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§1. Introduction and notation
The main theme of this article is the variation of the geometric local p-adic monodromy
representation of modular varieties of PEL-type, where p is a prime number fixed throughout
this note. In this article we consider perhaps the simplest case, that of the ordinary locus of
the Hilbert modular varieties and their compact versions, over an algebraically closed base
field k of characteristic p. In this case the targets of both the global and the local p-adic
monodromy homomorphisms are abelian. To simplify the exposition, we consider only totally
real number fields F such that p is unramified in F , and modular varieties M(B) attached to
totally indefinite quaternion algebras B over such a field F which is split at all places above
p. When the quaternion algebra B is M2(F ), the associated variety M(B) is the Hilbert
modular variety M(F ).

For every closed point x in a modular variety M(B) as above there is a local monodromy
homomorphism ρx whose target group is the product

∏
℘|p O×

℘ of local units, where ℘ runs
through all places of F above p; see 4.3. There are three results in this article.

1. The first is a constancy result on local monodromy: for each place ℘ above p in F
there is a closed subgroup H℘ ⊆ O×

℘ with the following property. For each closed point
x of M(B), the image of ρx is equal to the product of the groups H℘ where ℘ runs
through the set of places of F above p such that x lies in the irreducible component Dτ

of the zero locus of the Hasse invariant attached to a ring homomorphism τ : O℘ → k.
Moreover this subgroup H℘ depends only on the local field F℘ but not on F . See 4.9
and 4.10 for the precise statements. In particular, the image of ρx is equal to H℘ for
all x ∈ W 0

℘ , where W℘ denotes the union of the divisors Dτ ’s with τ running through
all homomorphisms from O℘ to k, and W 0

℘ := W℘ − ∪℘′ 6=℘W℘′ is the open subset of
the divisor W℘ consisting of points outside of any other divisor W℘′ attached to a place
℘′ 6= ℘ above p.

2. In 5.1 we show by a global argument that the subgroup H℘ is open in O×
℘ .

3. Finally we show by a local computation that H℘ is equal to O×
℘ ; see 6.1 and 6.14.

The main ingredient of the proof of the constancy result is the purity of branch locus. The
computation-free proof of 5.1 uses complex uniformization and a result on the abelianization
of arithmetic subgroups. Thm. 6.14 generalizes Igusa’s theorem in [14] on local monodromy of
the modular curve at supersingular points. It also provides a local proof of the irreducibility
of the Igusa tower, independent of Ribet’s original arithmetic proof in [21] and [8]. and
also independent of the method involving Hecke symmetry in [9], [10], [3], [4], [11], [5]. The
method of this computational proof can be traced back to [12] and was used in [16] to compute
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the local monodromy of Picard modular varieties. Although the computation in §6 yields a
statement stronger than 5.1, the proof of 5.1 offers perhaps a better perspective.

Most of our results can be generalized to the case when p is possibly ramified in F . Global
geometric information in [22] and [23] will be needed, especially the irreducibility of the zero
locus of Hasse invariants associated to places of F above p. The local computation in the
ramified case is likely to be more complicated than what is done in §6. We hope to address
this point in the future.

Notation.

• p denotes a fixed prime number.

• Let k ⊃ Fp be an algebraically closed field.

• F be a totally real number field, F 6= Q such that p is unramified in F .

• Denote by ΣF,p the set of all prime ideals of OF above p.

• For each ℘ ∈ ΣF,p, let I℘ be the set of all ring homomorphisms ῑ : O℘ → k, or equivalently
the set of all ring homomorphisms ι : O℘ → W (k).

• Let IF be the union of all I℘’s, or equivalently all ring homomorphisms from OF to
W (k).

• Let ε : IF → ΣF,p be the map which sends elements of I℘ to ℘.

• Let L = (L,L+) be an invertible OF -module with a notion of positivity.

• In § 2–§ 5, n ≥ 3 denotes a fixed positive integer not divisible by p.

• In § 6, O = W (Fq), q = pn, and I := Homring(W (Fq),W (k)) ∼= Homring(Fq, k).

§2. Hilbert modular varieties and their compact siblings
In this section we review some basic facts about Hilbert modular varieties.

(2.1) Hilbert modular varieties
Let M(F,L, n) be the Hilbert modular variety over k attached to F and L with level-n

structure; see [20],[7]. For any k-scheme S, the S-valued points of M(F ) corresponds to
isomorphism classes of quadruples (A→ S, α, λ, ψ), where

• A→ S is a abelian scheme of relative dimension [F : Q],

• α : OF → End(A/S) is a ring homomorphism, λ : L
∼−→ Homsym

OF
(A,At) is an OF -linear

homomorphism of OF -modules such that λ induces an isomorphism A⊗OF
L

∼−→ At and
positive elements in L corresponds to OF -linear polarizations, and
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• ψ is a symplectic level-n structure.

We will often write M(F ) instead of M(F,L, n). It is known that M(F ) is irreducible and
smooth over k of dimension [F : Q]; see [20],[7].

(2.2) We have a stratification of M(F ) by isomorphisms classes of the (OF ⊗ Fp)-linear
polarized p-torsion subgroup schemes of the OF -linear polarized abelian varieties attached to
points of M(F ), called the Ekedahl-Oort stratification; see [19] and [13]. Each EO stratum
is smooth, locally closed and quasi-affine; see [13]. In particular only the 0-dimensional EO
stratum is closed. The ordinary locus ofMord

F is the open dense EO stratum. Those EO strata
D0

F,τ of codimension one are parametrized by the set IF , consisting of all ring homomorphisms
τ : OF → k. The closure DF,τ of D0

F,τ is a smooth divisor. The divisor
∑

τ∈IF
DF,τ is reduced

with normal crossings, equal to the zero locus of the Hasse invariant onM(F ). It is easy to see
from the incidence relation among the EO strata that the prime-to-p Hecke correspondences
operate transitively on the set of irreducible components of D0

τ for each τ ∈ IF .

