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ABSTRACT
ON THE ORBITAL RIGIDITY CONJECTURE AND SUSTAINED P-DIVISIBLE

GROUPS

Tao Song

Ching-Li Chai

The orbital rigidity phenomenon for p-divisible groups was first discovered by Ching-Li
Chai, motivated by the Hecke orbit conjecture. Later, the general orbital rigidity conjecture
was formulated and the second case of this conjecture was proved by Ching-Li Chai and

Frans Oort. In this thesis we prove the third case of this conjecture.
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Chapter 1

Introduction

1.1 The Orbital Rigidity Conjecture: First Example

The first case of the orbital rigidity conjecture is the following theorem proved in [Cha08].

Theorem 1.1.1. Let E be a p-divisible formal group over an algebraically closed field k of
characteristic p. If W is a reduced irreducible closed formal subscheme of X which is stable
under a strongly non-trivial action of a subgroup G of Aut(E), where Aut(E) consists of

all group automorphisms of X. Then W is a p-divisible subgroup of E.

Here the assumption of G acting strongly non-trivially on F means that for every open
subgroup U C G and every pair Y1 C Y5 of U-invariant p-divisible subgroups of E, the

action of U on Y2/Y; is non-trivial.

To better understand how this relates to moduli spaces of Abelian varieties and in which
way we can generalize theorem we need to recall the concept of sustained p-divisible

groups as introduced in |[CO22].



1.2 What is a Sustained p-Divisible Group

In a nutshell, a p-divisible group X — S over a base scheme S of characteristic p is sus-
tained if its p™-torsion subgroup schemes X [p"| — S are constant locally in the flat topology
of S, for every natural number n. For a precise definition, see 2:21]

Let X be a p-divisible group over the base field k, and we define the sustained defor-
mation space of X, denoted by Defq,s(X), to be the subfunctor of Def(X) that consists

of only sustained p-divisible groups. As it turns out:

e Defsus(X) has a natural structure as a smooth formal variety for any p-divisible

groups Xo/k.

e Defsus(X) can be ‘built-up’ from some p-divisible groups together with some bilinear

pairings. Informally speaking, De fq,s(X) possesses some ‘linear structure’.

To get a better sense of the geometry of Defyus(X), let K € N, and let X = [TX, X;

where X; are isoclinic p-divisible groups with slope s;, and assume that s; > s9 > ... > sg.
Case 1. If K = 2, then Defs,s(X) is an isoclinic p-divisible of slope s; — so.

Case 2. If K = 3, then Defg,s(X) can be built up from three p-divisible groups De fg,s(X; X
X;),V1 <i < j <3, and these three p-divisible groups are glued together by a family

of bilinear pairings one for each n € N
<7>n : Defsus(Xl X XQ)[pn] X Defsus(X2 X XB)[pn] — Defsus(Xl X X3)[pn}

See for a precise description. In fact, Defq,s(X) has a biextension structure in

the sense of 3111



Remark 1.2.1. In fact, these ‘linear structures’ on Defs,s(X) generalize the Serre-Tate
coordinates: if A is an ordinary abelian variety over k = k an algebraically closed field of

characteristic p, and X = A[p™>] the p-divisible group of A, then
Defsus(X) = Def(X)

where Def(X) is the deformation space of X. As X has two slopes {0,1}, in this case
Defsus(X) is a formal torus, and this formal torus structure is precisely the Serre-Tate

coordinates on Def(X).

Remark 1.2.2. The definition of sustained p-divisible groups generalizes the concept of
geometrically fiberwise constant p-divisible groups, and helps to illuminate the structural
properties of central leaves, for precise definitions of geometrically fiberwise constant p-

divisible groups and central leaves, see [Oor0j)].

Remark 1.2.3. The definition of central leaves was motivated by the Hecke orbit conjecture.
A special case of the Hecke orbit conjecture says the following: let M be a PEL type Shimura
variety over F,. Let xg € M(F,). Let C(zo) be the central leaf of xo, that is locus of all
points of M having ‘the same p-adic invariants as xo. Then the prime-to-p Hecke orbit

HP) .2y of zg is dense in the central leaf C(x0) containing xo. See [Cha05] for more details.

The notions of sustained p-divisible groups and sustained deformation spaces provide a
connection between and deformation spaces of p-divisible groups when we substitute
the p-divisible group E as in by Defsus(X) where X = X; x Xy with X isoclinic of
different slopes.

Somewhat surprising, this ’orbital rigidity’ phenomenon as described in [I.1.1] seems to

hold in a much broader context. To formulate the general form of [[.1.1} we need to define



a family of special subvarieties of Defs,s(X). This is the notion of Tate-linear formal

subvarieties.

1.3 Tate-linear Formal Subvarieties

Let K e N, X = Hfil X; where X; are isoclinic p-divisible groups with slope s; over a field

k of characteristic p , and assume that s; > s9 > ... > sk.

e As it turns out, we can associate to X a projective system of finite group schemes

st 1 st
Aut (X)—%inAut (X)n

n

where Aut®'(X),, are finite group schemes over the base field k. Moreover, let

DefAutSt (X)-torsor

be the deformation functor of left Aut*!(X)-torsors, then
DefAutSt(X)-torsor = Defsus (X)

o Let H' C Aut®'(X) be an admissible subgroup. For the precise definition of admissible
subgroups see The contraction product that sends each H' torsor I to the

Aut®(X) torsor Aut®*(X) A" F induces a morphism
éHl(—)DefAutSt(X)—torsor : De frtorsors = De f aygst (X)-torsor

Definition 1.3.1. A formal subvariety E' of Defsus(X) is called a Tate-linear formal
subvariety if there exists an admissible subgroup H' such that the schematic image of

®H/‘—>D€fAutst(X> ?:S El'

-torsor



Remark 1.3.2. We give two examples: let X = Hfil X; where X; isoclinic p-divisible

groups with slopes s; such that s > s3... > sk

Case 1. If K = 2, then Defgs,s(X) is a p-divisible group. In this case, the set of Tate-linear

formal subvarieties coincides with the set of p-divisible subgroups of De fsus(X).

Case 2. If K = 3, then Defs,s(X) is ‘built up’ by three p-divisible groups De fs,s(X; X
X;),V1 < i < j <3 and a family of bilinear pairings (,)n. In this case each Tate-
linear formal subvariety is ‘built up’ by certain p-divisible subgroups H{j of De foys( X ¥

Xi),V1 <i < j <3 that satisfy certain constrains given by (, )n.

Remark 1.3.3. Readers familiar with the notion of Shimura varieties might find the notion
of Tate-linear formal subvarieties similar to the notion of Shimura subvarieties: both Tate-
linear subvarieties and Shimura subvarieties come from subgroups (in this case H') of the

bigger groups (in this case Aut®' (X)) that define the ambient spaces.

Remark 1.3.4. One way to obtain Tate-linear formal subvarieties of Defgs,s(X) is to
deform not only the p-divisible group X but also some extra structures on X (e.g. a polar-
ization of X ) in a ‘sustained manner’ See [CO22] especially Chapter 6 for more informa-
tion. This provides an extra layer of similarity between Tate-linear formal subvarieties and
Shimura subvarieties: Let Ay be the Shimura variety corresponding to the symplectic group
Spag, then roughly speaking, each Shimura subvarieties of Ay is the sublocus on which the
restriction of the universal Abelian scheme carries some extra Hodge cycles of given shape,

see [Mum69] for the precise statement.



1.4 The Orbital Rigidity Conjecture: General Form

Now we can state the orbital rigidity conjecture in its general form:

Let K e N, X = Hfil X; with Xj; isoclinic with slopes s; over an algebraically closed
field k of charcateristic p, and assume that s; > s9 > ... > sg. Let E = Defq,s(X), which
is a smooth formal scheme over k. Let G C jzl\ult(E) be a closed subgroup, acting strongly
non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme of F

stable under the action of G. Then W is a Tate-linear formal subvariety of E. Here:

° %(E) is a subgroup of Autscheme(F) that consists of automorphisms of E that pre-

serves certain ‘linear structure’ of E in some sense. For precise definition see [4.4.8

e The definition of a strongly non-trivial action is given in [3.3.1] Roughly speaking, a
strongly-nontrivial action means the following: the action of quJt(E) acts on all the
Jordan-Holder components of De fs,s(X), with each component a p-divisible group.
The action is strongly non-trivial if the action on each component is strongly non-

trivial in the sense of [[L1.11

When X a p-divisible group with two slopes, the conjecture was proved in [Cha08].
When X is a p-divisible group with three slopes, the conjecture was proved in |[CO22].
The main result of this thesis is to prove the conjecture when X has four slopes, that is

the following:

Theorem 1.4.1. Let X = Hf;l X; with X; isoclinic with slopes s; and assume that s; >
S9 > s3> s4 over an algebraically closed field k of characteristicp > 5. Let E = Defq,s(X),

which is a smooth formal subvariety over k. Let G be a closed subgroup of ;l\ujt(E), acting



strongly non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme

of E stable under the action of G. Then W is a Tate-linear formal subvariety of E.

Remark 1.4.2. The actual statement of the main result[{.8.3 is slightly more general than

[Z.4-1.

1.5

Structure of the Thesis

Some key components of this thesis are:

In chapter 2, we collect some basic definitions and properties of sustained p-divisible

groups, following [CO22].

In chapter 3 and chapter 5, we discuss the structure of Defq,s(X) when X = X3 X
X9 x X3 and the orbital rigidity conjecture in this case. This serves as the ’induction

hypothesis’ for the case when X has four slopes.

In chapter 4, we prove the main structural theorem of De fg,s(X) when X = Hle X,
which roughly says that a suitable closed subscheme E,, of Defs,s(X) can be trivial-
ized using some p-divisible groups and several families of bilinear pairings. See
for the precise statement. This result serves as the main entry point of analyzing the

action for Aut(E) on E.

Also in chapter 4, we define the notion of Tate-linear nilpotent groups of type A.
Here the name ’'type A’ is inspired by the notion of simple Lie algebra of type A. The
category of Tate-linear nilpotent groups of type A slightly generalized the category of

projective system of group schemes of the form Auts!(X) where X = Hfil X; with



X, isoclinic. Let H be a Tate-linear nilpotent group of type A, we will show that
Defr torsor POsSsesses geometric structure that is similar to De fsus(]_[fil X;). Hence
we may substitute Defs,s(X) by Defptorsor in the conjecture The upshot is
that this bigger category (i.e. consists of all the Defr torsor) is closed under certain

operations, thus allowing us to perform some reductions.

In chapter 6, we recall the definition of tempered perfection as defined in [CO22].
This is a technique that Ching-Li Chai and Frans Oort used in their proof of the
orbital rigidity conjecture for the three slopes case. The idea is that for each n € N
and certain susbcheme E,, C Defg,s(X), the action of g, € AB(E) can be written
down explicitly for g, sufficiently closed to the identity. Tempered perfection allows
us to 'glue’ this family of information together when we vary n. We show that this
tempered perfection technique can also be used in our case to prove similar results,

in particular theorem and theorem

In chapter 7, we prove that the existence of a formal subvariety W invariant under
G C Zl\u/t(X ) imposes certain Lie bracket conditions, see [7.3.4] Finally, we prove the

main result in [[.4.11



Chapter 2

Sustained p-Divisible Groups

We recall the definition and some useful facts of p-divisible groups and collect some defini-

tions and facts about sustained p-divisible groups as given in [CO22].

2.1 p-Divisible Groups

Definition 2.1.1. Fiz a prime number p, a positive integer h, and a commutative ring R.
A p-divisible group of height h over R is a codirected diagram (G, i,)yen where each Gy, is

a finite commutative group scheme over S of order p* that also satisfies the property that

0= Gy 8 Guy1 2, Guy1

is exact. In other words, the maps of the system identify G, with the kernel of multiplication

by p¥ in Gy41. Note that these conditions imply that
Im(p” : Gyy1 = Guya) = ker(p)

as subschemes of Gyi1.



Remark 2.1.2. We can also define the notion of a p-divisible group over an arbitrary

scheme S. See for example [Mes72)].

Example 2.1.3. Let R be a commutative ring, and let X be an abelian scheme over R of
dimension g, then for each n € N the miltiplication map by p" has kernel X [p"] which is a
finite group scheme pver R of order p?9". The natural inclusion satisfiy the conditions for

the limit lim X [p"] to be a p-divisible group of height 2g.

Theorem 2.1.4. (Serre-Tate Theorem) Let k be a field of characteristic p. Let A be an
abelian variety over k. Let Defq be the deformation functor of A, that is the functor that

sends every artinian local ring (R, m)/k to the set

{(A, @) : A an abelian scheme over R, p: A X, R/m = A xg R/m} / ~

Let A[p™] be the p-divisible group of A, and let Defapee be the deformation functor of

Alp>]. Then there is a natural isomorphism of functors between Defa and Def e

Definition 2.1.5. (Isogeny of p-divisible groups) Let P;, P be p-divisible groups over
a base scheme S. A homomorphism f : Pi — P» is called an isogeny if f is surjective
and that ker(f) is a finite scheme over S. We say two p-divisible Py, Py are isogeneous if
there exists an isogeny f : P — P5. Note that if such f exists, then there exists a isogeny

g: Py — Pr.

Definition 2.1.6. (Isoclinic p-divisible groups) A p-divisible group P over a field

of characteristic p is called isoclinic with slope A € [0,1] N Q if P is isogeneous to another

10



p-divisible Py such that there exists s,t € N with

A=2,
t

ker(Frobp,) = ker([p]p,)

here Frobp, is the relative Frobenius of P;.

Theorem 2.1.7. (T. Zink) A p-divisible group P over a field k. Then there exists natural

number m and a unique filtration 0 = Py C Py.. C P, = P such that
e Fach P; is a p-divisible subgroup of P.
e P 1/P; is an isoclinic p-divisible group over k.
e Let s; be the slope of P;/P;_1, then

1>s51>...>8,>0

such a filtration is called the slope filtration of P.
Proof. See |Zin01]. O

Definition 2.1.8. (Slopes of a p-divisible group) Let P be a p-divisible group over a
field k. Let 0 = Py C Pi.. C Py, = P be the slope filtration of P and s; be the slope of

P;/P;,_1. The slopes of P is the set {s; : 1 <i <m}.

2.2 Sustained p-Divisible Groups

Definition 2.2.1. Let kK D IF, be a field, and let S be a Kk scheme.

11



(i) (Strongly sustained p-divisible groups) A p-divisible group X/S is k-strongly
sustained if there exists a p-divisible group Xo/k such that for every n € N there

exists a faithfully flat morphism Si, — S and an S1,-isomorphism
XO[pn] X Spec(k) Sl,n = X[pn] XS Sl,n

A p-divisible group X — S with the above property is said to be strongly k-sustained

over S model on Xy, and X is said to be a k-model of X — S.

(i) (Sustained p-divisible groups) A p-divisible group X/S is k-sustained if Vn € N

there exists a faithfully flat morphism S, — SxxS and an Sa, isomorphism
(X[p"] x5 8) X5x,5 S2.n =+ (S x50 X[p"]) X5x,.5 S2.n

Lemma 2.2.2. (Slope Filtration of Sustained p-divisible group) Let k be a field of
characteristic p. Let X a p-divisible group over k. Let S an k scheme and X a k-strongly
sustained p-divisible group over S modeled on X. Let 0 = Xog € Xi1.. € X, = X be the
slope filtration of X in the sense of [2.1.7}. Then there exists a canonical slope filtration

0=4& C X1.. C X, =X in the sense that
o Fach X; is a k-strongly sustained p-divisible subgroup of X modeled on X;.

o The quotient X;11/X; is k-strongly sustained modeled on X;11/X;. In fact

Xi+1/Xi ~ Xi—l-l/Xi XRS

Remark 2.2.3. In fact, slope filtration exists when X is k-sustained (instead of k-strongly

sustained). See [CO22] especially Chapter 6 for more details.

12



2.3 Stable Homomorphism Schemes

Definition 2.3.1. (Stable Hom scheme of p-divisible groups) Let k D [F,, be a field
and let Y, Z be p-divisible groups over k. We summarize the definition of Hom®' (Y, Z), the

stable hom scheme between 'Y, Z.
(i) For every n we have a commutative affine group scheme
Hom (Y [p"], Z[p"])
of finite type over Kk, which represents the functor
S — Homg(Y[p"]s, Z[p"]s)

on the category of all k-schemes S. In the rest of |2.3.1| we will shorten the notation
Hom(Y [p"], Z[p"™]) to Hy(Y, Z).
(i) There exist natural restriction map
T'nn+i Hpyi — Hy
and corestriction map
ln+in * H, — Hy4;
and these maps satisfy

(a) Intitjin+i ©lntin = ntitin and Tnn+i © 'ntinti+i = Tnntits fO?" all n, Z,j eN.

(b) Tnnti © tntin = [P'lH,s tntin © Tnnyi = [P,y for all n,i € N, where [p']g,,
denote the endomrophism “multiplication by p'” on Hy,.

(¢) tntjn O Tnntj = Tntjmtitj © bntitjnti for allm,i,j € N.

13



(iii) For any m,n € N, denote by
Im(rnntm : Hoam (Y, Z) — H, (Y, Z)

the image in H,(Y,Z) of the homomorphism 1y nim in the sense of fppf sheaves of

abelian groups.

(a) There exists a natural number ng such that the image
Im(rnnim : Hpem (Y, Z) — H, (Y, Z)
is a finite subgroup scheme of H,(Y,Z) and
Im(rnntm : Hyom (Y, Z) = Hy (Y, Z) = Im(Tnning © Hngno (Y, Z) = Hp (Y, Z)

for all m > nyg.

(b) Let Gpo(Y,Z) == Im(rppntm : Hoam (Y, Z) = H, (Y, Z) for every n € N;m > ng
where ng is defined in part (a). For all m > n, the co-restriction homomorphism

tnm : Hn(Y,Z) = H, (Y, Z) induces a monomorphism
Jnm : Gm (Y, Z) — G, (Y, 2)

Similarly the restriction homomorphism ry, n : Hp (Y, Z) — Hp(Y, Z) induces a
epimorphism

Tmn : Gn(Y, Z) - G (Y, 2)
for all n > m.

(¢) For alln,i € N, the sequence

0= Gi(Y, 2) ™5 Grai(Y, Z) ™8 Go(Y, Z) — 0

14



is short exact, and the composition Jpiin © Tnnti s equal to [Pi]Gn(Y,Z)- In other

words the triple

(GH(Y> Z), jn+i,n> 7Tn+i,n)n,ieN =: Hom’diU(Y, Z)

is a p-divisible group over k, and G,(Y,Z) is the kernel of the endomorphism

[p"] of Homiy, (Y, Z).
Notations 2.3.2. We will use Hom® (Y, Z) to denote the p-divisible group Homg;, (Y, Z).
We collect some properties of Hom® (Y, Z).

Proposition 2.3.3. Let k D F,, be the base field, Y, Z be p-divisible groups over k. We

further assume that both Y, Z are isoclinic with slope sy, sz and of dimension dy,dz. Then
1. If sy > sz, then Hom® (Y, Z) = 0.
2. if sy < sz, then Hom*!(Y, Z) is isoclinic of slope sz — sy .
3. If sy = sz, then Hom*t (Y, Z) is an etale p-divisible group.

Definition 2.3.4. (Stable isomorphism schemes of p-divisible groups) Let S be a
scheme over k D F,. Let Y, Z be k-sustained p-divisible groups over S. We summarize the

definition of Isom® (Y, Z), the stable isomorphism scheme between Y, Z. This definition is

parallel to[2.51]
(i) For every n we have a commutative affine group scheme
Zsom(Y [p"], Z[p"])
of finite type over x, which represents the functor

S — Isomg(Y[p"]s, Z[p"]s)

15



on the category of all k-schemes S. In the rest of 2.3.1] we will shorten the notation

Zsom(Y [p"], Z[p"]) to I, (Y, Z).

(ii) There exist natural restriction map

Tnn+i - In+i — Iy

(iii) For any m,n € N, denote by

Im(rnnim : Inym (Y, Z) = I (Y, Z)

the image in H, (Y, Z) of the homomorphism ry, y4m, in the sense of fppf sheaves of

abelian groups.

(a) There exists a natural number ng such that the image

Im(rn,n—‘rm : In—&-m(y; Z) — In(K Z)

is a finite subgroup scheme of I,,(Y, Z) and

Im(rnnsm : Inem(Y, Z) = LY, Z) = Im(ry pning © Ingne (Y, Z) = 1,(Y, Z)

for all m > ny.

