], hj0,k ∈ Hj0,k[pn] (4.7.2)

〈h′l,i0 , hi0,j0〉li0j0 = 0, ∀h′l,i0 ∈ H
′
l,i0 [pn], hi0,j0 ∈ Hi0,j0 [pn] (4.7.3)

By abuse of notation, we use H ′i0j0 to denote both H ′i0j0 as a p-divisible group, or

H ′i0j0 [pn], as a subspace of Lie(H), then:

(a). H ′i0j0 is an ideal of (Lie(H), ∗), and an ideal of (Lie(H), [, ]), as well as a normal

subgroup of H.

(b). The exact sequence

1→ H ′i0j0 → H → H/H ′i0j0 → 1

is a central extension of sheaves of groups on the big fpqc site of Spec(κ).

(c). The quotient group H/(H ′i0j0) is a Tate-linear nilpotent group of type A with compo-

nents

Hij , (i, j) 6= (i0, j0), (4.7.4)

Hi0,j0/H
′
i0,j0 (4.7.5)

and with bilinear pairings descent from that of <,>ikj,n.

(d). If K ≤ 4, then the exact sequence in (b). induces a H ′i0j0 action on DefH-torsor and

we have an isomorphism of smooth formal schemes

DefH-torsor/H
′
i0j0 ' DefH/H′i0j0 -torsor

(e). If H̃ ⊂ H/Hi0j0 an admissible subgroup, π : H → H/Hi0j0 the quotient map, then

π−1(H̃) is an admissible subgroup of H.
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(f). dim(π−1(H̃)) = dim(H̃) + dim(H ′i0j0)

Proof. Part (a)-(c) are trivial.

For (d). Let E be the deformation space of H torsors, and let ψn, An, En as in 4.6. That is

An = H12[pn]×H13[pn]×H14 ×H23[p3n]×H24[p2n]×H34[p2n],

ψn : An → En a faithfully flat morphism

For i, j integers such that 1 ≤ i < j ≤ 4, (i, j) 6= (1, 4), let eij ∈ {1, 2, 3} such that we can

rewrite

An = H14 ×
∏

1≤i<j≤4,(i,j) 6=(1,4)
Hij [peijn]

Let Ẽ be the deformation space of H/H ′i0j0 torsors and let ψ̃n, Ãn, Ẽn defined similarly

but in terms of the group H/H ′i0j0 . Let Πn : An → Ãn be the quotient out by the H ′i0j0 [pei0j0 ]

component map. As An is a product, there is a natural H ′i0j0 [pei0j0 ] torsor structure on An

that is Πn invariant. Moreover, given 4.7.2 and 4.7.3 and since the gluing data 4.2.1 is in

terms of the bilinear pairings 〈, 〉ikj,n, this H ′i0j0 [pei0j0 ] action induces an H ′i0j0 [pei0j0 ] torsor

action on En. Let Π̃n be the morphism En → Ẽn induced by Πn, we have a commutative

diagram

An En

Ãn Ẽn

ψn

Πn Π̃n

ψ̃n

such that both Πn, Π̃n are H ′i0j0 [pei0j0 ] invariant and ψn is H ′i0j0 [pei0j0 ] equivariant, and both

ψn, ψ̃n are faithfully flat, we conclude that

En/H
′
i0j0 [pei0j0 ] ' Ẽn
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By taking limit we conclude that:

• There is a H ′i0j0 torsor structure on E.

• E/H ′i0j0 ' Ẽ

which is the statement of (d).

For part (e), we first prove that π−1(H̃) is torsion free. Consider the following commutative

diagram

0 H ′i0j0 H H/H ′i0j0 0

0 H ′i0j0 π−1(H̃) H̃ 0

π

=
π|π−1(H̃)

↪→ ↪→

then π−1(H̃) is cotorsion free follows from an easy diagram chasing: let h ∈ H an functorial

point such that hN ∈ π−1(H̃) for some N , then π(h)N ∈ H̃. As H̃ is an admissible subgroup,

hence cotorsion free, we conclude that π(h) ∈ H̃, hence h ∈ π−1(H̃).

Part (f) follows directly from the exact sequence

0 H ′i0j0 π−1(H̃) H̃ 0
π|π−1(H̃)

The following two lemmas will be handy when we want to prove some formal subscheme

is Tate-linear.

Lemma 4.7.13. (Functoriality of being Tate-linear I) Let H be a general sustained

linear group with components (Hij)1≤i<j≤4. Let i0, j0 integers such that 1 ≤ i0 < j0 ≤ 4. Let

H ′i0,j0 ⊂ Hi0,j0 a p-divisible subgroup satisfying the conditions of 4.7.12. Let G := H/Hi0,j0

as given in 4.7.12 and π : H → G the natural map. Let E,F be the deformation space of
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H and G torsors respectively. Let π̃ : F ↪→ E be the morphism induced by π which is a

smooth embedding of smooth formal schemes. If a formal subvariety W ⊂ F is Tate-linear,

then W ′ := π̃−1(W ) ⊂ E is also Tate-linear.

Proof. Let G′ be the admissible subgroup of G corresponding to W and let H ′ := π−1(G′).

H ′ is an admissible subgroup by 4.7.12(e). Let W̃ ′ be the Tate-linear formal subvariety of

F corresponding to H ′. As for morphisms between deformation spaces of torsors induced

by morphisms between groups are canonical, we have

π̃(W̃ ′) ⊂W

hence

W̃ ′ ⊂W ′

Moreover, let Lie(H ′) be the Lie algebra of H ′, then we have an exact sequence of Lie

algebras

0→ Hi0j0 → Lie(H ′)→ Lie(G′)→ 0

where Hi0j0 has the trivial Lie algebra structure. Hence

dim(H ′) = dim(G′) + dimHi0j0

By 4.7.4(d),

dim(H ′) = dim(W̃ ′),

dim(G′) = dim(W )

we obtain

dim(W̃ ′) = dim(W ) + dimHi0j0
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By 4.7.12(d)., W ′ admits a Hi0j0 torsor structure over W , hence W ′ is smooth and

connected. Moreover,

dim(W ′) = dim(W ) + dim(Hi0j0)

hence

dim(W ′) = dim(W̃ ′)

As W̃ ′ ⊂W ′ and both W ′ and W̃ ′ are smooth connected and have the same dimension, we

conclude that

W̃ ′ = W ′

as W̃ ′ is a Tate-linear formal subvariety of F , we have proved the lemma.

Lemma 4.7.14. (Functoriality of being Tate-linear II) Let H,G be Tate-linear nilpo-

tent groups of type A and E,F their universal deformation space respectively. Let f : G→ H

an isogeny and f̃ : F → E the induced morphism between deformation spaces. If W ′ ⊂ F

a Tate-linear formal subvariety of F and W := f̃(W ′), then W is a Tate-linear formal

subvariety of E.

Proof. Let G′ ⊂ G be the admissible subgroup of G corresponding to W ′ as in 4.7.8. Let

H ′ = f(G′) a subgroup of H. Since f is an isogeny, in particular it is surjective, hence H ′ is

also cotorsion free. Therefore H ′ is an admissible subgroup of H. Let W̃ be the Tate-linear

formal subvariety corresponding to H ′. Since the morphisms between deformation spaces

of torsors induced by morphisms between groups are natural, we have

W ⊂ W̃

By 4.7.11, f̃ is an finite morphism. Hence

dim(W ) = dim(W ′)
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and W ′ is connected, reduced and irreducible.

As f is finite and faithfully flat by 4.7.11,

dim(W̃ ) = dim(H ′) = dim(G′) = dim(W ′)

Therefore we conclude that

W = W̃

As W̃ is a Tate-linear formal subvariety, so is W . We have proved the lemma.

4.8 Statement of The Orbital Rigidity Conjecture

Definition 4.8.1. Let H = (Hij) be a Tate-linear nilpotent group of type A and E =

DefH−torsor, and let Aut(E) = Autsus(E) as defined in 4.4.8. We say that the action of G

on E is strongly non-trivial if the induced action of G on each Hij is strongly non-trivial in

the sense of 3.3.1.

Will all the relevant concepts defined, we state the main result of this thesis.

Theorem 4.8.2. Let H = (Hij)1≤i<j≤4 be a Tate-linear nilpotent group of type A of rank

4 over an algebraically closed field κ of characteristic p with p ≥ 5. Let G ⊂ Aut(E) be

a closed compact p-adic Lie subgroup, acting strongly non-trivially on E in the sense of

3.3.1. Let W ⊂ E be a closed formal subscheme which is reduced and irreducible. If W is

invariant under the action of G, then W is a Tate-linear subvariety.

Theorem 4.8.2 will be proved in 7.4.1.
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Chapter 5

The Orbital Rigidity Conjecture:

3-Slopes Case

The main result of this chapter is to state the orbital rigidity conjecture when X =
∏3
i=1Xi,

see 5.2.1 for the precise statement. This result was essentially proved in [CO22] Chapter

10. We rewrite it in a slightly different way and give a short proof based on the results

in [CO22] in 5.2.

Notations 5.0.1.

1. Let H = (Hij)1≤i<j≤3 be a Tate-linear nilpotent group of type A of rank 3 over an

algebraically closed field κ of characteristic p ≥ 3, we further assume H to be pure

and perfect.

2. Let

• E = DefH-tor which is a biextension.

• B = E/H13 ' H12 ×H23,
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• π : E → B, the natural projection,

• ψn : H12[pn]×H23[p2n]×H13 → En, be Mumford’s trivialization. as defined in

3.4.3.

5.1 Admissible Subgroups and Tate-linear Subvarieties in 3-

Slopes Case

Lemma 5.1.1 asserts that, under certain conditions on the bilinear pairing 〈, 〉n, we can

construct a admissible subgroup, and characterize the Tate-linear subvariety associated to

it.

Lemma 5.1.1. Let H = Hn be a Tate-linear nilpotent group of type A with components Hij

isoclinic p-divisible groups, 1 ≤ i < j ≤ 3. Let 〈, 〉n be the Weil pairing(s) 〈, 〉n : Hn
12×Hn

23 →

Hn
13. Let P ⊂ H12 ×H23 be a p-divisible subgroup satisfying

〈fn12, f
n
23
′〉 = 〈fn12

′, fn23〉, ∀(fn12, f
n
23), (fn12

′, fn23
′) ∈ P [pn] (5.1.1)

Consider the subscheme HP,n of Hn defined by

HP,n =




1 fn12

1
2〈f

n
12, f

n
23〉n

0 1 fn23

0 0 1


: (fn12, f

n
23) ∈ P [pn]


Then

(a). HP,n is a subgroup scheme.

(b). Let HP = HP,n ⊂ H, then HP is an admissible subgroup. Let EP be the schematic
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image of the following morphism

DefHP -torsor → DefH-torsor

i.e. EP is the Tate-linear subvariety corresponding to HP in the sense of 4.7.8. EP

can be characterized as follows: let φn, En as defined in 4.3.2, then

EP ∩ En = φn(
{

([pn]f3n
12 , f

3n
23 ,

1
2〈f

3n
12 , f

3n
23 〉3n)| ∀(f3n

12 , f
3n
23 ) ∈ P [p3n]

}
)

(c). If g ∈ Aut(E) s.t. the restriction of the action of g on H12 ×H23 keeps P invariant,

then g acts on EP .

Proof. Part (a) is an easy algebra exercise.