(2.3) Consider the (OF⊗Zp)-linear p-divisible group A[p∞] →M(F ) attached to the universal
OF -linear polarized abelian scheme A→M(F ). The decomposition

OF⊗Zp =
∏

℘∈ΣF,p

O℘

of the ring OF⊗Zp induces a decomposition of the
(∏

℘∈ΣF,p
O℘

)
-linear polarized p-divisible

group A[p∞] →M(F ) into a fiber product

A[p∞] →M(F ) =
∏

℘∈ΣF,p

(A[℘∞] →M(F ))

of O℘-linear ℘-divisible groups over M(F ).

(2.4) For any closed point x in M(F ), denote by Def(F, x, ℘) the universal deformation space
of the O℘-linear polarized abelian variety (Ax, αx)[p

∞], and let X(F, x, ℘) −→ Def(F, x, ℘) be
the universal O℘-linear polarized p-divisible group over Def(F, x, ℘). It is known that every
O℘-linear symmetric homomorphism from Ax[℘

∞] to from At
x[℘

∞] extends to an OF -linear
symmetric homomorphism from X(F, x, ℘) to X(F, x, ℘)t; see [20] and [7].

(2.5) Lemma. Notation as in 2.3. Let x be a closed point of M(F ), and let M(F )/x be the
formal completion of M(F ) at x.

(i) The decomposition of the
(∏

℘O℘

)
-linear polarized p-divisible group A[p∞] →M(F ) in

2.3 induces a product decomposition

M(F )/x =
∏

℘∈ΣF,p

Def(F, x, ℘)

of M(F ) at x.
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(ii) For each ℘ ∈ ΣF,p the O℘-linear polarized ℘-divisible group A[℘∞] →M(F )/x is the pull-
back of X(F, x, ℘) −→ Def(F, x, ℘) by the projection pr℘ : M(F )/x −→ Def(F, x, ℘).

(iii) The formal scheme Def(F, x, ℘) is formally smooth of dimension [F℘ : Qp] for each ℘.

Proof. Statements (i), (ii) are immediate from the Serre-Tate theorem. The statement (iii)
can be proved by the crystalline deformation theory for p-divisible groups; see [20], [7].

§3. Compact siblings of Hilbert modular varieties
(3.1) Let B be a totally indefinite quaternion division algebra over F which is split at all
places ℘ above p. Let ∗ be a positive involution of B. Let OB be a maximal order in B stable
under ∗; we have OB⊗OF

O℘
∼= M2(O℘) for each ℘ ∈ ΣF,p.

Let M(OB,L, n) be the “fake Hilbert modular variety” over k attached to OB, L and n as
defined in [1]. Points of M(OB,L, n) are isomorphism classes of quadruples (A→ S, α, λ, ψ),
where

• A→ S is a abelian scheme of relative dimension 2[F : Q],

• α : OF → End(A/S) is a ring homomorphism,

• ψ is a symplectic level-n structure, λ : L
∼−→ Homsym

OB ,∗(A,A
t) is an OF -linear homomor-

phism of OF -modules such that A⊗OF
L

∼−→ At and positive elements in L corresponds
to OF -linear polarizations.

Here Homsym
OB ,∗(A,A

t) is the etale sheaf over the base scheme S consisting of symmetric OF -
linear homomorphisms h : A → At such that α(b)t ◦ h = h ◦ α(b∗) for every b ∈ OB. We will
often write M(B) instead of M(OB,L, n). It is known that M(B) is proper smooth over k
and is irreducible, of dimension [F : Q]. Denote by A(B) → M(B) the universal OB-linear
abelian scheme over M(B).

(3.2) We will need the fake Hilbert modular schemes in mixed characteristics. If in the above
description of the moduli functor, we consider all scheme S over the ring of Witt vectors W (k),
then the moduli functor is representable by a scheme M(OB,L, n) which is proper and smooth
over W (k), whose closed fiber is naturally isomorphic to the modular variety M(OB,L, n)
over k. Let η̄ be the geometric generic point of Spec(W (k)). Then from the theory of
complex uniformization of Shimura varieties one sees that the geometric fundamental group
π1(M(OB,L, n)η̄) is (non-canonically) isomorphic to the profinite completion of an arithmetic
subgroup Λ of B1, the group of norm-one elements in B×.

(3.3) Morita equivalence. We know that OB⊗OF
O℘

∼= M2(O℘) for every ℘ ∈ ΣF,p because
B is split above all ℘ ∈ ΣF,p. It is easy to see that for every closed point x ∈ MF , there
exists a closed point y ∈M(B) such that the universal polarized (OB ⊗Zp)-linear p-divisible

group over the formal completion M/y
B at y is Morita equivalent to the universal polarized

(OF ⊗ Zp)-linear p-divisible group over M(F )/x. Similarly for every closed point y ∈ M(B)
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there exists a closed point x ∈ MF such that the universal polarized (OF ⊗ Zp)-linear p-
divisible group over M(F )/x is Morita equivalent to the universal polarized (OB ⊗ Zp)-linear

p-divisible group over M/y
B . If x ∈ M(F ) and y ∈ M(B) are Morita equivalent in the above

sense, then the deformation theory of y ∈ M(B) is isomorphic to the deformation theory of
x ∈ M(F ) as above: there exists an isomorphism between M(F )/x and M(B)/y which is
compatible with the Morita equivalence between the universal p-divisible groups over these
two deformation spaces. In particular the Ekedahl-Oort stratification on M(B) is isomorphic
to the Ekedahl-Oort stratification locally in the etale topology. The codimension one EO-
strata D0

B,τ again are parametrized by IF . The closure DB,τ of D0
B,τ is smooth for each τ ,

and
∑

τ∈IF
DB,τ is a reduced divisor with normal crossings.

(3.4) Proposition. Every non-supersingular EO-stratum in M(F ) and M(B) is irreducible.
In particular the divisors DF,τ and DB,τ are irreducible for every τ ∈ IF .