(b) Let Ky (Y,Z) == Im(rppntm : Ingm(Y,Z) — I,(Y,Z) for every n € N and
m > ng. The restriction homomorphism 7y, ,, : In(Y,Z) = I,(Y, Z) induces a
epimorphism

Tmn : Kn(Y,Z) - Ky (Y, 2)

for all n > m.
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(iv) The stable isomorphism scheme of Y, Z, denoted by Isom* (Y, Z) is the projective

System

Isom™ (Y, Z) = limK,(Y, Z)

n

where the connecting morphisms are ry, ,,. We will also use the notation Isom® (Y, Z),,

to denote K, (Y, Z).

Notations 2.3.5. Let X be a p-divisible group over k D IF,,. Then the stable automorphism

scheme of X, that is Isom* (X, X), will be denoted by Aut*(X).

2.4 Sustained Deformation Spaces

We have the following:

Lemma 2.4.1. (Definition and Smoothness of sustained deformation space) Let
X be a p-divisible group over k O F),. The function Defq,s(X) : Art, — Sets, sending each

Artinian local augmented k algebra (S, e) to the set
{(Xs, ) : Xy strongly r-sustained , Xg x. Spec(r) 2 X an isomorphism}/ ~

is representable by a smooth formal scheme. We will denote this smooth formal scheme

again by Defe,s(X).
Proof. For proof see [CO22| Chapter 6. O

Lemma 2.4.2. (Relation between Defg,s and Hom*)
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1. When X =Y x Z with Y, Z isoclinic, then there is a natural isomorphism
v: Hom® (Y, Z) = De fous(X)
2. When there is a exact sequence
0=-Y—=X—=>2=0

with Y, Z isoclinic, then Defs,s(X) has a natural Hom® (Y, Z) torsor structure.

Proposition 2.4.3. (’Kummer theory’ construction of stable Hom to sustained
deformation) Let X,Y be isoclinic p-divisible groups over a field k of characteristic p with
slopes sx, sy respectively and that sx < sy. Let f be a functorial point of Hom*t(X,Y).

Let X x DY be the sustained deformation of X XY corresponding to 1(f) € De fous(X xY).

Then:

(a) Let f € Hom®(X[p"],Y[p"]). Consider the Kummer sequence

0 X[ - x " x 50

and consider the pushout diagram with respect to the homomorphism
f e Hom* (X[p"], Y [p"])

Let X x(BDY be the p-divisible group that fits into this push out diagram, that is

0 X[p"] X X 0
f pr—
0 Y [p"] X xLhy X 0

18



Then

XxBNy ~ X xV/T_;

where I'_y is the graph of —f. This is the coproduct of X,Y with respect to (1, f) :
X[p"] = X XY in the category of group schemes, hence the notation. Note that this
is well defined for f € Hom®(X,Y) = lignHomSt(Xn,Yn), where X, = X[p"], Y, =
Y[p"]. Moreover, if f € Hom*(X,,,Y,,) for a given n. Then

ker(dman : Xntm © Yontm — Ya)
(z,—f(z) 2z € Xp)

(X xBHy)[pm] = (2.4.1)

where ¢pin(z,y) = [p"] - f(2) + [P™] - y.
(b) Given fn+m € Hom* (X pmin, Yman) a lifting f, that is
[pm]fn+m = fa

we can define a morphism \IJ}F by the following diagram:

ngernvyM) = (@mtn, —Fmtn(Tman) + Ym)

Xp™t x Y[p ker(¢min : Xntm @ Yogm — Ya)

[p"]x X idy [(z,—f(x)):z e X,

g
X[p™] x Y[p"] ! (X x D y)[pm]

In fact, this morphism \If’]}"” is an isomorphism of truncated p-divisible groups.
Proof. Part (a) follows from the definition of X x(1/) Y. Part (b) is an easy exercise. [

Definition 2.4.4. Let G be a group value functor on the big fpqc site over a Spec(k) where
k D Fy, a field. We define the deformation functor of G-torsors, denoted by Defa-torsor, to

be the functor that sends every Artinian local algebra (R, m) over k to the set
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{(g,go) : G is a G-torsor over R and ¢ : G xp R/m = G x, R/m}/w

Theorem 2.4.5. (Sustained deformation space and deformation space of Aut®-

torsors are isomorphic) Let X, be a p-divisible group over a field k O TF,. Let

P : DefSuS(XO) = DefAutSt(X)—torsor

be the morphism that sends every functorial point X over an artinian local algebra R
to Isom® (Xo x, R,X). Note that there is a natural left Aut®(Xo) torsor structure on

Isom®(Xg %, R, X) given by precomposing with an element in Aut®*(Xy). Then
(a). ® is an isomorphism of functors.

(b). The inverse of ® can be described explicitly as: for every Aut®(Xo)-torsor T, ®~1(T)

is given by the contracted product with Xy, that is

&~H(T) = Xo x MO T

Proof. See |[CO22]. O
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Chapter 3

Biextension and 3-Slopes Case

In this chapter, we recall the definition of a biextension, then we show that Defg,s(X) is a
biextension when X = H?:l X; with X; isoclinic with mutually different slopes, see
Finally, we construct a ‘trivialization’ of such Defs,s(X) in Note that Mumford
constructed similar ‘trivialization’ for general biextensions of p-divisible groups in [Mum68],

but our method utilizes the moduli interpretation and allows us to generalize to other cases.

3.1 Biextension Basic

We use the following definition of bi-extensions of abelian groups as given in [Mum68|.

Definition 3.1.1. (bi-extensions of abelian groups) Let A, B,C be 8 abelian groups. A

bi-extension of B x C' by A will denote a set F' on which A acts freely, together with a map

F5 BxC
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making B x C into the quotient F'/A, together with 2 laws of composition:

+1: FxgF — F

o : FxXcF — F
There are subject to the requirements:

(a) for all b € B, F}| := nm1(b x C) is an abelian group under +1, 7 is a surjective
homomorphism of Fy onto C, and via the action of A on F|, A is isomorphic to the

kernel of m;

(b) for all c € C,F? := 77Y(B x ¢) is an abelian group under +2, T is a surjective
homomorphism of F? onto B, and via the action of A on F2, A is isomorphic to the

kernel of .

(c) given x,y,u,v € F such that

m(z) = (b1, c1)
7(y) = (b1, c2)
m(u) = (bg, 1)

m(v) = (b2, c2)

then

(z+1y) +2 (u+t1v) = (T +2u) +1 (¥ +20)

Definition 3.1.2. (bi-extensions of group functors) If F,G, H are three group functors
from the category of R-algebras to the category of abelian groups, a biextension of G x H

by F is a fourth functor K such that for every K-algebra S, K(S) is a biextension of
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G(S) x H(S) by F(S) and for every R homomorphism S1 — Sa, the map K(S1) — K(S2)
is a homomorphism of bi-extensions (in the obvious sense). In particular, if F,G,H are

formal groups, this gives us a biextension of formal groups.

Example 3.1.3. Let A be an abelian variety over a field k. Let A be the dual of A. Let
P be the Poincare line bundle over A x A. Let 7 be the total space of P and let Z be the

zero section. Then there is a biextension structure on 7 — Z. This is a biextension of A x A

by Gp,. See [MRMT74] for more details.

3.2 Sustained Deformation Spaces as Biextensions

Definition 3.2.1. Let X = H§:1 X, with X; isoclinic of slopes s; and assume s1 > sg > s3.

Let E = Defgs(X). We will define a free Hyg action on E, that is a morphism
*xp ot H13 xFE—F

which satisfies the axioms of being a His action, as follows: Let e € E(R) and let X
be the pullback of the universal sustained p-divisible group by e : Spf(R) — E, that is
X is a p-divisible group over R that is k-strongly sustained modeled on X. Let fi3 €

Hom* (X1[p"], X3[p"]) for some N € N(R). Let
DCcxCcAXrhCcAxr=4&

be the slope filtration of X where X; are p-divisible groups over R. That is X fits in an
exact sequence

0> >X > X/X—0
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Then there exists M € N with M > N, ¢ € Hom** ((X/X2)[pM], Xa[p™])(R) such that
X =X/X x19) x,
As fi3 € Hom* (X1[p"], X3[p™V])(R) € Hom*t(X1[pM], X3[p™])(R), and that
X /Xy ~ X1 X, R by a natural isomorphism

0= X3 xXx RS Xy — Xo/X3 >0

Let 1o f13 be the composition
Lo fig: X)Xy ~ Xy x, RpM) L% X5 %, RpM] 5 X,

Finally, we define the action of fiz on e by

x5(fiz,€) = X /Xy x(Lotefia) y,
It is easy to verify that this is a group action, and it is clear that

*g(fi13,6) =e < fi3=0

hence the action is free.

Lemma 3.2.2. (Biextension Structure on Defq,(X)) Let X = H?:l X; with X;
isoclinic of slopes s; over a field k of characteristic p and assume s; > sy > s3. Let

E = Defyys(X).

(a). We define a projection map m: E — Defgs(X1 X Xa2) X Defsus(Xo X X3) as follows:
let X € E be a functorial point. Let 0 C X3 C Xy C X1 = X be the slope filtration of

X. We define w by sending X to
X/Xg X XQ € B= Defsus(Xl X X2) X Defsus(XQ X X3>

Then w is a faithful morphism.
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(b). ©: E — B is invariant under the Hy4 action, that is for his € Hi3(R),e € E(R),
m(e) = w(xg(his, €))

Moreover, let @ : E/H13 — B = Hia X Ha3 be the morphism induced by 7, then 7 is

an tsomorphism.
(c). E is a biextension of Defs,s(X1 X X2) X Defsus(Xo x X3) by Defsus(X1 X X3).

Proof. For (a), it suffices to show that for R/x an Artinian local ring, f = (f[s, f35) €
(Hy2[p™] x Ha3[p"™])(R) there exists an faithfully flat cover R’ over R, and e € E(R) such
that

m(e) = fr
We construct e, R’ as follows: let f23 € Hag[p*"](R') for some Artinian local ring R’ faith-
fully flat over R such that

[p ]H23( ) (f23)

Let

For + Xafp"] % Xs[p"] = (Xz x15) Xa)[p"]

the isomorphism over R’ constructed using f3% by the procedure in Let F' be the
composition
7,0) 72
B Xl EE Y Xl x Xalp) (X < X))

Let e € E(R') be the R’ point that correspond to the p-divisible
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then
m(e) = fr
We have proved (a).

For (b), to show that E/H3 ~ Hjs x Hag, it suffices to show that for n € N and

f = (f12, fa3) € (Hi2[p"] x Ha2s3[p"])(R), the set teoretic preimage
7 1(f) € E(R)
is a Hi3(R) torsor. Given e,e’ € 77 1(f) C E(R). Let X, X’ be the sustained p-divisible
groups corresponding to e, e’ respectively. Let 0 C X5 C Ao C Ay =X and 0 C X C X C
X[ = X’ be the slope filtrations of X', X’ respectively. As 7(e) = w(e') = f,
XQ ~ XQI

Let M € N,¢,¢' € Hom*t((X /&) [pM], Xa[p™])(R) such that

X =X/X x19) xy,

X' = X)Xy x19) %,
As 7(e) = w(€'), the morphism ¢ — ¢’ : X/ Xa[pM] — Xs[pM] factors through X3 < X, i.e.

6 — ¢ € Hom™(X/X:[p™], Xs[p™])(R),
*E(¢ - Qb,, 6,) =€

We have proved that 771(f) is a Hy3(R) torsor.

For (c), fix R/k an Artinian local algebra. Let X’ be a k-strongly sustained p-divisible
group over R modeled on X. Let 0 = Ay C X1 C Xy C A3 = X be the slope filtration of X.
The natural projection

T2 - Defsus(X) — Defsus(Xl X X2)
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can be described as sending X € Defgus(X)(R) to Xo € Defsus(X1 x Xo)(R). Then we

have a natural extension of p-divisible groups
0— Xy — X —X/X—0

that is

X € Ext! (X /X, X)(R)

thus the Baer sum structure on Ext group induces an relative group structure on De f,s(X)
with respect to the projection map 2.

Similarly, we have another relative group structure induced by the Baer sum on
Ext! (X, X /X))
with respect to the projection map
o3 Defsus(X) = Defous(Xa x X3)

Now it is an easy exercise to check that these two relative group structures satisfy the

axioms as defined in B.1.11 O

3.3 Strongly Non-trivial Action

We collect the definition and some basic properties of a strongly non-trivial action, see [CO22]

Chapter 7 for proofs and more details.

Definition 3.3.1. Let X be a p-divisible group over a field k D F,,. Let k be an algebraic
closure of k and let Xy, = X X, k. Let G be a finite dimensional p-aidc Lie group. Let W (k)

be the Witt ring of k and D.(Xy) the covariant Dieudonne module of Xy. A continuous
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homomorphism p : G — Aut(X) = End(X)* of G on X is said to be strongly non-trivial

if the associated W (k) ® Q-linear representation
dp : Lie(G) = Endw ()eo(D«(Xk)q)

of the Lie algebra of G on D.(Xy)q does not contain the trivial representation of Lie(Q)

as a subquotient.

Remark 3.3.2. In the notation of [3.5.1, a continuous homomorphism p : G — Aut(X) is
strongly non-trivial if and only if there exists a finite number of finite sequences (wj 1, ..., Win,)

in Lie(G), fori=1,....,7 and n; > 1 for all i, such that

Z dp(w; 1) o dp(wip,) € EnclO(X)X
i=1

Definition 3.3.3. Let X = Hle X; with X; isoclinic of slope s;, and assume that s; >
sy > s3. Let Hi; = Hom*(X;,X;),V1 < i < j < 3. Let E = Defss(X), which is a
biextension of Hia X Hag by Hiz. Let G C Autpi—ert(E) be a closed p-adic subgroup. We
the action of G on E is strongly non-trivial if the induced action on each H;j is strongly

non-trivial, in the sense of[3.3.1], for all 1 <1 < j < 3.

3.4 Mumford’s Trivialization

Definition 3.4.1. Let X = X1 x X9 X X3 a p-divisible group over a field k of characteristic p
with X; isoclinic. Let s; = Slope(X;) and we assume that s; > so > s3. Let E = Defq,s(X).
Then E has a natural structure as a biextension of Hom*' (X1, X2) x Hom* (Xs, X3) by

Hom® (X1, X3), as described in . Denote by

Hz'j = HomSt(Xi,Xj),Vl <i<ji<3
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see [2.3.1] and [2.3.4 for the definition of Hom®. Let m : E — Hyo x Hog the natural

projection. Let E, = n~1(Hia[p"] x Has[p"]). We will define a morphism
¥ : Hio[p"] x Has[p™™] x Hiz = By,

as follows:
Fiz R/k an Artinian local ring. Let f = (f1y, f33, f1s) € (Hia[p"] x Has[p*"] x Hy3)(R).

We will write down an element of E(R) using f in the following steps:
(a) given f3 € Has[p*"](R), denote ffy = [p"] f3§
(b) By. (b), we can construct from f2% an isomorphism of truncated p-divisible groups

Wi+ Xo[p"] x X3[p"] = Xo xf23 X3

(¢c) Let F = ( ) o (f1y, f14) be the morphism from X1[p"] to (X2 x/ X3)[p"] given by

n
33
the composition

n

POt n e I n
Foxy VI x,0m x X 22 (X < X)) p] (3.4.1)

(d) Given F', we can define a point in E(R), denote it by Xy, by

Xf = Xl X(LF) (X2 X(Lfgﬁl) X3)

(e) We can now define a morphism

Un : Hia[p"] x Has[p*"] x Hyiz[p"] — En

by sending f to Xy.
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(f) It is easy to check that vy is Hi3[p"] equivarient, in the sense that if f{5' € His[p"]

another functorial point, then

(i, 35, fis + i) = *p(f15' ¥ (f))
where xp corresponds to the Hyz torsor structure on E, see[3.2.1].

(9) Now we extend the source of vy, from Hyz[p"] x Has[p*"] x Hiz[p"] to Hia[p"] x

Has[p*™] x Hyz by

Un((f1o, 35, F13)) = *5(fiz, Ya((fi, £35,0))

for fi3 € Hiz a functorial point.

Remark 3.4.2. We will refer to v, as Mumford’s trivialization, as Mumford constructed

similar morphisms for biextensions of p-divisible groups in [Mum6§].

Theorem 3.4.3. Notation as in|3.4.1. Let f = (fIy, f3%, f13) and f' = (f1Y/, f&%', fi5) be
two functorial points of Hyz[p™] x Has[p?"] x Hi3. Let E,, C E and )y, : Hy2[p"] x Hag[p*"] x

Hi3 — E,, as defined in[3.4.1. Forn € N, Let
(:)n : Hio[p"] x Has[p"] — His[p"]
the bihomomorphism given by
(fia: f33)n = f33 0 fls € Hiz[p"] = Hom™ (X1[p"], X3[p"])

for all 1y € Hya[p"] = Hom® (X1, X2)[p"], f3 € Has[p"] = Hom® (X2, X3)[p"] both func-

torial points. Then:
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(a). (Gluing Data) ¥, (f) = ¥n(f') if and only if
iy =1 " 135 = "] /38
fiz = fis = (T, 135 — [ )n
(b). The morphism 1, is faithfully flat.

Proof. For (a), as 1, respect the His torsor structure, see [3.2.1{f)(g), it suffices to prove
(a) under the assumption that fi3, f{5 € Hi3[p"]. Let F, F’ as in[3.2.1{d) that corresponds
to f, f’ respectively, that is

Un(f) = X1 x ) (X x(1133) X3)

Un(f) = X1 o (LF) (X w« (1,f35) X3)

then ¢, (f) = ¥n(f') < F = F'. By[3.2.1c), we have the following diagram that defines

F:
(23", a%) — (x3", fo5(x3™) + %) ®
Xo[p?] x Xalp"] ker(Xalp®] x Xs[p?] 2% Xy[pm))
[pn]le X idH23 7Tf2n3
X Xo[p"] x X3[p"] - (Xg x(115) X3)[p"]
(f1n2’ anS) W,
where

o O, : Xo[p?"] x X3[p*™] — X3[p"] is defined as sending (23", x3") to fiy([p"]z3") —

p"|x2", for 23" € Xo[p?], 23" € X3[p*"] both functorial points.
3 2 3
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o mpn : ker(Xs [p?"] x X3[p*"] LN X3[p"]) = (Xo x(1F35) X3)[p"] the natural projection

map, see [2.4.3]

e 12" is a p" root of x5.

We can similarly write down a diagram for F’. Now an easy diagram chasing shows that
2 2n/
F=F < fis— 5= (235 — 33 )n

We have proved (a).
For (b), first we note that the morphism 1), is Hy3 equivariant, by f)(g). By ignoring

the Hi3 component, 1, induces a morphism
U : Hia[p"] X Hys[p*"] — En/His ~ Hia[p"] x Has[p"]

and it is easy to check that ¥, = idpy,, X [p"]H,s, SO ¥y, is faithfully flat. Hence 1), is also

faithfully flat. O
Corollary 3.4.4. Notation as in|3.4.3 Then for each n € N, the morphism

([pn]le 7id7id)
—

Un.homo * Hia[p*™] x Hoz[p*"] x Hiz Hio[p"] x Has[p®™] x His A

is faithfully flat, and for f = (f73, £33, f13), f' = (f15', [35", f13) € Hi2[p*"] x Haz[p*"] x H13,

¢n,homo(f) = ¢n,homo(f/) —

i = fi3' € Hulp"l, f35 — £33 € Has[p"] and fis — fig = ("1 f75, £33 — f35")n

Proof. Obvious. O
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Chapter 4

Tate-linear Nilpotent Groups of

type A and 4-Slopes Case

In this chapter we first prove a similar result to for the case when X = [, X; with X;
isoclinic with mutually different slopes. Then we define the concept of Tate-linear nilpotent

groups of type A.

