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§1. Introduction
Throughout this paper p denotes a fixed prime number. An abelian variety A over a field
k of characteristic p is said to be ordinary if any one of the following equivalent conditions
hold.

• A[p](kalg) ∼= (Z/pZ)dim(A), where A[p] = Ker ([p]A : A→ A) denotes the subgroup
scheme of p-torsion points of A.

• The Barsotti-Tate group A[p∞] attached to A is an extension of an étale Barsotti-Tate
group by a multiplicative Barsotti-Tate group.

• The abelian variety A (or its Barsotti-Tate group A[p∞]) has only two slopes, 0 and 1,
both with multiplicity dim(A).

• The formal completion Â of A along its origin is a formal torus.

1partially supported by grants DMS95-02186, DMS98-00609 and DMS01-00441 from the National Science
Foundation
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Being ordinary is an open condition on the base: For any abelian scheme A→ S over a base
scheme S → Spec(Fp), the subset of S consisting of points s ∈ S such that the fiber As is
ordinary is a (possibly empty) open subset of S. A general belief, reinforced by experience,
is that among abelian varieties in characteristic p, the ordinary ones tend to have properties
closer to those for abelian varieties in characteristic 0.

The deformation theory for ordinary abelian varieties is very elegant. Let A0 be an
ordinary abelian variety over a perfect field k ⊇ Fp. Then the universal deformation space
Def(A0) has a natural structure as a formal torus over the Witt vectors W (k), according to a
famous theorem of Serre and Tate, announced in the 1964 Woods Hole Summer School. The
zero section of the Serre-Tate formal torus over W (k) corresponds to a deformation of A0

over W (k), which is the p-adic completion of an abelian scheme Ã0 over W (k), known as the
canonical lifting of A0. Every endomorphism of A0 over k lifts uniquely to an endomorphism
of Ã0 over W (k).

(1.1) This article was motivated by the Hecke orbit problem for reduction of Shimura va-
rieties. We shall restrict our discussions to PEL-type modular varieties. Such a modular
variety M classifies abelian varieties with prescribed symmetries, coming from polarization
and endomorphisms; see [19] and also (6.7.1). On a PEL-type modular variety M over Fp
there is a large family of symmetries. These symmetries come from a reductive linear alge-
braic group G over Q, attached to the PEL-data for M, in the following fashion. There is
an infinite étale Galois covering M̃ →M, whose Galois group is a compact open subgroup
K(p) of the restricted product

G(A
(p)
f ) =

∏
`6=p

′
G(Q`) ,

and the action K(p) on M̃ extends to a continuous action of G(A
(p)
f ) on M̃. Descending from

M̃ to M, elements of the non-compact group G(A
(p)
f ) induce algebraic correspondences on

M, known as Hecke correspondences. Notice that the Qp-points of G did not enter into our
description of the Hecke symmetries above, since elements of G(Qp) in general do not give
étale correspondences on M.

The general Hecke orbit problem seeks to determine the Zariski closure of the countable
subset of M(Fp), consisting of all points in M(Fp) which belong to the image of a given
point x0 ∈ M(Fp) under a Hecke correspondence. When x0 is ordinary, i.e. the abelian
variety underlying the point x0 ofM is an ordinary abelian variety, it seems very likely that
the Hecke orbit of x0 is dense in M for the Zariski topology. We refer to this expectation
as the ordinary case of the Hecke orbit problem; see 7.1. This expectation has been verified
in [5] when M = Ag, the moduli space of of g-dimensional principally polarized abelian
varieties. The argument in [5] also settles the problem for modular varieties of PEL-type C.
In the case of PEL-type A or D, the method in [5] does not establish the ordinary case of
the Hecke orbit problem, which remains an open question. Still the method employed in [5]
can be extended and sharpened. This is the task we undertake in the present article.
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(1.2) The main results in this article, all dealing with families of ordinary abelian varieties,
can be divided into four threads,

(a) global version of Serre-Tate coordinates,

(b) p-adic monodromy,

(c) Tate-linear subvarieties in Ag/Fp ,

(d) local rigidity for formal tori,

to be described below.

(a) Our global version of the Serre-Tate coordinates, in its simplest form, boils down to
standard Kummer theory. In general, given an abelian scheme A→ S with ordinary fibers,
where S is an scheme such that p is locally in OS, the canonical coordinates of A → S
is a homomorphism q(A/S), from a smooth Zp-sheaf of constant rank on Sét of the form
Tp(A[p∞]) ⊗ X∗(A[p∞]mult), the tensor product of the p-adic Tate module of the maximal
étale quotient of A[p∞] with the character group of the multiplicative part of A[p∞], to a
sheaf ν

p∞,S on Sét. The sheaf ν
p∞,S is defined as the projective limit, of

Coker ([pn] : Gm,Sét
→ Gm,Sét

) ,

and may be thought of as a sheaf of some sort of generalized functions on S. If g = dim(A/S),
then the rank of the smooth Zp-sheaf Tp(A[p∞])⊗X∗(A[p∞]mult) is equal to g2, so that the
canonical coordinates q(A/S) give g2 “local coordinates” for A/S, with values in the sheaf
of generalized functions ν

p∞ . The global Serre-Tate coordinates of an abelian scheme A→ S
depends only on the Barsotti-Tate group A[p∞].

In our write-up in §2, we formulate the global canonical coordinates for Barsotti-Tate
groups or truncated Barsotti-Tate groups G → S, such that p is (topologically) locally
nilpotent in OS, and G → S is ordinary, in the sense that it is an extension of an étale
(truncated) Barsotti-Tate group by an multiplicative one.

There is also a geometric version of the canonical coordinates, due to Mochizuchi, which I
learned from de Jong. Here is a formulation for the ordinary locus Aord

g of Ag in characteristic

p. Denote by Aord
g → Spec(W (Fp)) the complement in Ag ×SpecZ Spec(W (Fp)) of the non-

ordinary locus in Ag ×SpecZ Spec(Fp). Define a formal scheme C by

C :=
(
Aord
g ×Spec(W (Fp)) Aord

g

)/∆
,

the formal completion of Aord
g ×Spec(W (Fp))Aord

G along the diagonally embedded ordinary locus

∆ := ∆Aord
g

: Aord
g ×Spec(Fp) Aord

g

of the closed fiber. The first projection pr1 : C → Aord
g , a formally smooth morphism, can

be thought of as the family of formal completions at varying points of Aord
g . The geometric
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version of the Serre-Tate canonical coordinates states that the morphism pr1 : C → Aord
g

has a natural structure as a formal torus over Aord
g . When one restrict this formal torus

to the fiber over a closed point s of S, one recovers the standard point-wise version of the
Serre-Tate formal torus for the principally polarized abelian variety (As, λs).

(b) In §3 and §4, we relate the p-adic monodromy of an ordinary Barsotti-Tate group G→ S
to its global canonical coordinates. Here we explain the results when G→ S is the Barsotti-
Tate group attached to an abelian scheme A→ S with ordinary fibers, where S is a normal
integral scheme of finite type over Fp. to the canonical coordinates of A → S. The p-adic
monodromy group of A→ S is defined using the formalism of Tannakian categories. Choose
a closed point s of S. The Barsotti-Tate group A[p∞] of As splits uniquely as a direct
product of its multiplicative part and its maximal étale quotient. Using s as a base point,
we can describe the p-adic monodromy group of A→ S, as a subgroup of GSp2g(Qp) whose

elements have the form

(
a b

0 d

)
, with a, b, c, d ∈ Mg(Qp). More precisely, Thm. 4.4 says

that this monodromy group MG(A/S) is a semi-direct product of its unipotent radical U and
a Levi subgroup L. The unipotent radical U consisting of all elements of MG(A/S) of the

form

(
1 b

0 1

)
, and it corresponds to the minimal formal subtorus of the Serre-Tate formal

torus A/sg which contains the canonical coordinates of the family A/S. The Levi subgroup L

consists of elements of the form

(
a 0

0 d

)
in GSp2g(Qp), and corresponds to the “naive” p-adic

monodromy group of the smooth Zp-sheaves X∗(A[p∞]mult) and Tp(A[p∞]ét over Sét. The
proof of 4.4 uses results in [8].

In a nutshell, the canonical coordinates and the naive p-adic monodromy are the two
ingredients of the p-adic monodromy group for A/S. The compatibility of the two aspects is
partly reflected in the group-theoretic condition that U is stable under the adjoint action of
L, as subgroups of GSp2g(Qp). In particular, if one knows that the naive p-adic monodromy
group is large, often one can obtain some upper bound on the number of “linear” relations
among the canonical coordinates of A→ S.

(c) By definition, a Tate-linear subvariety of Aord
g /Spec(Fp)

is a closed subvariety Z of the

ordinary locusAord
g /Spec(Fp)

ofAg over Fp. such that the formal completion Z/z at every closed

point z is a formal subtorus of the Serre-Tate formal torus A/zg over Fp. This “pointwise”
condition satisfies a form of “analytic continuation”: If one is willing to ignore the possibility
that Z may have self-intersection, then one would be able to say that, being Tate-linear at
one point z0 ∈ Z implies that Z is Tate-linear in an open neighborhood of Z; see 5.3.