Proof. It follows easily from the incidence relation of the EO-strata onMF andMB that the
prime-to-p Hecke correspondences operate transitively on the set of irreducible components
of each EO-stratum. So the non-supersingular EO-strata are irreducible by the proof of [2,
Prop. 4.5.4].

(3.5) The analog of the product decomposition 2.5 holds for the fake Hilbert modular variety
M(B): For every closed point y ∈M(B) there exists a canonical product decomposition

M(B)/y =
∏

℘∈ΣF,p

Def(B, y, ℘) .

This decomposition is compatible with the Morita equivalence explained in 3.3: Suppose that
a closed point x ∈M(F ) is Morita equivalent to a closed point y ∈M(B), and

M(F )/x =
∏

℘∈ΣF,p

Def(F, x, ℘)

is the decomposition of M(F )/x. Then Def(F, x, ℘) is Morita equivalent to Def(B, y, ℘) for
each ℘, in the sense that we have an isomorphism induced by an Morita equivalence between
the O℘-linear ℘-divisible group X(F, x, ℘) −→ Def(F, x, ℘) and the (OB⊗OF

O℘)-linear ℘-
divisible group X(B, y, ℘) −→ Def(B, y, ℘).

§4. Local p-adic monodromy
(4.1) Let A(F )[p∞] → M(F )ord be the (OF ⊗Zp)-linear p-divisible group attached to the
universal OF -linear abelian scheme over the ordinary locus M(F )ord in the Hilbert modular
variety M(F ) over k. The maximal etale quotient A(F )[p∞]et →M(F )ord corresponds to a
homomorphism

ρF : π1(M(F )ord)ab −→ (OF⊗Zp)
× =

∏
℘∈ΣF,p

O×
℘ ,

where π1(M(F )ord)ab denotes the abelianized fundamental group π1(M(F )ord). The homo-
morphism ρF is called the global p-adic monodromy of M(F )ord. A theorem of Ribet says
that ρF is surjective; see [21], [8].

5



(4.2) Let B be a totally indefinite quaternion division algebra which is split above all places
above p. Consider the (OB⊗Zp)-linear p-divisible group A(B)[p∞] → M(B)ord as in § 3
and its maximal etale quotient A(B)[p∞]et → M(B)ord . Since the ring of (OB⊗Zp)-linear
endomorphisms of the generic fiber of this (OB⊗Zp)-linear p-divisible group is OF⊗Zp, the
global p-adic monodromy for M(B)ord is a homomorphism

ρB : π1(M(B)ord)ab −→ (OF⊗Zp)
× =

∏
℘∈ΣF,p

O×
℘ .

The proof of Ribet’s theorem applies to the situation of fake Hilbert modular variety as well:
ρB is surjective.

(4.3) For any closed point x of the Hilbert modular variety MF over k, denote byZ(F, x)
the spectrum of the formal completion O∧

x,M(F ) of the local ring at x. Let

U(F, x) := Z(F, x)×M(F )M(F )ord

be the ordinary locus in the formal completion of M(F ) at x. The composition

ρF,x : π1(U(F, x))ab −→ π1(M(F )ord)ab
ρF−→ (OF⊗Zp)

× =
∏

℘∈ΣF,p

O×
℘

will be called the local p-adic monodromy homomorphism at x. The local monodromy homo-
morphism

ρB,y : π1(U(B, y))ab −→ π1(M(B)ord)ab
ρB−→ (OF⊗Zp)

× =
∏

℘∈ΣF,p

O×
℘

for a closed point y ∈M(B) is defined similarly, where

U(B, y) := Z(B, y)×M(B)M(B)ord ,

and Z(B, y) := Spec
(
O∧

y,M(B)

)
. Note that the formation of the ordinary locus U(F, x) (resp.

U(B, y)) in Z(F, x) (resp. Z(B, y)) is compatible with the product structure in 2.5.

Remark (i) Since we work over an algebraically closed base field k, the monodromy ho-
momorphisms defined above are the geometric global and local monodromy homomorphisms
respectively.

(ii) In a different but equivalent setup, the image of the geometric local monodromy
homomorphisms are often called the inertia groups.

(4.4) Lemma. Notation as above. Let Z(F, x, ℘) (resp. Z(B, y, ℘) be the spectrum of the
coordinate ring of the local formal scheme Def(F, x, ℘) (resp. Def(B, y, ℘)) so that

Z(F, x) =
∏

℘∈ΣF,p

Z(F, x, ℘) and Z(B, y) =
∏

℘∈ΣF,p

Z(B, y, ℘) .

Then there exist subschemes U(F, x, ℘) ⊂ Z(F, x, ℘) and U(B, y℘) ⊂ Z(B, y, ℘) such that

U(F, x) =
∏

℘∈ΣF,p

U(F, x, ℘) and U(B, y) =
∏

℘∈ΣF,p

U(B, y, ℘) .
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Proof. We abuse notation and denote by X(F, x, ℘) −→ Z(F, x, ℘) the O℘-linear polarized
℘-divisible group over Z(F, x, ℘) whose p-adic completion is the O℘-linear polarized ℘-divisible
group X(F, x, ℘) −→ Def(F, x, ℘) over Def(F, x, ℘). Here we have used the fact, from GFGA,
that the category of finite locally free schemes over the formal scheme Def(F, x, ℘) is iso-
morphic to the category of finite locally free schemes over Z(F, x, ℘). Because a p-divisible
is an inductive system of finite locally free commutative group schemes, we can pass to the
limit and obtain an isomorphism between the category of p-divisible groups over the formal
scheme Def(F, x, ℘) and the category of p-divisible groups over Z(F, x, ℘). Similarly denote
by X(B, y, ℘) −→ Z(B, y, ℘) the (OB⊗OF

O℘)-linear polarized ℘-divisible group whose p-adic
completion is X(B, y, ℘) −→ Def(B, y, ℘).