Now we prove part (b). From 4.3.2, let f = (f2n
12 , f

3n
23 , f13), f ′ = (f2n′

12 , f3n′
23 , f ′13) ∈ H2n

12 ×

H2n
23 ×H13. Let φn : H2n

12 ×H2n
23 ×H13 → En as in 4.3.2. Assuming φn(f) = φn(f ′), by 4.3.2

the gluing data of the universal Autst(X)n bundle is given by
1 f2n

12 − f2n′
12 f2n

13 − f2n′
13 + 〈f3n

23 − f3n′
23 , f2n

12 〉2n

0 1 f2n
23 − f2n′

23

0 0 1


(5.1.2)

note that as

fn13 − fn
′

13 + 〈f2n
23 − f2n′

23 , fn12〉n = 0

this is an element in Autst(X[pn]). When restrict to Ed, we have:

f2n
13 = 1

2〈f
3n
12 , f

3n
12 〉3n

together the relations between 〈, 〉n and 〈, 〉m, we have

f2n
13 − f2n′

13 + 〈f3n
23 − f3n′

23 , f2n
12 〉2n = 1

2(〈f3n
12 , f

3n
12 〉3n − 〈f3n′

12 , f3n′
12 〉3n) + 〈f3n

23 − f3n′
23 , f2n

12 〉2n
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= 1
2〈f

3n
12 − f3n′

12 , f3n
12 − f3n′

12 〉3n − 〈f3n
12 , f

3n
12 − f3n′

12 〉3n + 〈f3n
23 − f3n′

23 , f2n
12 〉2n

= 1
2〈f

3n
12 − f3n′

12 , f3n
12 − f3n′

12 〉3n = 1
2〈f

2n
12 − f2n′

12 , f2n
12 − f2n′

12 〉n

that is the above matrix 5.1.2 simplifies to
1 f2n

12 − f2n′
12

1
2〈f

2n
12 − f2n′

12 , f2n
23 − f2n′

23 〉n

0 1 f2n
23 − f2n′

23

0 0 1


which means the structural group of EP can be reduced to HP , by 4.7.9 we have

EP ⊂ DefHP -torsor

By dimension consideration we then have

dim(DefHP -torsor) = dim(P ) = dim(EP )

Since both spaces are reduced and irreducible, we conclude that

DefHP -torsor = EP .

For (c), since EP is constructed using P and Weil pairings, and every element g ∈ Aut(E)

preserves 〈, 〉n, hence if moreover g acts on P , g acts on EP .

5.2 The Orbital Rigidity Conjecture Three Slopes Case

The following theorem was essentially proved in [CO22] Chapter 10. We rewrite it in this

form so that it can be used to prove our main result 7.4.1.
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Theorem 5.2.1. Notation as in 5.0.1. Let W ⊂ E a closed formal subscheme, reduced

and irreducible. Let G ⊂ Aut(E) a closed p-adic subgroup whose action on E is strongly

non-trivial in the sense of 3.3.1. Let Y = (W ∩H13)red where H13 = π−1(0B) ⊂ E, and let

X = π(W ) ⊂ B = H12 × H23. Both X,Y are p-divisible subgroups by the orbital rigidity

conjecture of p-divisible groups. Then

(a). Let n ∈ N, let x = (xn12, x
n
23), x′ = (xn12

′, xn23
′) ∈ X[pn], then

xn12x
n
23
′ − xn12

′xn23 ∈ Y [pn]

(b). Let (HX,Y )n a subscheme of H defined as follows:

(HX,Y )n =




1 x12

1
2〈x12, x23〉n + y13

0 1 x23

0 0 1


,∀x = (x12, x23) ∈ X[pn], y = y13 ∈ Y [pn]


then (HX,Y )n is a sub group scheme of Hn. Let

HX,Y := (HX,Y )n

then W = Image(DefHX,Y torsor ↪→ DefH-torsor = E). That is W is the Tate-linear

subvariety corresponds to HX,Y in the sense of 4.7.8.

(c). In fact, W can be constructed from X,Y explicitly: let W ∩ En be the schematic

intersection of W and En, then

W ∩ En = ψn,homo(
{

(x2n
12 , x

2n
23 ,

1
2〈x

2n
12 , x

2n
23 〉2n + y13)| ∀(x2n

12 , x
2n
23 ) ∈ X[p2n], y13 ∈ Y

}
)

where ψn,homo is defined in 3.4.4.
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Theorem 5.2.1 will be proved in 5.2.

We collect some results proved in [CO22] that will be used to prove 5.2.1.

Theorem 5.2.2. Notation as in 5.0.1. Let Ψ : Y × E → E be the morphism

Ψ : Y × E → E (y, e) 7→ y ∗ e

corresponding to the restriction to Y of the H13 action on E. Then

(a). W is invariant under the action of Y = (W ∩H13)red. That is,

Ψ(Y ×W ) ⊂W

(b). Let π̄ : E/Y → B the map induced by π : E → B. Then

π̄|W/Y : W/Y 7→ π̄(W/Y )

is purely inseparable.

Theorem 5.2.3. Notation as in 5.0.1. Let W ⊂ E a reduced irreducible formal subvariety.

Let G ⊂ Autbi−extension(E) a closed subgroup acting strongly non-trivially on E. If we

further assume that

• W is invariant under the action of G.

• π|W : W → π(W ) is an schematic isomorphism.

Then:

(a). If π(W ) ⊂ H12×H23 is a graph that corresponds to a homomorphism f : H12 →

H23. That is

π(W ) = {(h12, f(h12))|h12 ∈ H12}
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Then the bilinear pairings 〈−, f(−)〉n : H12[pn]×H12[pn]→ H13[pn] are symmet-

ric for all n ∈ N. That is, for h12, h
′
12 ∈ H12[pn] functorial points,

〈h12, f(h′12)〉n = 〈h′12, f(h12)〉n

(b). If π(W ) = H ′12×H ′23 for some H ′12 ⊂ H12, H
′
23 ⊂ H23 both p-divisible subgroups,

then for all n ∈ N and for all h′12 ∈ H ′12[pn], h′23 ∈ H ′23[pn],

〈h′12, h
′
23)〉n = 0

Lemma 5.2.4. Notation as in 5.0.1. Let P ⊂ H12 × H23 a p-divisible subgroup. Let G

a p-adic Lie group acting strongly non-trivially on E, and s : P → E a section which is

invariant under the action of a G. Let H ′12 := (P ∩H1,2)red. Then

〈h12, h23〉n = 0, ∀h12 ∈ H ′12, h23 ∈ π23(P ) (5.2.1)

Moreover, the section s descents to a section s′ : P/H ′12 → E/H ′12.

Proof. Recall that E has two relative group law +1,+2. Let −1 be the inverse group law

of +1. Define E′ to be the schematic image, as a subscheme of E, of the composition

P ×H ′12 E × E E
(p, h12)→ (s(p), s(p+ h12)) −1

Intuitively, given (x1, y), (x2, y) ∈ P where x1, x2 ∈ H12 and y ∈ H23, we can consider the

’difference’

s(x1, y)− s(x2, y)

which lies in the fiber E|(x1−x2,y). As we vary x1, x2, y we obtain E′.

E′ is reduced and irreducible as P ×H ′12 is. As s is invariant under G, E′ is invariant under
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the action of G. Moreover since

s|P∩H12 : H ′12 → H13

must be trivial by the orbital rigidity theorem of p-divisible group and slope constrains

slope(H ′12)〈slope(H13),

E′|(0,0) = ϕ((H ′12, 0)× 0H23)

is also trivial. Note that

π(E′) = H ′12 × π23(P )

Therefore by 5.2.3(b).

〈p1, y〉n = 0, ∀p1 ∈ H ′12[pn], y ∈ π23(P )[p]

which is 5.2.1. E′ being trivial also means that s descents to a section

s′ : P/H ′12 → E/H ′12

.

Corollary 5.2.5. In the 3-slopes case, if W ⊂ E a subscheme invariant under the action

of G s.t. π : W → π(W ) is an isomorphism, then for n ∈ N and (x1, y1), (x2, y2) ∈

H12[pn]×H23[pn], we have

〈x1, y2〉n = 〈x2, y1〉n

Proof. By applying 5.2.4 we can reduce it to the case when π(W ) ⊂ H12 ×H23 is a graph

that corresponds to a homomorphism f : H12 → H23. That is

π(W ) = {(h12, f(h12))|h12 ∈ H12}

then what we need to prove is precisely the statement of 5.2.3(a).
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Proof of 5.2.1

Let H ′13 = (W ∩H13)red. By 5.2.2, W is invariant under the action of H ′13, and

π̄|W/H′13
: W/Y 7→ π̄(W/H ′13)

is purely inseparable where π̄ : E/H13 → B is the projection map induced by π.

We can take k0 big enough such that the morphism

L := [pk0 ]H12×H23

dominates π : W/H ′13 → π(W ) in the sense that there exists ξ : π(W )→W/H ′13 such that

π|W/H′13
◦ ξ = L|π(W )

Consider

E′L := E/H ′13 ×B,L B (5.2.2)

Note that E′L is also a biextension of H13/H
′
13 by H12 ×H23, with bilinear pairings 〈, 〉n :

H12[pn]×H23[pn]→ H13/H
′
13 induced by L, that is

〈h12, h23〉n = 〈[pk0 ]h12, [pk0 ]h23〉n

and the natural morphism h : E′L → E/H ′13 induced by the fiber product structure is a

homomorphism in the sense of 4.4.7.

We know that the compact p-adic Lie group G operates on E/H ′13 and W/H ′13 is stable

under the action of G. There exists a compact open subgroup G′L ⊂ G which operates on

EL, and the natural map h : EL → E/H ′13 is equivariant with respect the the inclusion

G′ ↪→ G. The morphism ξ : π(W ) → W/H ′13 defines a morphism ξ2 : π(W ) → EL such
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that h ◦ ξ2 = ξ1. It follows that

L ◦ πEL ◦ ξ2 = πE/H′13
◦ ξ1 = L

Therefore

πEL ◦ ξ2 = idπ(W )

In other words ξ2 is a section of the pullback EL over π(W ). The following diagram

summarizes the relations:

E′L E/H ′14

B B

h

πE′L

L

ξ1ξ2 π′

Moreover ξ2 is equivariant with respect to the action of G′ on E/H ′13. Let W ′L denotes

the image of this section ξ2, G′L the pullback of G by L.

To summarize, we have the following diagram

(E,G, G,W )

(E′L,G′L, G′L,W ′L) (E/H ′13,G/H ′14, G,W/H
′
13)

/H ′13

pullback by L

By local rigidity theorem of p-divisible groups, π(W ) ⊂ H12×H23 is a p-divisible subgroup.

As L = [pk0 ], π(W ) is preserved by pullback of L, and π(W ) = π(W ′L). Recall that

X := π(W ).

As ξ2 : X → E′L a section that is equivariant under the action of G, by 5.2.5, we have
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〈h12, h′23〉n = 〈h′12, h
′
23〉n

for all n ∈ N and (h12, h23), (h′12, h
′
23) ∈ X[pn] functorial points. Given that 〈h12, h′23〉n =

〈[pk0 ]h12, [pk0 ]h′23〉n we conclude that

〈h12, h
′
23〉n = 〈h′12, h

′
23〉n (5.2.3)

which is precisely 5.2.1(a).

Given 5.2.3, by 5.1.1 there is an admissible subgroup HX ⊂ H ′L, where H ′L is the Tate-linear

nilpotent group of type A corresponding to the biextension E′L. Let EX be the Tate-linear

formal subvariety corresponding to HX . By 5.1.1(b),

π(EX) = X

and by 5.1.1(c), any element g ∈ Aut(E) that fixes P acts on EP . In particular, the

subgroup G′L of G acts on EX .

Let sX : X → E′L be the section corresponding to EX , as π|EX : EX → X is an isomorphism.

Then the difference

sX − ξ2 : X → H13/H
′
13

is equivariant under the action of G′L. Hence by 5.3.1, it has to be trivial, that is

sX = ξ2

In particular, the schematic image of ξ2 is a Tate-linear subvariety as EX is.

As h(ξ2) ⊂ W/H ′13 and both h(ξ2) and W/H13 are reduced, irreducible of dimension

dim(X), they must be equal, that is
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h(ξ2) = h(EX) = W/H ′13 (5.2.4)

Part (c) of 5.2.1 is now an easy consequence of 5.2.4 and 5.1.1(b).