The only known examples of Tate-linear subvarieties are the intersection of Aord
g /Fp

with

the reduction of (Hecke-translates of) Shimura subvarieties of Ag. See the discussions below.
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(d) Most subvarieties of Aord
g over Fp are, of course, not Tate-linear. But the Zariski closure

in Mord ⊂ Aord
g /Fp

of the prime-to-p Hecke orbit of any ordinary point of a modular variety

M of PEL-type over Fp turns out to be Tate-linear. The proof of this facts depends on a
local rigidity result for irreducible closed subsets of formal tori over Fp. Here we describe a
prototypical special case of this local rigidity result: Let T be a formal torus over Fp, and
let W be a formally smooth closed formal subvariety of T . If W is stable under the action
of [1 + pn0 ]T for some integer n0 ≥ 2, then W is a formal subtorus of T . In Thm. 6.6, the
base field is allowed to be any algebraically closed field, the formal smoothness condition on
W is weakened to W being reduced and irreducible, and the invariance condition on W is
generalized to allow more general linear action on the character group of the formal torus T .

(1.3) Tate-linear subvarieties in Aord
g /Fp

have another very special property, that they can be

linearly lifted to characteristic 0. More precisely, every Tate-linear subvariety Z over Fp can
be lifted, over W (Fp), to a formal subscheme Z∞ of the p-adic completion of Aord

g /W (Fp)
, such

that Z∞ is formally smooth over W (k), and the formal completion of Z∞ at any closed point
z of Z is a formal subtorus of the Serre-Tate formal torus over W (Fp). This Tate-linear lift
Z∞ of Z is clearly unique. According to a result of Moonen in [23], [24], if Z∞ is algebraic,
in the sense that there exists a closed subscheme Z̃ of Aord

g /W (Fp)
whose p-adic completion

coincides with Z∞, then Z is the reduction of a Shimura subvariety, meaning that the generic
fiber of Z̃ is a translate of a Shimura subvariety of Aord

g /B(Fp)
, where B(k) is the fraction

field of W (k).

It seems very likely that every Tate-linear subvariety of Aord
g is the reduction of a Shimura

subvariety. We state this as a conjecture in 7.2. This is perhaps the major open question
about Tate-linear subvarieties.

Having ventured into the precarious zone of making conjectures, we formulate some more
in §7. Conj. 7.4 is a semi-simplicity statement. It says that the naive p-adic monodromy
group for a family A → S of ordinary abelian varieties over Fp should be semisimple if the
base scheme S is of finite type over Fp. Moreover the p-adic monodromy group MG(A/S)
determines a reductive group Gp over Qp which contains MG(A/S) as a Siegel parabolic
subgroup. Conj. 7.6 and Conj. 7.7 combined amounts to an analogue of the Mumford-Tate
conjecture for A/S. They assert that, once a closed base point s ∈ S is chosen, there should
be a reductive group G over Q, of Hodge type with respect to the canonical lifting of the
fiber As over s and an embedding W (κ(s) ↪→ C, such that G gives rise to the reductive
group Gp over Qp, and also the `-adic monodromy group G` of A/S for any prime ` 6= p. The
point here is that it is possible to define a candidate for the motivic Galois group for A/S,
for instance the smallest reductive group over Q of Hodge type which contains Gp.

The relations between the above conjectures are:

• Conj. 7.2, on Tate-linear subvarieties, implies Conj. 7.1, the ordinary case of the Hecke
orbit conjecture.
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• Conj. 7.6, an analog of the Mumford-Tate conjecture, implies both the semisimplicity
conjecture 7.4 and the conjecture 7.2 on Tate-linear subvarieties.

It seems that if one can show the semisimplicity conjecture 7.4, or at least the semisimplicity
of the naive p-adic monodromy group, then one is close to proving the rest of the conjectures.

(1.4) When a conjecture is stated, it often means that the author is unable to find a proof
despite the best effort; this paper is no exception. As a feeble substitute for a proof, we offer
some evidence for the conjectures. We prove in 8.6, using the main theorem of de Jong in [10],
that every Tate-linear subvariety of the ordinary locus of a Hilbert modular variety, attached
to a totally real number field, is the reduction of a Shimura subvariety. Our argument can be
used to establish the other conjectures in the special case of subvarieties of a Hilbert modular
variety, although we do not provide the details in this paper. The proof of 8.6 also works for
the case of “fake Hilbert modular varieties”, i.e. modular varieties attached to a quaternion
algebra over (a product of) totally real number fields, such that the underlying reductive
group is an inner twist of (a Weil restriction of scalars of) GL(2). Combining Thm. 6.6 and
Thm. 8.6, one deduces immediately the main results of [5]. However, a “Hilbert-free” proof
of the main theorem of [5], which would offer a road map to the ordinary case of the Hecke
orbit conjecture, seems to require a completely new idea.

Here are some information on the logical dependence of various parts of this article.
Either of sections 6 and 8, which contain the local rigidity theorem 6.6 and the result 8.6
on Tate-linear subvarieties of Hilbert modular varieties respectively, can be read by itself.
Sections 3 is also logically independent of the rest of this article. However sections 4 and 5
depend on section 2. Readers who prefer theorems to conjectures are encouraged to read §6
and §8 first.

(1.5) This paper has gone through a long incubation period since the summer of 1995. So
far the author is still unable to fulfill the original goal, namely, to prove the ordinary case
of the Hecke orbit conjecture for modular varieties of PEL-type. My excuse for publishing
the relic of a failed attempt is that the methods developed for their original purpose may be
useful for other problems. For instance the the proofs of 6.6 and 8.6 have been used by Hida
to study the µ-invariant of Katz’s p-adic L-functions attached to CM-fields.

It is a pleasure to acknowledge discussions with J. de Jong, H. Hida, F. Oort, F. Pop, J.
Tilouine and E. Urban on topics related to this paper. I would also like to thank Harvard
University and the National Center of Theoretical Sciences in Hsinchu, where some early
versions of this paper were written, for their hospitality.

§2. Canonical coordinates
(2.1) Let S be a scheme over Z(p). Let Szar (resp. Sét, resp. Sfppf) be the small Zariski site
(resp. étale site, resp. fppf site) of S. For any natural number n ≥ 0, consider the [pn]-th
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power map [pn]Gm : Gm → Gm of sheaves over Sτ , where τ = zar, ét or fppf. The map [pn]Gm

is surjective for τ = fppf, but may not be surjective if τ = zar or ét.

(2.1.1) Definition For τ = ét or zar, define sheaves νpn,Sτ , µ̃pn,Sτ , ξpn,Sτ , n ≥ 0, and νp∞,Sτ
on the site Sτ by

νpn,Sτ = Coker
(
[pn]Gm,Sτ

: Gm,Sτ → Gm,Sτ

)
,

µ̃pn,Sτ = Ker
(
[pn]Gm,Sτ

: Gm,Sτ → Gm,Sτ

)
,

ξpn,Sτ = Image
(
[pn]Gm,Sτ

: Gm,Sτ → Gm,Sτ

)
,

νp∞,Sτ = lim←−
n

νpn,Sτ = the projective limit of (νpn,Sτ )n .

Since the étale site is often used in applications, we abbreviate νpn,Sét
to νpn,S, µ̃pn,Sét

to
µ̃pn,S, ξpn,Sét

to ξpn,S, and νp∞,Sτ to νp∞,S.

Customarily, µpn denotes the finite locally free group scheme Ker([pn] : Gm → Gm)) =
Spec

(
Z[t, t−1]/(tp

n − 1)
)
, where the comultiplication sends t to the element

t⊗ t ∈
(
Z[t, t−1]/(tp

n − 1)
)
⊗Z
(
Z[t, t−1]/(tp

n − 1)
)
.

We shall also identify µpn with the sheaf represented by it on the fppf site, so that µpn,S is
just another notation for the sheaf µ̃pn,Sfppf

.

(2.1.2) Remark (i) Let R be an Artinian local ring whose residue field κ is perfect
of characteristic p > 0. Then νp∞,SpecR is represented by the formal completion of
Gm/SpecR along its unit section.

(ii) We are mainly interested in sheaves of the form ν⊕rpn , and also their twists by an unram-
ified Galois representation π1(S) → GLr(Z/p

r
Z). The sheaves µ̃pn , ξpn are introduced

in order to study the sheaves νpn on Sét via the exact sequences

1→ µ̃pn,S → GmS → ξpn,S → 1 and 1→ ξpn,S → GmS → νpn,S → 1.

of sheaves of abelian groups on Sfppf .

(2.1.3) Lemma Let π : Sfppf → Sét and π′ : Sfppf → Szar be the projection morphism
between the respective sites. Then R1π∗µpn = νpn,Sét

, R1π′∗µpn = νpn,Szar.

Proof. Both statements follow easily from the exact sequences in 2.1.2 and Hilbert’s The-
orem 90.

In 2.1.4–2.1.6, we collect some injectivity properties of the presheaf SpecR R×/(R×)p
n
.

(2.1.4) Lemma Let A be a normal integral domain, and let K be the fraction field of A.
Then for every integer n ≥ 1, the map

A×/(A×)p
n → K×/(K×)p

n

induced by the inclusion A× ↪→ K× is injective.
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Proof. A simple induction show that it suffices to verify the case n = 1. Suppose that an
element a ∈ A× is equal to bp for some b ∈ K×. From the normality of A we deduce that
b ∈ A, and b ∈ A× since bp ∈ A×.

Remark As the argument shows, the statement of 2.1.4 holds for every commutative ring
A such that (K×)p ∩ A× = (A×)p.