Define the open subscheme U(F, x, ℘) ⊂ Z(F, x, ℘) (resp. U(B, y, ℘) ⊂ Z(B, y, ℘)) as the
complement of the zero locus of the Hasse invariant corresponding to ℘, or equivalently the
ordinary locus for X(F, x, ℘) −→ Z(F, x, ℘) (resp. X(B, y, ℘) −→ Z(B, y, ℘)). It is easy to
check that the required properties are satisfied.

(4.5) The maximal etale quotient X(F, x, ℘)et −→ U(F, x, ℘) of X(F, x, ℘) −→ Z(F, x, ℘)
defines a local p-adic monodromy homomorphism

ρF,x,℘ : π1(U(F, x, ℘))ab −→ O×
℘ .

Similarly the maximal etale quotient X(B, y, ℘) −→ Z(B, y, ℘) of X(B, y, ℘) −→ Z(B, y, ℘)
defines a local p-adic monodromy homomorphism

ρB,y,℘ : π1(U(B, y, ℘))ab −→ O×
℘ .

Lemma 4.4 implies that the source π1(U(F, x))ab of ρF,x is canonically isomorphic to the
product

∏
℘ π1(F, x, ℘)ab. Similarly π1(U(B, y))ab

∼=
∏

℘ π1(B, y, ℘)ab

(4.6) Lemma. The local p-adic monodromy ρF,x is equal to the product
∏

℘∈ΣF,p
ρF,x,℘. Sim-

ilarly the local p-adic monodromy ρB,y is equal to
∏

℘∈ΣF,p
ρB,y,℘.

The proof is obvious and is omitted.

(4.7) The global p-adic representation ρF corresponds to a profinite etale (OF⊗Zp)
×-torsor

T(F ) −→ M(F )ord which is irreducible by Ribet’s theorem. For any open subgroup N of
(OF ⊗ Zp)

×, denote by T(F )/N the push-out of T(F ) by the surjection

(OF ⊗ Zp)
× � (OF ⊗ Zp)

×/N .

By construction T(F )/N is an ((OF⊗Zp)
×/N)-torsor over M(F )ord. Let (T(F )/N)norm be

the normalization of T(F )/N with respect to M(F ) in the function field of T(F )/N .

Similarly, we have a profinite etale (OF ⊗Zp)
×-torsor T(B) −→ M(B)ord corresponding

to ρB. For every open subgroup N ⊂ (OF⊗Zp)
× we have a push-out ((OF⊗Zp)

×/N)-torsor
T(B)/N over M(B)ord Let (T(B)/N)norm be the normalization of T(B)/N with respect to
M(B) in the function field of T(B)/N .
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(4.8) Proposition. Let N be an open subgroup of (OF ⊗Zp)
×. Let x be a closed point of

M(F ), and let y be a closed point of M(F ).

(1) The finite M(F )-scheme (T(F )/N)norm is unramified above x if and only if N contains
the image Im(ρF,x) of the local monodromy ρF,x. Similarly the finite M(F )-scheme
(T(B)/N)norm is unramified above y if and only if N ⊇ Im(ρB,y).

(2) If (T(F )/N)norm is unramified above a point x1 of the divisor DF,τ for some τ ∈ IF ,
then (T(F )/N)norm is unramified above every point of D0

F,τ . Similarly if (T(B)/N)norm

is unramified above a point y1 of the divisor DB,τ for some τ ∈ IF , then (T(B)/N)norm

is unramified above every point of D0
B,τ .

Proof. The statement (1) is immediate from the construction of (T(F )/N)norm. The state-
ment (2) is a consequence of the purity of branch locus: The branch locus of (T(F )/N)norm is
a union of irreducible components of the complements of the ordinary locus in M(F ) which
does not contain x1 by assumption, hence it does not meet D0

F,τ because D0
F,τ is irreducible

by 3.4.

(4.9) Proposition. Recall that ε : IF → ΣF,p is the map which sends any element ι : OF →
O℘ → W (k) in IF to ℘.

(1) The images Im(ρF,x1) and Im(ρF,x2) are equal if there exists an element τ ∈ IF such
that x1 and x2 belong to D0

F,τ . Denote by GF,τ this common image.

(2) Similarly the images Im(ρB,y1) and Im(ρB,y2) are equal if there exists τ ∈ IF such that
y1 and y2 belong to D0

B,τ . Denote by GB,τ this common image.

(3) If ε(τ) = ℘, then GF,τ ⊂ O×
℘ and GB,τ ⊂ O×

℘ .

(4) We have GF,τ = GB,τ for every τ ∈ IF .

(5) If ε(τ1) = ε(τ2), then Gτ1 = Gτ2.

Proof. The statements (1) and (2) follow from 4.8. The statement (3) is consequence of
the definition of the local p-adic monodromy and the product structure explained in 4.4.
The statement (4) follows from the Morita equivalence between points on M(F ) and M(B)
explained in 3.3.

To prove (5), consider the base change ofM(F ) by the Frobenius morphism Fr: Spec(k) →
Spec(k), and the p-linear morphism WF : M(F )−→M(F ) coming from the Fp-rational struc-
ture on M(F ). Then WF maps D0

F,τ (p) to D0
F,τ , and the functoriality of the fundamental

group implies that Gτ (p) = Gτ . Since the Frobenius operates transitively on the set ε−1(℘)
for each ℘, the statement (5) follows.

(4.10) Theorem. Notation as in 4.9. For any ℘ ∈ ΣF,p, define H℘ := Gτ for any τ ∈ IF
such that ε(τ) = ℘; it is well-defined by 4.9 (5).
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(i) Let x be a closed point of M(F ) not in the ordinary locus. Then Im(ρF,x) is the subgroup
generated by the Hε(τ)’s, where τ runs through all elements of IF such that x ∈ DF,τ .

(ii) Let y be a closed point of M(B) not in the ordinary locus. Then Im(ρB,y) is the subgroup
generated by all Hε(τ)’s, where τ runs through all elements of IF such that y ∈ DB,τ .

(iii) The closed subgroup H℘ ⊆ O×
℘ depends only on the local field F℘, and is independent of

the global field F such that F℘ occurs as a factor of F ⊗Q Qp.