We first set up some notation used throughout this section.
Notations 4.0.1. (Set up of Sustained Deformation Space 4 Slopes Case)

o Let X = H?Zl X; be a p-divisible group with 4 slopes over a base field k of characteristic

p, here each X; is isoclinic with slope s; and we assume that s1 > sg > s3 > S4.
e Let E = Defgus(X), which is a smooth formal scheme over k by[4.4.6
o Let B = Defsus(Xl X X2 X X3) XDefsus(XQXX3) Defsus(XQ X X3 X X4) Note that both

Defous(X1 x Xo x X3) and De fqs(Xo x X3 x Xy) are biextensions.
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o Let Hiy = Defss(X1 x X4) a p-divisible group.

o We will show that E has a natural Hy4 torsor structure and E/Hyy ~ B in|4.1.1. Let

7 : E — B the projection map as defined in[{.1.3

We will define for each n € N a subscheme E,, C E and B, C B that fit into the

following diagram.:

C
E, E
m us
-
B, B

To define E,, and By, we need the following notations/facts:

(a) Let H;; := Hom®(X;, X;) = nHomSt(Xi[p”],Xj[p"]) ~ Defous(Xi X X;),Vi < j. We

denote by HJ: := H;;[p"]. For all1<i<k<j<K andn €N, let
(, Jikjn + Hir[p"] x Hyj[p"] — Hij[p"]
the bilinear pairing given by composition.
(b) Note that Defs,s(X1 x Xo X X3) is a biextension, same is Defg,s(Xo x X3 x Xy).
(¢c) Forn €N, let P13, : HYy x H2} x Hiz — Defaus(X1 x Xa X X3)y
be the trivializations defined in m Denote by B3 := Defgus(X1 x Xo x X3),
B3 = img(y]y). For n,m € N, denote

Bisnlp™] := 13 (Hiy x H3Y x H{3)

Similarly let 1/}24,71 : H22§L X H§L4 X H24 — Defsus(XQ X X2 X X4), and BQ47 B24?n and

By n[p™] are similarly defined.
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(d) With these notations B = B13 X i,, Boa. We define
B, = BlS,n[pn] X Has B24,n[pn]
which is a finite subscheme of B. Let

E, =n"1(B,)

_ n n 3n 2n 2n
An — H172 X H173 X H174 X H273 X H3’4 X H274

4.1 4-slopes Case Basic

Definition 4.1.1. (Definition of the Hy4 torsor structure on E) Notation as in|4.0.1}

We define an Hiy4 action on E = Defg,s(X), that is a morphism
*xp ot H14 xFE—F

as follows: let R/k an Artinian local ring. Let N € N and h1y € Hya[pV](R). Let X be a

k-strongly sustained p-divisible group over R modeled on X, that is X € E(R). Let
OocxXyicXs3CcxhCcXx=4x

be the slope filtration of X. We have a short exact sequence

02X >X > X/X—0
Then there exists M € N with M > N and
F € Hom(X/Z[p"], Xa[p™])(R)

s.t.
X = X/XQ X(l’F) XQ
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Let

wa = Xa[pM] = Xy [p™]
the natural embedding. As
Xy~ Xy xXx R
X)Xy~ X1 xg R
the element
hia € Hom* (X1 [p™], X4[p"])(R)
C Hom™ (X1 [p"], X4[p"])(R)

C Hom(X1[pM], X4[pM))(R)

gives rise to an element

hig : X/ X[pM] — Xy[p™]

let

iar 0 hig s X)X [pM] = X pM]
and we define the torsor structure

*E1H14><E—>E

sp(hig, X) i= X)Xy x WFFarchi) x, ¢ B(R)
It is easy to check that this gives rise to an action of Hi4 on E, and as
#p(hi, X) =X < iyyohyy < hiy=0

this action is free.
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Remark 4.1.2. The definition of the Hy4 action on E is a complete analogy of [3.2.1]

Lemma 4.1.3. Notation as in[4.0.1 Then the following statements hold:

(a). Let m: E — B be the morphism defined as follows: Fiz R/k an Artinian local ring.
Let X € E(R), that is X is a p-divisible group over R strongly sustained modeled on
X. Let

OocxXycxs3CcXhcCcXx=4x
be the slope filtration of X. Define w as sending X to
X1/ X3@ X, € B(R) = De fous(X1 X Xo X X3) X Def, (X2 x X5) D fsus (X2 X X3 x X4)(R)
Then 7 is faithful.

(b). Let 7 : E — B as in (a). Then m is invariant under the Hy4 action. That is
w(xg(hia,e)) = w(e) for all h1a € His(R), E(R). Moreover, let © : E/H14 — B the

morphism induced by w, as w is Hi4 tnvariant. Then 7 is an isomorphism.

Proof. The proof is entirely parallel to [3.2.2(a) and (b). O

4.2 Coordinates in 4-slopes Case

The main goal of this section is to prove which generalizes Mumford’s trivialization
of biextensions as described in [3.11
The main result in this section is We first give a comparison between the result

in and Mumford’s trivialization of biextensions given in [3.4.3]in the following table:
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F = Defsus(l—[?:1 X;) a biextension E = Defqys (szl X;)
Hi2, H23, Hi3 p-divisible groups H;;,1 <1< j <4, p-divisible groups
m: F — Hi2 X Ha3 projection 7w : E — B projection
F,.CF E.CFE
m(Fn) = Hiz[p"] x Has[p"] T(En) = Bn = Big,n[p"] X >3 Baa,nlp"]
Yn + Hi2[p"] X Haz[p"] x Hiz — F,,¥n € N Yn 1 A = Ep,Vn €N
FnCFoq1,Fn=F E,.CEwt1,En=FE
gluing data of v, as in|(3.4.3 gluing data of 1, as in|4.2.1

Table 4.1: Comparison between two trivializations

Now we state the main result of this section:

Theorem 4.2.1. Let A,, E,, as in|4.0.1.(d). Then there exists a morphism vy, : An, — Ey,.
Moreover we can write down the gluing data for iy: let f = (fij), [/ = ( {J) € An(R) for a

fixed Artinian local k algebra R/k. then 1, (f) = ¥n(f') if and only if

fly = Fio, 15 = 15, o = 13, (4.2.1)
Fis — fis — (3 — [, 1) = 0, (4.2.2)
foy = o — (o e — f30Y, =0, (4.2.3)

fla = S = (30 = 30 s + (=38 = S35 + (F30 S35 — S35 )ons fla)n = 0 (4.2.4)
Proof. We use the following notations/facts:
(a) We fix R/k an Artinian local ring.
"]

(b) We use z' to denote an element in X;[p"] and f]} to denote an element in H;;[p"].

(c) We have natural bilinear pairings
< Zikjn: Hig[p"] X Hyj[p"] — Hij[p"]
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given by compositions. These bilinear pairings will sometimes be denoted simply by

o when it’s clear from the context.

We will define a morphism v, : A,, = E,. The idea here is pretty simple: we use [2.4.3

to construct a trivialization of (X7 x X x X3 x X4)[p"] one component at a time.

(a) Let
(w35,)7 (fasfoa)
g (X xT3 X3)[p?] —2— (Xo x X3)[p?n] 222, xIn (4.2.5)

where (¥22,) : (X9 x X3)[p?"] — (X2 xf2 X3)[p?"] an isomorphism as defined in

I3

5.4.3(b).
(b) Given g?" we can define
Ul : (Xo xT3 X3)[p"] x Xa[p"] — (X2 x5 X3) x9" X4)[p"]

by [2.4.3] here

n

9" = [P"19"" = ¢*"|n-th tevel (4.2.6)

(¢) Given
22?:Z = [pn] gi? = f§)§Z|2n—th level

once again by we can define
Whan X i, + (X2 X Xa) "] = (Xo x5 X)p")
(d) Denote by
F =W, o (Vs x idx,) : (X2 x X3 x Xg)[p"] = (X2 x5 X5) x9" X4)[p"]

(e) Let
Fo=(ffy f5 f10) o F : X1 — (Xo x5 X3) 9 Xy)[p"] (4.2.7)
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(f) To summarize, we have the following diagram.

Jio X fi5 X fiy
X7 (X2 x X3 x Xq)[p"]

U, x idy,
23

(X x 735 X3)[p"] x X4[p | F

(X35 X5)[p") X9 Xa[p"]
(g) finally we define v, by sending f € A, (R) to
Xp =X xF [(Xy x5 X3) x9 X4)] € En(R) (4.2.8)

We then get rid of the restriction fiy € H{'4 using the Hj 4 torsor structure on E.

This finishes the definition of v, : A, — E,.

To write down the gluing data: let
fof' € An(R) = (Hiy x Hi'g x Hi'y x H3% x Hilj x HY%)(R)

Let

(F,g*™), (F',, g

be the data we used to construct Xy, X/, see 4.2.5 [4.2.6| and [4.2.7, Then

Xp=Xp &= F=F ¢g"=g" f3=f
Note that the conditions
g"=g" 7f2n3 = f2n3
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are precisely the conditions forX s, X to be isomorphic after modulo the slope filtration
corresponding to X;. In other words, let ma4 : E = Defqus(X) = Defous(Xo x X3 x X3)

then

! !
9" =g", f35 = f3
! ! 2 2/
> fos = fa3, f34 = f3u, fou — f24 = fag o (fa3 — f33")

= mau(Xy) = ma(Xpr)

Now we write down the condition for F' = F”.
We adopt the following notation, if X a p-divisible group and z" € X|[p"], then z™ is a

lifting of 2™ to X [p™] for m > n.

By we have

ker(ker(X371:><X3")—>X3 x X2 5 X27)
(X2 x5 X3) x9 X,][p"] = . (4.2.9)
_g‘ﬂ

Let " := f{*(«7"),Vi € {2, 3,4}, then the morphism

F:X1p"] = (X2 x72 X3) x9 X4][p"]

defined in can be described as:

Fiaf = @ = file)hepan — @3 ad = ), af - 563 - 3 @)

where (237, 23" — f30(237), 2 — f37(23") — f27(23")) is understood as an element in the
right hand side of

Now the it’s a matter of elementary algebra to write down the conditions for F = F” :

F=F' mod X3, X, < fi2 = [la
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which is the first equation of [£.2.1] We can similarly derive the other two equations of [£.2.1]
F=F mod Xy <= (25" —w3" af — ' — f35(23") + f33"(23")) € Ty,
or equivalently,
a3t — a3V = (fi5 — [5") (1) € "), (4.2.10)
—fay (23" — a3") = af — 2} — f35 (23") + f33 (23") (4.2.11)

Rewrite the RHS of 4.2.11] as

n n/ 2n( 2n 2n/) ( 2n 2n/)(x2n/)

L3 — X3 — Jaz (T2 L 23 — J23 2

and notice that
2n(..2 2 2
55 (23" —x3") = f23( —a5")
as 73" — 23" € [p"] and f3} is a lifting of f, equation [4.2.11| becomes
i —af — (f3 — f33)(=5') = 0
i.e.
I = 11 = (5 = f33") o fls =0
which is precisely the second equation of Here we use the fact that
2n(,.2 2n/(,2 2 2
2§L(372m) - 2:?/(952”/) = (fa3 — 2:?/)(955”)

where the element (23 — f2#') is understood as in Haz[p"]. We can similarly derive the

third equation of

Finally, after unwinding definitions, we have F' = E” if and only if

/

/
o — o — (RN - JE @A) - (B3 — B (a3)

= — foa(a3" —2§") — fos(23" — 23" — [ (23") + [ (23")
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after some reorganization together with the fact that x* = f7(z7"),Vi € {2,3,4} this is

precisely the last equation of [£.2.I] We have proved this lemma. O
Lemma 4.2.2. (Basic Properties of 1, ) Notation as in|4.2.1].

(a). Let % be the trivial Hyy torsor structure on A, = HY 9 x Hi'sx Hy 4 % Hg’% X Hgﬁ X HQQZ
Let F,, be the schematic image of v¥,. Then % descents to a Hi4 torsor structure on

F,, which we denote by %, , that is

g Hig X F, = F, a torsor structure

and the diagram

H14 X An * An
Z.dH14 X 1/13 1/13
*Fn
Hiy x F, F,
Z'dH14 X Pn Pn
*En
H14 X En En

where

e p,: F, — E, the embedding morphism.
e xp the morphism corresponding to the Hi4 torsor structure on E,.

o % is the morphism A, — F, corresponding to v, as Fy, is defined as the

schematic image of Y, .

(b). The following diagram commutes:
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1 1 3(n+1 2(n+1 2(n+1 wn—i—l
A1 =H{'3 < H'S ><H174><H2( )><H3’(4 ) % g2nth

3 2,4 —— b

% =

Hp'y x H'y x Hyg x HY5 x HZE s HZ7H Yo Ent1

idHlZXH13 X [pn]H24><H34 X [an]H%* -
Ay = H}'y x Hi'g x Hyg x H3% x H3y x H3'} ¥n E,

(c). Let Big = Defsus(X1 x Xo x X3) and Bay = Defsus(Xo x X3 x X4) both biexten-

sions. Let Y13 n, V24.m, Bi3n[p"], Boan[p"] and By, as defined in|4.0.1(c),(d). Then the

following diagram commutes:

Un
An = H7'y x H'g x Hyy % Hgg X H§f}1 X H%j}1 E,
T4 m
HTo x HP. x H3% x H2" x H2" Yn B
1,2 1,3 2,3 3,4 2,4 n

idHlQXHIB X [pn]H23><H24><H34 =

) V13,0 @ Hay V24,0
Hia[p"] x Haz[p™"] x Hi3[p"| x Hsa[p™] x Has[p"] B

where

e T4 is the natural projection.
e 1, is the natural morphism induced by 1,.

® Y135 @Hys V240 5 the tensor product of Y13, and a4, over Hoy.

Proof. Proof of (b) and (c) is left as an exercise. We now prove (a).
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It suffices to show that

Pn © Pp 0% = %p, O (ide X pn) © (idH14 X an)
OJ

Let hiy € Hua[p"], f = (f1% 38, f37, £, f30, f14) € Ap, both functorial points over
the same Artinian local algebra R/k. Recall that in starting from f we constructed

F, F \P”Qn, g gQ” \II”Qn that fit in the diagram:

Jio X fi5 X fiy
X7 (X2 x X3 x X4)[p"]

U, % idx,

(X2 x T3 X3)[p"] x X4[p|F

(Xo x5 X3)[p"] x9m Xy[p"]
Note that the vertical sequence of the diagram does not depend on the fi component.

Now by definition
¥(ha, £) = (1o, f35, F31, flss f32, i + B

Let F', F' \11}‘2”’, W7, be the morphisms correspond to *(hua, f) = (f1b, S f3n, I, 13, A+

h1y). Then we have

F=F
hence
F_F = (0,0, fi4 — (fra + h7114))X{l—>(szX3><X4)[P"} oF
Let

23 : (X2 ><f513 Xg)[pn] x In X4[pn] — X2 ><f£13 X3>[pn]
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the natural projection, then it is easy to see that the composition
Xap"] = (X x X3 x Xa)[p"] - (Xo x5 X3)[p"] x9 Xu[p"] 228 (X5 x T8 X3)[p"]

is the trivial morphism, and that the following diagram commutes

Xalp"] === (X x X3 x Xy)[p"]

then the morphism F — F”, as a morphism from X [p"] to Xo x /35 X3)[p"] x 9" X4[p"], factors

through X4[p"] < (X2 xf35 X3)[p"] x9* X4[p"]; As a morphism from X1[p"] to X4[p"],
F—F =\ — (fia + hia)" = —hl,
This means precisely that
pn © Uy 0 %(hTy, ) = *p, © (idmy, X pn) o (idr,, X tn)(h1y, f)
by the definition of Hi4 torsor structure on E,,, see We have proved (a).

Theorem 4.2.3. Notation as in[f.2.1. The morphism 1y, : A, — E,, is faithfully flat.

Proof. By (c), we have a commutative diagram

Un,
ATL E’I’L
@j B lw
HP x HP. x H3% x H2? x H2" Yn B
1,2 1,3 2,3 3,4 2,4 n

where

o mig: Ap — Hi'g X Hi'g X Hg”é X Hg’}l X H%Z is the natural projection.
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o U : Hiy x Hi'y x H3% x H3% x H3y — B, the morphism induced by 4. ¢y is

faithfully flat by (c).
e v, is Hy4 equivariant by (a).
Hence 1, is faithfully flat. O

Corollary 4.2.4. Recall E,, is a Hi4 torsor over By. Denote by [p%M]*En the contraction

product induced by [py, ], that is
"]
[p?{M]*En = Hyy /\H14 — Hha E,

By definition [pf; |+ En is also a Hy4 torsor over By,. Then [pyy,, |« Ey is a trivial Hy4 torsor,

that is [pY, |«En = Bn x Hg.
Proof. By E, can be trivialized by
A, = Hp'y x H{'3 x Hi4 x H3% x HJ} x H3"}
with gluing data lies in HT, therefore [p"]. E,, can also be trivialized by
H{y x Hi's x Hy4 x H3'% x H3' x H3';
with gluing data in [p"]H{'y = 0, i.e. [p"]«Ey is trivial, i.e. there exists an morphism
Tean : By x Hiy — [p"]+Ey
O

—1
Tcan

Corollary 4.2.5. Let n, : E, — [p"]«E, == B, x Hyy P Hi 4 where E,, — [p"]«E is

the natural map induced by [p"|m, ,. Then

M1l B, = [PlHy. © MnlE, (4.2.12)
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Proof. An easy corollary of 4.2.2(b). O

We rewrite the trivialization as in [4.2.1]in a more homogeneous way.

Corollary 4.2.6. Let
Ap = (Hig x Haz x Hz4)[p*"] x (Hi3 x Hog)[p*™] x Hig,

let

" = ([pQR]H12’idH23> [pn]Hszu [pn]H13vidH24vidH14) t A, — Ay

the natural morphism. Then the morphism

Y homo = 0y, + Ay — Ep
1s faithfully flat and finite, as both 11,, and v, are. Moreover, for
f= (5, F35, 130, F15 130 Fua), F = (R, £33 30, A58, 32 Fla) € An
U homo(f) = Y, homo(f')

if and only if

! ! !
fia = f1a, f35 = f35, 34 = f3u,
2 2n! 3 3n' 3
13?— 1:? —< 2§1—f2§L, 12n>3n:0a

2n 2n’_< 3n 3n 3n’> -0
24 24 345 J23 23 /3n — Y

’ ’ ’
Fra = Fla = (30 — F30 5 an + (= (F2 — f30) + (f30, £33 — J35 )an, fi3)3n = 0

here we adopt the following notation: supscript means level in the corresponding p-divisible

k

group, i.e. f is an element in H,j[p*]; If m < n and fis € Hyj[p"], then fI7 = [p" " |f]

ij

which is an element in H;;[p™].
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Proof. An obvious corollary of [£.2.1] O

Remark 4.2.7. The coordinate system in[[.2.6 has the following advantage against [{.2.1):

all the bilinear pairings involve are at level 3n, and the level of f;; only depends on j — .

4.3 Trivialization of Universal Torsors

Notations 4.3.1. We use the following notations in this section:

(a) X = Hfil X; be a p-divisible group with X; isoclinic of slope s;, and that s1 < sg2.. <

si. Here K € {3,4}.
(b) E = Defsus(X) = DefAutst(X)-torsor
(c) Auts'(X), = Auts'(X[p"]).
(d) H;; == Hom*"(X;, X;), Hp = Hom*'(X;, X;)[p"].
(e) Let X be the universal sustained p-divisible group over E and let X, := X[p"].

Lemma 4.3.2. Following the notations as in and let K = 3. Let vy, : HY x H x

Hi3 — E, be Mumford’s trivialization. Denote by
En[p"] = ¢ (Hiy x HY x HT)

Let ¢,, be the following morphism:

oy, (Bl P13 P )

b+ HEY x HYY x HY o Hyy x HY x Hiy 2 E,[p"]

Then X| g, ) X B, pe],e, (Hiy % H35 x Hi) is isomorphic to X[p"] x (Hig x H35 x Hg).
That is the Xy | g, [pn) can be trivialized when pullbacked to HE x H3% x H by ¢y,. Moreover

we can compute the gluing data of this trivialization.
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Proof. Fix a Artinian local k algebra R. Let
f=(fis, 35, i) € (Hi3 > H3y x Hi5)(R)

As ¢n(f) € En[p"](R), let

X5 := Xl Ron(r)

We now trivialize Xy by the following steps:

1. We first define a morphism Fb, as in the following commutative diagram:

S5 = fy
X1[p*"] Xo[p?"] x X3[p*"]

(Xa x5 X3)[p™"]
Define F), as the restriction of F), to X;[p"], that is

Fy = [p"]Fay : X1[p"] — (X2 x 735 X3)[p"]

2. We can show that

Xy = Xu[p") x ™ (X x5 X5)[p")
This part is left as an exercise.