(2.1.5) Lemma Let h : A→ B be a homomorphism of commutative rings over Fp. Assume
that h is étale and faithfully flat, and A is reduced. Then the map

A×/(A×)p
n → B×/(B×)p

n

induced by h is injective.

Proof. Suppose that a ∈ A×, b ∈ B×, and bp = h(a). We must show that b ∈ h(A). In the
tensor product B ⊗A B, we have (b⊗ 1− 1⊗ b)p = a⊗ 1− 1⊗ a = 0. Since B is étale over
A, the tensor product B ⊗A B is also étale over the reduced ring A. So B ⊗A B is reduced,
and b⊗ 1 = 1⊗ b. The assumption that B is faithfully flat over A implies that b ∈ h(A) by
descent.

(2.1.6) Lemma Let A be an excellent commutative ring over Fp. Let I be an ideal of A
such that 1 + I ⊂ A×. Let B be the I-adic completion of A. Assume that A is reduced and
excellent. Then the map

A×/(A×)p
n → B×/(B×)p

n

induced by the inclusion A→ B is injective, for any integer n ≥ 1.

Proof. We assert that the faithfully flat morphism SpecB → SpecA is regular because
A is excellent. It suffices to check that Spec(Bm) → Spec(Am) is regular for each maximal
ideal m of A, where Am is the localization of A at m, and Bm = B ⊗A Am. The maximal
ideal m contains I, because 1 + I ⊂ A×. Let C be the m-adic completion of A. We have
morphisms SpecC → Spec(Bm) → Spec(Am), where SpecC → Spec(Bm) is faithfully flat
and the composition SpecC → Spec(Am) is regular. Hence Spec(Bm) → Spec(Am) is a
regular morphism by [16, IV 6.8.3] or [20, 33.B].

Since SpecB → SpecA is regular, so Spec(B ⊗A B) → SpecA is also regular. This
implies that B ⊗A B is reduced. The argument of Lemma 2.1.5 can now be applied to the
present case.

(2.1.7) Lemma Assume that S is reduced and p = 0 in OS. Let π̄ : Sét → Szar be the
projection from the small étale to the small Zariski site of S. Then

(i) The sheaf ξpn,S is isomorphic to Gm, and R1π̄∗ ξpn,S = 0.

(ii) There is a natural isomorphism π̄∗(νpn,S) = νpn,Szar.
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Proof. The hypotheses implies that the sheaf µ̃pn is trivial. So ξpn is isomorphic to Gm,
and R1π̄∗ ξpn,S = 0 by Hilbert’s theorem 90. The second statement follows from the long
exact sequence attached to the short exact sequence in 2.1.2 (iii).

(2.2) Proposition Let p be a prime number. Let A be a noetherian commutative ring over
Z(p). and let I be an ideal of A which contains the image of p such that A/I is reduced. Let
S = SpecA, S0 = Spec(A/I), and let i : S0 ↪→ S be the inclusion map. Suppose that n0 ≥ 0
is a natural number such that pn0−j Ip

j
= 0 for every j = 0, . . . , n0. Let n ≥ n0 be an integer.

Then the following statements hold.

(i) The sheaf µ̃pn,S is equal to

Ker
(
Gm,Sét

→ iét∗(Gm,S0ét
)
)
.

as a subsheaf of Gm on Sét.

(ii) The sheaf ξpn is isomorphic to iét∗(Gm,S0ét
).

(iii) Denote by ev
Gm,S0

: Gm,Sét
→ iét∗

(
Gm,S0ét

)
the map of sheaves on Sét given by “evalu-

ating at S0”; it sends each element u ∈ R× to the image of u in (R/IR)×, for every
commutative algebra R which is étale over A. Denote by ev

νpn ,S0
: νpn,S → iét∗ (νpn,S0)

the map“evaluating at S0” induced by ev
Gm,S0

. Then the natural map

Ker
(
ev

Gm,S0

)
→ Ker

(
ev

νpn ,S0

)
is an isomorphism. In other words, we have a functorial isomorphism

Ker
(

ev
νpn ,S0

)
(SpecR)

∼←− 1 + IR ⊂ R×

for every commutative étale A-algebra R.

(iv) Let Sj = Spec(R/I j+1) for j ∈ N. The sheaf

µ̃pn,S = Ker(ev
Gm,S0

: GmSét
→ iét∗(Gm,S0ét

))

has a finite separated exhaustive filtration by subsheaves

Filj := Ker(ev
Gm,S0

: GmSét
→ iét∗(Gm,Sj ét

)) .

For each j ∈ N we have a natural isomorphism

Filj(SpecR)
∼←− 1 + Ij+1R ⊂ R×

for for every commutative étale A-algebra R, compatible with the inclusions Filj+1 ⊂
Filj.
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(v) Let π̄ : Sét → Szar be the projection from the small étale to the small Zariski site of S.
Then R1π̄∗ µ̃pn,S = 0, R1π̄∗ ξpn,S = 0, and π̄∗(νpn,S) = νpn,Szar.

Proof. Suppose that R is an étale algebra over A. Then R/IR is reduced because it is
étale over A/I. So any element of µ̃pn(SpecR) has the form 1 + y for some y ∈ IR. In other
words the inclusion µ̃pn,S ⊆ Ker

(
Gm,Sét

→ iét∗(Gm,S0ét
)
)

holds. To verify the inclusion in
the other direction, it suffices to show that for every étale A-algebra R and every element
z ∈ IR, we have (1+z)p

n
= 1. A simple calculation shows that for every integer 1 ≤ a ≤ pn,

we have ordp

(
pn!

(pn−a)! a!

)
= ordp

(
pn!

(pn−pb)! pb!

)
= n − b if pb ‖ a. Therefore the assumption

pn0−j Ip
j

= 0 for every j = 0, . . . , n0 implies that
(

pn!
(pn−a)! a!

)
za = 0 for every a = 1, . . . , pn

and every z ∈ IR. i.e. (1 + z)p
n

= 1. We have proved the statement (i).

The statement (ii) follows immediately from (i); we describe an isomorphism α from
iét∗(Gm,S0ét

) to ξpn below. Suppose that SpecR0 is étale over S0, and f is a unit of R0.

There exists an étale A-algebra R such that R/IR ∼= R0. Moreover f lifts to a unit f̃ in R.
Then f̃p

n
is a section of ξpn over SpecR, and it does not depend on the choice of the lifting

f̃ of f . The isomorphism α is the map which sends f to f̃p
n
.

Let ev
ξpn ,S0

: ξpn,S → iét∗ (ξpn,S0) be the evaluation map induced by ev
Gm,S0

. This map

ev
ξpn ,S0

is an isomorphism by (ii). So we have a map of exact sequences of sheaves on Sét

given by “evaluating at S0”, from the short exact sequence 1 → ξpn,S → GmS → νpn,S → 1
to the short exact sequence iét∗ (1→ ξpn,S0 → GmS0

→ νpn,S0 → 1), the push-forward to Sét

of a similar exact sequence of sheaves on S0ét. The statement (iii) follows from the snake
lemma.

The statement (iv) follows easily from (iii). Each associated graded sheaf Filj/Filj+1 for
the filtration in (iv) is isomorphic to the sheaf of abelian groups on Sét attached to the quasi-
coherent OS-module Ij+1OS/I

j+1OS. Hence R1π̄∗(Filj/Filj+1) = 0 for all j, and R1π̄∗µ̃pn,S =
0 by dévissage. The vanishing of R1π̄∗ξpn,S is immediate from (ii). The statement (v) follows
from the long exact sequences attached to the two short exact sequences in 2.1.2 (iii) and
Hilbert’s theorem 90.

(2.3) We establish some notation about Barsotti-Tate groups. Let S be either scheme over
Z(p) such that p is locally nilpotent in OS, or a noetherian formal scheme such that p is
topologically nilpotent.

(2.3.1) We abbreviate “G is a Barsotti-Tate group over S” to “G is a BT-group over S.
Similarly “G is a truncated Barsotti-Tate group of level-n” is shortened to “G is a BTn-
group over S”. We identify a truncated Barsotti-Tate group of level-n over S with the
corresponding sheaf of (Z/pnZ)-modules on Sfppf .

(2.3.2) Let En be an étale BTn-group over scheme S. Denote by Tp(En) the restriction
of En to the small étale site Sét of S, so that Tp(En) = HomBTn, Sét

(Z/pnZ, En). The

10



sheaf Tp(En) is a sheaf of free (Z/pnZ)-modules of finite rank on Sét. Let Tp(En)∨ :=
HomSét

(Tp(En),Z/pnZ).

Suppose that E is an étale BT-group over S. Write E = lim−→n
En, where each En

is an étale BTn-group over S. Denote by Tp(E) the projective limit of Tp(En), so that
Tp(E) = HomBT, Sét

(Qp/Zp, E). The sheaf Tp(E) is a sheaf of free Zp-modules of finite rank
on Sét. Let Tp(E)∨ := HomSét

(Tp(E),Zp) = HomSét
(E,Qp/Zp).

(2.3.3) Let Tn be a multiplicative BTn-group over S. Denote by X∗(Tn) (resp. X∗(Tn)) the
sheaf HomBTn, Sét

(µpn , Tn) (resp. HomBTn, Sét
(Tn, µpn).) Both X∗(Tn) and X∗(Tn) are sheaves

of free (Z/pnZ)-modules of finite rank on Sét, and they are (Z/pnZ)-dual to each other.