Proof. The statements (i) and (ii) are immediate from 4.8 and 4.9. The statement (iii)
follows from the observation that ρF,x,℘ depends only on the O℘-linear polarized p-divisible
group Ax[℘

∞], where Ax is the fiber over x of the universal abelian scheme.

§5. Bound from characteristic zero
According to 4.10, the image of the local monodromy is completely determined by the closed
subgroups H℘ ⊂ O×

℘ . In § 6 we will see that H℘ can be determined by a local computation
at a superspecial point, that is a point where all the divisors DF,τ ’s (or DB,τ ’s) meet. In this
section we show by a global argument that H℘ is a subgroup of finite index in O×

℘ without
any computation.

(5.1) Theorem. Assume that [F : Q] > 1. Then the closed subgroup H℘ of O×
℘ is open and

of finite index for each place ℘ of F above p. Equivalently the product
∏

℘∈ΣF,p
H℘ is of finite

index in (OF ⊗ Zp)
× =

∏
℘∈ΣF,p

O×
℘ .

Proof. Pick and fix a totally indefinite quaternion division algebra B over F which is split
at all places of F above p. It suffices to show that there exists a constant C ≥ 1 such that
[(OF ⊗ Zp)

× : N ] ≤ C for every open subgroup N of (OF ⊗ Zp)
× which contains

∏
℘∈ΣF,p

H℘.

Consider the scheme V := (T(B)/N)norm over M(B) as in 4.7. We know from 4.8 (1) that
V is a finite etale Galois cover over M(B) whose Galois group is (OF ⊗Zp)

×/N . Let M(B) be
the p-adic completion of the moduli scheme M(OB,L, n) over W (k) in 3.2. Then V extends
uniquely to a finite etale Galois cover V of M(B) because the etale topology is insensitive
to nilpotent extensions. The formal scheme V is the p-adic completion of a scheme V finite
etale over M(OB,L, n) by GFGA.

By Grothendieck’s theorem on specialization of the fundamental group, the Galois group
of V/M(B) is a quotient of the fundamental group of the geometric generic fiber M(OB,L, n)η̄

of M(OB,L, n). We saw in 3.2 that the latter fundamental group is the profinite completion
of an arithmetic subgroup Λ of B×. By 5.3 below, the abelianization Λab of Λ is a finite
group. So (OF ⊗ Zp)

×/N is a quotient of the finite group Λab, and we obtain [(OF ⊗ Zp)
× :

N ] ≤ Card(Λab) as the required uniform upper bound.

(5.2) Remark. We know that the subgroup H℘ ⊂ O×
℘ depends only on the local field F℘,

and every finite product of finite unramified extensions of Qp can be realized as E ⊗ Qp for
some totally real number field E. So the proof of 5.1 shows that the assertion in 5.1 holds in
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the case F = Q as well. Of course when F = Q a classical theorem of Igusa [14] states that
the image of the local monodromy is Z×p , so the statement of 5.1 holds when F = Q anyway;
see [15, Th. 2.3.1, p. 143] for a proof of Igusa’s theorem..

(5.3) Proposition. Let G be a semisimple algebraic group over a number field F . Let S be
a finite set of places of F which contains all archimedian places. Let Λ be an S-arithmetic
subgroup of G(F ). Assume that G is F -simple and

∑
v∈S rkFv(G) ≥ 2. Then the maximal

abelian quotient Λab = Λ/Λder of Λ is finite.

This is proved in [17], VIII 2.8 on p. 266.

§6. Local computation
We have seen in 4.10 that to every finite unramified extension field F℘ of Qp, there is an
associated closed subgroup H℘ ⊂ O×

℘ which is the ℘-component of the image of the local
monodromy homomorphism if F℘ is a local field of a totally real number field F which is
unramified above p. According to 5.1 H℘ is an open subgroup of O×

℘ . It is natural to surmise
that H℘ is equal to O×

℘ . We will prove this by a direct computation.

(6.1) Theorem. Notation as above. Then the image H℘ of the local monodromy homomor-
phism is equal to O×

℘ .

(6.2) Let q = pn be the number of elements of the residue field of O℘, and write O = O℘ =
W (Fq). Let X0 be an O-linear p-divisible group over k of height 2n which is superspecial
in the sense that M(X0)/(FM + VM) is a free O ⊗Zp k-module of rank one. Here M(X0)
denotes the Cartier module of X0. It is known that X0 is unique up to O-linear isomorphism.
Moreover X0 admits an O-linear principal polarization which is unique up to isomorphism.

Let Spf(R(X0)) be the equi-characteristic deformation space of X0. Denote by X the uni-
versal O-linear p-divisible group over Spf(R(X0)). Since a p-divisible group is a limit of finite
locally free group schemes, by GFGA the category of p-divisible groups over Spf(R(X0)) is
isomorphic to the category of p-divisible groups over Spec(R(X0)). We will abuse notation
and write X → Spec(R(X0)) for the O-linear polarized p-divisible group over Spec(R(X0)) at-
tached to X → Spf(R(X0)). Let U(X0) ⊂ Spec(R(X0)) be the ordinary locus in Spec(R(X0)),
a non-empty dense open subset of Spec(R(X0)). Let X be the formal completion of X along
its zero section, a smooth formal group over R(X0). We know that the base change of X to
the ordinary locus U(X0) is a formal torus over U(X0), a fortiori the generic fiber XK of X is
a formal torus over K

(6.3) Let I := Hom(O,W (k)) ∼= Hom(Fq, k) be the set of all ring homomorphisms from O to
W (k). The set I has a natural structure as a torsor over Gal(Fq/Fp) = Z/nZ, a cyclic group
generated by the arithmetic Frobenius σ : x 7→ xp.