3. Recall the construction ¥ as in 2.4.3] then

\Il;:én 1dX1 R )

n ( n
Tf = (X1><X2><X3)[pn] = Xl[pn]X(XQXf23X3)[pn] _)an X1><F”(X2><f23X3)[pn]

(4.3.1)
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is an isomorphism between (X x X5 x X3)[p"] x R and Xy. As these constructions

are functorial, we obtain a morphism

T : (X1 % Xox X3)[p"] X g, [p], (HE < H3Y < HE) — X<, "], 6m (H? < H39 x HZY)

To write down the gluing data, consider another element f' = ( 122"/, g’g’, 123?/) such that

we can similarly define T/, and the gluing data between f and f’ is

T;' o Ty € Aut™ (X [p")

some tedious computation similar to [£.2.1] shows that

2n 2n/ 2n 2n' 3n 3n' r2n
L fig — fis i3 — fis — < [35 — [35", fia’ >on

-1 ’
TproTr=10 1 55— 3%

0 0 1

note that as ¢, (f) = ¢n(f’) we have
fs = fis+ < 35 = F35 . [y >n=0
hence szl o Ty is an element in Aut® (X [p"]). O
Lemma 4.3.3. Notations as in[{.3.1 and let K = 4. Let 1y, : A,, — E,, be as in[4.2.1, and
(IPh, Di<i<i<a U

bn s HE x HE x Hyy x Hyt x H3p x HSY"— 7 A, “% B,

and

Enlp"] == ¢u(Hi5 x HY§ x Hij' x Hyf x H3j > H3})
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Then
4
Xl Bolpn) X Bafpr) g (His X Hig x Hip x HyP x H3P x H3p)
s isomorphic to

X[P"] X g pr)en (His x Hig x Hif x Hyy x Hip x H3Y)

Moreover, we can compute the gluing data of this trivialization. This result is an analogy

of [33

Proof. We sketch the proof, as the proof is pretty similar to

Given

f_( 2n  g2n p2n pdn  £3n 3n)
- 12->J13>J14-J23 5 J24 5 J34

r_ ( 2n'  p2n’  2n'  p4n’  p3n’ Sn’)
f_ 12 »J13 »J14 »J23 »J24 »J34

both elements in (HZ x HZ} x Hyy x H3% x H3Y x H3})(R) for some fixed Artinian local

ring R such that ¢, (f) = ¢n(f’). Let
X = Xpr = Xalrg(p)
Using f, f’ we can write down T, Tj both isomorphisms
X[p"] — Xf
in a similar way as in and we define
h=h(f,f") = (hij)axa = T;" o Ty
h is an element in

AutSt(X)n = {(hij)@j, ]’Lij S Hij[pn] V1 > 7 <j < 4,hiz‘ = 1,hij =0Vi > j}

52



Now similar computation shows:

hio = fi3 — fi5" hos = f35 — [35 s haa = f37 — f37 (4.3.2)
/ 3
his = f3 — 2~ < 35— fay), 1B >an, (4.3.3)
2 2n’ 3 3 2
hoa = foi' — for — < fai' — f22]>fgf >on; (4.3.4)

hia = fi = fii — (f30 = f50) o JT + [=(F35 — f30) + f3i o (fag — foi )] o f75 (4.3.5)
O

Remark 4.3.4. As a byproduct, X = Hle X a p-divisible group over a field k/F), with X;
isoclinic, we can use the above gluing data to write down the universal sustained deformation

of X over E = Defs,s(X). That is, at nth level, we start with the trivial
Ap x X[p"]

and use y, as define in[{.2.1] and the gluing data as in[.3.3 to obtain a ’truncated sustained
p-divisible group’ over E, = ¥n(Ay). Let n — oo we obtain a sustained p-divisible group

over k modeled on X owver the base E.

4.4 Tate-linear Nilpotent Groups of type A

In this section we extend the category of projective systems Aut(X) = @AutSt(X In
where X = H;l:l X p-divisible group with X; isoclinic of slopes s; and s1 < s92 < s3 < 84 to
a slightly bigger category.

In the following discussion, we use H;; to denote a p-divisible group. In particular, we

are not assuming that there exists X;, X; s.t.

Hz'j = Defsus(Xi X Xj)
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Fix K € N. Let H;; be p-divisible groups over the base field « of characteristic p, V1 <14 <

7 < K and let
(VikjnHir[p"] X Hiz[p"] — Hij[p"]
bilinear pairings such that
e We have
(Tijns Tjkn)ijkms Thin)ikln = (Tijms (Tikns Thin) jkln)ijln (4.4.1)

foralll1 <i<j<k<I1<K and jn, Tjkn, Tk functorial points of Hy;[p"], H;x[p"]

and Hy[p"] respectively.

e the following diagram commutes

<, Zikjn
Hip[p"] x Hyz[p"] ip"]
[p]nHZ X [p]?{k]- [p]Hij
<, >ikjn+1
Hip[p" ™ x Hy;[p™t] Hi;[p™ ]
Consider
Ln = @ Hij[pn]
1<i<j<K
Then:

® (,)ikjn naturally gives rise to an multiplication on L,,, which will be denoted by *,

as follows: for h = (hij)i<icj<i,h = (h;j)lgiqg{ both functorial points of L,,, we
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define

hoan B = (hij)i<ici<k

where

hij = Z (hiks Pij)ikjn

k s.t. i<k<jy

This multiplication structure is associative by It is also nilpotent in the sense
that for every x € Ly,

xK:x*nx...*nmzo

N—————
K times

This ring structure %, on L, also induces a Lie algebra structure [, ], on Ly, by

[hy b = hosp B — B %, b

Let

L= L,

n
where the transition map L,,+1 — L, is simply [p] and the projective limit takes place
in the big fpqc site over Spec(k). Then *,’s induce an associative algebra structure

on L and all the [,],’s induce a Lie bracket [,] on L.

The algebra structure *, on L, also induces an group structure on L,,, denoted by -,

by the formula

hi-hy = hy + hy + h1 * ho

for all functorial points hi, he € L,. We will denote this group by H,. The group

structure on L induced by * is defined similarly and we denote this group by H.
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o Let
Tn+1mn * Hn+1 — Hy
given by [p]rie(rr,)- Then 7,11, is a group homomorphism and
H = &%an

where the transition maps are those induced by m,41,5.
e We will use the notation
Lie(Hy,) := Ly,
Lie(H) :=L
Definition 4.4.1. Let T be the system that consists of
o A family of p-divisible groups (Hij)i<i<j<k
e bilinear pairings (, )ijkn, V1 <i<j<k<K,neN

and assume the conditions as in[{.4.1] are satisfied; The group H is called the Tate-linear
nilpotent group of type A associated to T and (Lie(H),[,]) is called the Lie algebra of H.

We will use the notation H = mHn or H = (H;j)1<i<j<k to denote a Tate-linear nilpotent

group of type A.

Definition 4.4.2. A Tate-linear nilpotent group of type A of rank K is called pure if for

each (i,7), the p-divisible group H;j is isoclinic.

Definition 4.4.3. A pure Tate-linear nilpotent group of type A of rank K is called perfect

if sij +sjk = siV1 < i < j < k < K, where s;; is the slope of H;;.
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Example 4.4.4. Let X = Hf}:l X; with X isoclinic of slope s; and assume s1 < sg9 < s3 <
s4. Let

Hl'j = HomSt(Xi, Xj)

and

(Vijkn : Hom™ (X, X;)[p"] x Hom® (X;, X3,)[p"] = Hom™ (X;, X,)[p"]

the natural bilinear pairing. Then the system (H;j)i<i<j<4 together with (,);;rn» forms a

perfect and pure Tate-linear nilpotent group of type A of rank 4.

Remark 4.4.5. Tate-linear nilpotent groups of type A of rank 3 or 4 that are perfect and

pure are the main object of interests in this thesis.

Given a Tate-linear nilpotent group of type A H = @1 H,,, we can consider the universal

deformation space of H torsors, and we have the following
Lemma 4.4.6. The universal deformation space of@Hn torsors is smooth.
Proof. See [CO22|, especially Chapter 6. O

Definition 4.4.7. Let@H = ((Hij)1§i<]§](, <, >ijk,n); @Hﬁ = ((H{j)lgi<]‘§[{, <, >;jk,n
) be two Tate-linear nilpotent groups of type A of rank K. A homomorphism of general sus-

tained liear groups

is a family of homomorphisms (fij)1<i<j<k:

fij : Hz'j — Hz{j
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that respect all the Weil pairings, that is for all 1 < i < j <k < K and n € N, we have

commutative diagrams

<, >ijkn
Hij[p"] x Hjg[p"] ——— H[p"]

fij % fjkl [fik
/ / <’>;jk’" /
Hz][??n] x ij[Pn] H [p"]

Note that such a family (fij) naturally induces a projective system of group homomorphisms
fn:Hy— H,’Z
Since the construction H — Defr_ior is functorial, such a homomorphism also induces
* i Defa—tor = Defrr_tor

Definition 4.4.8. Let H be a Tate-linear nilpotent group of type A. The automorphism
group of H, denoted by Autg,s(H) or simply Aut(H) is the group of automorphisms over

Kk, in the sense of [{.4. 4, from H to itself.
To see the geometric meaning of this definition, we have the following:
Theorem 4.4.9. Let X = X1 X X9 X X3 with X; isoclinic of slope s; and s1 > s9 > s3. Let
H;j = Hom™(X; x X;), V1 <i<j<3

For alln € N, let

(,)n : Hio[p"] x Ha3[p"] — Hi3[p"]

be the natural pairing. Let H = (H;j)1<i<j<3 be the Tate-linear nilpotent group of type A

corresponding to these data.Note that Defsus(X) = Defausst(X)torsor = DefHtorsor- Then
Autbiext(E) = Autsus(H)

Proof. See |[CO22] Chapter 10. O
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4.5 Tate-linear nilpotent groups of type A: Rank = 3 case

Let H = H,, with components (H;;)i1<i<j<3 be a Tate-linear nilpotent group of type A of
rank 3.

We will construct a trivialization of De ffr torsor that is similar to To do that:

o Let A, = Hya[p"] x Ha3[p?"] x Hys, the relations in gives us a descent data, that

is there exists a scheme Ep;, and a faithfully flat morphism

Ynt Ap — EH,n
let By := EH,n-

e Consider Hya[p®"] x Ho3[p®"] x Hy4 x H,. The equation in gives us a descent data:

His[p*] x Hos[p*"] x Hig x Hy — Hpp

where Ty, is a Hy, torsor over Ep .

e For any fixed ny € N, and all n > ng integers, consider the H,, bundle 7, ,, =

)

TH, By g OVer Empng, Where the restriction is via the natural embedding Ep pn, <

Ey . The projective limit

is then a H torsor over Ky .. Finally, let

T :

I
B

no
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then Ty is a H torsor over Ey. Hence we have a natural morphism

f By — DefH—torsor

induced by the H torsor over Ep.

Theorem 4.5.1. Notation as above. The morphism [ : Eg — Defir_torsor 1S an isomor-
phism of formal schemes. In particular, theorem is valid when we substitute De fq,s(X)

with Defy _torsor-

Proof. We will prove this result in several steps.

Step 1. We first show that Fp is a smooth formal variety. It is easy to see that the trivial
Hi3 torsor structure descents to a Hiz torsor structure to Ep, with Ex,/Hi3 ~
Hi3[p"] x Ha3[p"], hence by taking inductive limit we obtain a H3 torsor structure

over By with Efy/Hyo x Hez. Hence Ep is smooth.

Step 2. As Defr_torsor 1S also smooth by it suffices to show that the the morphism

f Eg = Defrtorsor induces an isomorphism between tangent spaces.

Step 3. Consider the following commutative diagram

central fiber
Hqs Ey Hyo x Hag

fliy = idm, f fx

central fibe
His _central iber Defy,

His x Hag

To show that f induces an isomorphism between tangent spaces, it suffices to show

that fr is an isomorphism. Note that we are not assuming f is Hi3 equivariant.

60



Step 4. The morphism f, is induced by the following His X Hsz bundle over f,: for each
n €N, let B,, = Hio[p*™] x Ha3[p®"], consider the trivial Hya[p"] x Haz[p™] torsor over

B,,, together with the gluing data

(h12 ) h’12 ) 71127 533) ~ (h%gl7 hg)glv h12 ) )
< hly — bty = hi% — h3 and hiy — by = 3% — h3y

for all (h3%, b33, hiy, his) and (R33, k33’ hY,', his') functorial points of B, x (Hy2[p"] x

Hy3[p™]), thus fr|m,, is the natural isomorphism

H12 = Def ng ]-torsor

same with fr|p,,. Hence fr is an isomorphism. We have finished the proof.

4.6 Tate-linear nilpotent groups of type A: Rank = 4 Case

In this part, we prove an analogy of for Tate-linear nilpotent groups of type A of rank
4.

Let H = H,, with components (H;;)1<i<j<k be a Tate-linear nilpotent groups of type
A of rank K = 4. We will construct a trivialization of De fi_torsor Similar to To do

that:

o Let A, = Hi'y X H{'3 X Hy 4 ¥ HS% X Hg x H2" "}, the relations in actually gives
us a descent data, that is there exists a scheme Fp,, and a faithfully flat morphism
1/Jn : An — EH,n
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We can therefore define

Ey:= Egn
n
e Similarly, the result in gives us another descent data: let
(H? x HE x Hyg x Hyy x H3P < H3P) x Hy,

the trivial H,, torsor over H# x HZ} x Hyy x H3Y x H3p x H3P, by there exists

a H,, torsor over Ey ,, which we denote by Ty, , and a faithfully flat morphism

On @ (HE x HE x Hyg x Hyy x Hay x Hap) x Hy — Ta,

e For any fixed ng € N, and all n > ng integers, consider let Ty, n, = TH, | Bt ng> where

the restriction is via the natural embedding Ey ,, < Ex,,. The projective limit

is then a H torsor over Ky .. Finally, let

Ta = Tno

no

then 7y is a H bundle over Eg.

Theorem 4.6.1. Notations as above. Then Eg is the universal deformation space of Hy,
torsors and Ty is the universal H torsor over Ep. In particular, the theorem[{.2.1] is valid

when we substitute De fsus(X) with Def _torsor-

Proof. Let E; be the universal deformation space of H,,, which is smooth by the

Notice that H := H/Hy is also a Tate-linear nilpotent group of type A, and we can
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similarly define Eg, Ty . We will denote B := Ey,p,, = Eg. Let m: E — B the natural
morphism induced by H — H/Hjy.

By construction, £y has a Hi4 torsor structure and B has a natural Hi3 x Hoy torsor
structure over Hyo X Hog X H34, hence B is smooth and therefore Ey is smooth.
Since E, is the universal deformation space of l&an torsor, and Ty is a lgan bundle H
over E/, we have a map

f:E—)Ed

Similarly we have
fﬂ- : B — DefH/H14

To prove that f is an isomorphism it suffices to prove that f induces an isomorphism
between the tangent spaces.

Consider the following commutative diagram, where both horizontal arrows are given by
the natural Hy4 torsor structure on E and Ej respectively. Note that we do not assume the

map f preserves the Hyy torsor structure.

Huy central fiber Ey B

id f fr

Hia central fiber

Eq= Deflgn H, DefrglHn/H14

From this diagram, to prove that f induces an isomorphism between tangent spaces it

suffices to prove that f; induces isomorphism between tangent spaces. But f fits into a
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similar diagram:

central fiber
Hiz x Hoy B Hig x Hoz X H3y

id fx g

Hys x Hoy central fiber Hys x Hos x Hay

Defjm ) /s

Let g be the right most vertical morphism in the above diagram. In light of the gluing
data as in [£.2.1] we use to construct E, this morphism g is obtained as follows: for each
H;j € {Hi2, Ha3, H34}, each n € N, we consider the H;;[p"] bundle over H;;[p"], denote it

by Hijn:
Hijn = Hp X Han/((hny han) ~ (h;, IQn) if hop — ,2n € Hij[pn] and hy, — h‘;z = hon — l2n>

then it is easy to see that as we let n — oo we obtain a universal H;; bundle over H;;, which
induces a map
gij + Hij = Hij
as H;j = Defn,;—tor by Kummer theory, and
g = H Gij

By Kummer theory, this map ¢ is an isomorphism. Hence f; in diagram [£.7] induces an

isomorphism on tangent space and we have proved the theorem. ]

Definition 4.6.2. Given H = (H;j)1<i<j<a a Tate-linear nilpotent group of type A of rank

4. We define:
o £ = Defptorsor- For eachn € N a subscheme E,, C E, and ¢n, Ay, as in[4.0.

e There is naturally a Hi4 action on E, and let B = E/Hyy.
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o The system HY = (Hij)1<i<j<3 together with the bilinear pairings (,)i23n is natu-

rally a Tate-linear nilpotent group of type A of rank 3. Similarly we define H**.

e Bz = Defyis_iorsor Which is a biextension. Similarly we define Bay. Note that

B = B13 X g, Bas
o Let ma3: E — B3z and ma34 : E — Boy the natural projection.
o Let ms: E— Hya, mo3: E — Hoz and w34 : E — Hsy the natural projections.

o As B3 is a biextension of His X Hog by Hys, for each n € N, we have a subscheme

B3, C B and a faithfully flat morphism
V130 ¢ Hio[p"] x Hag[p*™] x His — Bis
as given in[3.4.5 Similarly we can define
V13n,homo * (Hi2 X Hoz)[p*"] x Hiz — Bis

as defined in[3.4.4).

4.7 Admissible Subgroups and Tate-Linear Subvarieties

Definition 4.7.1. (Nilpotent Filtration) Let H = (H;j)1<i<j<k be a Tate-linear nilpo-

tent group of type A of rank K. For all n € Z, there is a filtration
0= -FK—Ln C .7'—[(_2,”.. C }—O,n = L’ie(Hn)

where

ﬂ,n = {(hij)l§i<j§K7 with hij S Hij[pn] s.t. hij = O,Vj -1 < l}
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Lemma 4.7.2. Notation as in[{.7.1 Then
(a) Each Fg_1, is an ideal of (Lie(Hy),[,]n) , as well as a normal subgroup of H,,.

(b) For a fized | € Z>o, Fi-1n/Fin = @l 1Hz‘j[pn]- Let
j—i=l—

Groa(H) = (Fen/Firrn) = (D Hilp"])

(¢) By taking projective limit we naturally obtain a filtration

0=Fkg-1C Fr—2.. C Fo = Lie(H)
of Lie(H).
(d) ?Grﬁil(H) = Lie(H) as sheaves of Z, modules.
Proof. Once formulated, the proof of (a)-(d) are easy to check. O

Definition 4.7.3. (Definition of Admissible Subgroups). Let H be a Tate-linear
nilpotent group of type A of rank K with Lie ring Lie(H) associated to the system H;;,V1 <
i < j < K and bilinear pairings (,)ijkn- An admissible subgroup of H is a cotorsion free
subgroup G of H. Equivalently, an admissible subgroup of H is a family of subgroups G,, of

H,, for all n € N, such that

e The natural homomorphism Gpy1 — Hpi1 Totin H,, factors through G, and this

morphism Gny1 — Gy, is surjective.
o The projective system @Gn is cotorsion free as a subgroup ofl'&an.

Definition 4.7.4. Let H be a Tate-linear nilpotent group of type A and let G C H an

admissible subgroup. Then there is a natural morphism ®gpg : Defa torsor — DefH -torsor

66



defined as follows: let G be the universal G-torsor over Defa_iorsor and let H be the universal
H-torsor over Defr iorsor- Let G NG H be the contraction product of G with respect to

G — H, in particular GAE H is a H torsor over Defa iorsor, therefore induces a morphism
Pooyp - DefG—torsor — DefH—torsor-

Definition 4.7.5. Notation as in[{.7.3. Let H be a Tate-linear nilpotent group of type A

and Lie(H) be it’s Lie algebra. Let G C H be an admissible subgroup. Let
0=Fk_1 C Fr—a.. C Fo = Lie(H)
be the filtration of Lie(H) as defined in[{.7.1 Let
0=0r-1CGx—2..C Gy
be the induced filtration on G, that is
G=GnF, Vie{0o,1,. ,K—-1}
Define Lie(G), the Lie ring of G, by

Lie(G) := B G/

1€{0,1,....,K—2}

Clearly

P  G/Gc &P  Fi/Fi1 = Lie(H)

1€{0,1,....K—2} 1€{0,1,....K—2}

It is an easy exercise to check that Lie(G) is indeed a Lie subring of Lie(H ).