Given 5.2.1(c), 5.2.1(b) follows from 5.1.1. We have proved 5.2.1.

Remark 5.2.6. The proof of 7.4.1 follows the same line as the proof of 5.2.1.

5.3 Equivariant Maps

The following results will be used in the proof of 7.4.1. Roughly speaking, given certain

slope constrains, an equivariant homomorphism from a biextension to a p-divisible group

has to be trivial.

Theorem 5.3.1. Let B be a biextension of X×Y by Z, all isoclinic p-divisible groups. Let

P be another isoclinic p-divisible group. Assuming that the slope of P is strictly bigger than

the slopes of X,Y, Z. Let G a p-adic Lie group that acts strongly non-trivially on both B

and P , f : B → P an G-equivariant morphism of schemes. Then f is the trivial morphism.

Proof. Pick a, r, s ∈ Z≥0 such that

sP = a

r
, s > r and a

s
> max(sX , sY , sZ)

Pick h1, ..., hu with u = dim(P ) coordinate systems of P . Assuming that [pa]∗P (hi) = hp
r

i .

Let (RB,mB), (RP ,mP ) be the coordinate rings and maximal ideals of B,P respectively.

Fix v ∈ Lie(G), and let g = exp(pnav). Let φB : G → Autbi-ext(B) the natural morphism

induced by the action of G on B, and φP : G→ Autp-div(P ) the natural morphism induced

by the action of G on P . Let φB,∗, φP,∗ be the induced morphisms on Lie algebras. We have
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1. g(zi) ≡ zi + φP (v)∗(zp
nr

i ) + O(zp
2nr

i ), by the Taylor expansion of g and the fact that

sP = a
r .

2. g(f∗(zi))) = f∗(zi) mod mpns

B as g acts trivially on Spf(RB/mpns

B ) by ??.

3. Since f is equivariant under the action of G,

g(f∗(zi)) = f∗(g(zi)) = f∗(zi) + φB(v)∗(f(zi)p
nr) mod mpns

B

Thus

φB(v)∗(f(zi)p
nr) ≡ 0 mod mpns

B

as s > r, by by taking n→∞ this implies φ)B(v)∗f∗(zi) = 0, hence f∗(zi) = 0 as we

assume the action of G is strongly non-trivial,

5.4 An Auxiliary Result

Lemma 5.4.1. Let k ⊃ Fp the base field, let H = (Hij)1≤i<j≤3 be a Tate-linear nilpotent

group of type A of rank 3 over k. Let E = DefH-torsor which is a bi-extension. Let B =

E/H13 = H12 × H23, Bn := (H12 × H23)[pn] and π : E → B the projection map. Let

(RE .mE), (RB,mB), (RH13 ,mH13) be the coordinate ring and maximal ideal of E,B,H13

respectively. If N is an integer s.t.

Spf(RH13/m
(pN )
H13

) ⊂ H13[pn]

Spf(RB/m(pN )
B ) ⊂ Bn

then

Spf(RE/m(pN )
E ) ⊂ En[pn]
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Proof. Given the condition it’s obvious that π(RE/mp(N)

E ) ⊂ Bn. Let

ψn : Hn
12 ×H2n

23 ×H13 → En

be Mumford’s trivialization. Consider the following diagram:

En (FrobNF )∗En b0 ∈ E(pN )
n

Hn
12 ×H2n

23 ×H13 Hn
12 ×H2n

23 ×H
(pN )
13 Hn

12 × (H2n
23 )pN ×H13(pN )

[FrobNF ]

ψn

FrobNF

ψ
(pN )
n

where a supscript (pN ) denotes base changed by Frobenius to the Nth power.

Note that we used the following identity:

〈FrobNH12(−), F robNH23(−)〉n = FrobH13(〈−,−〉(pN )
n )

The composition of the top arrows is the relative Frobenius of En, same with the bottom

arrows. Let b0 be the based point of E(pN ), we want to show that

(FrobNEn)−1(b0) ⊂ En[pn] = ψn(Hn
12 ×H2n

23 ×Hn
13)

Let

F = ψ(pN )
n ◦ FrobNHn

12×H
2n
23 ×H13

Using the commutative diagram, if suffices to show that

F−1(b0) ⊆ ψ−1
n (En[pn])

but this is obvious given that

ψ−1(En[pn]) = Hn
12 ×H2n

23 ×Hn
13
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and

(ψ(pN )
n )−1(b0) = 0H12 × (Hn

23)(pN ) × 0H13

and combining these two we have

F−1(b0) =(FrobNHn
12×H

2n
23 ×H13

)−1(0H12 × (Hn
23)(pN ) × 0H13)

⊆Hn
12 ×H2n

23 ×Ker(Frob
pN

H13
)

⊂Hn
12 ×H2n

23 ×H13

=ψ−1(En[pn])

We also need an analogy of 5.4.1 in the 4 slopes case.

Lemma 5.4.2. Let k ⊃ Fp the base field. Let H = (Hij)1≤i<j≤4 a Tate-linear nilpotent

group of type A and E = DefH-tor. Let π : E → B the natural projection. Let F = H14. Let

RE , RB, RF ,mX ,mB,mF be the formal power series rings and maximal ideals corresponding

to E,B, F respectively. Fix an integer n and let Bn as defined in 6.3.1. If N is an integer

s.t. Spf(RF /m(pN )
F ) ⊂ Fn and Spf(RB/m(pN )

B ) ⊂ Bn, then Spf(RE/m(pN )
E ) ⊂ En[pn].

Equivalently, let ηn as defined in 4.2.5, then ηn ≡ 0 mod m
(pN )
E .

Proof. The proof is an analogy of the proof of 5.4.1 hence omitted.
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5.5 Inseparable Isogenies That Dominante A Purely Insepa-

rable Morphism

We proof the following results for later use. For this section E is a biextension with com-

ponents H12, H23, H13 where H13 is the fiber. Recall that we have

ψn : H12[pn]×H23[p2n]×H13 → En

We define a subscheme of En, for each m ∈ N

En[pm] := ψ(H12[pn]×H23[p2n]×H13[pm]

Theorem 5.5.1. Let E be a biextension of p-divisible groups over a field k of characteristic

p, π : F → E a finite purely inseparable cover with F reduced and irreducible. Then we can

find an morphism of bi-extension f : E → E s.t. f factors through π : F → E.

Proof. let RF be the ring of regular functions of F . By assumption RF is a integral domain.

Let RF = RE [a1, .., am] and N > 0 s.t. ap
N

i ∈ RE ∀i. Let n be a a big enough integer and

Fn : E → E be defined as in 5.5.2 s.t.

F ∗n(RE) ⊆ R(pN )
E

then Fn factors through f and we have proven the theorem.

Lemma 5.5.2. Let E be a biextension of X×Y with fiber Z. For any n ∈ N, ([pnX ], [pnY ], [p2n
Z ])

induce an isogeny Fn : E → E. Moreover, let RE be the ring of regular functions of E and

F ∗n : RE → RE the induced ring homomorphism of Fn, then for a fixed N ∈ N we have

F ∗n(RE) ⊂ R(pN )
E , ∀n� 0.
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Proof. The fact that [pnX ], [pnY ], [p2n
Z ] induces an isogeny follows easily from the identity

〈[pn]xm, [pn]ym〉m = [p2n
Z ]〈xm, ym〉m, ∀n,m, xm ∈ X[pm], ym ∈ Y [pm]

and the characterization of Endbi-ext(E) as a subset of End(X)× End(Y )× End(Z).

For the second part, let b0 be the base point of E that corresponds to the maximal ideal

mE ⊆ RE . By the construction we have

F−1
n (b0) = En[p2n]

By 5.4.1, when n is big enough, we have

Spf(RE/m(pN )
E ) ⊂ En[pn] ⊂ En[p2n] = F−1

n (b0)

which implies that for such n

F ∗n(mE) ⊂ m(pN )
E

Corollary 5.5.3. If Ẽ ⊂ E a Tate linear subvariety, then the above homomorphism

([pnX ], [pnY ], [p2n
Z ]) preserves Ẽ. Moreover, for each purely inseparable morphism p : Y → E′,

we can find a n0 ∈ N s.t. the restriction of ([pnX ], [pnY ], [p2n
Z ]) to E′ dominates p.

Proof. The first part holds given that ([pnX ], [pnY ], [PnZ ]) preserves the Weil pairing and

π(E′) ⊂ X × Y as π(E′) is a p-divisible subgroup of X × Y .

The second part follows from the same argument as 5.5.1 and 5.5.2.
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Chapter 6

The Orbital Rigidity 4 Slopes

Case: First Result

The main result of this chapter is 6.3.2 and 6.4.6. Similar results are proved in [CO22]

Chapter 10, and we show that the techniques used in [CO22], especially the tempered

perfections as discussed in 6.2, can also be used in our cases.

Notations 6.0.1.

1. Let H = (Hij)1≤i>j≤4 be a Tate-linear nilpotent group of type A of rank 4 that is

pure and perfect over an algebraically closed field. For definitions see 4.4.1, 4.4.2 and

4.4.3. In particular we have

sij + sjk = sik,∀1 ≤ i < j < k ≤ 4

where sij = slope of Hij.

2. Let E = DefH-tor, π : E → B the natural projections. We also use the definitions of

Bn, En, An as in 4.0.1. See also the table 4.1.
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3. Let sij = slope(Hij). Let aij , r ∈ N satisfying

sij = aij
r
, ∀1 ≤ i < j ≤ 4

This implies

aij + ajk = aik,∀1 ≤ i < j < k ≤ 4

4. Let Endsus(H) and Autsus(H) be the ring of homomorphisms and group of automor-

phisms of H, respectively. See 4.4.7 and 4.4.8.

5. Let ψn : An → En as in 4.2.1.

6. ψn : An → En induces an projection ηn : [pn]∗En → H14, see 4.2.4.

7. Let v = (Aij) ∈ Lie(Autbiext(E)) ⊂
∏
Lie(Aut(Hij). Moreover we assume that Aij ∈

End(Hij) ⊂ Lie(Aut(Hij) for all 1 ≤ i < j ≤ 4.

8. Ãna14 = (Hna12
12 ×H2na14+na23

23 ×Hna14+na34
34 ×Hna13

13 ×Hna14+na24
24 ×H14).

9. Ẽna14 = ψna14(Ãna14).

10. Ẽna14 [pm] = ψna14((Hna12
12 ×H2na14+na23

23 ×Hna14+na34
34 ×Hna13

13 ×Hna14+na24
24 ×H14[pm])).

6.1 A Closed Form Formula for the Action on E: 4-Slopes

Case

The main result of this section is 6.1.1, which states that when we restrict to a small enough

subscheme Ẽn ⊂ En ⊂ E, then the action of certain g ∈ Aut(E) is a ‘torsor action’, and in

fact this action can be described explicitly.
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Lemma 6.1.1. Notations as in 6.0.1.

a). For every n ≥ 2, the infinite series

∑
j≥2

pn(j−1)

j! Aj14

converges to an element of End(H14).

b). For x ∈ Ẽna14 a functorial point and n ≥ 2,

exp(pna14v)(x) = ((
∞∑
j=1

p(j−1)na14

j! Aj14ηna14(x)) + evna14(x)) ∗ x

where ∗ denotes the torsor structure of H1,4 on E, and evna14(x) is a point of H14[pna14 ]

that depends only on π(x), na14 and v = (Aij).

c). For all m ≤ 2n and for x ∈ Ẽna14 [pma14 ] a functorial point, we have

exp(pna14v)(x) = (A14ηna14(x)) + evna14(x)) ∗ x (6.1.1)

Proof. Part a). follows from the easy estimate that

ordp(k!) ≤ 2k
p
<= k

Now we prove part b). Fix an Artinian local ring R, let

x ∈ Ẽna14(R)

a R point and let

(xij) ∈ Ãna14(R′)

be a ’preimage’ of x in Ãna14 , for some faithfully flat cover R′ of R, i.e.