We have a W (k)-linear ring isomorphism W (k)⊗Zp O ∼=
∏

ι∈I W (k)ι, a product of copies
of W (k) indexed by I, such that the obvious embedding O ↪→ W (k)⊗ZpO corresponds to the
diagonal embedding O ↪→

∏
ι∈I W (k)ι, where the homomorphism from O to the component

10



W (k)ι is given by ι. Let M0 = M(X0), with actions by F, V and W (k) ⊗Zp O. The decom-
position W (k)⊗Zp O ∼=

∏
ι∈I W (k)ι of W (k) ⊗Zp O gives us a decomposition M0 = ⊕ι∈IM0,ι,

where each M0,ι is a free W (k)-module of rank two. Moreover we have F (M0,ι) ⊆M0,ι+1 and
V (M0,ι) ⊆M0,ι−1 for all ι ∈ I.

(6.4) We know from [13] that there exist W (k)-bases eι, fι for M0,ι such that

Feι−1 = fι = V eι+1, Ffι−1 = peι = V eι+1 ∀ι ∈ I .

We also know that the local deformation space of the O-linear polarized p-divisible group X0

is formally smooth of dimension n, so that R(X0) is isomorphic to a formal power series ring
over k in n-variables. The argument in [18] applied to the present situation tells us that we
can take R(X0) to be k[[tι]]ι∈I so that the Cartier module of the universal O-linear p-divisible
group to be the left module over the Cartier ring Cartp(k[[tι]]) with generators {eι : ι ∈ I},
and relations

Feι−1 − V eι+1 − 〈tι〉eι = 0 ∀ι ∈ I .

Here Cartp(k[[tι]]) is the reduced Cartier ring for k[[tι]], and 〈a〉 denotes the Teichmüller
representative of a in W (k[[tι]]) for all a ∈ k[[tι]]. We refer to [25] for Cartier’s theory.

(6.5) In the rest of this section, we choose and fix an element of I and identify I with Z/nZ
via the natural (Z/nZ)-torsor structure of I. This induces an identification of R(X0) with
k[[t0, t1, . . . , tn−1]]. Let K be the fraction field of R(X0). Denote by X∗(XK) the character
group of the O-linear formal torus XK over K. We know that X∗(XK) is a free O-module of
rank one, with a O-linear action by the Galois group GalK of K. So the Galois group GalK
operates on X∗(XK) through a homomorphism

ρX0 : GalK → O× .

Clearly GalK operates on X∗(XK)/p3X∗(XK) through the composition

ρX0(mod p3) : GalK
ρX0−→ O× � (O/p3O)× .

Since the action of GalK on X∗(XK) is isomorphic to the action of GalK on the maximal étale
quotient XK,et the p-divisible group XK , Thm. 6.1 means that ρX0 is surjective. Lemma 6.6
shows that the surjectivity of ρX0 is equivalent to the surjectivity of ρX0(modp3) , so Thm.
6.1 follows from Thm. 6.7 below.

For any positive integer a, denote by O×
a the subgroup 1 + paO of O×.

(6.6) Lemma. Let U be a closed subgroup of O×. Suppose that O× = U ·O×
3 . Then U = O×.

Proof. Let U1 = U∩O×
1 . One knows that (O×

1 )p contains the subgroup O×
3 . The assumption

on U implies that O×
1 = U1 · O×

3 . So U1 = O×
1 by Nakayama’s lemma, hence O× = U · O×

1 =
U · U1 = U .

11



Remark (i) If p > 2, then (O×
1 )p = O×

2 , and the conclusion of 6.6 under the weaker assump-
tion that O× = U · O×

2 .
(ii) Analogs of 6.6 for non-commutative p-adic groups often hold under weaker assump-

tions. For instance suppose that V is a closed subgroup of GLm(Zp) with p > 2, such that
(a) the image of V in GLm(Fp) is GLm(Fp) and (b) the image of V in GLm(Z/p2Z) contains
all diagonal matrices in GLm(Z/p2Z), then V is equal to GLm(Zp).

(6.7) Theorem. The homomorphism ρX0(mod p3) : GalK → (O/p3O)× is surjective.

We will prove a more precise version of Thm. 6.7 in Thm. 6.14.

(6.8) Consider the commutative smooth formal group XK over K and its base change XKa

to the algebraic closure Ka of K. Denote by M the Cartier module of XKa . As a left module
over the Cartier ring Cartp(K

a), M has generators e0, . . . , en−1 and relations

Fei−1 − V ei+1 − 〈ti〉ei = 0 ∀ i ∈ Z/nZ . (6.8.1)

Let M1 be the Cartier module of the formal torus Ĝm over Ka. It is a basic fact that M1 is
canonically isomorphic to the group of Witt vectors W (Ka) with the standard action by F
and V . One knows from Cartier theory that we have a natural isomorphism

X∗(XK)/p3X∗ (XK)
β−→ HomCartp(Ka)

(
M/V 3M,M1/V

3M1

)
which is compatible with the action of GalK . So the set X∗(XK)/p3X∗ (XK) is in natural
bijection with the set of all n-tuples (ξi)i∈Z/nZ in the group of truncated Witt vectors W3(K

a)
indexed by I ∼= Z/nZ such that

F ξi−1 = V ξi+1 + 〈ti〉 ξi ∀i ∈ Z/nZ .

(6.9) Write ξi = (xi, yi, zi) ∈ W3(K
a) for each i ∈ Z/nZ. We have

F ξi−1 = (xp
i−1, y

p
i−1, z

p
i−1)

V ξi+1 = ( 0, xi+1, yi+1 )

〈ti〉 ξi = (ti xi, t
p
i yi, t

p2

i zi)

The condition F ξi−1 = V ξi+1 + 〈ti〉 ξi on the ξi’s translates into the following system of
equations in x = (x0, . . . , xn−1), y = (y1, . . . , yn−1), z = (z0, . . . , zn−1).

xp
i−1 = ti xi ∀i ∈ Z/nZ (6.9.1)
yp

i−1 = tpi yi + xi+1 ∀i ∈ Z/nZ (6.9.2)

zp
i−1 = tp

2

i zi + yi+1 +
∑p−1

a=1C(p, a) tpa
i xp−a

i+1 y
a
i ∀i ∈ Z/nZ (6.9.3)

where

C(p, a) = − (p− 1)!

a! (p− a)!
≡ (−1)a

a
(mod p) for a = 1, . . . , p− 1 .