Definition 4.7.6. Let H be a Tate-linear nilpotent group of type A and G C H an admis-
sible subgroup. Let Lie(G) be the Lie ring of G, which is a sheaf of Z, modules over the
big fpqc site over Spec(k). The dimension of G, denoted dim(G), is the dimension of the
p-divisible group

Lie(G) ® Q/Lie(G)
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as a smooth formal group.
Lemma 4.7.7. Notation as in[{.7.4}, then

(a). The schematic image of PG is a smooth connected formal subvariety of De fir_torsor-
(b). ®gm is a finite morphism of smooth formal schemes.

(c). If moreover G is cotorsion free, then ®g, g is a smooth embedding.

(d). Let Eq = Im(®g—mu). Then

dimEqg = dim(G)
where dim(G) is as defined in[{.7.6,

Proof. Given in [Cha22]. O

Definition 4.7.8. (Definition of Tate-linear formal subvarieties). Let H be a Tate-
linear nilpotent group of type A and E the universal deformation space of H. A formal
subvariety W C E is called a Tate-linear formal subvariety if there exists an admissible
subgroup H' C H such that the schematic image of ®gesp is W, seefor the definition

of PG m-

Lemma 4.7.9. Let H be a Tate-linear nilpotent group of type A of rank K and let G C H
be an admissible subgroup. Let Eg be the Tate-linear formal subvariety corresponding to
G. Let E = Defy_torsors and E' C E a formal subvariety. Let T be the universal H-torsor
over E. If the structure group of T |g can be reduced to G, that is, if there is a G-torsor G

over E' such that

H/\GQET’E/
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where N\ denotes the contraction product. Then
E' cC FEq

Proof. The G-torsor G induces a map fg : E' — Defg torsor Such that ®g g o fg = idg,
thus

E' C Im(®c,g) = Eg

and we have proved the lemma.

O]

Definition 4.7.10. Let H,G be Tate-linear nilpotent groups of type A of rank K. Let
f+ H — G be a homomorphism, in the sense of [4.4.7, and let fi; : Hij — Gij be the ij
component of f, for all1 <i < j < K. We say that f is an isogeny if all f;;, as morphisms

between p-divisible groups, are isogenies.

Lemma 4.7.11. (Properties of isogeny) Let H,G be Tate-linear nilpotent groups of type
A of rank K. Let f : H — G be an isogeny. Let ®; : Defr_torsor — DefG-torsor be the

morphism induced by f. Then
(a) f is a finite faithfully flat morphism.

Lemma 4.7.12. (Quotient) Let H = (Hyj;,(,)ikjn) be a Tate-linear nilpotent group
of type A of rank K as above. Let be iy, jo integers such that 1 < ig < jo < K. Let

/
HioJo

C Hi, j, be a p-divisible subgroup. Assume that H] "], as a subgroup of Lie(H),

10Jo

lies in the kernel of *; In other words, for all hl, . € H!

10Jo 10Jo

[p"], h € Lie(H) functorial points,

Y
hx hiojo - hiojo

«h=0, Vi, . € H!

10Jo 10Jo”

h € Lie(H) (4.7.1)

69



Condition [{.71] is equivalent to: for all k,l € N such that jo < k and 1 <1 < iy,
<h;'0,jo7 hjo,k>ioj0k,n =0, Vh;o,jo € Hz(o,jo [p"], hijok € HjO,k[pn] (4.7.2)
< E,io’ hi07jo>li0jo =0, th,io € Hl/,io [an hi(),jo € Hiovjo [pn] (4'7'3)

By abuse of notation, we use H! . to denote both H!

as a p-divisible group, or

2070 10J0
H] ;. [p"], as a subspace of Lie(H), then:
(a). Hj ;, is an ideal of (Lie(H),*), and an ideal of (Lie(H),[,]), as well as a normal

subgroup of H.

(b). The exact sequence

1— H!

10Jo

—H — H/H] . —1

t0jo
is a central extension of sheaves of groups on the big fpqc site of Spec(k).
(¢). The quotient group H/(H{Ojo) 1s a Tate-linear nilpotent group of type A with compo-
nents
Hij? (Zvj) 7& (i07j0)7 (474)
HiOij/H’L{o,jo (475)

and with bilinear pairings descent from that of <, >ikjn.

(d). If K < 4, then the exact sequence in (b). induces a Hz{oj action on Defy_torsor and

0

we have an isomorphism of smooth formal schemes
, ~
DefH—torsor/Hiojo — DefH/HZ(OjO -torsor

(e). IfH C H/H;,;, an admissible subgroup, = : H — H/H,j, the quotient map, then

7~ Y(H) is an admissible subgroup of H.
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(f). dim(x='(H)) = dim(H) + dim(H;,;, )

Proof. Part (a)-(c) are trivial.

For (d). Let E be the deformation space of H torsors, and let ¢, A,,, E, as in That is

A, = Hya[p"] x Hiz[p"] x Hyg x Hoz[p®"] x Has[p*™] x Hzy[p*"],

Uy + Ap = E, a faithfully flat morphism

For 4, j integers such that 1 < i < j <4,(4,5) # (1,4), let e;; € {1,2,3} such that we can
rewrite
Ap = Hiy X 11 Hij[p™"]
1<i<i<4,(4,5) #(1,4)

Let E be the deformation space of H/ H! . torsors and let 1;”, /Al;, E,, defined similarly

0J0

but in terms of the group H/H Let II,, : A, — A, be the quotient out by the Hz(ojo [p€iodo ]

0jo*
component map. As A, is a product, there is a natural H] jo[p“io7o] torsor structure on Ay,

that is II,, invariant. Moreover, given [£.7.2] and [£.7.3] and since the gluing data is in

terms of the bilinear pairings (, )ikjn, this H ; [p“07] action induces an H; ; [p“oio] torsor

action on F,. Let f[n be the morphism E, — Evn induced by II,,, we have a commutative

diagram
(O
ATL n
11, I,
Ay —— E,
(G
such that both II,,, I, are H {0 o [p€iodo] invariant and 1)y, is H, Zfo o [p©ioio] equivariant, and both

U, {/1; are faithfully flat, we conclude that

En/H’L{OjO [peiojo] ~ FEy,
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By taking limit we conclude that:

e There is a H!

iojo torsor structure on E.

e E/H, . ~E

0Jo
which is the statement of (d).

For part (e), we first prove that 7! (ﬁ ) is torsion free. Consider the following commutative

diagram
0 H H—"—H/H, —— 0
T o L]
Tl L
0 Hi i, ' (H) H 0

then 7~ (H) is cotorsion free follows from an easy diagram chasing: let h € H an functorial
point such that A € #~1(H) for some N, then 7(h)Y € H. As H is an admissible subgroup,
hence cotorsion free, we conclude that w(h) € H, hence h € 7~ '(H).

Part (f) follows directly from the exact sequence

ey

0 —— H! rl(H)—— H —— 0

10J0

O

The following two lemmas will be handy when we want to prove some formal subscheme

is Tate-linear.

Lemma 4.7.13. (Functoriality of being Tate-linear I) Let H be a general sustained
linear group with components (H;j)1<i<j<a. Let ig, jo integers such that 1 <o < jo < 4. Let
H] ;. C Hj,j, a p-divisible subgroup satisfying the conditions of|4.7.12. Let G := H/H;, j,

as giwen in[f.7.13 and = : H — G the natural map. Let E,F be the deformation space of
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H and G torsors respectively. Let @ : F' — E be the morphism induced by m which is a
smooth embedding of smooth formal schemes. If a formal subvariety W C F is Tate-linear,

then W' := 7#~Y(W) C E is also Tate-linear.

Proof. Let G’ be the admissible subgroup of G' corresponding to W and let H' := 7= 1(G").
H' is an admissible subgroup by [4.7.12{(e). Let W’ be the Tate-linear formal subvariety of
F corresponding to H’'. As for morphisms between deformation spaces of torsors induced

by morphisms between groups are canonical, we have
FWhcw
hence
W cw

Moreover, let Lie(H') be the Lie algebra of H', then we have an exact sequence of Lie
algebras

0 — H,yjo — Lie(H') — Lie(G') — 0

where H;y;, has the trivial Lie algebra structure. Hence

dim(H’) = dim(G") + dimH;

0Jjo
By .7.4(d),
dim(H') = dim(W’),
dim(G") = dim(W)
we obtain
dim(W') = dim(W) + dimH,;,
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By [£.7.12(d)., W’ admits a Hjj, torsor structure over W, hence W’ is smooth and
connected. Moreover,
dim(W') = dim(W) + dim(H,,j,)
hence
dim(W’') = dim(W")
As W' c W’ and both W’ and W’ are smooth connected and have the same dimension, we

conclude that
W =w

as W is a Tate-linear formal subvariety of F, we have proved the lemma. O

Lemma 4.7.14. (Functoriality of being Tate-linear II) Let H,G be Tate-linear nilpo-
tent groups of type A and E, F' their universal deformation space respectively. Let f : G — H
an isogeny and f : F — E the induced morphism between deformation spaces. If W' C F
a Tate-linear formal subvariety of F' and W = f(W'), then W is a Tate-linear formal

subvariety of E.

Proof. Let G’ C G be the admissible subgroup of G corresponding to W’ as in Let
H' = f(G") a subgroup of H. Since f is an isogeny, in particular it is surjective, hence H' is
also cotorsion free. Therefore H’ is an admissible subgroup of H. Let W be the Tate-linear
formal subvariety corresponding to H'. Since the morphisms between deformation spaces

of torsors induced by morphisms between groups are natural, we have
Wcw
By f is an finite morphism. Hence
dim(W) = dim(W")
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and W’ is connected, reduced and irreducible.

As f is finite and faithfully flat by 4.7.11
dim(W) = dim(H’') = dim(G") = dim(W")
Therefore we conclude that
W=Ww

As W is a Tate-linear formal subvariety, so is W. We have proved the lemma. ]

4.8 Statement of The Orbital Rigidity Conjecture

Definition 4.8.1. Let H = (H;j) be a Tate-linear nilpotent group of type A and E =
Defr_torsor, and let Aut(E) = Autgys(E) as defined in . We say that the action of G

on E is strongly non-trivial if the induced action of G' on each H;j is strongly non-trivial in

the sense of|[5.5.1]

Will all the relevant concepts defined, we state the main result of this thesis.

Theorem 4.8.2. Let H = (H;j)1<i<j<4 be a Tate-linear nilpotent group of type A of rank
4 over an algebraically closed field k of characteristic p with p > 5. Let G C Aut(E) be

a closed compact p-adic Lie subgroup, acting strongly non-trivially on E in the sense of
3.53.1. Let W C E be a closed formal subscheme which is reduced and irreducible. If W is

invariant under the action of G, then W is a Tate-linear subvariety.

Theorem [4.8.2) will be proved in [7.4.1]
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Chapter 5

The Orbital Rigidity Conjecture:

3-Slopes Case

The main result of this chapter is to state the orbital rigidity conjecture when X = Hle X,
see for the precise statement. This result was essentially proved in [CO22| Chapter

10. We rewrite it in a slightly different way and give a short proof based on the results
in [CO22| in
Notations 5.0.1.

1. Let H = (H;j)1<i<j<3 be a Tate-linear nilpotent group of type A of rank 3 over an

algebraically closed field k of characteristic p > 3, we further assume H to be pure

and perfect.
2. Let

o = Defy_tor which is a biextension.
e B = E/H13 ~ ng X H23,
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o 7w : F — B, the natural projection,

o by, : Hio[p"] x Has[p?"] x Hiz — E,, be Mumford’s trivialization. as defined in

B

5.1 Admissible Subgroups and Tate-linear Subvarieties in 3-

Slopes Case

Lemma asserts that, under certain conditions on the bilinear pairing (,),, we can
construct a admissible subgroup, and characterize the Tate-linear subvariety associated to
it.

Lemma 5.1.1. Let H = H,, be a Tate-linear nilpotent group of type A with components H;;
isoclinic p-divisible groups, 1 <1i < j < 3. Let (, ), be the Weil pairing(s) (,)n : Hiyx Hj3 —

HYy. Let P C Hig x Hag be a p-divisible subgroup satisfying

(fiz: f35') = (f1', fas)s V(fia, f35), (f12s f25') € Pp"] (5.1.1)
Consider the subscheme Hp,, of Hy defined by

1 fiy 5(fi f5)n
Hpp=410 1 i t (fio, f33) € Plp"]

0 O 1

Then

(a). Hp,, is a subgroup scheme.

(b). Let Hp = Hp,, C H, then Hp is an admissible subgroup. Let Ep be the schematic
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image of the following morphism
Depr—torsor — DefH—torsor

i.e. Ep is the Tate-linear subvariety corresponding to Hp in the sense of. EF

can be characterized as follows: let ¢n, Ey, as defined in[{.3.9, then
1
Be 0 B = ou({ (015 75 58 $5)an)] VI 535) € PO )
(c). If g € Aut(E) s.t. the restriction of the action of g on Hia X Has keeps P invariant,

then g acts on Ep.

Proof. Part (a) is an easy algebra exercise.

Now we prove part (b). From let f = (f&, f30, f13), f = (f&, 35, fls) € HE %
H2Y x Hy3. Let ¢y, : H% x H2} x Hi3 — E, as in Assuming ¢, (f) = én(f'), by

the gluing data of the universal Aut*'(X), bundle is given by

LR - S A S (3 - A e
0 1 2n _ p2n (5.1.2)
0 0 1

note that as
2
fis — f13 (fa3' — 23 7f12>

this is an element in Aut®(X[p"]). When restrict to F4, we have:

2n 1< 3n 3n>3

1325 125J12

together the relations between (,),, and (,),,, we have

1
12:?— 12?? < f237 12> :§(< f);v 3n> <f127 12 >3n) < f23a 12>
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1 3n 3n’ £3n 3n/

3 3 3n/ 3 3 2
:§< 12— fi5, fi5 = fi3 Jan — (i3 fi3 — fi2 )an + (fo3 — f35', fiz)2n
_ 1 3n _ p3n’ r3n _ ¢3n/ _ 1 2n _ p2n’ r2n 20/
- 2< 12 12 »J12 12 >3TL - 2< 12 12 »J12 12 >TL

that is the above matrix simplifies to

2 2n' 12 2n' 2 2n/
L fig =iz 5(fis = fis £33 = f33)n

2n 2n’
0 1 23 — J23

which means the structural group of Ep can be reduced to Hp, by we have
Ep C DefHp-torsor
By dimension consideration we then have
dim(De fip-torsor) = dim(P) = dim(Ep)
Since both spaces are reduced and irreducible, we conclude that
De fHp-torsor = Ep.

For (c), since Ep is constructed using P and Weil pairings, and every element g € Aut(E)

preserves (, ), hence if moreover g acts on P, g acts on Ep. O

5.2 The Orbital Rigidity Conjecture Three Slopes Case

The following theorem was essentially proved in [CO22] Chapter 10. We rewrite it in this

form so that it can be used to prove our main result
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Theorem 5.2.1. Notation as in [5.0.1. Let W C E a closed formal subscheme, reduced
and irreducible. Let G C Aut(E) a closed p-adic subgroup whose action on E is strongly
non-trivial in the sense of. Let Y = (W N Hi3)req where Hiz = 7= 1(05) C E, and let
X =xn(W) C B = Hia X Has. Both X,Y are p-divisible subgroups by the orbital rigidity

conjecture of p-divisible groups. Then
(a). Let n € N, let x = (215, x83), 2’ = (27, xb3’) € X[p"], then
afprgy’ — aiy why € Yp"]

(b). Let (Hx)y)n a subscheme of H defined as follows:

1
1 z12 (w12, 723)n +y13

(Hxy)n=1410 1 T93 Vo = (z12,223) € X[p"],y = y13 € Y[p"]

0 O 1

then (Hx y)n 15 a sub group scheme of Hy,. Let
Hxy = (Hxy)n

then W = Image(Defry ytorsor = Defr -torsor = E). That is W is the Tate-linear

subvariety corresponds to Hxy in the sense of[{.7.8

(c). In fact, W can be constructed from X,Y explicitly: let W N E, be the schematic

intersection of W and E,, then
1
WNE, = wn,homo({@:%gv x%?? §< %gv x%g>2n + y13)| V(x%g? x%g) S X[p2n]7y13 € Y})

where Y homo s defined in [3.4.4)
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Theorem [5.2.1] will be proved in [5.2}

We collect some results proved in [CO22| that will be used to prove
Theorem 5.2.2. Notation as in[5.0.1. Let V:Y x E — E be the morphism

UV:YXE—=E (ye)—yxe
corresponding to the restriction to Y of the His action on E. Then
(a). W is invariant under the action of Y = (W N Hi3)req. That is,

V(Y xW)cWw
(b). Let w: E/Y — B the map induced by 7w : E — B. Then
Tlwy WY = m(W/Y)
is purely inseparable.

Theorem 5.2.3. Notation as in|5.0.1 Let W C E a reduced irreducible formal subvariety.

Let G C Autpi—egtension(E) a closed subgroup acting strongly non-trivially on E. If we

further assume that

o W is invariant under the action of G.

o wlw : W — w(W) is an schematic isomorphism.

Then:

(a). If ®(W) C Hia X Hag is a graph that corresponds to a homomorphism f : Hyiy —

Hgg. That is

©(W) = {(hi2, f(h12))|h12 € Hi2}
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Then the bilinear pairings (—, f(—))n : Hi2[p"] x Hi2[p"] — Hi3[p"] are symmet-

ric for all n € N. That is, for hia, hy € Hi2[p"] functorial points,

(h1z, f(hhg))n = (hia, f(h12))n

(b). If n(W) = Hi{y X Hyg for some Hiy C Hio, Hys C Has both p-divisible subgroups,

then for all n € N and for all hiy € Hiy[p"], hbhg € His[p"],

(Ra, hg3))n =0

Lemma 5.2.4. Notation as in[5.0.1, Let P C Hio X Hog a p-divisible subgroup. Let G
a p-adic Lie group acting strongly non-trivially on E, and s : P — E a section which is

invariant under the action of a G. Let Hiy := (PN Hi2)req. Then

<h12, h23>n =0,Yhis € Hi27 hos € 7T23(P) (5.2.1)

Moreover, the section s descents to a section s’ : P/H{, — E/H{,.

Proof. Recall that E has two relative group law +1,+2. Let —; be the inverse group law

of +1. Define E’ to be the schematic image, as a subscheme of E, of the composition

p,h12) — (s(p),s(p+ h —
PxH{Q( 12) — (s(p), s( 12))E><E 1 5

Intuitively, given (z1,¥), (z2,y) € P where x1,x9 € Hi2 and y € Ha3, we can consider the
"difference’
s(x1,y) — s(x2,y)
which lies in the fiber E|, _z, ). As we vary x1, 2,y we obtain E'.
E’ is reduced and irreducible as P x H{, is. As s is invariant under G, E’ is invariant under
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the action of G. Moreover since
4
S|PﬂH12 : H12 — H13

must be trivial by the orbital rigidity theorem of p-divisible group and slope constrains
slope(H1s)(slope(H3),

E'|(0,0) = ©((H12,0) X Op1,5)
is also trivial. Note that

m(E') = Hiy x m3(P)
Therefore by [5.2.3(b).
(p1,y)n = 0,¥p1 € Hi[p"],y € mas(P)[p
which is E’ being trivial also means that s descents to a section
s« P/Hiy — E/Hj,
O

Corollary 5.2.5. In the 3-slopes case, if W C E a subscheme invariant under the action
of G st. m: W — (W) is an isomorphism, then for n € N and (z1,y1), (x2,y2) €
His[p™] x Haslp™], we have

(1, Y2)n = (22, Y1)n
Proof. By applying we can reduce it to the case when m(W) C Hia X Hag is a graph

that corresponds to a homomorphism f : Hio — Hs3. That is

m(W) = {(h12, f(h12))|h12 € Hi2}

then what we need to prove is precisely the statement of [5.2.3{(a). O
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Proof of [5.2.1]

Let H{s = (W N H13)peqd- By W is invariant under the action of His, and
Tlwymy, » WY = 7(W/His)

is purely inseparable where 7 : E/Hy3 — B is the projection map induced by 7.

