A CLASSIFICATION OF GENUS 0 MODULAR CURVES WITH A RATIONAL POINT

Let E be a non-CM elliptic curve defined over \mathbb{Q}. Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}. We get a Galois representation

$$\rho_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\hat{\mathbb{Z}})$$

associated to E by choosing a compatible bases for the N-torsion subgroups of $E(\overline{\mathbb{Q}})$. Associated to an open subgroup G of $\text{GL}_2(\hat{\mathbb{Z}})$ satisfying $-I \in G$ and $\det(G) = \hat{\mathbb{Z}}^\times$, we have the modular curve (X_G, π_G) over \mathbb{Q} which loosely parametrises elliptic curves E such that image of ρ_E is conjugate to a subgroup of G'. In this talk I will discuss my work on classification of all such genus 0 modular curves that have a rational point. This classification is given in finitely many families. Moreover, each such modular curve can be explicitly computed.

Date: Thursday 7th January, 2021.