Let T = lim−→n
Tn be a multiplicative BT-group over S, where each Tn is a BTn-group

over S. Then we denote by X∗(T ) (resp. X∗(T )) the projective limit of X∗(Tn) (resp.
X∗(Tn).) The sheaf X∗(T ) is isomorphic to HomBT, Sét

(µp∞ , T ), while X∗(T ) is isomorphic
to HomBT, Sét

(T, µp∞).

(2.4) Proposition Let En be an étale BTn-group over a scheme S, and let Tn be a multi-
plicative BTn-group over S. Denote by π : Sfppf → Sét the projection from the small fppf site
of S to the small étale site of S. Then we have canonical isomorphisms

(i) Ext1
Z/pnZ, Sfppf

(En, Tn) = 0,

(ii) H1(Sfppf ,Hom
Z/pnZ, Sfppf

(En, Tn))
∼−→ Ext1

Z/pnZ, Sfppf
(En, Tn),

(iii) Hom
Z/pnZ, Sfppf

(En, Tn)
∼←− Tp(En)∨ ⊗

Z/pnZ
X∗(Tn)⊗

Z/pnZ
µ
pn,Sfppf

,

(iv) R1π∗Hom
Z/pnZ, Sfppf

(En, Tn)
∼←− Tp(En)∨ ⊗

Z/pnZ
X∗(Tn)⊗

Z/pnZ
ν
pn,Sét

.

Proof. The statement (i) holds because En is locally isomorphic to Z/pnZ; (ii) follows from
(i). The statement (iii) is immediate from the definitions. The isomorphism in (iv) comes
from the isomorphism in (iii) and the isomorphism νpn

∼−→ R1π∗µpn in Kummer theory.

(2.4.1) Corollary Let En be an étale BTn-group over a scheme S, and let Tn be a multi-
plicative BTn over S. Denote by Ext(En, Tn) the sheafification of the presheaf(

U/S  Ext
BTn,Ufppf

(En, Tn) ∼= Ext1
Z/pnZ,Ufppf

(En, Tn)
)
U étale over S

on the small étale site Sét of S. In other words, Ext(En, Tn) = R1π∗RHom
Z/pnZ,Sfppf

(En, Tn).

(i) We have

Ext(En, Tn) ∼= R1π∗Hom
Z/pnZ, Sfppf

(En, Tn) ∼= Tp(En)∨ ⊗
Z/pnZ

X∗(Tn)⊗
Z/pnZ

ν
pn,S

.

(ii) Assume that S satisfies one of the following two conditions: either

11



– p = 0 in OS and S is reduced, or

– S = SpecR is affine and there is an ideal I ⊂ R which contains the image of p
in R, such that R/I is reduced, and pn−jIp

j
for j = 0, . . . , n.

Then

Ext
BTn, Sfppf

(En, Tn) = Γ(Sét,ExtSét
(En, Tn)) = HomSét

(
Tp(En)⊗

Z/pnZ
X∗(Tn), ν

pn,S

)
.

Proof. The statement (i) is a restatement of 2.4 (ii), (iv); it remains to prove (ii). According
to the Leray spectral sequence

Hj
(
Sét,R

iπ∗Hom
Z/pnZ,Sfppf

(En, Tn)
)

=⇒ Ext1
Z/pnZ, Sfppf

(En, Tn) ∼= Ext
BTn, Sfppf

(En, Tn) ,

we only have to show that

H1
(
Sét, π∗

(
Tp(En)∨ ⊗

Z/pnZ
X∗(Tn)⊗

Z/pnZ
ν
pn,S

))
= 0

under either of the two conditions. In the first case when p = 0 in OS, we have

π∗

(
Tp(En)∨ ⊗

Z/pnZ
X∗(Tn)⊗

Z/pnZ
µ
pn,Sfppf

)
= 0 .

In the second case, the proof of Prop. 2.2 (i) tells us that π∗

(
µ
pn,Sfppf

)
is isomorphic to

Ker(GmSét
→ iét∗(GmS0ét

)), where i0 : S0 = Spec(R/I) ↪→ SpecR = S denotes the closed

embedding of Spec(R/I) in SpecR. Hence the sheaf of abelian groups π∗

(
µ
pn,Sfppf

)
on Sét

is a successive extension of sheaves attached to quasi-coherent OS0-modules as in 2.2 (iii);

the same is true for the sheaf π∗

(
Tp(En)∨ ⊗

Z/pnZ
X∗(Tn)⊗

Z/pnZ
µ
pn,Sfppf

)
. The statement (ii)

follows from the assumption that S is affine, because Hj(Sét,Fét) = Hj(S0zar,F) = 0 for each
sheaf of abelian groups Fét on Sét attached to a quasi-coherent OS0-module F , j ≥ 1.

(2.5) Definition (i) Let S be a scheme over Z(p) such that p is locally nilpotent in
OS. Let Gn be a BTn-group over S. Denote by Gmult

n the maximal multiplicative
BTn-subgroup of Gn, and Gét

n the maximal étale quotient of Gn. Assume that Gn is
ordinary, in the sense that the complex 1 → Gmult

n → Gn → Gét
n → 1 of BTn-groups

over S is exact. Then Gn is an extension of of Gét
n by Gmult

n , giving rise to an element
e(Gn) ∈ ExtSfppf

(Gét
n , G

mult
n ). Define

qn(Gn) ∈ HomSét

(
Tp(G

ét
n )⊗

Z/pnZ
X∗(Gmult

n ), ν
pn,S

)
to be the image of e(Gn) in

Γ
(
Sét,Ext(Gét

n , G
mult
n )

)
= HomSét

(
Tp(G

ét
n )⊗

Z/pnZ
X∗(Gmult

n ), ν
pn,S

)
.

We say that qn(Gn) is the canonical coordinates of the ordinary BTn-group Gn.

12



(ii) Let S be as in (i). LetG be a BT-group over S. Denote byGmult (resp.Gét) the maximal
multiplicative BT-subgroup (resp. the maximal étale BT-quotient group) of G. Assume
that G is ordinary, in the sense that the complex 1 → Gmult → G → Gét → 1 of BT -
groups over S is exact. This assumption means that we have compatible short exact
sequences of BTn-groups 1→ Gmult

n → Gn → Gét
n → 1 for n ≥ 1. Define

q(G) = lim
n→∞

qn(Gn)

∈ lim←−
n

HomSét

(
Tp(G

ét
n )⊗

Z/pnZ
X∗(Gmult

n ), ν
pn,S

)
= HomSét

(
Tp(G

ét)⊗Zp X∗(Gmult), ν
p∞,S

)
.

We call q(G) the canonical coordinates of the ordinary BT-group G.

(ii)’ Let S be a noetherian formal scheme over Zp such that p is locally topologically nilpo-
tent. Let G be a BT-group over S. The same formula in (ii) above makes sense in the
present situation and defines an element

q(G) ∈ HomSét

(
Tp(G

ét)⊗Zp X∗(Gmult), ν
p∞,S

)
again called the canonical coordinates of G.

(2.5.1) Remark Suppose that R is an Artinian local ring whose residue field κ is alge-
braically closed of characteristic p > 0. Let S = SpecR, and let G := A[p∞] be the
BT-group attached to an abelian scheme A over S whose closed fiber is an ordinary abelian
variety. Then both Tp(G

ét) and X∗(Gmult) are constant on Sét, νp∞,S is represented by the

formal completion Ĝm/S of Gm/S along the unit section, and q(G) coincides with the classical
definition of the Serre-Tate coordinates of G. See [18] for an exposition of the Serre-Tate
coordinates.

One can regard local sections of νp∞ as some sort of “generalized functions” on S, so the
use of the word “coordinates” can be partially justified from this point of view.

(2.6) Proposition Let S be a scheme such that p is locally nilpotent in OS.

(i) Let Gn, Hn be two ordinary BTn-groups over S. Let α : Gn → Hn be a homomorphism
of BT-groups over S. Denote by αmult : Gmult

n → Hmult
n (resp. αét : Gét

n → H ét
n ) the

homomorphism induced by α between the étale (resp. multiplicative) part of the two
BTn-groups. Then we have

qn(G; a⊗ α∗mult(λ)) = qn(H; αét∗(a)⊗ λ)

for any local section a of Tp(G
ét
n ) and any local section λ of X∗(Hmult

n ).
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(ii) Let G, H be two ordinary BT-groups over S. Let α : G → H be a homomorphism
of BT-groups over S. Denote by αmult : Gmult → Hmult (resp. αét : Gét → H ét) the
homomorphism induced by α between the étale (resp. multiplicative) part of the two
BT-groups. Then we have

q(G; a⊗ α∗mult(λ)) = q(H; αét∗(a)⊗ λ)

for any local section a of Tp(G
ét) and any local section λ of X∗(Hmult).

Proof. The statement (ii) follows from (i). To prove (i), we may and do assume that S
is strictly local. Consequently Gmult and Gét are constant. So it suffices to check (i) when
Gmult ∼= µpn and Gét ∼= Z/pnZ. In this case the statement (ii) follow from the functoriality
in Kummer theory.

(2.7) Proposition Let S be a scheme such that p is locally nilpotent in OS.

(i) Let Gn be an ordinary BTn-group over S. Let Gt
n be the Cartier dual of Gn. The

canonical pairing Gn ×Gt
n → µpn induces isomorphisms

Tp(G
ét
n ) ∼= X∗(Gt,mult

n ) , Tp(G
t,ét
n ) ∼= X∗(Gmult

n ) .