ψn((xij)) = xR′
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Since the group Aut(E) also acts on Ãna14 and this action on Ãna14 descents to Ẽna14 via

the faithfully flat morphism ψna14 , therefore if

g = exp(pna14v)

then

g(x)R′ = ψna14(g(xij)1≤i<j≤4)

where

(g(xij) = (exp(pna14 ·Aij) · xij) ≡ (xij +Hij Aijp
na14xij) mod Ana14 , for(i, j) 6= (2, 3), (1, 4),

g(x23) ≡ x23 +A23p
na14x23 + A23p

2na14x23
2 mod Ana14 ,

g(x14) = x14 +
∞∑
j=1

(p
na14j

j! )Aj14x14

Using 4.2.1 we can further show that

ψna14(g(xij)1≤i<j≤4) = ψna14((xij + fij(x))1≤i<j≤4)

where

fij(x) = 0, ∀1 ≤ i < j ≤ 4, (i, j) 6= (1, 4)

f14(x) = (
∞∑
j=1

pjna14

j! Aj14)x14 + 〈pna14A34x34, x13〉na14+

〈pna14x24 + 〈x34, p
na14A23x23 + p2na14A23x23

2 〉2na14 , x12〉na14

Since (xij) ∈ Ãna14 , we have

〈x34, p
2na14x23〉2na14 = 0

as x34 ∈ Hna14+na34
34 and x23 ∈ H2na14+na23

23 and a14 > a24 = a34 + a23. Hence f14 simplifies

to

f1,4(x) = (
∞∑
j=1

pjna14

j! Aj14)x14 + 〈pnA34x34, x13〉n + 〈pnx24 + 〈x34, p
nA23x23〉2n, x12〉
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Therefore

g(x) =f14(x) ∗ x

=(
∞∑
j=1

(p
na14(j−1)

j! Aj14)ηn(x) + 〈pnA34x34, x13〉n + 〈pnx24 + 〈x34, p
nA23x23〉2n, x12〉) ∗ x

we will adopt the notation

evna14(x) := f14(x)−
∞∑
j=1

(p
j−1na14

j! A14)ηna14(x) (6.1.2)

and rewrite the above equation as

g(x) = (
∞∑
j=1

(p
j−1na14
j! A14)ηna14(x) + evna14(x)) ∗ idẼna14

(x)

note that as evna14(x) is calculated with (x12, x13, p
na14x23, p

na14x24, p
na14x34), it depends

only on π(x), v, na14 where π : E → B the natural projection.

Finally part c). follows from the fact that

pna14ηna14(x) ≡ 0

for x ∈ Ẽna14 [p2na14 ].

Lemma 6.1.2. Let evn as defined in 6.1.1, see 6.1.2. In particular evn is a function evn :

En → H14 that factors through π : En → B. Let x ∈ En. Then evn+1(x) = [p]H14 · evn(x) and

ev(0En) = 0H14.

Proof. We have the following commutative diagram

Ẽn Ẽn+1

Ãn Ã′n+1 ⊂ Ãn+1

↪→

ψn ψn+1

P
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where

Ã′n+1 = Hn
12 ×Hn

13 ×H14 ×H3n+2
23 ×H2n+1

24 ×H2n+1
34 , (6.1.3)

P = (id12, id13, id14, [p2]23, [p]24, [p]34) (6.1.4)

For given a preimage (xij) of x in Ãn, a preimage of x in ˜An+1 can be taken as (x′ij) s.t.

p(x′ij) = (xij). Then we have

evn(x) = 〈pnA34x34, x13〉n + 〈pnx24+34, p
nA23x23〉2n, x12〉) ∗ idEn(x), (6.1.5)

evn+1(x) = 〈pn+1A34x
′
34, x

′
13〉n+1 + 〈pn+1x′24 + 〈x′34, p

n+1A23x
′
23〉2n+2, x

′
12〉n+1 (6.1.6)

using

〈x, y〉n+1 = p〈x, y〉n,∀x, y ∈ [pn], (6.1.7)

x′12 = x12, x
′
13 = x13, x

′
14 = x14, (6.1.8)

[p2]x′23 = x23, [p]x′34 = x34, [p]x′24 = x24 (6.1.9)

it’s easy to see that

evn(x) = [p]14 · evn+1(x)

6.2 Tempered Perfection

We collect some definitions and results as given in [CO22] Chapter 10. These tempered

perfection rings are used in the proof of 6.3.2 and 6.4.6.

Definition 6.2.1. Let κ be a perfect field of characteristic p and let t1, ..., tm be m variables,

m ≥ 1. Let r, s ∈ Z≥0 be two positive integers with r < s, and let n0 be a natural numbers.
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The perfection of the formal power series ring κ[[t1, .., tm]] is naturally isomorphic to

⋃
n∈N

κ[[tp
−n

1 , .., tp
−n
m ]]

Denote by φ the Frobenius automorphism of this perfect ring.

(a) Consider the following subring

(κ〈〈tp
−n

1 , .., tp
−n
m 〉〉#s:φr;[i0])fin :=

∑
n∈N

φ−nr((t)(pns−i0 ))

of the perfection of the formal power series ring κ[[tp
−n

1 , .., tp
−n
m ]], where our convention

is that (t)(pns−i0 ) = R if ns− i0 ≤ 0.

• Define a decreasing filtration Fil#,p
•

s:φr,[i0] on (κ〈〈tp
−n

1 , .., tp
−n
m 〉〉#s:φr;[i0])fin by ideals

Fil#,p
j

s:φr,[i0] :=
{
x ∈ (κ〈〈tp

−n

1 , .., tp
−n

m 〉〉#s:φr;[i0])fin| ∃n ∈ N>0 s.t. n+ j ≥ 0 and xp
n

∈ (t)(pn+j)
}

of (κ〈〈tp
−n

1 , .., tp
−n
m 〉〉#s:φr;[i0])fin, where (t) is the maximal ideal of κ[[t1, .., tm]].

• Define κ〈〈tp
−n

1 , .., tp
−n
m 〉〉#s:φr;[i0] to be the completion of the ring

(κ〈〈tp
−n

1 , .., tp
−n
m 〉〉#s:φr;[i0])fin

with respect to the filtration Fil#,p
•

s:φr,[i0] .

(b) Consider the following subring

(κ〈〈tp
−n

1 , .., tp
−n
m 〉〉bs:φr;[i0])fin :=

∑
n∈N

φ−nr((t)pns−i0 )

of the perfection of the formal power series ring κ[[tp
−n

1 , .., tp
−n
m ]], where our convention

is that (t)(pns−i0 ) = R if ns− i0 ≤ 0.

• Define a decreasing filtration Filb,p
•

s:φr,[i0] on (κ〈〈tp
−n

1 , .., tp
−n
m 〉〉bs:φr;[i0])fin by ideals

Filb,p
j

s:φr,[i0] :=
{
x ∈ (κ〈〈tp

−n

1 , .., tp
−n

m 〉〉bs:φr;[i0])fin| ∃n ∈ N>0 s.t. n+ j ≥ 0 and xp
n

∈ (t)(pn+j)
}

of (κ〈〈tp
−n

1 , .., tp
−n
m 〉〉bs:φr;[i0])fin, where (t) is the maximal ideal of κ[[t1, .., tm]].
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• Define κ〈〈tp
−n

1 , .., tp
−n
m 〉〉bs:φr;[i0] to be the completion of the ring

(κ〈〈tp
−n

1 , .., tp
−n
m 〉〉bs:φr;[i0])fin

with respect to the filtration Filb,p
•

s:φr,[i0] .

Definition 6.2.2. Let κ ⊃ Fb be a perfect field and let t1, ..., tm be variables. Let C > 0, d ≥

0, E > 0 be real numbers.

1. Define a commutative algebra

κ〈〈tp
−∞

1 , ..., tp
−∞
m 〉〉E,#C,d

whose underlying abelian group is the set of all formal series
∑
I bIt

I with bI ∈ κ for

all I, here I runs through all elements in N[1
p ]m such that

|I|p ≤Max(C · (|I|∞ + d)E , 1)

here for any multi-index I = (i1, ..., im) ∈ Z[1/p]m≥0, |I|p is the p-adic norm of I and

|I|∞,max is the archimedean norm of I, defined by

|I|p := max(p−ordp(i1), ..., p−ordp(im))

|I|∞,max := max(i1, i2, ..., im)

2. Define a commutative algebra

κ〈〈tp
−∞

1 , ..., tp
−∞
m 〉〉E,[C,d

whose underlying abelian group is the set of all formal series
∑
I bIt

I with bI ∈ κ for

all I, where I runs through all elements in N[1
p ]m such that

|I|p ≤Max(C · (|I|σ + d)E , 1)
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where

|I|σ := |i1|+ |i2|...+ |im|

Definition 6.2.3. Let (R,m) be an augmented complete Noetherian local domain over a

perfect field κ characteristic p. Let Rperf be the perfection of R, and let φ be the Frobenius

automorphism on R. Let A, b, d be real numbers, A, b > 0 and d ≥ b.

(a) Define a decreasing filtration (Fil•
Rperf ,deg

)•∈R on Rperf indexed by real numbers u by

FiluRperf ,deg :=


{x ∈ Rperf |∃j ∈ s.t.xpj ∈ mdu·pje}, if u ≥ 0

Rperf , if u ≤ 0

It is easy to see that Filu
Rperf ,deg

is an ideal of Rperf for evrey u ∈ R.

(b) Define a subring ((R,m)perf,bA,b;d )fin of Rperf by

((R,m)perf,bA,b;d )fin :=
∑

(φ−nR
⋂

Filb·p
An−d

Rperf ,deg
)

It is not difficult to see that ((R,m)perf,bA,b;d )fin is a subring of Rperf.

(c) Define

(R,m)perf,bA,b;d

to be the completion of ((R,m)perf,bA,b;d )fin with respect to the filtration induced by the

filtration (Fil•Rperf,deg) of Rperf:

(R,m)perf,bA,b;d = lim
u→∞

((R,m)perf,bA,b;d )fin/(FiluRperf ,deg
⋂

((R,m)perf,bA,b;d )fin)

(d) Define a filtration (Fil•(R,m)perf,b
A,b;d

)• on (R,m)perf,bA,b;d by

Filu(R,m)perf,b
A,b;d

:= lim
v→∞

(FiluRperf ,deg ∩ ((R,m)perf,bA,b;d )fin)/(FilvRperf ,deg ∩ ((R,m)perf,bA,b;d )fin)
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To state 6.2.5, we set up some notations.

Notations 6.2.4. (The setup for 6.2.5)

1. Let (R,m) be an augmented complete Noetherian local domain over a perfect field κ

of characteristic p. Let (R,m)perf,bA,b:d be a tempered perfection of R, where A, b, d are

real numbers, A, b > 0, d ≥ b. See 6.2.3 for the definition of (R,m)perf,bA,b:d .

2. The tempered perfection (R,m)perf,bA,b:d carries a filtration

(Fil•(R,m)perf,b
A,b:d ,deg)•

which is induced by the filtration Fil•
Rperfdeg

on the perfection Rperf of R.

3. Let m,m′ > 0 be positive integers, and let

κ〈〈up−∞ , vp−∞〉〉E,bC;d = κ〈〈up
−∞

1 , ..., up
−∞
m , vp

−∞

1 , vp
−∞

m′ 〉〉
E,b
C;d

be a tempered perfection of κ[[u, v]] = κ[[u1, ..., um, v1, .., vm′ ]], where E,C, d are real

numbers, E,C > 0 and d ≥ 0.