12



(6.10) We call a solution (x, y, z) = (x0, . . . , xn−1, y1, . . . , yn−1, z0, . . . , zn−1) of the system of
equations (6.9) in (Ka)3n primitive if all of the xi’s are non-zero (equivalently, one of the
xi’s is non-zero). It is easy to see from the considerations in 6.8 and 6.9 that the following
assertions hold.

(i) The set of all primitive solutions of (6.9) is in natural bijection with the set of all
generators of the O/p3O-module X∗(XK)/p2X∗ (XK).

(ii) Let (x, y, z) be a primitive solution of (6.9). Then the field

K(x, y, z) = K(x0, . . . , xn−1, y0, . . . , yn−1, z0, . . . , zn−1)

is a finite abelian extension of K whose Galois group is naturally isomorphic to the
image of the homomorphism ρX0(mod p3). Note that the latter group is also the image
of H℘ in (O/p3O)×.

(iii) Notation as in (ii). Then K(x) (resp. K(x, y) is a finite abelian extension of K whose
Galois group is naturally isomorphic to the image of H℘ in (O/pO)× (resp. in (O/p2O)×).

(6.11) We will transform the equations in 6.9 to a system of equations of Kummer and
Artin-Schreier type. The equations (6.9.1) reduce to one equation

xpn

n−1 = tp
n−1

0 tp
n−2

1 · · · tpn−2 tn−1 xn−1 . (6.11.1)

After choosing a (pn − 1)-th root for t0, t1, . . . , tn−1, a non-trivial solution of (6.9.1) is given
by the following formula

xi =
n−1∏
a=0

t
pa/(pn−1)
i−a ∀i ∈ Z/nZ . (6.11.2)

From the systems of equations (6.9.2), we get

ypn

n−1 =
(
tp

n

0 tp
n−1

1 tp
n−2

2 · · · tpn−1

)
yn−1 + tp

n

0 tp
n−1

1 · · · tp
2

n−2 x0

+ tp
n

0 tp
n−1

1 · · · tp
3

n−3 x
p
n−1 + · · · + tp

n

0 tp
n−1

1 xpn−3

3 + tp
n

0 xpn−2

2 + xpn−1

1 (6.11.3)

More generally, we have

ypn

i =

(
n∏

a=1

tp
a

i+1−a

)
· yi +

n−1∑
a=0

(
n−2−a∏

b=0

tp
n−b

i+b+1

)
· xpa

i+1−a ∀ i ∈ Z/nZ (6.11.4)

Finally we turn to (6.9.3). Let

ui = yi +
∑
a=1

C(p, a) tpa
i−1 x

p−a
i1 ya

i−1 (6.11.5)

So (6.9.3) becomes

zp
i−1 = tp

2

i zi + ui+1 ∀ i ∈ Z/nZ
similar to (6.9.2), and we have

zpn

i =

(
n∏

a=1

tp
a+1

i+1−a

)
· zi +

n−1∑
a=0

(
n−2−a∏

b=0

tp
n−b+1

i+b+1

)
· upa

i+1−a ∀ i ∈ Z/nZ (6.11.6)
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(6.12) Suppose that (x0, . . . , xn−1) is a non-zero solution of (6.11.1). We want to show that
the Artin-Schreier equations (6.11.4) (resp. (6.11.6)) are irreducible over K(x) (resp. over
K(x, y)). We will do so using a suitable valuation on k[[t0, . . . , tn−1]].

Let Γ be the linearly order abelian group (Zn, <), where the linear order is defined as
follows. For any two elements m = (m0, . . . ,mn−1) and m′ = (m′

0, . . . ,m
′
n−1) in Zn, m < m′

if and only if

• either |m| := m0 + · · ·+mn−1 < m′
0 + · · ·+m′

n−1 =: |m′|, or

• |m| = |m′| and there exists an integer i with 0 ≤ i ≤ n − 1 such that mi < m′
i and

mj = m′
j for all 0 ≤ j < i.

Denote by v the Γ-valued valuation on K such that

v

∑
m∈Nn

am t
m

 = min {m : am 6= 0 }

for all non-zero elements
∑

am t
m in k[[t0, . . . , tn−1]]. Clearly |v (

∑
am t

m)| is the degree of
the formal power series

∑
am t

m.

(6.13) Let (x, y, z) be a primitive solution of (6.9) as before. Choose and fix an extension w
of the valuation v to K(x, y, z), so that the value group Γ3 for w is a subgroup of Qn such
that [Γ3 : Zn] <∞. Write the equation (6.11.3) as

ypn

n−1 = An−1 yn−1 +Bn−1 , (6.13.1)

where
An−1 = tp

n

0 tp
n−1

1 tp
n−2

2 · · · tpn−1

and

Bn−1 = tp
n

0 tp
n−1

1 · · · tp
2

n−2 x0 + tp
n

0 tp
n−1

1 · · · tp
3

n−3 x
p
n−1 + · · · + tp

n

0 tp
n−1

1 xpn−3

3 + tp
n

0 xpn−2

2 +xpn−1

1 .

It is clear that w(An−1) = (pn, pn−1, . . . , p) and

w(Bn−1) = w(xpn−1

1 ) =
pn−1

(pn − 1)

(
p, 1, pn−1, pn−2, . . . , p2

)
,

so |w(An−1)| = p(pn−1)
p−1

and |w(Bn−1)| = pn−1 |w(x1)| = pn−1

p−1
.

A quick look at the equation (6.13.1) for yn−1 with the above information on the degrees
of the coefficients shows that

w(yn−1) =
1

pn
w(Bn−1) =

1

p
w(x1) =

1

p

(
p, 1, pn−1, pn−2, . . . , p2

)
.