With the above isomorphisms, one can regard the canonical coordinates of Gn and Gt
n

as
qn(Gn) ∈ HomS(Tp(G

ét
n )⊗ Tp(G

t,ét
n ), ν

pn,S
) ,

qn(Gt
n) ∈ HomS(Tp(G

t,ét
n )⊗ Tp(G

ét
n ), ν

pn,S
) .

Then

qn(Gn; a⊗ b) = qn(Gt
n; b⊗ a)−1 for all a ∈ Tp(G

ét
n ), b ∈ Tp(G

t,ét
n ) ,

where qn(Gt
n; b ⊗ a)−1 denotes the inverse of qn(Gt

n; b ⊗ a) according to the group
structure of ν

pn,S
.

(ii) Let G be an ordinary BT -group over S. Let Gt be the Serre dual of G. The canonical
pairing G×Gt → µp∞ induces isomorphisms

Tp(G
ét) ∼= X∗(Gt,mult) , Tp(G

t,ét) ∼= X∗(Gmult) .

With the above isomorphisms, one can regard the canonical coordinates of G and Gt as

q(G) ∈ HomS(Tp(G
ét)⊗ Tp(G

t,ét), ν
p∞,S) ,

q(Gt) ∈ HomS(Tp(G
t,ét)⊗ Tp(G

ét), ν
p∞,S) .

Then
q(G; a⊗ b) = q(Gt; b⊗ a)−1 for all a ∈ Tp(G

ét), b ∈ Tp(G
t,ét) .
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Proof. It suffices to prove the statement (i) about BTn-groups, since (ii) follows from (i)
by taking the limit. To prove (i), by étale descent it suffices to prove it when both Tp(G

ét)
and X∗(Gmult) are constant, and S = SpecR for a local ring R. Assume this is the case.
Then from the definition of the canonical coordinates one sees that it suffices to prove (ii) in
the special case when Gmult = µpn and Gét = Z/pnZ. Assume now that we are in this special
case. The extension 1→ µpn → Gn → Z/pnZ→ 1 comes from an element f̄ ∈ R×/(R×)p

n
.

Let f ∈ R× be a representative of f̄ . Then Gn can be described as follows:

Gn(U) =
{

(g, a) ∈ Γ(U,O×U × ZU) | gpn = fa
}
/ 〈 (f, pn) 〉

for every S-scheme U . See [8, 4.3.1]. Similarly the element f̄−1 ∈ R×/(R×)p
n

gives rise to a
BTn-group Hn such that

Hn(U) =
{

(h, b) ∈ Γ(U,O×U × ZU) |hpn = f−b
}
/ 〈 (f−1, pn) 〉

for every S-scheme U . Define a pairing Gn ×Hn → µpn by

(g, a) × (h, b) 7→ gb · ha

for every (g, a) ∈ Gn(U) and (h, b) ∈ Hn(U) as above. It is routine to check that this pairing
is well-defined, and realizes Hn as the Cartier dual of Gn. Both Tp(G

ét
n ) and Tp(H

ét
n ) are

canonically isomorphic to Z/pnZ. From the definition of the canonical coordinates we have
qn(Gn; 1̄ ⊗ 1̄) = f̄ , and qn(Gn; 1̄ ⊗ 1̄) = f̄−1. We have verified (ii) under the assumptions
specified at the beginning of the proof.

(2.7.1) Remark When p = 0 in OS, one can also verify the special case above using the
explicit description of the Dieudonné crystal of Gn given in [8, 4.3.2]: With the notation in
loc. cit., we have D(Gn) = M(d log(f̃), log(σ(f̃)f̃−p)); D(Gn) has an An-basis v, ṽ such that

∇ v = 0 ∇ ṽ =v ⊗ d log(f̃)

F vσ = v F ṽσ = log(σ(f̃)f̃−p)) · v + p · ṽ
V v = p · vσ V ṽ =− log(σ(f̃)f̃−p)) · vσ + ṽσ

Similarly D(Hn) = M(d log(f̃−1), log(σ(f̃−1)f̃p)); D(Hn) has an An-basis w, w̃ such that

∇w = 0 ∇ w̃ =− w ⊗ d log(f̃)

Fwσ = w F w̃σ =− log(σ(f̃)f̃−p)) · w + p · w̃
Vw = p · wσ V w̃ = log(σ(f̃)f̃−p)) · wσ + w̃σ

We define a pairing between

〈 , 〉 : D(Gn)× D(Hn) −→ D(µpn) = An
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by
〈v, w〉 = 0, 〈v, w̃〉 = 1, 〈ṽ, w〉 = 1, 〈ṽ, w̃〉 = 0.

One verifies that this pairing is well-defined, horizontal, and is compatible with F and V.
Moreover the pairing 〈 , 〉 identifies D(Hn) as D(Gn)∨(−1), so Hn is the Cartier dual of Gn.

(2.8) Proposition Let S be a scheme such that p is locally nilpotent in OS. Let S0 =
S ×SpecZ SpecFp. Let A be an abelian variety over S such that A0 := A ×S S0 is ordinary.
We identify X∗(A[p∞]mult) with Tp(A

t[p∞]ét) using the duality pairing

〈 , 〉A : A[p∞]× At[p∞]→ Gm[p∞]

attached to A. So q(A), the canonical coordinates of A[p∞], can be identified with an element
of HomS

(
Tp(A[p∞]ét)⊗ Tp(A

t[p∞]ét), ν
p∞,S

)
. In the same fashion we regard q(At) as an ele-

ment of HomS

(
Tp(A

t[p∞]ét)⊗ Tp

(
(At)t[p∞]ét

)
, ν

p∞,S

)
. Let jA : A

∼−→ (At)t be the canonical
isomorphism from the abelian variety A to its double dual; it induces an isomorphism from
Tp

(
A[p∞]ét

)
to Tp

(
(At)t[p∞]ét

)
. With the above notation, we have

q(A; a⊗ b) = q(At; b⊗ jA(a))

for all a ∈ Tp(A[p∞]ét) and all b ∈ Tp(A
t[p∞]ét).

Proof. We have the following relation between the duality pairing 〈 , 〉A : A[p∞]×At[p∞]→
Gm[p∞] for A and also the duality pairing 〈 , 〉At : At[p∞]× (At)t[p∞]→ Gm[p∞] for At :

〈x, y〉A = 〈y, jA(x)〉−1
At

for every x ∈ A[p∞](U), every y ∈ At[p∞](U), and every scheme U over S. We refer the
readers to the discussion in § 5.1 of [3] for the signs in the duality pairing for abelian varieties.
Prop. 2.8 follows from the displayed formula above and 2.7 (ii).

§3. Local p-adic monodromy
(3.1) We set up notation for this section. Let k be an algebraically closed field of character-
istic p, and let R is a complete Noetherian normal integral domain over k. Let S = SpecR.
Let m be the maximal ideal of R.

(3.1.1) Let G be an ordinary BT-group over S, which sits in a short exact sequence

0→ T → G→ E → 0

of BT-groups over S, where T multiplicative and E is étale. Let s0 ∈ S be the closed point
of S. Denote by G0 (resp. T0, resp. E0) the fiber of G (resp. T , resp. E) over s0. The
sheaf of free Zp-modules Tp(E) (resp. X∗(T )) on Sét is constant; its fiber over s0 is Tp(E0)
(resp. X∗(T0).) Let UZp = U(G0)Zp := Tp(E0), the p-adic Tate module of E0. Let VZp =
V (G0)Zp := X∗(T0), the cocharacter group of T0. Let UQp := UZp ⊗Zp Qp = Tp(E0) ⊗Zp Qp,
VQp := VZp⊗ZpQp = X∗(T0)⊗ZpQp. Denote by U∨

Zp
and V ∨

Zp
(resp. U∨

Qp
and V ∨

Qp
) the Zp-dual

of UZp and VZp (resp. the Qp-dual of UQp and VQp .)
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(3.1.2) The canonical coordinates for G can be regarded as a homomorphism

q(G) : UZp ⊗Zp V ∨Zp = Tp(E0)⊗Zp X∗(T0) −→ 1 + m ⊂ R× .

If G is the BT-group attached to an ordinary abelian scheme A over S, then q(G) coincides
with the Serre-Tate coordinates of A.

(3.1.3) Let N(G)⊥ := Ker(q(G)) ⊆ UZp ⊗Zp V ∨Zp . Since the group 1 + m ⊂ R× is torsion

free, (UZp ⊗Zp V ∨Zp)/N(G)⊥ is a free Zp-module of finite rank. Define a Zp-direct factor N(G)
of U∨

Zp
⊗Zp VZp = HomZp(UZp , VZp) by

N(G) := {n ∈ U∨
Zp
⊗Zp VZp | 〈n, a〉 = 0 ∀a ∈ N(G)⊥ } .

(3.1.4) Remark The canonical coordinates q(G) of G defines a morphism

f : Spf R −→ U∨
Zp
⊗Zp VZp ⊗Zp Ĝm

from Spf R to a formal torus U∨
Zp
⊗Zp VZp ⊗Zp Ĝm over k. The Zp-direct factor N(G) of

U∨
Zp
⊗ZpVZp is characterized by the property that N(G)⊗Zp Ĝm is the smallest formal subtorus

of U∨
Zp
⊗Zp VZp ⊗Zp Ĝm which contains the schematic image of f .