We can take kg big enough such that the morphism
L = [Pty s
dominates m : W/H{3 — 7(W) in the sense that there exists £ : (W) — W/H/4 such that
Tlwyay, © & = Llzw)
Consider

E;:=FE/H{3 xpr B (5.2.2)

Note that E. is also a biextension of Hy3/H{s by Hi2 x Hasz, with bilinear pairings (,)

n °

His[p"] X Has[p"] — Hi3/H}s induced by L, that is

(h12, has),, = ([p™]ha2, [p*]has)n

and the natural morphism h : E; — E/H/s induced by the fiber product structure is a
homomorphism in the sense of

We know that the compact p-adic Lie group G operates on E/H{s and W/Hj; is stable
under the action of G. There exists a compact open subgroup G» C G which operates on
Er, and the natural map h : Ex — E/Hjs is equivariant with respect the the inclusion

G’ — G. The morphism £ : 7(W) — W/H/4 defines a morphism & : m(W) — E such
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that h o &y = &;. It follows that
Lomp, o0& =Tg/m;, o0& =L
Therefore
e, © &2 = idr(w)

In other words & is a section of the pullback Ep over m(W). The following diagram

summarizes the relations:

& | TE, 1 7!

Moreover & is equivariant with respect to the action of G’ on E/H{5. Let W} denotes
the image of this section &2, G the pullback of G by L.

To summarize, we have the following diagram
(E,G,G,W)

/His

S , pullback by L , ' ,
(Eﬁ’gﬁ7 [Z?WE) (E/H137g/H14’G’W/H13)

By local rigidity theorem of p-divisible groups, (W) C Hj2 X Has is a p-divisible subgroup.
As £ = [pFo], m(W) is preserved by pullback of £, and 7(W) = w(W}). Recall that
X =n(W).

As & : X — E/; a section that is equivariant under the action of G, by we have

85



(h12, hog),, = (R, hb3),

for all n € N and (hi2, hog), (h]a, hh3) € X [p"] functorial points. Given that (hi2, hbs), =

([p*]h1a, [p*]hlys), we conclude that
(h2, hyghn = (R higg)n (5.2.3)

which is precisely |5.2.1[(a).
Given by there is an admissible subgroup Hx C H., where H is the Tate-linear
nilpotent group of type A corresponding to the biextension E.. Let Ex be the Tate-linear

formal subvariety corresponding to Hx. By [5.1.1{(b),
m(Ex)=X

and by c), any element g € Aut(F) that fixes P acts on Ep. In particular, the
subgroup G'; of G acts on Ex.

Letsy : X — EZ be the section corresponding to Ex, as 7|g, : Ex — X is an isomorphism.
Then the difference

sx =& X — Hiz/Hig
is equivariant under the action of G/,. Hence by it has to be trivial, that is
sx =&

In particular, the schematic image of & is a Tate-linear subvariety as Ex is.
As h(&) € W/H{5 and both h(&;) and W/Hy3 are reduced, irreducible of dimension

dim(X), they must be equal, that is

86



h(&) = h(Ex) = W/Hi; (5.2.4)

Part (c) of is now an easy consequence of and [5.1.1{(b).
Given c), [5.2.1(b) follows from We have proved

Remark 5.2.6. The proof of [7.4.1] follows the same line as the proof of [5.2.1]

5.3 Equivariant Maps

The following results will be used in the proof of [7.4.1] Roughly speaking, given certain
slope constrains, an equivariant homomorphism from a biextension to a p-divisible group

has to be trivial.

Theorem 5.3.1. Let B be a biextension of X XY by Z, all isoclinic p-divisible groups. Let
P be another isoclinic p-divisible group. Assuming that the slope of P is strictly bigger than
the slopes of X,Y,Z. Let G a p-adic Lie group that acts strongly non-trivially on both B

and P, f: B — P an G-equivariant morphism of schemes. Then f is the trivial morphism.

Proof. Pick a,r,s € Z>¢ such that

a a
sp=—, s>rand — > max(sx, sy, Sz)
r s

T

Pick hy, ..., hy with u = dim(P) coordinate systems of P. Assuming that [p®]5(h;) = hY
Let (R, mp),(Rp,mp) be the coordinate rings and maximal ideals of B, P respectively.
Fix v € Lie(G), and let g = exp(p™®v). Let ¢pp : G = Autpiext(B) the natural morphism
induced by the action of G on B, and ¢p : G — Auty_qiv(P) the natural morphism induced

by the action of G on P. Let ¢p ., ¢p« be the induced morphisms on Lie algebras. We have
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nr

L g(z) = zi+op(v) 2V )+ O(zfzm), by the Taylor expansion of g and the fact that

s

sp=
2. g(f*(2:))) = f*(z:) mod mb as g acts trivially on Spf(Rp/mb ) by ??.

3. Since f is equivariant under the action of G,

ns

g(f*(z) = f*(9(z) = f*(2i) + ¢B(0)*(f(2:)""") mod m}
Thus
6(0)* (f(=)"") =0 mod mly’

as s > r, by by taking n — oo this implies ¢)B(v)* f*(z;) = 0, hence f*(z;) = 0 as we

assume the action of G is strongly non-trivial,

5.4 An Auxiliary Result

Lemma 5.4.1. Let k D, the base field, let H = (H;j)1<i<j<3 be a Tate-linear nilpotent
group of type A of rank 3 over k. Let E = Defy_iorsor wWhich is a bi-extension. Let B =
E/Hy3 = Hyia X Haes, By, := (Hi2 X Ha3)[p"] and w : E — B the projection map. Let
(Rg.-mg),(Rp,mp), (Ru,5, mm,,) be the coordinate ring and maximal ideal of E,B, Hi3

respectively. If N is an integer s.t.
S R (PN) H n
pf(Ruys/my,,) C Hizp"]
")
Spf(Rp/mg ') C By
then
S R (PN) E n
pf(Re/mpg °) C En[p"]
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") ¢ B,. Let

} e . (
Proof. Given the condition it’s obvious that w(Rp/mk,

U HY x H3Y x Hiz — B,

be Mumford’s trivialization. Consider the following diagram:

[Frob¥]
E, d (Frob) By ------===========- Y by € B
tn &)
Frob¥

N
Hyy x HE x Hig Hyy x H3p x HE) Hy, x (H) x Hiz(pV)

where a supscript (p”) denotes base changed by Frobenius to the Nth power.

Note that we used the following identity:
(Frobiy, (=), Frobiy,, (=))n = Frobm, ({(—,—)¥"))

The composition of the top arrows is the relative Frobenius of F,,, same with the bottom

arrows. Let by be the based point of E(pN), we want to show that
(Froby, )~ (bo) C En[p"] = ¢n(Hiy x H3 x Hi)

Let

F=4%"o Frobiu . pansp
Using the commutative diagram, if suffices to show that
FH(bo) S vy (Ealp")
but this is obvious given that
VTN Enlp"]) = Hiy x H3§ x Hi

89



and
(1/}1(1}7 )71(1)0) = 0H12 X (HSS)(pN) X 0H13

and combining these two we have

_ _ N

F 1(bO) :(FrObg{LQXHgnglg) 1(0H12 x (H£L3)(p ) Or,3)
CHYY x HE x Ker(Frob’;zS)
CH& X H22§L x His

=4~ (Enlp"])

We also need an analogy of in the 4 slopes case.

Lemma 5.4.2. Let k D F, the base field. Let H = (Hij)1§¢<j§4 a Tate-linear nilpotent
group of type A and E = Def_tor. Let w: E — B the natural projection. Let F' = Hyy. Let
Rg,Rp, Rp,mx,mp, mp be the formal power series rings and maximal ideals corresponding
to E, B, F respectively. Fiz an integer n and let B, as defined in[6.3.1 If N is an integer
st. Spf(Rp/m®)) € F, and Spf(Rp/m®")) € By, then Spf(Rp/m®")) C Enlp"].

Equivalently, let n, as defined in then n, =0 mod mgN).

Proof. The proof is an analogy of the proof of hence omitted. O
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5.5 Inseparable Isogenies That Dominante A Purely Insepa-

rable Morphism

We proof the following results for later use. For this section E is a biextension with com-

ponents Hyo, Hog, H13 where Hy3 is the fiber. Recall that we have
U © Hia[p"] x Hys[p™"] x Hig — By
We define a subscheme of E,,, for each m € N
En[p™] := $(Hi2[p"] x Ha[p*"] x Hus[p™]

Theorem 5.5.1. Let E be a biextension of p-divisible groups over a field k of characteristic
p, 7: F — E a finite purely inseparable cover with F' reduced and irreducible. Then we can

find an morphism of bi-extension f: E — E s.t. f factors through m: F — E.

Proof. let Rp be the ring of regular functions of F'. By assumption R is a integral domain.
Let Rp = Rglai,..,am] and N > 0 s.t. apN € Rp Vi. Let n be a a big enough integer and

i

F, : E — E be defined as in s.t.
N
F;(Rp) C R
then Fj, factors through f and we have proven the theorem. O

Lemma 5.5.2. Let E be a biextension of X xY with fiber Z. For anyn € N, ([p%], [p¥], [pZ])
induce an isogeny F, : E — E. Moreover, let Rg be the ring of reqular functions of E and
EY : R — Rg the induced ring homomorphism of F,,, then for a fited N € N we have

* (pN)
Fi(Rg) C R vn > 0.
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Proof. The fact that [p%], [p}], [p%] induces an isogeny follows easily from the identity

(" 1Zm, [P"Yym)m = [pZZn] (Tms Ym)m, Y1, M, Ty € X[p™], Y € Y[p™]

and the characterization of Endp;ext(E) as a subset of End(X) x End(Y) x End(Z).
For the second part, let by be the base point of F that corresponds to the maximal ideal

mpg C Rg. By the construction we have

F_l(bO) = En[p%]

n

By when n is big enough, we have
Spf(R ") E.o"  E. [p2"] = F~1(p
pf(Re/my °) C En[p"] C Ex[p™] = F, " (bo)

which implies that for such n

* Ny
Fn(mE) Cmpg

O

Corollary 5.5.3. If E C E a Tate linear subvariety, then the above homomorphism
([p%], [P%], [PZY) preserves E. Moreover, for each purely inseparable morphismp:Y — E',

we can find a ng € N s.t. the restriction of ([p'%], [pY], [p%]) to E' dominates p.

Proof. The first part holds given that ([p%], [p¥], [P%]) preserves the Weil pairing and
m(E') C X XY as w(FE’) is a p-divisible subgroup of X x Y.

The second part follows from the same argument as and O
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Chapter 6

The Orbital Rigidity 4 Slopes

Case: First Result

The main result of this chapter is [6.3.2] and [6.4.6] Similar results are proved in [CO22]

Chapter 10, and we show that the techniques used in |[CO22|, especially the tempered

perfections as discussed in can also be used in our cases.
Notations 6.0.1.

1. Let H = (Hjj)1<i>j<a be a Tate-linear nilpotent group of type A of rank 4 that is

pure and perfect over an algebraically closed field. For definitions see[].4.1], and

773 In particular we have
Sij + Sjk = s, V1 <i < j< k<4
where s;; = slope of H;j.

2. Let E = Defgrior, m: E — B the natural projections. We also use the definitions of

By, En, Ay as inl{.0.1 See also the table[{.1].
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10.

6.1

Let s;; = slope(H;j). Let ai;,r € N satisfying
s
sijzf,v1§i<jg4

This implies

aij+ajk:aik,V1§i<j<k‘§4

. Let Endg,s(H) and Auts,s(H) be the ring of homomorphisms and group of automor-

phisms of H, respectively. Seel|4.4.71 and|].4.8.

Let i, : Ay — By as inf[f.2.1]
U+ Ap — Ey induces an projection ny, : [p"]«En — Hig, seelf.2.4)

Let v = (Ayj) € Lie(Autpieqt(E)) C [ Lie(Aut(H;;). Moreover we assume that A;j €

End(H;;) C Lie(Aut(H;j;) for all1 <i < j <4.

Ana14 — (H?zam % H22§w14+na23 % H§£14+na34 % Hil?fus % H£L4am+na24 % H14)-

Enam = ¢na14 (Anam)'

Enays[P"™] = tnays (H{5" x Hyg® e s HEnatmess o HIgho s Hpe i g [p™)).

A Closed Form Formula for the Action on E: 4-Slopes

Case

The main result of this section is which states that when we restrict to a small enough

subscheme E,, C E,, C E, then the action of certain g € Aut(FE) is a ‘torsor action’, and in

fact this action can be described explicitly.
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Lemma 6.1.1. Notations as inl6.0. 1.

a). For every n > 2, the infinite series

n(j—1) .

p"iY

1> ' H
)=

converges to an element of End(Hyy).

b). Forx e Emm a functorial point and n > 2,

p(jfl)nfm ; .
BT A14Mnar4 (T)) + €y, (7)) * 2

cap(p o) () = (3
j=1

where * denotes the torsor structure of Hy 4 on E, and e}, () is a point of Hi4[p"*1*]

that depends only on m(x), nais and v = (Ayj).

¢). For all m < 2n and for x € Enq,, [P™] a functorial point, we have
exp(p"**v)(x) = (A147na14 (7)) + €y, (7)) * @ (6.1.1)

Proof. Part a). follows from the easy estimate that

2k
ordy(k!) < " <=k

Now we prove part b). Fix an Artinian local ring R, let

x € Epg,, (R)

a R point and let

(1'ij) € Anau (R,)

be a ’preimage’ of x in flml ., for some faithfully flat cover R’ of R, i.e.

Vn((w5)) = 2R
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Since the group Aut(E) also acts on A,q,,, and this action on A,,,, descents to Eyq,, via

the faithfully flat morphism t,4,,, therefore if

a1 y)

g = exp(p
then
9(®) R = VYnay, (9(Ti5)1<i<j<a)

where

(g(wij) = (exp(p"™** - Aij) - wij) = (w45 +p,; Aigp" M xi5) mod Apg,y,, for(i, 7) # (2,3), (1,4),

2na
nats Agsp ™ Mixe3

To3 + 5 mod Apg,,,

g(xa3) = wo3 + Aazp
0 naisj

9(z14) = 214 + Z(p

=1

Using we can further show that
Unaws (9(@ij)1<icj<a) = Ynar (@5 + fij(@))1<i<j<a)

where

fij(@) =0, V1 <i<j<4,0(i7) #(1,4)

p7na14 .
f14($)=(2 i Al 714 + (P A3434, T13) nays +
=
PP Ayswog
2

naiq

(p" M woy + (€34, p" M Aoz o3 + )2naiss £12)nars

Since (2ij) € Ana,,, we have

2nai4

(34, p x23)2nar, = 0

as T34 € Hna14+na34 and x93 € H2na14+na23 and a4 > a9y = asq + as3. Hence f14 simpliﬁes

to

p]nal4 .
fra(z Z Al )z1a + (P Asaxsa, 130 + (P w24 + (T34, P" A23T23) 2, T12)
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Therefore

9(x) =fra(z) * x
X pras(=1)
:(Z(TAJM)%(:E) + (P" Asaz34, T13)n + (P" @24 + (T34, P" A23223) 20, T12)) * T
=1 ‘

we will adopt the notation

00 pjflna14
€na1, () = fra(x) — Z(TAM)UMM(QS) (6.1.2)
=1 :
and rewrite the above equation as
0 i1
P’ nais .
@) = (8 414 (&) + €3 (@) # i, (@)
=t 7
note that as e, () is calculated with (z12, 213, p"*4 w23, p"**420g, p"*14234), it depends

only on 7(x),v,naj4 where 7 : E — B the natural projection.

Finally part c). follows from the fact that

nai4

p Nnays () =0

for € Epqy, [p?™4]. O

Lemma 6.1.2. Let €} as defined in [6.1.1, see[6.1.9. In particular e, is a function e}, :

E, — Hyy that factors through 7 : E, — B. Let x € E,,. Then e}, (x) = [plH,, -ep(x) and

e’ (OEn> = 0my,-

Proof. We have the following commutative diagram

- (SN ~
En En+1

wn wn—&-l
An A/n+1 C An+1
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where

—~

/ _ n n 3n+2 2n+1 2n—+1

P = (idya, idy3, id1a, [p*]23, [Plo4, [Pl34) (6.1.4)

For given a preimage (x;;) of z in A, a preimage of x in A, can be taken as (z};) s-t.

p(x;;) = (zij). Then we have

v

ep () = (p"Aszawsa, T13)n + (" T2a+34, 0" A23T23)2m, T12)) * id g, (), (6.1.5)

eh 1 (@) = (P Agaalyy, 3 n1 + (0" why + (@b, PV Agsahs)onta, Tio)ntr (6.1.6)

using

(,Y)nt1 = p(2, Y)n, Yo,y € [P"], (6.1.7)
Tlo = T12, T3 = 113, Ty = T14, (6.1.8)
[p°]whs = was, [playy = w4, [plahy = T4 (6.1.9)

it’s easy to see that

en(®) = [Pha - epia(2)

6.2 Tempered Perfection

We collect some definitions and results as given in [CO22| Chapter 10. These tempered

perfection rings are used in the proof of and

Definition 6.2.1. Let k be a perfect field of characteristic p and let ty, ..., t,, be m variables,

m > 1. Let r,s € Z>o be two positive integers with r < s, and let ng be a natural numbers.
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The perfection of the formal power series ring K[[t1, .., tm]] is naturally isomorphic to

neN

Denote by ¢ the Frobenius automorphism of this perfect ring.

(a) Consider the following subring

(Rt "N i = D0 67 (0)))

neN

of the perfection of the formal power series ring /{[[tf_n, 12" ]], where our convention

is that (£)P" ") = R if ns —ig < 0.

e Define a decreasing filtration Fﬂfﬁ[m] on (k{((t?", "7ﬂr)n_n>>ﬁ¢r~[io])ﬁn by ideals
. J —n —n . n n+j
lefi’;l’[io} = {:1: € (k((8) .., t8, >>§¢>7‘;[i0])ﬁ"| In€Nsg s.t. n+j>0and 2P € (1) )}

n

of (k{(t}" ""t%n»ﬁw;[io])ﬁm where (t) is the mazximal ideal of K[[t1, .., tm]]-

e Define /{((L‘{rn, ..,t%n»jw;[io] to be the completion of the ring

n

('““'<<t21f y e t%n»ﬁw;[io])ﬁn

with respect to the filtration Fil#’p.

St Tv[io] '

(b) Consider the following subring
(K<<t€7”’ "’tzr)r:n>>l;:¢r;[i0])ﬁn = Z ¢—nr((z)pns—zo)
neN

of the perfection of the formal power series ring m[[tf_n, 12" ]], where our convention

is that (£)P" ") = R if ns — i < 0.

e Define a decreasing filtration Filgj’;: lig] O (k{2 ..,t%n>)g:¢r.[io])ﬁn by ideals

. J —n —n . n n+3j
Fllls)ﬁr,[io} = {:1: € (k((th .., t7, >>Z:¢r;[ig])ﬁn| In € Nsg s.t. n+35>0 and 2P € (t)® )}
of (/{((1511’%, ..,ti’;;n»g:(ﬁ,.;[io])ﬁm where (t) is the mazximal ideal of K[[t1, .., tm]]-
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e Define n({t? ", ..,t’;;L}}lS’:d,T;[iO] to be the completion of the ring

(Bt 0 o i

with respect to the filtration Filzﬁ:’[io].

Definition 6.2.2. Let k D Fy be a perfect field and let ty, ..., t,, be variables. Let C > 0,d >

0, E > 0 be real numbers.

1. Define a commutative algebra

. B
K8 TNET

m

whose underlying abelian group is the set of all formal series 3 ; brt! with by € K for

all I, here I runs through all elements in N[%]m such that
]y < Maz(C - (| + d)",1)

here for any multi-index I = (i1, ...,im) € Z[1/p|%y, |I|p is the p-adic norm of I and

|1 0o,max 1S the archimedean norm of I, defined by

1], := maz(p~ () p=ordp(im))

‘I‘Oo,mag: = max(il, ig, ceey im)

2. Define a commutative algebra

s3] — 0o

"{<<tzl)_ [RERS) tg@ >>C7d

whose underlying abelian group is the set of all formal series 3" ; byt! with by € K for

all I, where I runs through all elements in N[%]m such that

]y < Maz(C - (| +d)*,1)
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where

| I|o = |ir| + |ig|... + |im]

Definition 6.2.3. Let (R,m) be an augmented complete Noetherian local domain over a
perfect field k characteristic p. Let RPT be the perfection of R, and let ¢ be the Frobenius

automorphism on R. Let A,b,d be real numbers, A,b >0 and d > b.

(a/) Deﬁne a decreasing ﬁltratiOn (le;%perf deg)'eR on Rperf Iindewed by real numbers u by

{z € Rrf|3j € sta? e mlvP1}, ifu>0
FZZIIL%P”f,deg =

RrerS ifu<0

It is easy to see that Fill}%pwf,deg is an ideal of RP"f for evrey u € R.