4. Let g1, ..., gm, h1, ..., hm′ be elements of the maximal ideal of (R,m)perf,bA,b:d .

5. Let A′ > 0, b′ > 0, d′ ≥ b′ be real numbers such that the following conditions hold.

• The continuous ring homomorphism

evg⊗1,1⊗h : κ[[u1, ..., um, v1, .., vm′ ]] −→ (R⊗̂κR,mR⊗̂κR)perf,bA,b:d

which sends a typical formal power series

f(u1, ..., um, v1, ..., vm′) ∈ κ[[u1, ..., um, v1, ..., vm′ ]]
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to

f(g1 ⊗ 1, ..., gm ⊗ 1, 1⊗ h1, ..., 1⊗ hm′) ∈ (R⊗̂κR,mR⊗̂κR)perf,bA,b:d

extends to a continuous ring homomorphism

evg⊗1,1⊗h : κ〈〈up−∞ , vp−∞〉〉E,bC;d −→ (R⊗̂κR,mR⊗̂κR)perf,bA,b:d

The existence of such a triple (A′, b′, d′) is straight-forward from the definitions.

See [CO22] Chapter 9 for case when (R,m) is a formal power series ring.

• The continuous ring homomorphism

evg⊗1,1⊗h : κ[[u1, ..., um, v1, .., vm′ ]] −→ (R,m)perf,bA,b:d

which sends a typical formal power series

f(u1, ..., um, v1, ..., vm′) ∈ κ[[u1, ..., um, v1, ..., vm′ ]]

to

f(g1, ..., gm, h1, ..., hm′) ∈ (R,m)perf,bA,b;d

extends to a continuous ring homomorphism

evg,h : κ〈〈up−∞ , vp−∞〉〉E,bC;d −→ (R,m)perf,bA′,b′:d′

• The diagram

κ〈〈up−∞ , vp−∞〉〉E,bC;d (R⊗̂κR,mR⊗̂κR)perf,bA,b:d

κ〈〈up−∞ , vp−∞〉〉E,bC;d (R,m)perf,bA′,b′:d′

evg⊗1,1⊗h

=

evg,h

∆∗

commutes, where the vertical arrow ∆∗ is induced by the multiplication map

∆ : R⊗R→ R for the κ-algebra R.
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6. For every element f ∈ κ〈〈up−∞ , vp−∞〉〉E,bC;d, define elements

f(g, f) ∈ (R,m)perf,bA′,b′:d′ and f(g ⊗ 1, 1⊗ h) ∈ (R⊗̂κR,mR⊗̂κR)perf,bA,b:d

by

f(g, h)f(g1, ..., gm, h1, ..., hm′) := evg,h(f)

f(g ⊗ 1, 1⊗ h) = f(g1 ⊗ 1, ..., gm ⊗ 1, 1⊗ h1, ..., 1⊗ hm′) := evg⊗1,1⊗h(f)

Theorem 6.2.5. (Hypocotyl elongation for tempered virtual functions). We use

the notation in 6.2.4. Let (R,m) be an augmented complete Noetherian local domain over

a perfect field κ of characteristic p.

• Let g1, .., gm, h1, ..., hm′ be elements of the maximal ideal of (R,m)perf,bA,b;d .

• Let f(i1, ..., um, v1, ..., vm′) be an element of

κ〈〈up
−∞

1 , ..., up
−∞
m , vp

−∞

1 , vp
−∞

m′ 〉〉
E,b
C;d

which lies in the closure of the image of

κ〈〈up−∞〉〉E,bC;d ⊗ κ〈〈v
p−∞〉〉E,bC;d −→ κ〈〈up−∞ , vp−∞〉〉E,bC;d

• Let q = pr be a power of p for some positive integer r. Let (dn)n∈N,n≥n0 be a sequence

of positive integers such that limn→∞
qn

dn
= 0.

Suppose that

f(g1, .., gm, h
qn

1 , ..., hq
n

m′) ≡ 0, mod Fildn
(R,m)perf,b

A′,b′;d′ ,deg

in (R,m)perf,bA′,b′;d′ for all n ≥ n0. Then
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f(g1 ⊗ 1, ..., gm ⊗ 1, 1⊗ h1, .., 1⊗ hm′) = 0

in the completed tempered perfection (R⊗̂κR,mR⊗̂κR)perf,bA′,b′:d′ of R⊗̂κR.

Proof. See [CO22] Chapter 10.

6.3 Proof of The First Result

Notations 6.3.1. We set up some notations for 6.3.2. Note that these notations are

compatible with 6.0.1.

1. We use all the notations as in 6.0.1.

2. Let H = (Hij)1≤i>j≤4 be a Tate-linear nilpotent group of type A of dimension 4 that

is pure and perfect. For definitions see 4.4.1, 4.4.2 and 4.4.3.

3. Let E = DefH-tor, π : E → B the natural projections. We also use the definitions of

Bn, En, An as in 4.0.1. Let

RE = κ〈〈t1, ..., tm〉〉

where RE is the ring of regular functions of E. Note that E is formally smooth.

4. Let sij = slope(Hij). Let aij , r, s ∈ N satisfying

(a) sij = aij
r ,∀1 ≤ i < j ≤ 4

(b) r < s < 2r, hence s14 = a14
r > a14

s > a14
2r

(c) s14 = a14
r > a14

s > skl,∀(k, l) 6= (1, 4).

5. Fix n2, c2 ∈ N such that Hij [pn] ⊃ Hij [Frob
b n
sij
c−c2

p ] for all 1 ≤ i < j ≤ 4 and n ≥ n2.
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6. Let n3 ∈ N such that Hij [pnaij ] ⊃ Hij [Frobnsp ] for all n ≥ n3, (i, j) 6= (1, 4), and that

H14[pna14 ] ⊂ H14[Frobnsp ] ⊂ H14[p2na14 ] for all n ≥ n3.

Theorem 6.3.2. Notations as in 6.3.1. Further, Let G a p-adic Lie group acting strongly

non-trivially on E and W ⊂ E a reduced irreducible formal subscheme of E that is invariant

under the action of G. Let H ′14 = (W ∩H1,4)red be the intersection of W with H1,4 endowed

with reduced structure. By orbital rigidity theorem of p-divisible group 1.1.1 we know H ′14

is a p-divisible subgroup of H1,4. Let

Y : H ′14 × E → E

(h′14, e)→ h′14 ∗ e

corresponding to the restriction to H ′14 of the action of H14 on E. Let v = (Aij) ∈ Lie(G)

be an element of the Lie algebra of G such that Aij ∈ End(Hij).

a) Then

(Y ◦ (A14|H′14
× idW ))(H ′14 ×W ) ⊂W

b) Assume in addition that the action of G on H ′14 is strongly non-trivial. Then

Y(H ′14 ×W ) ⊂W

Proof. We first show that 6.3.2.a) =⇒ 6.3.2.b).

By 3.3.2, the assumption that the action of G on H ′14 is strongly non-trivial implied

that there exists elements hkl = (hklij ) ∈ Lie(G), indexed by a finite subset

{(k, l) ∈ N2 : k ∈ {1, ...,m}, l ∈ {1, ..., nk}}
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where nk ∈ N≥1 for each k = 1, ..,m, such that

∑
1≤k≤m

hk1
14 ◦ hk2

14... ◦ h
knk
14 ∈ End(H ′14)×Q

Hence the statement 6.3.2.b) follows from statement 6.3.2.a) and the above linear algebra

consequence of the assumption that G operates strongly non-trivially on H ′14. Now we prove

statement 6.3.2.a).

Step 1. Preliminary reduction steps

(a) It suffices to prove the statement after extending the base field to an algebraic

closure of k. So we may and do assume that k is algebraically closed.

(b) If E → E′ is an isogeny of triple-extensions, the statement holds for E if and

only if it holds for E′. Modify E by suitable isogeny, we may and do assume that

Hij are p-divisible groups such that H14 with slope(H14) = a14
r , we have

H14[pa14 ] = H14[FrobrH14 ]

(c) Choose a suitable regular system of parameters (u1, .., ub) for H14 such that

H14 = Spf(k[[u1, .., ub]] and

[pa14 ]∗(ui) = up
r

i

Step 2. Recall the definition of ẼN and ẼN [pM ] as in 6.1.1 for N,M ∈ N.

By 6.1.1, especially 6.1.1,

ψ(exp(pna14v)) ≡ (A14 ◦ ηna14 + ena14
v ) ∗ idE mod Ẽna[p2na14 ]

By 5.4.2 and the definition of n3 in 6.3.1, we have

H14[pna14 ] ⊂ RE/(mp(sn)

E ) ⊂ Ẽna14 [p2na14 ],∀n ≥ n3
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Hence

ψ(exp(pna14v)) ≡ (A14 ◦ ηna14 + ena14
v ) ∗ idE mod mpns

E ,∀n ≥ n3 (6.3.1)

For each j = 1, ..., b define

aj,n = (A14 ◦ ηna + ena14
v )∗(uj) ∈ RE/mp(ns)

E

for all n ≥ n3. Then by 4.2.12 and 6.1.2 it is easy to see that {aj,n}n≥n3 are

φr compatible sequences for all j = 1, 2, ...,m. Let i1 := max(s − r, dn3
r e) Then

by [CO22] especially 6.8.3.3 and 6.8.3.4, each {aj,n}n≥n3 gives rise to an element

ãj ∈ κ〈〈tp
−∞

1 , ..., tp
−∞
m 〉〉[s:φr;[i1].

Step 3. Elements ã1, ..., ãm ∈ (RE ,mE)bs:φr;[i1] defines a ring homomorphism

η̃[v] : RH14 = k[[u1, ..., um]]→ (RE ,mE)perf,bs:φr;[i1]

Let

ω1 : (RE ,mE)perf,bs:φr;[i1] → (RH14,mH14)perf,bs:φr;[i1]

be the ring homomorphism induced by the inclusion H14 ↪→ E. Because the restriction

to H14 of the morphism ηn|H14 → H14 equal to [pn]H14 for every n ∈ N, and that

env |H14 as a subscheme of E = 0, we see that

ω1 ◦ η̃[v] = A∗14 ◦ jRH14

where jRH14 : RZ1 ↪→ (RH14 ,mH14)perf,bs:φr;[i1] is the natural injection from RH14 to its

tempered perfection and A∗14 is the ring homomorphism induced by A14 on H14.

Step 4. We also have the following ring homomorphisms
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(a) The canonical homomorphism RE → RE/IW gives rise to a homomorphism

τ : (RE ,mE)perf,bs:φr;[i1] → (RH14 ,mH14)perf,bs:φr;[i1]

(b) Continuous ring homomorphisms

∆1 : RE → RH′14
⊗̂RE ,

∆2 : RE → RH′14
⊗̂RW

(c) The ring endomorphism

ω2 : (RW ,mW )perf,bs:φr;[i1] → (RH′14
,mH′14

)perf,bs:φr;[i1]

induced by

H ′14 ↪→ H14 ↪→W

(d) The ring endomorphism

A∗14 = A∗14|H′14
: RH′14

→ RH′14

corresponding to the endomorphism H14 of the p-divisible group H14.

It follows that the following diagram commutes

f ∈ IW ⊂ RE RE

RH′14
⊗̂RE RH′14

⊗RW

(RE ,mE)perf,b
s:φr ;[i1]⊗̂(RE ,mE)perf,b

s:φr ;[i1] RH′14
⊗RE RH′!4

⊗RW

(RW ,mW )perf,b
s:φr ;[i1]⊗̂(RW ,mW )perf,b

s:φr ;[i1] (RH′14
,mH′14

)perf,b
s:φr ;[i1]⊗̂(RW ,mW )perf,b

s:φr ;[i1]

=

∆1
1⊗ τ

η̃[v]⊗ jRE

A∗14 ⊗ 1

τ ⊗ τ
ω2 ⊗ 1

∆2

A∗14 ⊗ 1

jRH′14
× jRW
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Step 5. Recall that IW is the prime ideal of the coordinate ring of E. We want to show that

for all f ∈ IW ,

(A∗14 × 1RE ) ◦∆2(f) = 0

Because jRH′14
and jRW are both injective, it suffices to show that for all f ∈ IW ,

(jRH′14
⊗ jRW ) ◦ (A∗14 × 1RE ) ◦∆2(f) = 0

From the commutative diagram we see that it suffices to show (a stronger statement)

that

(τ ⊗ τ) ◦ (η̃[v]⊗ jRE ) ◦∆1(f) = 0, ∀f ∈ IW (6.3.2)

Step 6. Let f ∈ IW . Define an element

f̃ ∈ (RE ,mE)perf,bs:φr;[i1]⊗̂(RE ,mE)perf,bs:φr;[i1] (6.3.3)

by

f̃ := ((η̃[v]⊗ jRE ) ◦∆1)(f)

where (η̃[v]⊗ jRE ) ◦∆1 is the composition

RH14⊗̂RE
∆1−→ RE⊗̂RE

η̃[v]⊗jRE−→ (RE ,mE)perf,bs:φr;[i1]⊗̂(RE ,mE)perf,bs:φr;[i1]

We want to show that the image of f̃ under the map

(RE ,mE)perf,bs:φr;[i1]⊗̂(RE ,mE)perf,bs:φr;[i1]
τb⊗τb−→ (RW ,mW )perf,bs:φr;[i1]⊗̂(RW ,mW )perf,bs:φr;[i1]

is zero.