The same argument shows that

w(yi) =
1

p
w(xi+2) ∀ i ∈ Z/nZ ,

and the coordinates of w(yi) is obtained from those of w(yn−1) by a suitable cyclic permutation.
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(6.14) Theorem. Let (x, y, z) be a primitive solution of (6.9). Let w be an extension of the
valuation v to the abelian extension K(x, y) of K, let w1 (resp. w2) be the restriction of w to
K(x) (resp. to K(x, y). Let Γ3 (resp. Γ1, resp. Γ2) be the value group for w (resp. w1, resp.
w2).

(i) Γ1/Zn is a cyclic group of order pn − 1, and Gal(K(x)/K) ∼= (O/pO)×.

(ii) Γ2/Γ1
∼= Zn/pZn, and Gal(K(x, y)/K) ∼= (O/p2O)×.

(iii) Γ3/Γ1
∼= Zn/p2Zn and Gal(K(x, y, z)/K) ∼= (O/p3O)×.

Proof. It is immediate from the explicit formula for the xi’s in 6.11 that [Γ1 : Zn] ≥ pn − 1.
By § 11 Thm. 19 on p. 55 of [24], we have

[K(x) : K] ≥ [Γ1 : Γ] = pn − 1 = Card((O/pO)×)

On the other hand the Galois group Gal(K(x)/K) is isomorphic to a subgroup of (O/pO)×.
The statement (i) follows.

Claim 1. Γ2 ⊗ Z(p) contains 1
p
Zn

(p), where Z(p) denotes the localization of Z at the prime

ideal (p).

Because the Galois group Gal(K(x, y)/K) is isomorphic to a subgroup of (O/p2O)× and
[K(x) : K] = pn − 1, we have [K(x, y) : K(x)] ≤ pn. On the other hand by [24, § 11 Thm. 19]
we have [Γ2 : Γ1] ≤ [K(x, y) : K(x)]. So the assertion (ii) follows from Claim 1; moreover

Γ2 ⊗ Z(p) = 1
p
Zn

(p). Similarly, the assertion (iii) is a consequence of Claim 2 below.

Claim 2. Γ3 ⊗ Z(p) contains 1
p2 Zn

(p).

Proof of Claim 1. The formula for w(yn−1) at the end of 6.13 implies that Γ2 contains an
element w(yn−1) which is congruent to (0,−1/p, 0, . . . , 0) modulo Zn

(p). The other elements

w(yi) satisfy similar congruences, hence Γ2 ⊗ Z(p) contains 1
p
Zn

(p). We have proved Claim 1.

Proof of Claim 2. To prove Claim 2, look at equations (6.11.6). It is easy to see that
the valuation of the constant term of the Artin-Schreier equation for zi is pn−1w(yi+2) =
pn−2w(xi+4). The same argument as before shows that

w(zn−1) =
1

p2
w(x3) ≡ (0, 0, 0,−1/p2, 0, . . . , 0) (mod (1/p)Zn

(p)) ,

and similar congruences hold for the valuation of other zi’s. Claim 2 follows. We have proved
6.14 and 6.7. Theorem 6.1 follows from 6.7 in view of 6.6.

(6.15) Remark. For m ≥ 1, denote by Km the fixed field of ρ−1
X0

(O×
m), and let Γm be the

value group of Km. It is not difficulty to show by induction on m using the argument 6.14
that Γm = p1−m · Γ1 for all m ≥ 1.
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(6.16) Remark. (1) The proof of 6.14 is a generalization of the proof of Igusa’s theorem,
Thm. 2.3.1 on page 143 of [15], using Cartier’s theory instead of formal group laws. The
discrete valuation in [15, Thm. 2.3.1] is replaced with a rank-n valuation on k[[t0, . . . , tn−1]].

(2) It is possible to prove 6.14 using formal group laws as in [15]. To write down the group
law for X, it is convenient to consider the smooth formal group X over W (k)[[t0, . . . , tn−1]]
whose Cartier module is given by (6.8.1). One can show that the logarithm f(u) of X, a
vector of formal power series in n variables u0, . . . , un−1 with coefficients inW (k[[t0, . . . , tn−1]]),
satisfies the following functional equation

f(u) = u+ p−1 T · f (p)
(
u(p)
)

+ p−1 f (p2)
(
u(p2)

)
,

where

u =


u0

u2
...

un−1

 , u(pa) =


u

(pa)
0

u
(pa)
2
...

u
(pa)
n−1

 , T =


0 0 0 · · · 〈tn−1〉
〈t0〉 0 0

. . . 0

0 〈t1〉 0
. . . 0

...
. . . . . . . . .

...
0 · · · 0 〈tn−2〉 0

 ,

and f (pa)(u) is obtained from f(u) by changing its coefficients under the ring homomorphism
fromW (k[[t0, . . . , tn−1]]) to itself which is induced by the continuous k-algebra homomorphism

k[[t0, . . . , tn−1]] → k[[t0, . . . , tn−1]] , ti 7→ tp
a

i .

for a = 1, 2. This functional equation for the logarithm of X allows one to compute the
logarithm f(u) and the multiplication-by-p map [p]X(u) for X. From [p]X(u) we can write
down a system of equations for the coordinates of the p3-torsion points in XK as in [15, Thm.
2.3.1], and analyze the system of equations with the Γ-valued valuation used in 6.14.

(3) In theory it should be possible to prove 6.14 by looking at the Galois action on the
cocharacter group X∗(XK)/V mX∗(XK). The latter group is in natural bijection with the set
of all elements ξ ∈ M/V 3M such that F ξ = ξ. If we write ξ =

∑
i∈Z/nZ,a=0,1,2 V

a〈xa,i〉ei

with xa,i ∈ Ka, then the equation F ξ = ξ becomes a system of polynomial equations in the
variables xa,i over K. Curiously, although this system equations for x0,i’s and x1,i’s can be
analyzed by the same method as in 6.14, it becomes more difficult for the x2,i’s. We can show
that [K(x0,i, x1,i) : K] = pn(pn − 1) for any primitive solution (xa,i), which implies Thm. 6.1
when p > 2. However we have not been able to handle the case p = 2 with this alternative
approach.
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