(b) Define a subring ((R,m)’jiz;ff)fm of Rrerd by

er f,b -n ppin—d
(Rym)ild ) gin = D (¢ "R\ Pili 0 )

It is not difficult to see that (R, m)’350) yin is a subring of RPe'T.

(¢) Define
b
(R m)ot;
to be the completion of ((R,m)ﬁfz,{}b)ﬁn with respect to the filtration induced by the

filtration (Filp,e.; deg) Of Rpert:
’b 3 ,b . ,b
(Rom)fyly’ = Y ((Rym)30) pin/ (Fillyer oy (VR m)5) fin)

(d) Define a filtration (FilER,m)ZeZ.ff). on (R,m)i‘ing by

. . . b . b
Pl yrers 7= 100 (Filpers geg 1 (B m)5 ) fin) [ (Fillpers gog O (Bam) 300 n)
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To state [6.2.5] we set up some notations.

Notations 6.2.4. (The setup for

1. Let (R,m) be an augmented complete Noetherian local domain over a perfect field k
of characteristic p. Let (R, m)ie’zzj;b be a tempered perfection of R, where A,b,d are

real numbers, A,b > 0,d > b. See for the definition of (R, m)%@féb.

2. The tempered perfection (R, m)i’f "Z;:fd’b carries a filtration

Fil? er
(B e e

)o

which is induced by the filtration Fil;%p”f on the perfection RP"T of R.

deg

3. Let m,m’' > 0 be positive integers, and let

—o0

—o\\E)b —oo —00  pToo p— b
R 0P el = k(T T ol TN,

)

be a tempered perfection of k[[u,v]] = K[[u1, ..., Um, V1, .., V]|, where E,C,d are real
numbers, E,C >0 and d > 0.

4. Let g1, ..., gm, P, ..., Ay be elements of the maximal ideal of (R, m)ie’gf.

5. Let A" > 0,0 > 0,d >V be real numbers such that the following conditions hold.

o The continuous ring homomorphism

a er f,b
6Ug®171®ﬁ : K[[Ub ceey U,y U1y oy Um/]] — (R@HR, mR®NR)Z7bed
which sends a typical formal power series

FULy ooy Uy U1y vy Uy ) € R[[ULy vy Uy U1, ey U] ]

102



to

F@1®1, i gm @ L1 @ h1,., 1@ hyy) € (ROR, mpg, p)irsi
extends to a continuous ring homomorphism

- —co\\ B, . b
evge1,10h @ K{(W” TP oo>>o;d — (RO R, mR@R)%ﬂd

The existence of such a triple (A’,b',d") is straight-forward from the definitions.

See [CO22] Chapter 9 for case when (R, m) is a formal power series ring.
o The continuous ring homomorphism

. perf,b
eVg1,10h * K[[U1, o U, V1, oy U ]] — (B m )
which sends a typical formal power series

F ULy ey Uy V15 ooy Ut ) € R[[UL ooy Uy V1, weey Uy ]]

to
b
F(91, woes G i1, o ) € (R, )T

extends to a continuous ring homomorphism
) 0 pTO\WELD per f,b
evgn KW 0P )l — (Bom) i

o The diagram

€VUg®1,10h
- —oo\\Ep IR 5 b
R0 7))l (R&xR,mpg ) m
poo  poe\Eb 9B R mPersh
R{lu? ™ o)) e (B m) s i

commutes, where the wvertical arrow A* is induced by the multiplication map

A:R® R — R for the k-algebra R.
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6. For every element f € ﬁ((gpfoo,ypfoc»gfg, define elements

flg.[) € (Rom)%HY, and f(g©1,1®h) € (R&.R,mpg gl

F(g,0) f(g1, s Gms P1s ooy Bany) i= evg p(f)

f(g® ]-7 1 X h) = f(gl ® 17 ey 9m ® ]-a 1 & h17 ceey 1 ® hm’) = evg@)l,l@ﬁ(f)

Theorem 6.2.5. (Hypocotyl elongation for tempered virtual functions). We use
the notation in|6.2.4. Let (R, m) be an augmented complete Noetherian local domain over

a perfect field k of characteristic p.

o Let g1, .oy Gm, P1, vy iy be elements of the maximal ideal of (R,m)ie;f;b.

o Let f(i1, ., Upm, V1, .., V) be an element of

which lies in the closure of the image of

R ) e © K@ ) eg — {0 ) e

)

o Let g =p" be a power of p for some positive integer r. Let (dn)neNn>n, be a sequence

of positive integers such that lim,_, . % =0.

Suppose that

F(91y s gmy Y hE ) =0, mod Filds

m (R,m)A,yb,;d,,deg

in (R, m)ﬁe,rg,’%, for all n > ng. Then
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fla1 @1, 9m®1L,1®h1, .., 1@ hyy) =0
in the completed tempered perfection (R®RR,mR®KR)ie/T§’Z, of R&xR.

Proof. See [CO22| Chapter 10. O

6.3 Proof of The First Result

Notations 6.3.1. We set up some notations for [6.3.4 Note that these notations are

compatible with|6.0. 1)
1. We use all the notations as in[6.0.1l

2. Let H = (H;j)1<i>j<a be a Tate-linear nilpotent group of type A of dimension 4 that

is pure and perfect. For definitions seel4.4.1,[4.4.23 and[{.4.5

3. Let E = Defr_tor, ™ : E — B the natural projections. We also use the definitions of

By, En, Ay as in[4.0.1. Let

Rg = /<g<<t1, ...,tm>>

where Rg is the ring of reqular functions of E. Note that E is formally smooth.
4. Let s;j = slope(H;j). Let aij,r,s € N satisfying

(a) sjj =22 V1<i<j<4
(b) r < s <2r, hence s1q4 = U4 > 44 > Gl

(C) S14 = % > %4 > Skl,V(k,l) ?é (1,4).

L5 ]—c2

5. Fix na, ca € N such that Hy;[p"] D H;j [Frob,™ | forall1 <i< j<4andn > ns.
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6. Let n3 € N such that H;j[p"*] D Hij[Froby®] for all n > ng, (i,j) # (1,4), and that

Hyy[p™™4] C H14[Frobgs] C Hyy[p?"414] for all n > ng.

Theorem 6.3.2. Notations as in|6.3.1 Further, Let G a p-adic Lie group acting strongly
non-trivially on E and W C E a reduced irreducible formal subscheme of E that is invariant
under the action of G. Let Hiy = (W N Hj 4)req be the intersection of W with Hy 4 endowed
with reduced structure. By orbital rigidity theorem of p-divisible group we know Hi,
is a p-divisible subgroup of Hy 4. Let

Y:H,xE—E

(h/147 6) — h‘/14 xe
corresponding to the restriction to Hi, of the action of Hi4 on E. Let v = (Aj;) € Lie(G)

be an element of the Lie algebra of G such that A;; € End(H;j).

a) Then

(Vo (Avalpy, x idw))(Hyy x W) C W
b) Assume in addition that the action of G on Hjy, is strongly non-trivial. Then

YH, xW)CW

Proof. We first show that a) = b).

By the assumption that the action of G on Hj, is strongly non-trivial implied

that there exists elements h* = (hf]l) € Lie(G), indexed by a finite subset

{(k,) eN?: ke {1,...m},le{l,..,n}}
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where nj, € N> for each k =1, ..,m, such that

> Bbio i3 o hJ* € End(Hi,)g
1<k<m

Hence the statement b) follows from statement a) and the above linear algebra

consequence of the assumption that G operates strongly non-trivially on Hi,. Now we prove

statement a).

Step 1. Preliminary reduction steps

(a) It suffices to prove the statement after extending the base field to an algebraic

closure of k. So we may and do assume that k is algebraically closed.

(b) If E — E’ is an isogeny of triple-extensions, the statement holds for E if and
only if it holds for E'. Modify E by suitable isogeny, we may and do assume that

H;; are p-divisible groups such that Hy4 with slope(H14) = #*, we have
Hyy[p™*] = Hyu[F'roby,,]
(¢) Choose a suitable regular system of parameters (uq,..,up) for Hyy such that

Hyy = Spf(k[[u1, .., up]] and

r

[p*]* (us) = ug
Step 2. Recall the definition of Ey and Eyx[p"] as in for N, M € N.
By [6.1.1] especially [6.1.1]
P(exp(p"**v)) = (A14 © Mnay, + €p™*) xidg  mod Epna [p2”“14]
By and the definition of n3 in [6.3.1 we have

Hya[p"4] € R/ (m8™") C Enaya[p?"4], Y0 > ng
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Step 3.

Step 4.

Hence

P(exp(p"®*v)) = (A14 © Mnay, + €0*) *idp  mod m%m,Vn > ng (6.3.1)

v

For each j = 1,...,b define

(ns)
Ajn = (A14 0 Npa + eﬁam)*(uj) € RE’/m%

for all n > n3. Then by [4.2.12| and [6.1.2] it is easy to see that {ajn}n>n, are

¢" compatible sequences for all j = 1,2,...,m. Let i; := max(s — r,["3]) Then
by [CO22| especially 6.8.3.3 and 6.8.3.4, each {a;y}n>n, gives rise to an element

aj € m{((t) et TN i)
Elements ay, ..., a, € (REg, mE)ﬁ:W’;[h] defines a ring homomorphism

i) Reryy = Kl[ua, o um]] = (Re,me)lole

Let

) b
Wy (RE’mE)i’f;;{[il] — (RH14,mH14)§:eg;[z‘ﬂ

be the ring homomorphism induced by the inclusion H14 <— E. Because the restriction
to Hys of the morphism n,|m,, — Hia equal to [p"|m,, for every n € N, and that

QZ’HM as a subscheme of E — 0; we see that

wi o] = Ajy 0 jry,,

perf,b

where jRH14 : RZ1 — (RH147mH14)5;¢T;[11

| is the natural injection from Ry, to its

tempered perfection and Aj, is the ring homomorphism induced by A4 on Hig.
We also have the following ring homomorphisms
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(a) The canonical homomorphism Rr — Rg/Iw gives rise to a homomorphism

7b 7b
™+ (Reome) sy = (Ran men) S

(b) Continuous ring homomorphisms

Ai:Rp — Ry ®Rp,

Ag : RE — RH{4®RW
(¢) The ring endomorphism

. per f,b perf,b
w = (Rw, mw ). pr i) = (RH£47mHi4)5:¢r;[i1]

induced by

Hi, < Hyy =W
(d) The ring endomorphism
14 = Allw, Ry, — Ry,
corresponding to the endomorphism Hi4 of the p-divisible group Hiy.

It follows that the following diagram commutes

felw C Rg REg

1A 1A,

Ry &R 197 Ry ©R
H14 E * H14 w *
Vil S el
E
(RE, mE)IS}il:’f;,[l;l](g(RE’ mE)ZS)ZTf;[bil] RH{4 ® Re ] RH{4 ® Rw

TRT 4%’RH/{4 X jRw

erf,b A erf,b WQ®1 erf,b A erf,b
(vamw)iwf;[il]@(RW:mW):;;f;[il] - (RH£47mHh)g;;{[il]@(vamW)Z;(;Tf;[il]
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Step 5.

Step 6.

Step 7.

Recall that Iy is the prime ideal of the coordinate ring of E. We want to show that

for all f € Iy,

(A74 X 1rg) 0 Aa(f) =0

Because jRp; and jRy are both injective, it suffices to show that for all f € Iy,

(JRm;, ® jRw) o (A1y X 1r,) 0 Aa(f) =0
From the commutative diagram we see that it suffices to show (a stronger statement)

that

(T ® T) © (77][1)] ®jRE) © Al(f) = O,Vf S IW (632)
Let f € Iyy. Define an element

IS (RE,mE)p:eTf;’b. }®(RE,mE)p:ETf;’[b- (6.3.3)

where (7[v] ® jg,) o Ay is the composition

A A A 7v]®jr N
R, ,®Rg — Rp®Rp  —" (RE7mE)§e£1{’§1]®(RE, mE)’s’i;”{’f;]

We want to show that the image of f under the map

b

perfb 2 perf,b TP®T perfb 2 perf,b
(R g )iy © (R ms gy — (B mw )i @ (R mw ) gy

is zero.

Let¢ be the Frobenius endomorphism x — xP on (Ryy, my)?. Let

v (Rw, mw)’®(Rw, mw)? — (Rw, mw)?

110



perf,b

be map which defines multiplication for the ring (Rw,mw ), o3lin]" Geometrically

vw corresponds to the diagonal morphism from Spec((Ryw, mw )" e(;f ’[I;I]) to its self-
product.

Because the formal subvariety W C F is assumed to be stable under G, therefore

stable under ¥ (exp(p™®4v). Hence implies that
v (0™ @ D) (TP @ 7°)(f)) =0 mod FilP™
where ¢™" ® 1 is the ring homomorphism

. b 7b b £
O™ @ 1: (Bw, mw )ggr i © (Bw, mw) iy, — (Bwsmw ) ol ©(Bw, mw JE5

Applying theorem also note that r < s which implies lim 2 = 0, we conclude

hS)

that

(r"e)(f)=0

in (RW,mW)Ze;T{’ﬁﬂ®(RW>mW)zzvf;’ﬁl], for every element f € Iy, which is precisely

As we have seen, this implies that

(Aralmy, © 1)(Ao(f)) =0

in RH{4 ® Ry for every element f € Iyyy. We have proved the result.

6.4 Further Consequences

The following result is proved in |[CO22| Chapter 10. The main purpose of this section

is to prove [6.4.6] which is an analogy of [6.4.1]
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Lemma 6.4.1. Let m: £ — X X Y be a biextension of X XY by Z over k. Assume that
X,Y, Z all isoclinic with the slope(Z) strictly bigger than slope(Y), slope(Z). Let G be a
closed subgroup of Autpient(E) such that the action of G on Z is strongly non-trivial. Let
W be a reduce irreducible subscheme of E stable under G. The closed formal subscheme
7' = (WNZ)req is a p-divisible subgroup of Z, and W is stable under the translation action

by Z'. Let W =W/Z', a reduced irreducible closed formal subscheme of the biextension
E|7' =(Z - Z)Z').E
of X xY by Z/Z'. Then the natural map
qw W' = E/Z

is finite purely inseparable formal morphism. In other words the affine coordinate ring Ry
of W' is finite over the subring Rim(qyr), the affine coordinate ring of the schematic image

of qwr, and there exists a natural number m such that xP" € Rim(qy) for every x € Ry

Proof. See |[CO22], Chapter 10. O

The rest of this section will be devoted into proving an analogy of We first setup

notations.

Notations 6.4.2. (Notations and assumptions for the rest of this subsection)

1. We continue with the notations as m let H = (H;j) be a general sustained linear
group, pure and perfect. Let G C Aut(H). Let W C Defy_iorsor reduced irreducible
closed formal subscheme of E stable under the action of G. Let v = (A;j) be an

element of the Lie algebra of G with components A;; € End(H;;).
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2. There exists positive integers ai4,7,s,ng such that

(a) 0 <as <r<s
(b) slope(Hia) = %+, Hia[p™4] = H1a[F"].
(c) the congruence condition holds.

3. Recall that in Step 3 of [6.3.9 we pick a regqular system of parameters uy,ug, ..., up of

the complete local ring Ry, with [p®];,, = u?r for alli =1,...,b, and constructed a

continuous Ting homomorphism

i(v) : R,y — (RE7mE)§:e<;'{’[I;1]

Define the schematic image Im(f[v]|w) of the restriction to W of fj[v] by

Im(q[v]lw) = Spf(Ru, /Ker(r" o ij[v])

ilv]* er 7t er
= Spf(Rep,, /Fer(Rizy " (R, mp) P50 s (R m 2550 )

Lemma 6.4.3. We continue with the notations of. For every element v = (Aij)1<i<j<4,

the diagram

Ay ~ jRH14 OAT4®77 b & b
Ry, R, ®Ru,, (R, )gfgf;7[i1]®(RE)€f;£7[i1]
n J
b
£b A 5 1b
(RE)ggr i) (Ru1u®RE) g
JRg jH14®RE
A .
RE Rp14®RE

commutes. The arrows A, Ab,jRHM,jE,jRHM@RE,j are as follows:
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Ap,, corresponds to the group law on Hiy.

A: Rp — Ry, ® Rp corresponds to the Hyy torsor structure Z x E — E on E, which

induces a ring homomorphism AP : (RE)%[’[I;] — (RH14®RE)§:e£f,’§1]

° jRH14’jE’jRH14®RE are the inclusions maps from Ry,,, Rp, Ry,,@RE to their tem-

pered perfections

o The downward vertical arrow j on the right is the natural ring homomorphism, from
the tensor product (RHM)’;z,f_’[l;l]®(RE)§f;f_’[l;ﬂ of tempered perfections to tempered per-

fection (RH14®RE)§$TJ?§1] of Riy,®Rp.

Proof. Left as exercise. O
Proposition 6.4.4. We use the notations and assumptions in[6.4.2. Then

(a) The formal subvariety W of E is stable under the translation by the smallest p-divisible
subgroup of His which contains the schematic image Im((7[v])|W) of the restriction

to W of the morphism qj[v] : E — Hy4, for every element v € Lie(G) N ([] End(H;j)).

(b) Let Hisz be the smallest p-divisible subgroup of His which contains the schematic
image Im((7[v])|lw) for every v € Lie(G) N [[(End(H;j)). Then W is stable under

the translation action by Hi4z.

Proof. We will show that T is stable under the translation action of Im(7[v]|w). The
statement (a) follows easily from this apparently weaker statement.

Let Iy = ker(t : Rg — Ry ) be the ideal of Ry corresponds to W. Let

o] := Ker(r" o i[v] : Rig o jfv] : Ruyy = (Rw,mw )Pl )
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We need to show that the kernel of the composition

Q) ®T
Rp 25 Ry, ® Rg St (Ruy4/J[v]) ® Rw

contains Iy, where qp, : Ry, — Rp,,/J[v] is the quotient map. Let
Tyt Riry /I [0] = (R, mw )l
be the injective ring homomorphism such that
™ o0 )" = Jpy) © qpy)
We have a commutative diagram

A ) @ T
REg Ry, ® Rp (R, /J[v]) ® Rw

] ® jry Jv) ® JRw

,7_b®7_b

(RE, mE)perf,b ]®(RE7 mE)perf,b

b oA b
siilin si7lia) (Rw, mw VoL & (R ma ) 257

s:¢7;3[i1] s:973[41]

In step 4 of we showed that Iyy C Ker((7° ® 7°) o (fi[v] ® Jg,) ® A. Therefore
Iy C Ker((qq) @ T) 0 A1)

because J,) ® Jgy, is an injective ring homomorphism. We have prove the statement (a).

The statement (b) follows from (a). O

Corollary 6.4.5. In assume in addition that G operates strongly non-trivially on
Hy4. Then the intersection w N Hyy with reduced structure is equal to Hy4 5, the smallest p-

divisible subgroup which contains all schematic images Im((f[v]|w)), where v runs through

all elements of Lie(G) N ([I1<i<j<q End(Hij)).

Now we prove the main result of this section.
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Theorem 6.4.6. Let H be a Tate-linear nilpotent group of type A of dimension 4 that
is pure and perfect, let E = Defy.ior, m : E — B the natural projection. Recall that E
admits a Hyy torsor structure over B. Assuming that si4 > s;5,V(1,7) # (1,4). Let G be a
closed subgroup of Aut(H) = Aut(E), in the sense of[{.4.8 Let W be a reduced irreducible
closed formal subscheme of E stable under the action of G. Suppose that the action of G
on Hiyy4 is strongly non-trivial. By the reduced formal subscheme Hiy, = (W N H14)red
is a p-divisible subgroup of Hy4, and W is stable under the translation action by H1,. Let
W' = W/H},, a reduced irreducible closed formal subscheme of the biextension E/H}, =

(Hy4 — Hy4/Hi,)+«E. Then the natural map
qw' - WI — E/H14
s a finite purely inseparable formal morphism.

Proof. Extend the perfect base field k if neccessary, we may and do assume that the base
field k is algebraically closed. Recall B = E/Hj4. As the closed fiber of the formal mor-
phism 7|y, W/H}, — B is finite over k, therefore T|wymy, s finite. Denote by w
the schematic image of 7|y, a reduced irreducible formal subscheme of B stable under the
action of G. We need to show that W is purely inseparable over W.