Step 7. Letφ be the Frobenius endomorphism x→ xp on (RW ,mW )b. Let

νW : (RW ,mW )b⊗̂(RW ,mW )b → (RW ,mW )b
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be map which defines multiplication for the ring (RW ,mW )perf,bs:φr;[i1]. Geometrically

νW corresponds to the diagonal morphism from Spec((RW ,mW )perf,bs:φr;[i1]) to its self-

product.

Because the formal subvariety W ⊂ E is assumed to be stable under G, therefore

stable under ψ(exp(pna14v). Hence 6.3.1 implies that

νW (φnr ⊗ 1)((τ b ⊗ τ b)(f̃)) ≡ 0 mod Filp
ns

where φnr ⊗ 1 is the ring homomorphism

φnr ⊗ 1 : (RW ,mW )perf,bs:φr;[i1]⊗̂(RW ,mW )perf,bs:φr;[i1] → (RW ,mW )perf,bs:φr;[i1]⊗̂(RW ,mW )perf,bs:φr;[i1]

Applying theorem 6.2.5, also note that r < s which implies lim pnr

pns = 0, we conclude

that

(τ b ⊗ τ b)(f̃) = 0

in (RW ,mW )perf,bs:φr;[i1]⊗̂(RW ,mW )perf,bs:φr;[i1], for every element f ∈ IW , which is precisely

6.3.2. As we have seen, this implies that

(A14|H′14
⊗ 1)(∆2(f̃)) = 0

in RH′14
⊗RW for every element f ∈ IW . We have proved the result.

6.4 Further Consequences

The following result 6.4.1 is proved in [CO22] Chapter 10. The main purpose of this section

is to prove 6.4.6, which is an analogy of 6.4.1.
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Lemma 6.4.1. Let π : E → X × Y be a biextension of X × Y by Z over k. Assume that

X,Y, Z all isoclinic with the slope(Z) strictly bigger than slope(Y), slope(Z). Let G be a

closed subgroup of Autbiext(E) such that the action of G on Z is strongly non-trivial. Let

W be a reduce irreducible subscheme of E stable under G. The closed formal subscheme

Z ′ = (W ∩Z)red is a p-divisible subgroup of Z, and W is stable under the translation action

by Z ′. Let W ′ = W/Z ′, a reduced irreducible closed formal subscheme of the biextension

E/Z ′ = (Z � Z/Z ′)∗E

of X × Y by Z/Z ′. Then the natural map

qW ′ : W ′ → E/Z

is finite purely inseparable formal morphism. In other words the affine coordinate ring RW ′

of W ′ is finite over the subring RIm(qW ′ ), the affine coordinate ring of the schematic image

of qW ′, and there exists a natural number m such that xpm ∈ RIm(qW ′ ) for every x ∈ RW ′.

Proof. See [CO22], Chapter 10.

The rest of this section will be devoted into proving an analogy of 6.4.1. We first setup

notations.

Notations 6.4.2. (Notations and assumptions for the rest of this subsection)

1. We continue with the notations as in 6.3.2: let H = (Hij) be a general sustained linear

group, pure and perfect. Let G ⊂ Aut(H). Let W ⊂ DefH−torsor reduced irreducible

closed formal subscheme of E stable under the action of G. Let v = (Aij) be an

element of the Lie algebra of G with components Aij ∈ End(Hij).
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2. There exists positive integers a14, r, s, n3 such that

(a) 0 < a14 ≤ r < s

(b) slope(H14) = a14
r , H14[pa14 ] = H14[F r].

(c) the congruence condition 6.3.1 holds.

3. Recall that in Step 3 of 6.3.2 we pick a regular system of parameters u1, u2, ..., ub of

the complete local ring RH14 with [pa]∗H14
= up

r

i for all i = 1, ..., b, and constructed a

continuous ring homomorphism

η̃(v) : RH14 → (RE ,mE)perf,bs:φr;[i1]

Define the schematic image Im(η̃[v]|W ) of the restriction to W of η̃[v] by

Im(η̃[v]|W ) := Spf(RH14/Ker(τ b ◦ η̃[v]))

= Spf(RH14/ker(RH14
η̃[v]∗−→ (RE ,mE)perf,bs:φr;[i1]

τb−→ (RW ,mW )perf,bs:φr;[i1])

Lemma 6.4.3. We continue with the notations of 6.3.2. For every element v = (Aij)1≤i<j≤4,

the diagram

RH14 RH14⊗̂RH14 (RH14)perf,bs:φr;[i1]⊗̂(RE)perf,bs:φr;[i1]

(RE)perf,bs:φr;[i1] (RH14⊗̂RE)perf,bs:φr;[i1]

RE RH14⊗̂RE

∆Z

η̃

jRH14
◦A∗14 ⊗ η̃

j

∆b

jRE

∆

jH14⊗̂RE

commutes. The arrows ∆H14 ,∆b, jRH14
, jE , jRH14 ⊗̂RE

, j are as follows:
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• ∆H14 corresponds to the group law on H14.

• ∆ : RE → RH14⊗RE corresponds to the H14 torsor structure Z×E → E on E, which

induces a ring homomorphism ∆b : (RE)perf,bs:φr;[i1] → (RH14⊗̂RE)perf,bs:φr;[i1]

• jRH14
, jE , jRH14 ⊗̂RE

are the inclusions maps from RH14 , RE , RH14⊗̂RE to their tem-

pered perfections

• The downward vertical arrow j on the right is the natural ring homomorphism, from

the tensor product (RH14)perf,bs:φr;[i1]⊗̂(RE)perf,bs:φr;[i1] of tempered perfections to tempered per-

fection (RH14⊗̂RE)perf,bs:φr;[i1] of RH14⊗̂RE.

Proof. Left as exercise.

Proposition 6.4.4. We use the notations and assumptions in 6.4.2. Then

(a) The formal subvariety W of E is stable under the translation by the smallest p-divisible

subgroup of H14 which contains the schematic image Im((η̃[v])|W ) of the restriction

to W of the morphism η̃[v] : E → H14, for every element v ∈ Lie(G)∩ (
∏
End(Hij)).

(b) Let H14,η̃ be the smallest p-divisible subgroup of H14 which contains the schematic

image Im((η̃[v])|W ) for every v ∈ Lie(G) ∩
∏

(End(Hij)). Then W is stable under

the translation action by H14,η̃.

Proof. We will show that W is stable under the translation action of Im(η̃[v]|W ). The

statement (a) follows easily from this apparently weaker statement.

Let IW = ker(τ : RE → RW ) be the ideal of RW corresponds to W . Let

J [v] := Ker(τ b ◦ η̃[v] : RE ◦ η̃[v] : RH14 → (RW ,mW )perf,bs:φr;[i1])
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We need to show that the kernel of the composition

RE
∆−→ RH14 ⊗RE

q[v]⊗τ−→ (RH14/J [v])⊗RW

contains IW , where q[v] : RH14 � RH14/J [v] is the quotient map. Let

J[v] : RH14/J [v]→ (RW ,mW )perf,bs:φr;[i1]

be the injective ring homomorphism such that

τ b ◦ η̃[v]∗ = J[v] ◦ q[v]

We have a commutative diagram

RE RH14 ⊗RE (RH14/J [v])⊗RW

(RE ,mE)perf,bs:φr;[i1]⊗̂(RE ,mE)perf,bs:φr;[i1] (RW ,mW )perf,bs:φr;[i1]⊗̂(RW ,mW )perf,bs:φr;[i1]

∆ q[v] ⊗ τ

η̃[v]⊗ jRE
J[v] ⊗ jRW

τ b ⊗ τ b

In step 4 of 6.3.2 we showed that IW ⊂ Ker((τ b ⊗ τ b) ◦ (η̃[v]⊗ JRE )⊗∆. Therefore

IW ⊂ Ker((q[v] ⊗ τ) ◦∆1)

because J[v] ⊗ JRW is an injective ring homomorphism. We have prove the statement (a).

The statement (b) follows from (a).

Corollary 6.4.5. In 6.4.4, assume in addition that G operates strongly non-trivially on

H14. Then the intersection w∩H14 with reduced structure is equal to H14,η̃, the smallest p-

divisible subgroup which contains all schematic images Im((η̃[v]|W )), where v runs through

all elements of Lie(G) ∩ (
∏

1≤i<j≤4End(Hij)).

Now we prove the main result of this section.
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Theorem 6.4.6. Let H be a Tate-linear nilpotent group of type A of dimension 4 that

is pure and perfect, let E = DefH-tor, π : E → B the natural projection. Recall that E

admits a H14 torsor structure over B. Assuming that s14 > sij , ∀(i, j) 6= (1, 4). Let G be a

closed subgroup of Aut(H) = Aut(E), in the sense of 4.4.8. Let W be a reduced irreducible

closed formal subscheme of E stable under the action of G. Suppose that the action of G

on H14 is strongly non-trivial. By 6.3.2 the reduced formal subscheme H ′14 = (W ∩H14)red

is a p-divisible subgroup of H14, and W is stable under the translation action by H ′14. Let

W ′ = W/H ′14, a reduced irreducible closed formal subscheme of the biextension E/H ′14 =

(H14 � H14/H
′
14)∗E. Then the natural map

qW ′ : W ′ → E/H14

is a finite purely inseparable formal morphism.

Proof. Extend the perfect base field k if neccessary, we may and do assume that the base

field k is algebraically closed. Recall B = E/H14. As the closed fiber of the formal mor-

phism π|W/H′14
: W/H ′14 → B is finite over k, therefore π|W/H′14

is finite. Denote by W̄

the schematic image of π|W , a reduced irreducible formal subscheme of B stable under the

action of G. We need to show that W is purely inseparable over W̄ .

Now W.L.O.G. assume H ′14 is trivial, hence W = W ′. Let RW , RW̄ be the coordinate

rings of W, W̄ respectively, and let j : RW̄ → RW be the continuous injective ring homo-

morphism induced by π|W . We know that RW is finite over RW̄ , and must show that there

exists N ∈ N such that xpN ∈ RW for all x ∈ RW̄ . Suppose no such natural number N

exists. Then there exist continuous ring homomorphisms h1, h2 : RW → k[[u]] from RW

to the power series ring in one variable u, such that h1 ◦ j = h2 ◦ j but h1 6= h2. Since
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the projection E → B = E/H14 is a H14 torsor, there exists a continuous k-linear ring

homomorphism δ : RH14 → k[[u]] such that

µk[[u]] ◦ (δ ⊗ h1) ◦∆ = h2

where

• ∆ : RE → RH14⊗̂RE corresponds to the action of H14 on E,

• µk[[u]] : k[[u]]⊗̂k[[u]]→ k[[u]] is the multiplication map on k[[u]],

• Ker(δ) ⊆ mH14 , or equivalently k[[u]] is a finite module over the subring Im(δ),

because h1 6= h2.