(3.2) Let W = W (k) be the ring of p-adic Witt vectors with components in k. Let K = B(k)
be the fraction field of W (k). Let F-Isoc(S/K) be the ⊗-category over Qp consisting of
convergent F-isocrystals on S/K; see [2], [7]. We often omit the adjective “convergent” and
simply refer to objects in F-Isoc(S/K) as F-isocrystals on S, in view of Dwork’s lemma.

(3.2.1) Let D(G) be the contravariant Dieudonné crystal attached to G as defined in [3].
Let T = T(G) be the the ⊗-subcategory of F-Isoc(S/K) generated by the image D(G)⊗K
of D(G) in F-Isoc(S/K).

(3.2.2) The closed point s0 of S gives rise to a fiber functor ω from T(G) to VecK , the
⊗-category of finite dimensional K-vector spaces; it sends each F-isocrystal M to the fiber
Ms0 of M over s0.

There is an increasing Z-filtration on T(G) in the following sense. For every object M
in T, there is a functorial filtration of finite length

· · · ⊆ Mi−1 ⊆Mi ⊆Mi+1 ⊆ · · ·

by subobjects of M, such that Mi = 0 for i � 0 and Mi = M for i � 0, and each
subquotient Mi/Mi−1 has the form F(−i) for some unit-root F-isocrystal F on S. Here
F(−i) denotes the (−i)-th Tate-twist of F : the isocrystal underlying F(−i) is the same as
that of F , while ΦF(−i) = pi · ΦF . We call this filtration the slope filtration on T(G), and
refer to [12] for the existence of the slope filtration. The slope filtration is compatible with
the structure of ⊗-category of T in the usual way. ForM = D(G)⊗K, we haveM−1 = (0),
M1 =M, M/M0 = V ∨(−1)⊗Zp OS/K , M0 = U∨ ⊗Zp OS/K .
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For each object M in T = T(G), the fiber Ms0 of M at s0 can be considered as a finite
dimensional K-vector space with a p-semilinear action Φ. The hypothesis that G is ordinary
implies that the slopes of Ms0 in the Dieudonné-Manin classification are integers. For each
i ∈ Z, denote by (Ms0)p

−iΦ the Qp-subspace of Ms0 consisting of all elements x ∈ Ms0

such that Φ(xσ) = pi · x. The Dieudonné-Manin classification tells us that the subspaces
(Ms0)p

−iΦ ofMs0 are linearly independent over both Qp and K, and they generateMs0 over
K. It is easy to see that the formation of the (Ms0)p

−iΦ’s is exact inM and compatible with
the following operations: ⊗, ⊕, Hom (the internal Hom), and ∨ (the dual). So we obtain
another fiber functor on T with values in the category of Qp-vector spaces:

(3.2.3) Definition Let ωQp be the fiber functor from T to the category of finite dimensional
graded Qp-vector spaces given by

ωQp(M) := ⊕i (Ms0)p
−iΦ

Note that we have a canonical isomorphism

ωQp(M) = ⊕i (M)p
−iΦ
s0

∼−→ ⊕i (Mi,s0/Mi−1,s0)p
−iΦ .

As an example, (D(G) ⊗ K)0 is a unit-root F-crystal, (D(G) ⊗ K)1 = D(G) ⊗ K, and
ωQp(D(G)⊗K) = U∨

Qp
⊕ V ∨

Qp
(−1).

The dual of D(G) is canonically isomorphic to the covariant crystal attached to G in [21],
and ωQp((D(G)⊗K)∨) = VQp(1)⊕ UQp .

(3.2.4) We have seen that T(G) is a neutral Tannakian category over Qp. The general
formalism of Tannakian categories tells us that T(G) is equivalent to the category of finite-
dimensional Qp-linear representations of the algebraic group Aut⊗

T(G)(ωQp). In particular
(D(G)⊗K)∨ corresponds to a representation

ρG : Aut⊗
T(G)(ωQp) ⊂ GL(ωQp((D(G)⊗K)∨)) = GL(V (1)Qp ⊕ UQp) .

This homomorphism ρG is an embedding by construction. Moreover the subspace V (1)Qp of
ωQp((D(G) ⊗ K)∨) is stable under ρG. It is easy to see that the image of Aut⊗

T(G)(ωQp) in

GL(UQp) is trivial, while the image of Aut⊗
T(G)(ωQp) in GL(V (1)Qp) is equal to Gm·IdV (1)Qp

. So

Aut⊗
T(G)(ωQp) is a semidirect product of Gm with its unipotent radical, which is commutative

and naturally identified with a Qp-subspace of HomQp(UQp , V (1)Qp).

(3.3) Theorem Notation as above. Then

Aut⊗
T(G)(ωQp)

ρG−→
∼

{ (
λ · IdV (1)Qp

B

0 IdUQp

)
∈ GL(V (1)Qp ⊕ UQp)

∣∣∣∣∣ λ ∈ Q×p
B ∈ N(G)(1)Qp

}
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Proof. We only need to show that the kernel of the natural surjection Aut⊗
T(G)(ωQp)→ Gm,

which sends an element

(
λ · IdV (1)Qp

B

0 IdUQp

)
of Aut⊗

T(G)(ω) to λ, consists of all elements of

the form

(
IdV (1)Qp

B

0 IdUQp

)
with B ∈ N(G)(1)Qp . Each element α ∈ UZp ⊗Zp V ∨Zp defines a

homomorphism

hα :

{ (
λ · IdV (1)Qp

B

0 IdUQp

)
∈ GL(V (1)Qp ⊕ UQp)

∣∣∣∣∣ λ ∈ Q×p , B ∈ N(G)(1)Qp

}

−→

{ (
λ · Id

Q(1)
b

0 Id
Qp

)
∈ GL(Q(1)⊕Qp)

∣∣∣∣∣ λ ∈ Q×p , b ∈ Q(1)Qp

}

which sends

(
λ · IdV (1)Qp

B

0 IdUQp

)
to

(
λ · Id

Q(1)
〈α,B〉

0 Id
Qp

)
, where

〈 , 〉 : (UQp ⊗ V ∨Qp)× (U∨
Qp
⊗ V (1)Qp) −→ Q(1)

denotes the natural pairing. What we need to show is that hα ◦ ρG(Aut⊗
T(G)(ω)) is equal

to Gm · IdQp(1) × IdQp if and only if α ∈ N(G)⊥
Zp

. The homomorphism hα ◦ ρG corresponds
to the F-isocrystal attached to the extension of Qp/Zp by Gm[p∞] given by the element
〈α, q(G)〉 ∈ νp∞(R). So it suffices to show that an element of νp∞(R) is trivial if and only if
the F-isocrysal attached to the Diedonné crystal of the corresponding extension of Qp/Zp by
Gm[p∞] is isomorphic to the direct sum of D(Gm[p∞])⊗K with D(Qp/Zp)⊗K. This can be
checked directly using the formula in [8, 4.3.2], or by the fact that the crystalline Dieudonné
functor on the category of p-divisible groups over S is fully faithful, see [8].

§4. Global p-adic monodromy
(4.1) In this section k is an algebraically closed field of characteristic p > 0, and S is an
irreducible normal scheme of finite type over k. Let G be a ordinary BT over S, so we have a
short exact sequence 1→ T → G→ E → 1 of BT -groups over S, where T is multiplicative
and E is étale. Let U := Tp(E), V := X∗(T ); each is a smooth sheaf of free Zp-modules of
finite rank on Sét.

(4.1.1) For each geometric point s̄ of S. Denote by Gs̄ (resp. Ts̄, resp. Es̄) the fiber of G
(resp. T , resp. E) over s̄. Denote by Us̄ the fiber of U over s̄, and let Us̄,Qp = Us̄ ⊗Zp Qp;
similarly for other smooth sheaves of Zp-modules on Sét.

(4.2) The canonical coordinates of G is a homomorphism

q(G) : U ⊗Zp V ∨ = Tp(E)⊗Zp X∗(T ) −→ ν
p∞,S
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of sheaves on Sét. Let
N(G)⊥ := Ker(q(G)) ⊆ U ⊗ V ∨

(4.2.1) Proposition (i) The sheaf N(G)⊥ is a smooth subsheaf of U ⊗ V ∨, and U ⊗
V ∨/N(G)⊥ is a torsion-free smooth sheaf of free Zp-modules on Sét.

(ii) Let N(G) ⊆ U∨ ⊗Zp V be the orthogonal complement of N(G)⊥. Then N(G) is a
smooth sheaf of free Zp-modules on Sét.

Proof. We only have to prove (i), since (ii) follows from (i). Lemma 2.1.4 and Lemma 2.1.5
imply that N(G)∨ is a smooth sheaf of Zp-modules on Sét. To show that U ⊗ V ∨/N(G)⊥ is
torsion-free, it suffices to show that νp∞,S(Osh

S,x) is torsion free for every closed point x ∈ S,
where Osh

S,x denotes the strict henselisation of OS,x. By Lemma 2.1.6, it suffices to show that
νp∞,S(O∧S,x) is torsion free, where O∧S,x is the completion of OS,x. We know that νp∞,S(O∧S,x)
is isomorphic to the subgroup 1 + mxO

∧
S,x of (O∧S,x)

×. For any a ∈ mxO
∧
S,x, if (1 + a)p

m
= 1

for some m ∈ N, then 1 + a = 1 because O∧S,x is an integral domain.