Now W.L.O.G. assume Hj, is trivial, hence W = W’. Let Ry, Ry be the coordinate
rings of W, W respectively, and let j : Ry, — Rw be the continuous injective ring homo-
morphism induced by 7|y. We know that Ry is finite over Ry, and must show that there
exists N € N such that 2?" € Ry for all x € Ry;. Suppose no such natural number N

exists. Then there exist continuous ring homomorphisms hy, he : Ry — k[[u]] from Ry

to the power series ring in one variable u, such that hy o j = hg o j but h; # he. Since
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the projection ¥ — B = FE/Hy4 is a Hy4 torsor, there exists a continuous k-linear ring

homomorphism 0 : Rp,, — k[[u]] such that
ffu]) © (0 ® h1) 0 A = hy
where
e A: Rp — RH14®RE corresponds to the action of Hy4 on E,
o fglp) ¢ kl[u]]@k[[u]] = k[[u]] is the multiplication map on k[[u]],

e Ker(d) € mpg,,, or equivalently k[[u]] is a finite module over the subring Im(J),

because hi # ho.

We know from that for every v = (A;;)i<i<j<a € Lie(G) with components A;; € End(H;;),
the kernel of the composition 7° o 7j[v] of the continuous ring homomorphism

b

v erfb T er f,b
Ru,, Ul (REamE)g;wf;[m - (RW’mW)§Z¢7{[i1]

contains the maximal ideal m g, of Ry,,. In other words 7°07j[v] is equal to the composition
Ry, — k= (Rw,mw)? e(;,f ’[I;ﬂ, the trivial k-linear ring homomorphism.

Consider the following diagram,

Ay ~ (JRuya © A1a) @1[V] b o
Ry, - Ry, @Rmy, 1 (R, )§:¢£7§1]®(RE)§¢¢T]?[IZJ
ilv] J

erf,b Ab A er f,b
(Re)oli (R ®Rp) 5l
(hg oT)b (1®7)

b
or Hi{fu] . or (6® ha)° o per

(kl[u)2l0 | ———— (R[] k([P0 | (Ri, ©Rw )2l |



The Commutativity of the top half of the diagram follows from [6.4.3] while the bottom

half commutes because g p,)) © (6 ® h1) o A = hy. The homomorphism

(hzom) o]

Ri, CITIEl e

is the trivial k-linear ring homomorphism because 7° o j[v] is. On the other hand, we have
(ha o 7)" 0 fj[v] = Mz[[u]] 0o (6®@h1)’ o (1@7)"0jo((jry o Afy) ®v]) 0 Ap,,
The right hand side of the above equality is equal to the following composition

Rity 2 Rty = kl[ul) ™™ kl[u]) 550

Therefore the non-trivial k[[u]]-point §* of Hi4 lies in the kernel of the endomorphism A;4
for every element v = (A4;j))1<i<j<a € Lie(G) N ([T End(H;j;). Since the action of G on Hyy
is strongly non-trivial, the point 6* € His(k[[u]]) is 0. This is a contradiction. We have

proved that W is purely inseparable over W. 0
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Chapter 7

The Main Theorem

Notations 7.0.1. Setup of This Section

i) Let H be a Tate-linear nilpotent group of type A of rank 4 over an algebraically closed

field k of characteristic p with p > 5. We further assume H to be perfect and pure.
i) E = DefH_torsor
i1i) Let B = E/Hy4,m: E — B the projection map.
i) Let G C Aut(FE) a closed p-adic Lie subgroup acting strongly non-trivially on E.

v) Let W C E a reduced irreducible formal subscheme. Assume that W is invariant

under the action of G.

vi) Let Y := 7(W) N (Hyi3 X Hos) where Hiz X Hoy C B as a subscheme. X = (w12 X

o3 X w34) (W) C Hyg X Hag X Hsy. Since W is invariant under the action of G, hence

both X,Y are p-divisible subgroups by|5.2.1).
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vig) For n € N,let Bi3, Bos, B13n, Boan, B, En, 123, T34 as defined in . Note that

both B13, Bas are bi-extensions and that B = B13 X fyy Boa.

viit) Let Ay, B and ¢ : Ay, — Ep, as in|4.2.1|.

7.1 Compatibility of Trivialization

The following result will serve as the ’induction hypothesis’ in the proof of orbital rigidity

of 4 slopes case.

Theorem 7.1.1. Notation as in |7.0.1, and let W C E a reduced irreducible invariant
under the action of G C Aut(E). The action of G induces action on both B3 and Bay. Let

1 2,4 C .
wniomo’wn7homo be (homogeneous) Mumford’s trivialization of B1s and Bay respectively, see

(544 Then

(a). the following diagram

()

(Hia x Hag x Hsq)[p*™] x (His x Hay)[p*"] x Hiy ‘ E,

11, 7|E,

Pn

(Hiz x Hag x Hzq)[p™] x (His x Hay)[p™"] - By

[pn]H12><H23><H34><H13><H24 —
1,3 2,4
wn,homo ®H23 wn,hamo

(Hi2 X Haz x Hsq)[p*] x (His x Hag)

commutes, where

° wi:iomo @ Has ujiiomo : (H12[p2"] X H23[p2n] X His X g,y (Has % H34)[p2"] X Hoy —

B71173 ® Has 372174 — B
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e ), is the morphism from His x Haz x Hzy)[p®"] x (H13 x Hay)[p*"] to B, induced
by ¥n.

e I, is the natural projection from (Hia X Haz x H34)[*"] x (H13 x Ha4)[p?™] x Hy4

to (ng X H23 X H34)[p3n] X (H13 X H24)[p2n]‘

(b). Let W,, := 7(W) N B,,. Let X,Y as defined in|7.0.1)(vi). Let S, be the morphism
Sn: X[p*] x Y[p"] — B that sends (z,y)

to

1 1
1,3 24/ .2n .2n _2n 2n,.2n n 2n,_.2n n
n” @Hyy Uy (275, 295, T3, 5 12723 + Y13, 5723734 + y34)

where

T = (x%37$§§7w32) € Xay = (y?Saygll)

Then S, factors through W,.

Proof. Part (a) follows from the construction of 1, as in an easy diagram chasing.
Part (b) is a direct consequence of which says that w(W) is a Tate-linear formal
subvariety of B, given that m(W) is a reduced irreducible subscheme of B invariant under

the induced action of G on B.
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7.2 Existence of Admissible Subgroups

Lemma 7.2.1. Let H = (H;j)i<i<j<a be a Tate-linear nilpotent group of type A. Let

X C His X Hog X Hyg, Y C Hyg X Hoy p-divisible subgroups. If we further assume that
(x?ﬂg:’,/ - x’f2’a:33, $§3$§4/ - 3733/33?4) €Y, Va = (afy, 253, 34), a’ = (957112/7 $33/7 xg4/) € X[p"]
(7.2.1)

ToYsy = Y1375y, VT = (2o, T3, 734) € X[p"],y = (Y5, y24) € Y[p"] (7.2.2)

then there is an admissible subgroup H = Hxy C H such that Lie(H) = X @Y @ ep14.
For the definition of Lie(H) see[{.7.5

Proof. Consider the subschemes

1 z12 %x1zxz3 + Y13 é$12m23$34 + Z12Y24

0 1 T23 %36231334 + you N N
Hy = Vo = (212, @23, w31) € X[p"],y = (y13,424) € Y[p"]

0 0 1 T34

0 0 0 1

It is a simple algebra exercise to check that H,, is indeed a group scheme and that the

natural morphism Hy,11 — H, is faithfully flat. ]

7.3 The Case When 7|y is Isomorphic

The main result of this section is which is a special case of the main result of this

thesis 1.8.2

Lemma 7.3.1. Let Ay, Epn, Bp, Y homo : An — Ey as in . Note that By, = ©(Ey).
Then Y¥p homo induces a faithfully flat morphism
Ut (Hi2 X Hag x Hzy)[p™] x (Hi3 x Haa)[p*"] — B,

122




Moreover, let W, X,Y as in|7.0.1. For n € N, let W,, := n(W) N By, a finite subscheme of

W. Let J, be morphism from

X[p*"] x Y [p*"]
to
(Hiz x Hag x Hsq)[p*"] x (Hig X Haq)[p*"]
that sends
(x,y) = (215, 235, 237), (475, v31)
to
(a5, 735 (a8, B on + 38 5 (a8, a8 asaom + 230)

Then

Tn 0 = X[p*"] x Y[p*"] = By,
factors through W,, and as a morphism from X [p"] x Y [p?"] to W, it is faithfully flat.

Proof. This is a reformulation of the result in [5.2.1] and [7.1.1} O

Remark 7.3.2. The significance of is that this coordinate system, that is trivializing

m(W) using X and Y, is more natural and easier to handle.

Corollary 7.3.3. Notation as[7.0.1l Let J, be the morphism defined in[7.3.1. We further
assume that wlyy : W — (W) is an isomorphism. Then for each n € N, there exists a
morphism

f: X[p*"] x Y[p*"] — Hyy

s.t. for all x € X[p®"],y € Y[p*"],

77b71,h07710(u7'rz($7 y)7 fn(xa y)) € Wn

123



where (Tn(x,y), fn(z,y)) is an element in (Hia x Haz x Hzyg)[p®"] x (H13 x Hay)[p*™] x Hiy.
Moreover, we have the following compatibility between different n’s: for x' € X[p3"*2],y €

Y[p2n+1]’

far1(@y) = fa(?] - 2, [0] - )

as elements in Hyy4.

Proof. This is a direct consequence of and the fact that 7|y : W — (W) is an

isomorphism. O

Theorem 7.3.4. Notation as in|7.0.1. Assume that 7|y : W — w(W) is an isomorphism.

Let X,Y and f, : X[p*"] x Y[p*] — Hy4 as in|7.3.5 Let

fn(x,y,A) = fn(l'ay) - fn(x7y + A)

where
_ 3n ..3n ..3n 3n 3n
r = (273,053, 23;) € X[p™] C (Hia x Hag x Hzq)[p™"],
_ 2n . 2n 2n 2n
y = (yi3,y24) € Y[p™"] C (Hiz x Haq)[p™"],
A = (A%, A3 € Y[p*™] C (His x Hay)[p™"]
Then

(a) fu(w,y, A+ A') = ful,y,A) = falz,y, ') = 0.
(b) fn(z,y,A) is independent of y.

(C) fn(xl + 22,9, A) - fn<m17y7A) - fn(x%ya A) = O,V.T}l,l'g € X[p3n]7yaA € Y[p2n]
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(d) For xz = (a1y, x%,x&),x’ = (337112/,567213,, JJ&’) e X", y= (y??)aygﬁ) € Y[p"], we have
(v7pa%s" — a1y w3, whsafy’ — ahs'aly) €Y
(212, Y24)n = (Y13, Z34)n
(e) There exists an admissible subgroup Hxy of H such that
Lie(H)@y) =XpY® €Hiy

and that

m(Exy) = m(W) as subschemes of B

where Exy s the Tate-linear subvariety of E that corresponds to Hxy. For the
definition of Lie algebra of an admissible subgroup see [{.7.5. For the definition of

Tate-linear subvariety that corresponds to an admissible subgroup, see[].7.8

(f) W is a Tate-linear subvariety.

Proof. Let F(z,y, A, A') = fo(z,y, A+ A') — fu(z,y, A) — fn(z,y, A'). We prove the result

in several steps:

Step 1. We show that for all ¥(z,y), (2/,%') such that ¥, (z,y) = ¥, (2',y), and all A, A’ €
Y[pZn]’

F(x7 y? A? A,) = F('CU,7 y’? A? A/)

First notice that ¥, (z,y) = (2, y) <= nlz,y + A) = (2,9 + A),VA €

Y [p*"].
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By [£.2.6] we have

fN(wvgﬁ A) - f(xla ylv A) = [fn(xvy) - fn(xlv y/)] - [f'fl('x:y + A) - fn(x/>y/ + A)]
2n/ 2n/ 2n/ 2n/

= [yis (23} — 231") + 295 (y37 — y3t))] — [(wi% + A) (@37 — 237) + 235 (y3h — v3i")]

A13 (9334 %Z’) =0

here terms involving only z’s cancel out in two brackets hence omitted, and all the

multiplication’ refers to bilinear pairings at level 3n, for example y3§ (237 — 22}') =
3 2 2n/
(Y13, 231 — 231")134,3n. Hence

F(x,y, A, A" = F(z',y', A, A")
= (A% - AN A+ AR - 2

=0

Step 2. Let x € X[p®"], Y,A € Y[p?"], 6 = (674, 0%) € Y[p"]. Again by [4.2.6, we have

Un(2,y) = Y,y + 0), Yu(2,y + A) = Yul2,y + +A + 0)

Moreover,

Fla,y, A+6) = f(z,y,A)
=[f(x,y) = f(x,y +0)] = [f(z,y + A) — f(z,y + A + )]

= [~} - 85)] — [~ai} - 65, = 0
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Hence it’s also easy to see that

F(x,y,A+6§A") = F(x,y, A, A),

F(z,y, A, A +6) = F(z,y, A, A)

Step 3. Combining results in Step 1 and Step 2, we know F,, descent to a morphism
Fo:B, xY[p"] x Y[p"] = Hus
together with compatibility condition in [7.3.3] we obtain a morphism of schemes
F:=F,:BxY xY — Hy (7.3.1)

As W is invariant under the action of GG, F' is equivariant under G, hence by we

have F' = 0. This proves (a).

Step 4. By (a) we have

fn(:v,y,A—l—A') an(x,y,A)+fn(fL‘,y,A') (7'3'2)
On the other hand

fa(z,y, A+ A)
= f(z,y) — flz,y+ A+ A7)

:f(m,y)—f(a:,y—i—A)—i—f(:c,y—i—A)—f(x,y,A—i—A’)

Fa(@,y, &) + fule,y + A, A)
Hence

fala,y, &) = fulz,y + A, A) (7.3.3)
that is f,(z,y, A) is independent of y. This proves (b).
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Step 5. The prove of (c) is similar to the prove of (a). Consider the function
K, X[p*"] x X[p*"] x Y[p*"] x Y [p*"] — Hua
defined as
Kn(z,2',y,A) = fu(eta’,y, A)=fu(z,y, A) = fula’,y, A), Va,2’ € X[p*"],y, A € Y [p™"]
We first show that for all §, € X [p*"],

Kn(x + 59@733/7:% A) - Kn(x7$/7y7 A) =0

Pick any ' € Y[p*"] such that ¢, (2 + 0z, y) = ¥n(z,y'), By and (b),

fa(@ + 02,y 8) = falz,y, A)
= fal® + 00,9, &) = fula,y/, A)
= [fu(@ +02,9) = fu(@,9)] = [fu(@ + 00,y + A) = fu(z, ¢/ + A)]
= [yt5035q + 275 (a1 — w31 )] — [(yi5 + ATE)87 % + 235 (v3) — v31")]
= = A%Q‘ﬁ?&l
Hence
Kn(z+ 60"y, A) — Ky (z, 2y, A)
= [falz +2" + 60,9, 8) = falz + 2"y, A)] = [z + 60,y A) = falz,y, A)]
= = A?§5§f§4 - (—A%L(Si?ﬂ)

=0

Similarly we can show that for d, € Y/ [p"],

Kp(z, 2y, A+ 6y) — Ky(z,2',y,A) =0
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Step 6.

hence K, descents to a morphism

K X[p"] x X[p"] x Y[p"] x Y[p"] = Hua
and together with the compatibility conditions as in [7.3.3] we obtain a function
K =K,: XxXXxYxY — Hyy

which has to be trivial by the orbital rigidity of p-divisible groups This proves

(c).

The first equation of (d) follows from and that 7(W) is invariant under the
induced action of G on B.

Let z € X[p®"], A € Y[p?"], on one hand, by (b) we have

[p"] fu(,0,4)
= fn(l', 0, [pn}A)
(:E,O)N(:B,[pn]A) _ <

= 12,30, [P"']A)3n

= — (5512,717 [pn}A>n
On the other hand, by (c) and the fact that £,(0,0,A) = 0,YA € Y [p**] we have
[p"] fn(2,0,4)
=(fu([p"]2,0) = fn(0,0)) = (fu([p"]z, A) = fn(0, A))

=— (A, [p"]w34)3n

=— ([p"]A13, T340 )n
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That is for all § € Y[p"], z, = (12,0, T23.n, T34.n) € X [p"], we have

(613,n, T34,n)n = (12,1, 624,0)m
This proves the second equation in (d).

Step 7. Part (e) is a direct consequence of

Step 8. Let Exy as defined in Step 7. Then there exists a morphism 7" : 7(W) — Hyy s.t.

Ew(w) =T(w) * ey, (w)
where

o Ly (W) — E is the section from 7(W) to E that corresponds to W.

® {pyy :M(Exy) = m(W) — E is the section from 7(W) to E that corresponds

to WH.
e w e W(R) any R point of W for any Artinian local algebra R over k.
By T is a trivial morphism. That is {w = {gy -, which is equivalent to W =

Exy. As Exy is a Tate-linear subvariety by definition, W is also a Tate-linear

subvariety. This proves (f).
O

Lemma 7.3.5. (Functoriality of Tate-linear Subvarieties) Let H = (H;j)i<i<j<a
be a sustained nilpotent linear group of rank 4. Let H? = (Hij)1§¢<j§3 and let w93 :
H — H'3 the natural group scheme hommorphism. Let Biz = Defi1.s_sopsor- Let H C H

an admissible subgroup, and let Ey: be the Tate-linear subvariety of E corresponds to H'.
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Let 71'1’3(H’) Cc H'3 and EW1,3(H/) C Bis. Then the group homomorphism mwia3 induces a

morphism
93 : E'— B3
s.1.
h23(Emr) = Erismr)
Proof. Left as exercise. O

7.4 Proof of Main Theorem

Theorem 7.4.1. (Orbital Rigidity Conjecture 4 Slopes Case). Notation as in|7.0.1|
Let W C E a closed formal subvariety, reduced and irreducible, let G be a compact p-adic
Lie subgroup of Auts,s(E) that acts strongly non-trivially on E. If W is invariant under

G, then W is a Tate-linear formal subvariety of E.

Proof. Let H{y, = (W N Hi4)req, which is a p-divisible groups by the orbital rigidity theorem

of p-divisible groups. Let 7’ : E/H{, — B induced by the natural projection 7 : E — B.

Let W' = W/H]j,, where the H/, action on W is guaranteed by [6.3.2l By [6.4.6| the map

W' — ©(W) C B is a finite purely inseparable morphism.

Recall B = Bi3 XH,, B24. By the orbital rigidity theorem in three slopes case [5.2.1
both m3(W) C Ei3,m4(W) C Eyy are Tate-linear subvarieties. Then by we can find
an homomorphism

L:B— B
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that preserves 7(W) and L,y dominates 7’|y : W’ — w(W). That is, there exists
&1 m(W) — W/Hj, such that 7|y o &1 = Ll

Consider

E,:=E/H|, xpr B

HZL = (H/Hi4)£

where H. = ((H})ij)1<i<j<a is the Tate-linear nilpotent group of type A with the same

components as H/H{,, that is

(Hp)ij =
Hyy/Hyy  (i,7) = (1.4)

but with bilinear pairings induced by £. Then H}. corresponds to E., that is

/
DefH/C—torsor = EE

As the compact p-adic Lie group G operates on E/Hj, and that W/H]j, is stable under the

action of GG, there exists a compact open subgroup
G, CG

which operates on E’., and the natural map h : E; — E/H/, is equivariant with respect
the the inclusion G’ — G. The morphism & : w(W) — W/Hj, defines a morphism

& : (W) — Er such that ho & = &;. It follows that
Lompg obp=m0& =L

Therefore
T, © &2 = idr ()
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In other words &3 is a section of the pullback E. over w(W).

The following graph demonstrates the relations between various maps:

h

E/H1,

Moreover s is equivariant with respect to the action of G’ on E/Hj,. Let
WZ = W/H14 XB,L B

the pullback of W/Hi, by L, and let W{, be the subscheme of E}. that corresponds to the
section &. Apparently W, C W;. As dim(W{,) = dim(W7) and both are reduced and

irreducible, we know that I/Vé2 =Wj.

The following diagram illustrates above constructions.
(E7 H = (Hij)7 G, W)

/Hig

A , pull back by £ , f ,
(E£7H£v EvWL) (E/H147H/H147G7W/H14)

Applying f). to (EL, Hp, Wy, = W, G}), we conclude that W, C E} is Tate-linear

subvariety. Hence by [£.7.14] and [£.7.13| we conclude that W C E is also Tate-linear.
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