
Riemann’s theta formula

Ching-Li Chai∗

version 12/03/2014

There is a myriad of identities satisfied by the Riemann theta function θ(z;Ω) and its close
relatives θ

[a
b

]
(z;Ω). The most famous among these theta relations is a quartic relation known to

Riemann, associated to a 4×4 orthogonal matrix with all entries ±1; see 1.3. It debuted as formula
(12) on p. 20 of [10], and was named Riemann’s theta formula by Prym. In the preface of [10] Prym
said that he learned of this formula from Riemann in Pisa, where he was with Riemann for several
weeks in early 1865, and that he wrote down a proof following Riemann’s suggestions.

For any fixed abelian variety, these theta identities give a set of quadratic equations which
defines this abelian variety. The coefficients of these quadratic equations are theta constants, or
“thetanullwerte”, which vary with the abelian variety. At the same time, the Riemann theta identi-
ties give a set of quartic equations satisfied by the theta constants, which gives a systems of defining
equations of the moduli space of abelian varieties (endowed with suitable theta level structures).

§1. Riemann’s theta formula
We will first formulate a generalized Riemann theta identity, for theta functions attached to a
quadratic form on a lattice.

(1.1) DEFINITION. (THETA FUNCTIONS ATTACHED TO QUADRATIC FORMS) Let Q be a Q-
valued positive definite symmetric bilinear form on an h-dimensional Q-vector space ΓQ, where
h is a positive integer. Let Γ⊂ ΓQ be a Z-lattice in ΓQ, i.e. a free abelian subgroup of ΓQ of rank h.
Denote by Γ∨Q the Q-linear dual of ΓQ, and let Γ∨ := {λ ∈ Γ∨Q |λ (Γ) ⊂ Z.}. We identify elements
of Qg⊗QΓQ with g-tuples of elements of ΓQ and similarly for Qg⊗QΓ∨Q.

(i) The pairing Qg×Cg 3 (n,z) 7→ tn · z ∈ C on Qg×Cg and the natural pairing ΓQ×Γ∨Q→ Q
induces a pairing 〈 , 〉 : (Qg⊗QΓQ)× (Cg⊗QΓ∨Q→ C.

(ii) Let Q̃ : (Qg⊗ΓQ)× (Qg⊗ΓQ)→Mg(Q) be the matrix-valued symmetric bilinear pairing

Q̃ : (u,v) = ((u1, . . . ,ug),(v1, . . . ,vg))→ Q̃(u,v) =
(
Q(ui,v j)

)
1≤i, j≤g ∀u,v ∈Qg⊗Q Γ.

(iii) For every A ∈Qg⊗Q ΓQ, every B ∈Qg⊗Q Γ∨Q and every element Ω ∈Hg of the Siegel upper-
half space of genus g, define the theta function θ Q,Γ[A

B ] on the gh-dimensional C-vector space
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C⊗Q Γ∨Q attached to (Q,Γ) by

θ
Q,Γ[A

B ](Z;Ω) := ∑
N∈Zg⊗ZΓ

e
(

1
2 Tr(Ω · Q̃(N +A, N +A)

)
· e(〈N +A, Z +B〉),

where e(z) := exp(2π
√
−1z) for all z ∈ C.

Note that we have θ Q⊕Q′,Γ⊕Γ′
[
(A,A′)
(B,B′)

]
((Z,Z′);Ω) = θ Q,Γ[A

B ](Z;Ω) · θ Q′,Γ′
[

A′
B′
]
(Z′;Ω) for the orthogonal

direct sum (Q⊕Q′,Γ⊕Γ′) of (Q,Γ) and (Q′,Γ′). In particular if (Q,Γ) is the orthogonal direct
sum of h one-dimensional quadratic forms, then θ Q,Γ is a product of h “usual” theta functions with
characteristics.