(4.3) LetW = W (k) be the ring of p-adic Witt vectors with components in k. LetK = K(k)
be the fraction field of W (k). Denote by F-Isoc(S/K) the ⊗-category of convergent F-
isocrystals over S/K as in §3. The contravariant Diedonné crystal D(G) attached to G gives
rise to an object D(G) ⊗K in F-Isoc(S/K). Let T(G) be the ⊗-subcategory generated by
D(G)⊗K. As in §3, the ⊗-category T(G) has a functorial slope filtration, compatible with
the ⊗-structure. The construction/definition of the fiber functor in 3.2.3 can be generalized
to the present situation as well. In particular, every object M in T(G) has a unique finite
increasing filtration such that each associate graded piece Mi/Mi−1 is a the (−i)th Tate
twist of a unit-root isocrystal.

(4.3.1) Definition Let s̄ be a geometric point of S. Define a fiber functor ωs̄,Qp from T(G)
to the ⊗-category of finite dimensional graded Qp-vector spaces by

ωs̄,Qp(M) := ⊕i (Ms̄)
p−iΦ

for each object M in T(G). Notice that there is a canonical isomorphism

ωs̄,Qp(M)
∼−→ ⊕i (Mi,s0/Mi−1,s̄)

p−iΦ .

(4.3.2) Notation as above. The object (D(G)⊗K)∨ of T(G) corresponds to a homomorphism

ρG,s̄ : AutT(G)(ωs̄,Qp) −→ GL(V (1)s̄,Qp ⊕ Us̄,Qp) ,

which is an embedding. We will identify the monodromy group AutT(G)(ωs̄,Qp) with its image
under ρG,s̄.
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(4.3.3) Let T′(G) be the ⊗-subcategory of the T(G) generated by the direct sum

(D(Gmult)⊗K)⊕ (D(Gét)⊗K) .

The generator (D(Gmult)⊗K)⊕ (D(Gét)⊗K) of T′(G) corresponds to an embedding

ρ′G,s̄ : AutT′(G)(ωs̄,Qp) ↪→ GL(V (1)s̄,Qp)×GL(Us̄,Qp) ,

and we identify AutT′(G)(ωs̄,Qp) with its image in GL(V (1)s̄,Qp)×GL(Us̄,Qp) under ρ′G,s̄.

(4.3.4) Let T′′(G) be the ⊗-subcategory in the ⊗-category of smooth Qp-sheaves on Sét

generated by VQp ⊕ UQp . For each geometric point s̄ of S, the functor

s̄∗ : T′′(G) → VecQp

defined by “pull-back by s̄” is a fiber functor of T′(G) with values in the category of finite
dimensional Qp-vector spaces. The object VQp ⊕ UQp of T′(G) defines an embedding

ρ′′G,s̄ : AutT′′(G)(s̄
∗) ↪→ GL(Vs̄,Qp)×GL(Us̄,Qp) ,

and we identify AutT′′(G)(s̄
∗) with its image in GL(Vs̄,Qp)×GL(Us̄,Qp) under ρ′′G.

(4.3.5) We have canonical isomorphisms

GL(ωs̄,Qp(G
mult)) ∼= GL(Vs̄,Qp) , GL(ωs̄,Qp(G

ét)) ∼= GL(Us̄,Qp) .

The second isomorphism comes from ωs̄,Qp(D(Gét)∨) = Us̄,Qp . The first isomorphism comes
from ωs̄,Qp(D(Gmult)∨) = V (1)s̄,Qp , using the standard notation on Tate twists.

(4.3.6) Lemma Notation as above. We have

ρ′G,s̄(AutT′(G)(s̄
∗)) = {(λ · A,D) ∈ GL(V (1)s̄,Qp)×GL(Us̄,Qp) | (A,D) ∈ ρ′′G,s̄(AutT′′(G)(s̄

∗))}

(4.4) Theorem Notation as above. Let s̄ be a geometric point of S. Then we have a
canonical isomorphism

AutT(G)(ωs̄,Qp)
∼−→

{ (
A B

0 D

)∣∣∣∣∣ B ∈ N(G)(1)s̄

(A,D) ∈ AutT′(G)(s̄
∗) ⊆ GL(V (1)s̄,Qp)×GL(Us̄,Qp)

}
induced by ρ′G.

Proof. By Theorem 3.3, the image of ρ′G clearly contains the group described at the right-
hand-side of the displayed formula in the statement; denote that Q-group by Γals̄. So we
obtain a ⊗-functor ψ : T (G) −→ Rep(Γals̄). We want to show that ψ is an equivalence of
categories. It suffices to prove this assertion in the case when s̄ is a geometric generic point
η̄ of S;
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The group Γalη̄ is a Qp-algebraic subgroup of GL(V (1)η̄,Qp ⊕ Uη̄,Qp). Let Γalη̄,Zp be the
intersection of Γalη̄ with GL(V (1)η̄,Zp⊕Uη̄,Zp ; it is a Zp-model of Γalη̄). Let Γal′η̄ be the image
of Γalη̄ in GL(V (1)η̄,Qp)×GL(Uη̄,Qp); up to a factor Gm it is equal to the Qp-Zariski closure
of the image of Gal(η̄/η) in GL(V (1)η̄,Qp) × GL(Uη̄,Qp). Let Γal′η̄,Zp be the image of Γalη̄,Zp
in GL(V (1)η̄,Zp)×GL(Uη̄,Zp). So Γalη̄,Zp is a semi-direct product of Γal′η̄,Zp with N(G)(1)η̄.

(4.4.1) Lemma Let H be a tensor construction from D(G), D(G)∨ and the Tate twists.
and let H := ψ(H), a representation of Γalη̄ on ωη̄,Qp(H). Suppose that M is a Qp-subspace
of H which is stable under Γalη̄. Then there exists a unique subobject M of H such that
ψ(M) = M .

Proof. The uniqueness assertion follows trivially from the fact that ψ is exact and faithful.
Let n be a positive integer. Choose a finite étale covering nS of S to trivialize both UZp/p

nUZp
and VZp/p

nVZp . Then we cover nS with affine opens nTj such that qn(G[pn]/nTj) comes from
a homomorphism

qn,j :
(
(UZp/p

nUZp)⊗Z/pnZ (VZp/p
nVZp)

∨) (nTj) −→ Γ(nTj,O
×
nTj

)
/

(Γ(nTj,O
×
nTj

))p
n

.

Over each nTj we can use the explicit formula for the crystal attached to GnTj/Wn in [8,
4.3.2].

By definition, the isocrystal H over S comes from a crystal H∞ on S/W . Moreover a
suitable Tate twist H∞(a) of H∞ is an F-crystal on S/W . Apply the tensor construction
used to obtain H from V (1)η̄,Qp ⊕ Uη̄,Qp , to V (1)η̄,Zp ⊕ Uη̄,Zp , we obtain a Zp-lattice HZp in
H. Let MZp = M ∩HZp . Clearly MZp is stable under the natural action of Γalη̄,Zp .

For each n, let Hn := HZp ⊗Zp (Z/pnZ) and Mn := MZp ⊗Zp (Z/pnZ). The group Γalη̄,Zp
operates naturally on Hn and Mn. Over each nTj, the Dieudonné crystal D(G)∨ can be
described explicitly in terms of N(G), as a differential equation on

(V (1)η̄,Zp ⊕ Uη̄,Zp)⊗Zp (Z/pnZ)⊗Z/pnZ OñTj
,

where ñTj is a Wn(k)-lifting of nTj; see [8, 4.3.2]. Using the tensor construction involved,
one obtains a differential equation on Hn ⊗Z/pnZ OñTj

with nilpotent connection; denote the

corresponding crystal on nTj/Wn(k) by Hn,j. Moreover Mn ⊗Z/pnZ OñTj
is stable under the

connection; denote the corresponding crystal on nTj/Wn(k) byMn,j. The Γalη̄,Zp-invariance
of Mn implies that the crystalsMn,j descends to a crystalMn on S/Wn(k). It is not difficult
to see that Mn’s are compatible as n varies, giving a crystal M∞ on S/W (k). Let M be
the isocrystal attached to M∞. It is easy to see from the construction of M∞ that M
is a sub-isocrystal of H, and M inherits a Frobenius structure from that of H. Moreover
ψ(M) = M . This proves the existence assertion.

(4.4.2) Lemma Let H be a tensor construction from D(G), D(G)∨ and the Tate twists.
and let H := ψ(H), a representation of Γalη̄ on ωη̄,Qp(H). Let M1 ⊂ M2 be Qp-subspaces of
H which is stable under Γalη̄, and let M = M2/M1.
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(i) Then there exists a subquotient M of H such that ψ(M) = M .

(ii) If v is an element of M which is fixed by Γalη̄, then there exists a horizontal global
section ṽ of M fixed by the Frobenius, such that ψ(ṽ) = v.