We know from that for every v = (Aij)1≤i<j≤4 ∈ Lie(G) with components Aij ∈ End(Hij),

the kernel of the composition τ b ◦ η̃[v] of the continuous ring homomorphism

RH14
η̃[v]−→ (RE ,mE)perf,bs:φr;[i1]

τb−→ (RW ,mW )perf,bs:φr;[i1]

contains the maximal ideal mH14 of RH14 . In other words τ b◦η̃[v] is equal to the composition

RH14 � k ↪→ (RW ,mW )perf,bs:φr;[i1], the trivial k-linear ring homomorphism.

Consider the following diagram,

RH14 RH14⊗̂RH14 (RH14)perf,bs:φr;[i1]⊗̂(RE)perf,bs:φr;[i1]

(RE)perf,bs:φr;[i1] (RH14⊗̂RE)perf,bs:φr;[i1]

(k[[u]])perf,bs:φr;[i1] (k[[u]]⊗̂k[[u]])perf,bs:φr;[i1] (RH14⊗̂RW )perf,bs:φr;[i1]

∆H14

η̃[v]

(jRH14 ◦A14)⊗ η̃[v]

j

(1⊗ τ)b

∆b

(h2 ◦ τ)b

µbk[[u]] (δ ⊗ h1)b
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The Commutativity of the top half of the diagram follows from 6.4.3, while the bottom

half commutes because µk[[u]] ◦ (δ ⊗ h1) ◦∆ = h2. The homomorphism

RH14
(h2◦τ)b◦η̃[v]−→ (k[[u]]⊗̂k[[u]])perf,bs:φr;[i1]

is the trivial k-linear ring homomorphism because τ b ◦ η̃[v] is. On the other hand, we have

(h2 ◦ τ)b ◦ η̃[v] = µbk[[u]] ◦ (δ ⊗ h1)b ◦ (1⊗ τ)b ◦ j ◦ ((jRE ◦A
∗
14)⊗ η̃[v]) ◦∆H14

The right hand side of the above equality is equal to the following composition

RH14
A14−→ RH14

δ−→ k[[u]]
jk[[u]]−→ (k[[u]])perf,bs:φr;[i1]

Therefore the non-trivial k[[u]]-point δ∗ of H14 lies in the kernel of the endomorphism A14

for every element v = (Aij))1≤i<j≤4 ∈ Lie(G)∩ (
∏
End(Hij). Since the action of G on H14

is strongly non-trivial, the point δ∗ ∈ H14(k[[u]]) is 0. This is a contradiction. We have

proved that W is purely inseparable over W̄ .
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Chapter 7

The Main Theorem

Notations 7.0.1. Setup of This Section

i) Let H be a Tate-linear nilpotent group of type A of rank 4 over an algebraically closed

field κ of characteristic p with p ≥ 5. We further assume H to be perfect and pure.

ii) E = DefH-torsor

iii) Let B = E/H14, π : E → B the projection map.

iv) Let G ⊂ Aut(E) a closed p-adic Lie subgroup acting strongly non-trivially on E.

v) Let W ⊂ E a reduced irreducible formal subscheme. Assume that W is invariant

under the action of G.

vi) Let Y := π(W ) ∩ (H13 × H24) where H13 × H24 ⊂ B as a subscheme. X = (π12 ×

π23×π34)(W ) ⊂ H12×H23×H34. Since W is invariant under the action of G, hence

both X,Y are p-divisible subgroups by 5.2.1.
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vii) For n ∈ N, let B13, B24, B13,n, B24,n, Bn, En, π123, π234 as defined in 4.6.2. Note that

both B13, B24 are bi-extensions and that B = B13 ×H23 B24.

viii) Let An, En and ψ : An → En as in 4.2.1.

7.1 Compatibility of Trivialization

The following result will serve as the ’induction hypothesis’ in the proof of orbital rigidity

of 4 slopes case.

Theorem 7.1.1. Notation as in 7.0.1, and let W ⊂ E a reduced irreducible invariant

under the action of G ⊂ Aut(E). The action of G induces action on both B13 and B24. Let

ψ1,3
n.homo, ψ

2,4
n,homo be (homogeneous) Mumford’s trivialization of B13 and B24 respectively, see

3.4.4. Then

(a). the following diagram

(H12 ×H23 ×H34)[p3n]× (H13 ×H24)[p2n]×H14 En

(H12 ×H23 ×H34)[p3n]× (H13 ×H24)[p2n] Bn

(H12 ×H23 ×H34)[p2n]× (H13 ×H24) B

ψn

Πn π|En

[pn]H12×H23×H34×H13×H24

ψn

↪→

ψ1,3
n,homo ⊗H23 ψ

2,4
n,homo

commutes, where

• ψ1,3
n,homo ⊗H23 ψ

2,4
n.homo : (H12[p2n] × H23[p2n] × H13 ×H23 (H23 × H34)[p2n] × H24 −→

B1,3
n ⊗H23 B

2,4
n ↪→ B
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• ψn is the morphism from H12×H23×H34)[p3n]× (H13×H24)[p2n] to Bn induced

by ψn.

• Πn is the natural projection from (H12×H23×H34)[3n]× (H13×H24)[p2n]×H14

to (H12 ×H23 ×H34)[p3n]× (H13 ×H24)[p2n].

(b). Let Wn := π(W ) ∩ Bn. Let X,Y as defined in 7.0.1(vi). Let Sn be the morphism

Sn : X[p2n]× Y [pn]→ B that sends (x, y)

to

ψ1,3
n ⊗H23 ψ

2,4
n (x2n

12 , x
2n
23 , x

2n
34 ,

1
2x

2n
12x

2n
23 + yn13,

1
2x

2n
23x

2n
34 + yn24)

where

x = (x2n
12 , x

2n
23 , x

2n
34 ) ∈ X, y = (yn13, y

n
24)

Then Sn factors through Wn.

Proof. Part (a) follows from the construction of ψn as in 4.2.1 an easy diagram chasing.

Part (b) is a direct consequence of 5.2.1 which says that π(W ) is a Tate-linear formal

subvariety of B, given that π(W ) is a reduced irreducible subscheme of B invariant under

the induced action of G on B.
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7.2 Existence of Admissible Subgroups

Lemma 7.2.1. Let H = (Hij)1≤i<j≤4 be a Tate-linear nilpotent group of type A. Let

X ⊂ H12 ×H23 ×H34, Y ⊂ H13 ×H24 p-divisible subgroups. If we further assume that

(xn12x
n
23
′ − xn12

′xn23, x
n
23x

n
34
′ − xn23

′xn34) ∈ Y,∀x = (xn12, x
n
23, x

n
34), x′ = (xn12

′, xn23
′, xn34

′) ∈ X[pn]

(7.2.1)

xn12y
n
24 = yn13x

n
34,∀x = (xn12, x

n
23, x

n
34) ∈ X[pn], y = (yn13, y

n
24) ∈ Y [pn] (7.2.2)

then there is an admissible subgroup H = HX,Y ⊂ H such that Lie(H) = X ⊕ Y ⊕ eH14.

For the definition of Lie(H) see 4.7.5.

Proof. Consider the subschemes

Hn =





1 x12
1
2x12x23 + y13

1
6x12x23x34 + x12y24

0 1 x23
1
2x23x34 + y24

0 0 1 x34

0 0 0 1


, ∀x = (x12, x23, x34) ∈ X[pn], y = (y13, y24) ∈ Y [pn]


It is a simple algebra exercise to check that Hn is indeed a group scheme and that the

natural morphism Hn+1 → Hn is faithfully flat.

7.3 The Case When π|W is Isomorphic

The main result of this section is 7.3.4, which is a special case of the main result of this

thesis 4.8.2.

Lemma 7.3.1. Let An, En, Bn, ψn,homo : An → En as in 4.2.6. Note that Bn = π(En).

Then ψn,homo induces a faithfully flat morphism

ψn : (H12 ×H23 ×H34)[p3n]× (H13 ×H24)[p2n]→ Bn
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Moreover, let W,X, Y as in 7.0.1. For n ∈ N, let Wn := π(W ) ∩ Bn a finite subscheme of

W . Let Jn be morphism from

X[p3n]× Y [p2n]

to

(H12 ×H23 ×H34)[p3n]× (H13 ×H24)[p2n]

that sends

(x, y) = (x3n
12 , x

3n
23 , x

3n
34 ), (y2n

13 , y
2n
24 )

to

(x3n
12 , x

3n
23 , x

3n
34 ,

1
2〈x

3n
12 , x

3n
23 〉123,3n + y2n

13 ,
1
2〈x

3n
23 , x

3n
34 〉234,3n + y2n

24 )

Then

Jn ◦ ψn : X[p3n]× Y [p2n]→ Bn

factors through Wn and as a morphism from X[p3n]× Y [p2n] to Wn it is faithfully flat.

Proof. This is a reformulation of the result in 5.2.1 and 7.1.1.

Remark 7.3.2. The significance of 7.3.1 is that this coordinate system, that is trivializing

π(W ) using X and Y , is more natural and easier to handle.

Corollary 7.3.3. Notation as 7.0.1. Let Jn be the morphism defined in 7.3.1. We further

assume that π|W : W → π(W ) is an isomorphism. Then for each n ∈ N, there exists a

morphism

fn : X[p3n]× Y [p2n]→ H14

s.t. for all x ∈ X[p3n], y ∈ Y [p2n],

ψn,homo(Jn(x, y), fn(x, y)) ∈Wn
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where (Jn(x, y), fn(x, y)) is an element in (H12×H23×H34)[p3n]× (H13×H24)[p2n]×H14.

Moreover, we have the following compatibility between different n’s: for x′ ∈ X[p3n+2], y′ ∈

Y [p2n+1],

fn+1(x′, y′) = fn([p2] · x′, [p] · y′)

as elements in H14.

Proof. This is a direct consequence of 7.3.1 and the fact that π|W : W → π(W ) is an

isomorphism.

Theorem 7.3.4. Notation as in 7.0.1. Assume that π|W : W → π(W ) is an isomorphism.

Let X,Y and fn : X[p3n]× Y [p2n]→ H14 as in 7.3.3. Let

f̃n(x, y,∆) = fn(x, y)− fn(x, y + ∆)

where

x = (x3n
12 , x

3n
23 , x

3n
34 ) ∈ X[p3n] ⊂ (H12 ×H23 ×H34)[p3n],

y = (y2n
13 , y

2n
24 ) ∈ Y [p2n] ⊂ (H13 ×H24)[p2n],

∆ = (∆2n
13 ,∆2n

24 ) ∈ Y [p2n] ⊂ (H13 ×H24)[p2n]

Then

(a) f̃n(x, y,∆ + ∆′)− f̃n(x, y,∆)− f̃n(x, y,∆′) = 0.

(b) f̃n(x, y,∆) is independent of y.

(c) f̃n(x1 + x2, y,∆)− f̃n(x1, y,∆)− f̃n(x2, y,∆) = 0,∀x1, x2 ∈ X[p3n], y,∆ ∈ Y [p2n].
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(d) For x = (xn12, x
n
23, x

n
34), x′ = (xn12

′, xn23
′, xn34

′) ∈ X[pn], y = (yn13, y
n
24) ∈ Y [pn], we have

(xn12x
n
23
′ − xn12

′xn23, x
n
23x

n
34
′ − xn23

′xn34) ∈ Y

〈xn12, y
n
24〉n = 〈yn13, x

n
34〉n

(e) There exists an admissible subgroup HX,Y of H such that

Lie(HX,Y ) = X ⊕ Y ⊕ eH14

and that

π(EX,Y ) = π(W ) as subschemes of B

where EX,Y is the Tate-linear subvariety of E that corresponds to HX,Y . For the

definition of Lie algebra of an admissible subgroup see 4.7.5. For the definition of

Tate-linear subvariety that corresponds to an admissible subgroup, see 4.7.8.

(f) W is a Tate-linear subvariety.