Let (Q,Γ) be a Q-valued positive definite quadratic form. Let T : LQ → ΓQ be a Q-linear
isomorphism of vector spaces over Q, and let L be a Z-lattice in LQ. Let T∨ : Γ∨Q → LQ be the
Q-linear dual of T . Let Q′ : LQ×LQ→ Q be the positive definite quadratic form on LQ induced
by Q through the isomorphism T . Let 1⊗ T : Qg⊗QLQ → ΓQ be the linear map induced by T ;
similarly for 1⊗T∨ : Cg⊗QΓ∨Q→ Cg⊗QL∨Q. Let

K = (1⊗T )(Zg⊗Z L)/
(
(Zg⊗Z Γ)∩ (1⊗T )(Zg⊗Z L)

) ∼−→ [(1⊗T )(Zg⊗Z L)+(Zg⊗Z L)
]
/Zg⊗Z L

∆ = (1⊗T∨)−1(Zg⊗ZL∨)/
(
(Zg⊗ZΓ

∨)∩ (1⊗T∨)−1(Zg⊗ZL∨)
) ∼−→ [(1⊗T∨)−1(Zg⊗ZL∨)+(Zg⊗ZL∨)

]
/Zg⊗ZL∨

(1.2) THEOREM. (GENERALIZED RIEMANN THETA IDENTITY) For every A ∈ Qg⊗ ΓQ and
every B ∈Qg⊗Γ∨Q, the equality

(RQ,T
ch ) θ

Q′,L
[
(1⊗T )−1A
(1⊗T∨)B

]
((1⊗T∨)Z;Ω) = #(∆)−g · ∑

A′∈K,B′∈∆

e(−〈A, B′〉) ·θ Q,Γ
[

A+A′
B+B′

]
(Z;Ω)

holds for all Ω ∈Hg and all Z ∈ Cg⊗Γ∨Q.

Note that each term on the right hand side of (RQ,T
ch ) is independent of the choice of B′ in its congru-

ence class modulo Zg⊗ZL∨.

(1.3) Theorem 1.2 is very easy to prove once stated in that form. In two examples below (Q′,L) is
the diagonal quadratic form x2

1 + · · ·+ x2
h on Zh, Γ is also Zn, and T is (given by) a matrix such that

T ·tT is a multiple of the identity matrix Ih.

(a) When h = 4, Q and Q′ are both the diagonal quadratic form x2
1+x2

2+x2
3+x2

4 on Z4, A = B = 0

and T is given by the orthogonal matrix


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

, the equation (RQ,T
ch ) is the classical

Riemann’s theta formula [10, p. 20].

(b) When h = 2, Γ = L = Z2, B = 0, Q′ is x2
1 + x2

2, Q is 2x2
1 + 2x2

2, T is given by the matrix
1
2

(
1 1

1 −1

)
, and (RQ,T

ch ) becomes

θ

[a
0

]
(z,2Ω) ·θ

[
b
0

]
(w,2Ω) = 2−g · ∑

c∈2−1Zg/Zg

θ

[
c+(a+b)/2

0

]
(z+w,2Ω) ·θ

[
c+(a−b)/2

0

]
(z−w,2Ω)

for all z,w ∈ Cg and all a,b ∈Qg.
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Much more about theta identities can be found in [8, Ch. II §6], [9, §6], [2, Ch. IV §1], and classical
sources such as [4, Ch. VII §1], [5] and [10].

§2. Theta relations
(2.1) Notation. Let d1,d2, . . . ,dg be positive integers such that 4|d1|d2| · · · |dg, fixed in this section.

• Let δ = (d1, . . . ,dg). For any positive integer n, let

K(nδ ) :=⊕g
j=1 n−1d−1

i Z/Z.

• For any positive integer m, let

Km :=⊕g
j=1 m−1Z/Z, and let K∗m := Hom(Km,C∗).

• For any non-negative integer n and any a ∈ K(2nδ ), we will use the following notation

qn(a) = qn,δ (a) := θ[−a
0 ](0,2

n
Ω), Qn(a) = Qn,δ (a) := θ[−a

0 ](2
n z,2n

Ω)

for theta constants and theta functions, where Ω ∈Hg has been suppressed.

Clearly the following symmetry condition holds:

(Θev) qn(a) = qn(−a) ∀a ∈ K(2n
δ ).

(2.2) The generalized Riemann theta identities implies a whole family of relations between theta
functions and theta constants. Among them are the quadratic relations (Θn,δ

quad) between theta func-

tions with theta constants as coefficients below, as well as the quartic relations (Θn,δ
quad) between theta

constants, for all n ≥ 0. The theta constants satisfy strong non-degeneracy conditions, represented
by (Θn+1,δ

nv ) below.

(2.2.1) For any a,b,c ∈ K(2nδ ) satisfying a≡ b≡ c (mod K(nδ )) and any l ∈ K∗2 , we have

(Θn,δ
quad)

0 =
[

∑
η∈K2

l(η) ·qn+1(c+ r)
]
·
[

∑
η∈K2

l(η) ·Qn(a+b+η) ·Qn(a−b+ r)
]

−
[

∑
η∈K2

l(η) ·qn+1(b+ r)
]
·
[

∑
η∈K2

l(η) ·Qn(a+ c+η) ·Qn(a− c+ r)
]
.

(2.2.2) For any a,b,c,d ∈ K(2nδ ) satisfying a≡ b≡ c≡ d (mod K(nδ )) and any l ∈ K∗2 , we have

(Θn,δ
quar)

0 =
[

∑
η∈K2

l(η)·qn(a+b+η)qn(a−b+η)
]
·
[

∑
η∈K2

l(η) ·qn(c+d +η)qn(c−d +η)
]

−
[

∑
η∈K2

l(η)·qn(a+d +η)qn(a−d +η)
]
·
[

∑
η∈K2

l(η)·qn(b+ c+η)qn(b−d +η)
]
.
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(2.2.3) For any n ≥ 0, any a1,a2,a3 ∈ K(2n+1δ ) and any l1, l2, l3 ∈ K∗4 , there exists an element
b ∈ K8 ⊂ K(2δ ) and an element λ ∈ 2K∗4 such that

(Θn+1,δ
nondeg) 0 6=

3

∏
i=1

[
∑

η∈K4

(li +λ )(η) ·qn+1(ai +b+η)
]
.

(2.3) Equations defining abelian varieties. The geometric significance of these theta relations
are two folds, for abelian varieties and also their moduli. Recall that d1, . . . ,dn are positive integers
with d1| · · · |dg. Let N = (∏

g
i=1 di)−1.

1. Let AΩ,δ := Cg/(Ω ·Zg +D(δ ) ·Zg be the abelian variety whose period lattice is generated
by the columns of (Ω D), where D(δ ) is the diagonal matrix with d1, . . . ,dg as its diagonal
entries. It was proved by Lefschetz that the theta functions

{
{Q0,δ (a) |a ∈ K(δ )

}
define a

projective embedding j : AΩ,δ ↪→ PN if 4|d1| · · · |dg. Mumford showed in [6, I §4] that

the quadratic equations (Θ0,δ
quar) in the projective coordinates of PN cuts out the

abelian variety AΩ,δ as a subvariety inside PN if 4|d1.

In particular an abelian variety is determined by their theta constants q0,δ (a)’s if the level δ

is divisible by 4. The group law on the abelian variety can also be recovered from these theta
constants.

2. The next question is: do the Riemann quartic equations (Θn,δ
quar) on the theta constants cut out

the moduli of abelian varieties? The answer given in [6, II §6] is basically “yes if 8|d1” with
a suitable non-degeneracy condition:

Suppose that 8|d1| · · · |dg, and {q(a) |a ∈ K(δ )} is a family of complex numbers indexed by
K(δ ). Assume that this given ∏

g
i=1 di)-tuple of numbers has the following properties.

– q(a) = q(−a) for all a ∈ K(δ ).

– All quartic equations in (Θ0,δ
quar) hold.

– All quartic equations in (Θ0,δ
quar) hold.

– (The non-degeneracy condition) There exists a family of complex numbers
{q1(u) |u ∈ K(δ )} indexed by K(2δ ) which satisfies q1(u) = q(−u) for all u ∈ K(2δ ),
the quartic equations (Θ1,δ

quar), the condition (Θ1,δ
nondeg), and

q0(a) ·q0(b) = ∑
u,v∈K(2δ ),u+v=a,u−v=b

q1(u) ·q1(v) ∀a,b ∈ K(δ ).