Proof. Let F (x, y,∆,∆′) = f̃n(x, y,∆+∆′)− f̃n(x, y,∆)− f̃n(x, y,∆′). We prove the result

in several steps:

Step 1. We show that for all ∀(x, y), (x′, y′) such that ψn(x, y) = ψn(x′, y′), and all ∆,∆′ ∈

Y [p2n],

F (x, y,∆,∆′) = F (x′, y′,∆,∆′)

First notice that ψn(x, y) = ψn(x′, y′) ⇐⇒ ψn(x, y + ∆) = ψn(x′, y′ + ∆), ∀∆ ∈

Y [p2n].
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By 4.2.6 we have

f̃(x, y,∆)− f̃(x′, y′,∆) = [fn(x, y)− fn(x′, y′)]− [fn(x, y + ∆)− fn(x′, y′ + ∆)]

= [y3n
13 (x2n

34 − x2n
34
′) + x3n

12 (y2n
24 − y2n

24
′)]− [(y3n

13 + ∆)(x2n
34 − x2n

34
′) + x3n

12 (y2n
24 − y2n

24
′)]

= −∆2n
13 (x3n

34 − x3n
34
′) = 0

here terms involving only x’s cancel out in two brackets hence omitted, and all the

’multiplication’ refers to bilinear pairings at level 3n, for example y3n
13 (x2n

34 − x2n
34
′) =

〈y3n
13 , x

2n
34 − x2n

34
′〉134,3n. Hence

F (x, y,∆,∆′)− F (x′, y′,∆,∆′)

= (f̃(x, y,∆ + ∆′)− f̃(x′, y′,∆ + ∆′))− (f̃(x, y,∆)− f̃(x′, y′,∆))− (f̃(x, y,∆′)− f̃(x′, y′,∆′))

= (−∆2n
13 −∆2n

13
′ + ∆2n

13 + ∆2n
13

′)(x3n
34 − x3n

34
′)

= 0

Step 2. Let x ∈ X[p3n], Y,∆ ∈ Y [p2n], δ = (δn13, δ
n
24) ∈ Y [pn]. Again by 4.2.6, we have

ψn(x, y) = ψn(x, y + δ), ψn(x, y + ∆) = ψn(x, y + +∆ + δ)

Moreover,

f̃(x, y,∆ + δ)− f̃(x, y,∆)

= [f(x, y)− f(x, y + δ)]− [f(x, y + ∆)− f(x, y + ∆ + δ)]

= [−x3n
12 · δn24]− [−x3n

12 · δn24] = 0
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Hence it’s also easy to see that

F (x, y,∆ + δ,∆′) = F (x, y,∆,∆′),

F (x, y,∆,∆′ + δ) = F (x, y,∆,∆′)

Step 3. Combining results in Step 1 and Step 2, we know Fn descent to a morphism

Fn : Bn × Y [pn]× Y [pn]→ H14

together with compatibility condition in 7.3.3 we obtain a morphism of schemes

F := Fn : B × Y × Y → H14 (7.3.1)

As W is invariant under the action of G, F is equivariant under G, hence by 5.3.1 we

have F ≡ 0. This proves (a).

Step 4. By (a) we have

f̃n(x, y,∆ + ∆′) = f̃n(x, y,∆) + f̃n(x, y,∆′) (7.3.2)

On the other hand

f̃n(x, y,∆ + ∆′)

= f(x, y)− f(x, y + ∆ + ∆′)

= f(x, y)− f(x, y + ∆) + f(x, y + ∆)− f(x, y,∆ + ∆′)

= f̃n(x, y,∆) + f̃n(x, y + ∆,∆′)

Hence

f̃n(x, y,∆′) = f̃n(x, y + ∆,∆′) (7.3.3)

that is f̃n(x, y,∆) is independent of y. This proves (b).
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Step 5. The prove of (c) is similar to the prove of (a). Consider the function

Kn : X[p3n]×X[p3n]× Y [p2n]× Y [p2n]→ H14

defined as

Kn(x, x′, y,∆) = f̃n(x+x′, y,∆)−f̃n(x, y,∆)−f̃n(x′, y,∆),∀x, x′ ∈ X[p3n], y,∆ ∈ Y [p2n]

We first show that for all δx ∈ X[p2n],

Kn(x+ δx, x
′, y,∆)−Kn(x, x′, y,∆) = 0

Pick any y′ ∈ Y [p2n] such that ψn(x+ δx, y) = ψn(x, y′)„ By 4.2.1 and (b),

f̃n(x+ δx, y,∆)− f̃n(x, y,∆)

= f̃n(x+ δx, y,∆)− f̃n(x, y′,∆)

= [fn(x+ δx, y)− fn(x, y′)]− [fn(x+ δx, y + ∆)− fn(x, y′ + ∆)]

= [y2n
13 δ

2n
x,34 + x3n

12 (y2n
24 − y2n

24
′)]− [(y2n

13 + ∆2n
13 )δ2n

x,34 + x3n
12 (y2n

24 − y2n
24
′)]

= −∆2n
13δ

2n
x,34

Hence

Kn(x+ δx, x
′, y,∆)−Kn(x, x′, y,∆)

= [f̃n(x+ x′ + δx, y,∆)− f̃n(x+ x′, y,∆)]− [f̃n(x+ δx, y,∆)− f̃n(x, y,∆)]

= −∆2n
13δ

2n
x,34 − (−∆2n

13δ
2n
x,34)

= 0

Similarly we can show that for δy ∈ Y [pn],

Kn(x, x′, y,∆ + δy)−Kn(x, x′, y,∆) = 0
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hence Kn descents to a morphism

Kn : X[pn]×X[pn]× Y [pn]× Y [pn]→ H14

and together with the compatibility conditions as in 7.3.3 we obtain a function

K := Kn : X ×X × Y × Y → H14

which has to be trivial by the orbital rigidity of p-divisible groups 1.1.1. This proves

(c).

Step 6. The first equation of (d) follows from 5.2.1 and that π(W ) is invariant under the

induced action of G on B.

Let x ∈ X[p3n],∆ ∈ Y [p2n], on one hand, by (b) we have

[pn]f̃n(x, 0,∆)

= f̃n(x, 0, [pn]∆)

(x,0)∼(x,[pn]∆)= − 〈x12,3n, [pn]∆〉3n

=− 〈x12,n, [pn]∆〉n

On the other hand, by (c) and the fact that f̃n(0, 0,∆) = 0, ∀∆ ∈ Y [p2n] we have

[pn]f̃n(x, 0,∆)

=f̃n([pn]x, 0,∆)− f̃n(0, 0,∆)

=(fn([pn]x, 0)− fn(0, 0))− (fn([pn]x,∆)− fn(0,∆))

=− 〈∆13, [pn]x34〉3n

=− 〈[pn]∆13, x34,n〉n
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That is for all δ ∈ Y [pn], xn = (x12,n, x23,n, x34,n) ∈ X[pn], we have

〈δ13,n, x34,n〉n = 〈x12,n, δ24,n〉n

This proves the second equation in (d).

Step 7. Part (e) is a direct consequence of 7.2.1.

Step 8. Let EX,Y as defined in Step 7. Then there exists a morphism T : π(W )→ H14 s.t.

ξW (w) = T (w) ∗ ξEX,Y (w)

where

• ξW : π(W )→ E is the section from π(W ) to E that corresponds to W .

• ξEX,Y : π(EX,Y ) = π(W ) → E is the section from π(W ) to E that corresponds

to WH.

• w ∈W (R) any R point of W for any Artinian local algebra R over k.

By 5.3.1, T is a trivial morphism. That is ξW = ξEX,Y , which is equivalent to W =

EX,Y . As EX.Y is a Tate-linear subvariety by definition, W is also a Tate-linear

subvariety. This proves (f).

Lemma 7.3.5. (Functoriality of Tate-linear Subvarieties) Let H = (Hij)1≤i<j≤4

be a sustained nilpotent linear group of rank 4. Let H1,3 = (Hij)1≤i<j≤3 and let π123 :

H → H1,3 the natural group scheme hommorphism. Let B13 = DefH1,3-torsor. Let H ′ ⊂ H

an admissible subgroup, and let EH′ be the Tate-linear subvariety of E corresponds to H ′.
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Let π1,3(H ′) ⊂ H1,3 and Eπ1,3(H′) ⊂ B13. Then the group homomorphism π123 induces a

morphism

Π123 : E → B13

s.t.

Π123(EH′) = Eπ1,3(H′)

Proof. Left as exercise.

7.4 Proof of Main Theorem

Theorem 7.4.1. (Orbital Rigidity Conjecture 4 Slopes Case). Notation as in 7.0.1.

Let W ⊂ E a closed formal subvariety, reduced and irreducible, let G be a compact p-adic

Lie subgroup of Autsus(E) that acts strongly non-trivially on E. If W is invariant under

G, then W is a Tate-linear formal subvariety of E.

Proof. Let H ′14 = (W ∩H14)red, which is a p-divisible groups by the orbital rigidity theorem

of p-divisible groups. Let π′ : E/H ′14 → B induced by the natural projection π : E → B.

Let W ′ = W/H ′14, where the H ′14 action on W is guaranteed by 6.3.2. By 6.4.6 the map

W ′ → π(W ) ⊂ B is a finite purely inseparable morphism.

Recall B = B13 ×H12 B24. By the orbital rigidity theorem in three slopes case 5.2.1,

both π13(W ) ⊂ E13, π24(W ) ⊂ E24 are Tate-linear subvarieties. Then by 5.5.3 we can find

an homomorphism

L : B → B
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that preserves π(W ) and L|π(W ) dominates π′|W ′ : W ′ → π(W ). That is, there exists

ξ1 : π(W )→W/H ′14 such that π|W ′ ◦ ξ1 = L|π(W )

Consider

E′L := E/H ′14 ×B,L B

H ′L := (H/H ′14)L

where H ′L = ((H ′L)ij)1≤i<j≤4 is the Tate-linear nilpotent group of type A with the same

components as H/H ′14, that is

(H ′L)ij =


Hij (i, j) 6= (1, 4)

H14/H
′
14 (i, j) = (1.4)

but with bilinear pairings induced by L. Then H ′L corresponds to E′L, that is

DefH′L-torsor = E′L

As the compact p-adic Lie group G operates on E/H ′14 and that W/H ′14 is stable under the

action of G, there exists a compact open subgroup

G′L ⊂ G

which operates on E′L, and the natural map h : EL → E/H ′14 is equivariant with respect

the the inclusion G′L ↪→ G. The morphism ξ1 : π(W ) → W/H ′14 defines a morphism

ξ2 : π(W )→ EL such that h ◦ ξ2 = ξ1. It follows that

L ◦ πE′L ◦ ξ2 = π′ ◦ ξ1 = L

Therefore

πE′L ◦ ξ2 = idπ(W )
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In other words ξ2 is a section of the pullback EL over π(W ).

The following graph demonstrates the relations between various maps:

E′L E/H ′14

B B

h

πE′L

L

ξ1ξ2 π′

Moreover ξ2 is equivariant with respect to the action of G′ on E/H ′14. Let

W ′L = W/H14 ×B,L B

the pullback of W/H ′14 by L, and let W ′ξ2
be the subscheme of E′L that corresponds to the

section ξ2. Apparently W ′ξ2
⊂ W ′L. As dim(W ′ξ2

) = dim(W ′L) and both are reduced and

irreducible, we know that W ′ξ2
= W ′L.

The following diagram illustrates above constructions.

(E,H = (Hij), G,W )

(E′L, H ′L, G′L,W ′L) (E/H ′14, H/H
′
14, G,W/H

′
14)

/H ′14

pull back by L

Applying 7.3.4.f). to (E′L, H ′L,W ′ξ2
= W ′L, G

′
L), we conclude that W ′ξ2

⊂ E′L is Tate-linear

subvariety. Hence by 4.7.14 and 4.7.13 we conclude that W ⊂ E is also Tate-linear.
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