Then there exists an element Ω ∈ Hg such that

q0,δ (a) := θ [−a
0 ](0,Ω) ∀a ∈ K(δ ).
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(2.4) Adelic Heisenberg groups and theta measures. The analysis in [6] of theta relations is
based on a finite adelic version of the Heisenberg group, which is a central extension of A2g

f by the
multiplicative group scheme Gm over a base field k in which 2 is invertible. Here A f = ∏

′
pQp, the

restricted product of p-adic numbers, over all primes p which are invertible in k. One gets such a
group scheme Ĝ(L ) whenever one is handed a symmetric ample line bundle of degree one over a g-
dimensional principally polarized abelian variety over k, plus a compatible family of theta structure
for torsion points of order invertible in k, which induces an isomorphism from A2g

f to the set of all
torsion points as above.

Such a Heisenberg group Ĝ(L ) is isomorphic to “the standard finite adelic Heinsenberg group”
Heis(2g,A f ) over the algebraic closure kalg of k. The definition of Heis(2g,A f ) is similar to that
of the real Heisenberg group Heis(2g,R) in [1, §2.1], with the following changes: (a) the field R
is replaced by the ring A f , (b) the unit circle group C×1 is replaced by the multiplicative group
scheme Gm over kalg, and (c) the isomorphism e : R/Z ∼−→ C×1 is replaced by an isomorphism from
A f /Ẑ∼=⊕pQp/Zp to the group µ∞(kalg) of all roots of 1 in kalg.

The group Ĝ(L ) acts on the direct limit lim−→n
Γ(A,L ⊗n) =: Γ̂(L ), where n runs through all

positive integers which are invertible in k. This action of Ĝ(L ) on Γ̂(L ) is an A f -version of
the dual Schrödinger representation discussed in [1, §2.3] At this point the representation-theoretic
formalism for theta functions discssed in [1, §2] carry over to th present situation.

The insight gained from the systematic use of the adelic Schrödinger representation produces
not only the two theorems in (2.3), but also a new way to look at theta constants: There exists a
measure µ on Ag

f which satisfies the properties (i)–(iv) below. All theta relations are encoded in the
simple equality in (i), and the non-degeneracy condition becomes (iv).

(i) There exists another measure ν on Ag
f such that ξ∗(µ×µ) = ν×ν as measures on Ag

f ×Ag
f ,

where ξ : Ag
f ×Ag

f → Ag
f ×Ag

f is the map (x,y) 7→ (x+ y,x− y).

(ii) The algebraic theta constants are integrals over suitable compact open subsets of Ag
f .

(iii) The algebraic theta function attached to a non-zero global section s0 of the one-dimensional
vector space Γ(A,L ) as above, is the function

x 7→ θ
alg(x) =

∫
(U(1,−x) ·δ0)dµ

on A2g
f , where δ0 is the characteristic function for the compact open subset ∏

′
pZp ⊂A2g

f , and
U(1,−x) · δ0 is the result of the action on δ0 by the the element U(1,−x) ∈ Heis(2g,A f ) under
the dual Schrödinger representation.

(iv) For every x ∈ A2g
f , there exists an element η ∈ 1

2 ∏
′
pZp such that θ alg(x+η) 6= 0.

When the base field is C, the theta measure µΩ attached to Ω ∈ Hg is

µΩ(V ) = ∑
n∈V∩Qg

e
(

1
2 · tn ·Ω ·n

)
for all compact open subset V ⊂ Ag

f , and the companion measure νΩ is

νΩ(V ) = ∑
n∈V∩Qg

e
(

1
2 · tn ·Ω ·n

)
.
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(2.5) The best introduction to the circle of ideas in this section [9]; the readers may also consult [2,
Ch. IV] and the original papers [6].

Anyone who had more than a casual look at the papers [6] would agree that the results are both
fundamental and deep, opening up a completely new direction in the study of theta functions. These
paper are “however, not easy to read”, and the ideas in them “have not been developed very far”.1 It
is indeed curious that there has been no “killer application” of the theory of algebraic theta functions
so far. However it should be a safe bet that this anomaly won’t last much longer.
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