Proof. We use the notation in the proof of Lemma 4.4.1. Apply the construction in 4.4.1
to Mi, i = 1, 2, we obtain M1,n ⊂ M2,n ⊂ Hn, and crystals Mi,n on S/Wn(k). As n
varies, the crystals Mi,n gives crystals Mi,∞ ⊂ Mi,∞ ⊂ H∞ on S/W (k). Let Mi be the
isocrystal attached to M∞, with Frobenius structure induced by that of H. Then we have
M1 ⊂M2 ⊂ H as F-isocrystals. Let M =M2/M1. Clearly ψ(M) = M . This proves (i)

Multiplying the Γalη̄-fixed vector v by a suitable power of p, we may and do assume that
v is the image of an element w ∈ M2,Zp . Let v2,n be the image of w in M2,n/M1,n. Using
[8, 4.3.2] and the construction of Mi,n, i = 1, 2, it is easy to see that v2,n gives a section of
M2,n/M1,n over S/Wn(k). The sections v2,n are compatible as n varies, giving a section ṽ
of M over S/W (k). Going through the same argument again and consider the Frobenius

structure, one sees that the horizontal section ṽ is fixed by the Frobenius: Φ(F ∗(ṽ)) = (̃v).
This proves (ii)

End of the proof of Prop. 4.4. Lemma 4.4.2 implies that ψ is fully faithful, and more-
over for every object W of T(G) and every subobject M of ψ(W), there exists a subobject
M ofW such that ψ(M) = M . Indeed Lemma 4.4.2 shows that this is so for subquotient of
tensor constructions using D(G),D(G)∨ and Tate twists. Therefore it hold for every object
of T(G).

(4.4.3) Remark If one prefers, in the proof of Theorem 4.4 one may assume that S is
smooth over k. Indeed by de Jong’s theorem on alteration in [9], there exists a smooth
k-scheme S̃ and a proper surjective morphism f : S̃ → S which is finite étale over a Zariski
dense open subscheme of S. One then applies the theorem [25, 4.6] of Ogus, which says
that the category of convergent isocrystals satisfy descent for proper surjective morphisms
of k-schemes of finite type.

§5. Tate-linear subvarieties
(5.1) Definition Let k be an algebraically closed field of characteristic p. Let g ≥ 1 be
a positive integer. We fix an auxiliary positive integer Nsuch that (N, p) = 1, N ≥ 3.
Denote by Ag,1,N /k the moduli space of g-dimensional principally polarized abelian varieties
over k with level-N -structure; often we will simply write Ag/k, suppressing other subscripts.

Suppose that Z is an irreducible closed subvariety of Aord
g,1,N /k

over k, where Aord
g,1,N /k

denotes

the ordinary locus in Ag,1,N /k.

(i) Let z be a closed point of Z. We say that Z is Tate-linear at z if the formal completion

of Z at z is a formal subtorus of the Serre-Tate formal torus A/zg,1,N /k.
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(ii) We say that Z is Tate-linear if it is Tate-linear at every closed point of Z.

(iii) Denote by f : Y → Z the normalization of Z. We say that Z is weakly Tate-linear

if for every closed point y of Y , the morphism Y /y → A/f(y)
g,1,N /k

induced by f is an

isomorphism from Y /y to a formal subtorus of the Serre-Tate formal torus A/f(y)
g,1,N /k

.

(5.1.1) Remark (1) Clearly if Z is Tate-linear at a closed point z0, then Z is smooth over
k at z0. Hence if Z is Tate-linear, then it is smooth over k. Singularities are allowed
for weakly Tate-linear subvarieties; they “come from self-intersection”. A weakly Tate-
linear subvariety Z of Aord

g,1,N /k
is Tate-linear at all closed points of the smooth locus of

Z.

(2) Although we defined Tate-linearity only in the equicharacteristic p situation, the defi-
nition makes sense for closed subschemes of Ag,1,N ord

/W (k) over W (k), where Ag,1,N ord
/W (k)

denotes the complement of the non-ordinary locus of the closed fiber in the moduli
space Ag,1,N /W (k) over W (k). One can also weaken the requirement so that each for-
mal completion is the translation of a formal subtorus of the Serre-Tate torus by a
torsion point, over a finite flat extension of W (k). The characteristic 0 fiber of a Tate-
linear subvariety is a subvariety of Ag,1,N /B(k) of Hodge type according to a theorem of

Moonen [22], where B(k) is the fraction field of W (k). See 5.4.2 for more discussions.

(5.2) Proposition Let Z be an irreducible closed subscheme of Aord
g /k

. Denote by q(A/Z)

the canonical coordinates of the ordinary BT-group A[p∞]→ Z over Z; it is a homomorphism
from the sheaf Tp(A[p∞]ét

Z )⊗X∗(A[p∞]mult
Z ) on Zét to νp∞,Z. Denote by N(A/Z)⊥ the kernel

of q(A/Z); it is a subsheaf of Tp(A[p∞]ét
Z )⊗Zp X∗(A[p∞]mult

Z ). Let N(A/Z) be the orthogonal
complement of N(A/Z)⊥, a smooth Zp-sheaf on Zét.

(i) For any closed point z of Z, Z is Tate-linear at z if and only if rank(N(A/Z)z) =
dim(Z).

(ii) The subvariety Z is Tate-linear if and only if N(A/Z) is a smooth cotorsion-free sheaf
of Zp-submodules of Tp(A[p∞]ét

Z )∨⊗X∗(A[p∞]mult
Z ) such that rank(N(A/Z)) = dim(Z).

Proof. Let z be a closed point of Z. Then the smallest formal subtorus of the Serre-Tate
formal torus A/zg containing the formal completion Z/z of Z at z is canonically isomorphic

to N(G)z ⊗Zp Ĝm. Hence Z is Tate-linear at z if and only if rank(N(A/Z)z) = dim(Z); (i)
is proved.

If Z is Tate-linear, then Z is smooth, hence N(A/Z)⊥ is a smooth cotorsion-free sheaf of
Zp-submodules by 4.2.1. The rest of (ii) are immediate from (i).

(5.3) Proposition Let Z be a closed irreducible subscheme of Aord
g,1,N /k

over an algebraically

closed field k of characteristic p. Suppose Z is Tate-linear at a closed point z of Z. Then
Z is a weakly Tate-linear subvariety of Ao

g.
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Proof. We may and do assume that k is algebraically closed. Suppose that Z is Tate-linear
at a closed point z. Consider

Tp(Az[p
∞]ét)⊗X∗(Az[p∞]mult)

q(A/Z)z−−−−→ νp∞(OZ,z)
β−→ νp∞(O∧Z,z) ,

where O∧Z,z denotes the completion of the local ring OZ,z, and β is the natural map from
νp∞(OZ,z) to νp∞(O∧Z,z) = 1 + O∧Z,z. The assumption implies that Coimage(β ◦ q(A/Z)z)
is a free Zp-module of rank dim(Z). Let f : Y → Z be the normalization of Z. From
2.1.4–2.1.6, we deduce that N(A/Y )⊥ is a cotorsion-free smooth sheaf of Zp-submodules
of Tp(A[p∞]ét) ⊗ X∗(A[p∞]mult

Y ). Therefore the rank of N(A/Y ) can be evaluated at the
point z of Y . We conclude that the rank of N(A/Y ) is equal to dim(Z) = dim(Y ). At
each closed point y of Y , q(A/Y )y gives the Serre-Tate coordinates when one passes to the
formal completion of Y at y. The fact that the rank of N(A/Y ) is equal to dim(Y ) shows

that the natural map Y /y → A/f(y)
g,1,N factors through the formal subtorus of A/f(y)

g,1,N whose

cocharacter group is N(A/Y )y. Therefore the schematic image of Y /y in A/f(y)
g,1,N is equal to

the formal subtorus with cocharacter group N(A/Y )y. Let z1 be a closed point of Z and let
{y1, . . . , yb} be the points of Y above z1. The above consideration tells us that the reduced
formal scheme Z/z1 is the schematic union of a finite number of formal subtori of the same
dimension. Hence the formal completion of the normalization Y of Z along {y1, . . . , yb} is
equal to the disjoint union of these formal subtori. This proves that Z is a weakly Tate-linear
subvariety.

(5.3.1) Remark It seems natural to expect that the adjective “weakly” can be eliminated
from the statement of 5.3. In other words, it is plausible that every weakly Tate-linear
subvariety of Aord

g,1,N /k
is Tate-linear, assuming that N ≥ 3, (N, p) = 1.

(5.4) Proposition Consider the moduli scheme Aord
g,1,n of ordinary principally polarized

abelian varieties over over Z(p), and write it as Ao
g for short. Let ∆Ao

g
be the diagonally

embedded Aord
g,1,N in (Ao

g)
2 = Aord

g,1,n ×SpecZ(p)
Aord
g,1,n. Denote by (Ao

g)
2,∧ the formal completion

of (Ao
g)

2 along ∆Ao
g
. Then (Ao

g)
2,∧, considered as a formal scheme over Ao

g via the first pro-
jection, has a natural structure as a formal torus over Ao

g. Restricting this formal torus to
a closed point gives the usual Serre-Tate coordinates at the point. More precisely,

(Ao
g)

2,∧ ∼= Hom
Zp

(
Tp(A[p∞]ét), A∧

)
.

Here A denotes the universal abelian scheme over Ao
g, Tp(A[p∞]ét) denotes the Tate module

attached to the maximal étale quotient of the BT-group attached to A, and A∧ denotes the
formal completion of A, a formal torus over Ao

g. The character group of the formal torus

(Ao
g)

(2,∧) is S2(Tp(A[p∞]ét)), the second symmetric product over Zp of the free Zp-module
Tp(A[p∞]ét).

25



Proof. All we have to do is to construct a morphism from the formal torus

Hom
Zp

(
Tp(A[p∞]ét), A∧

)
over Ao

g to (Ao
g)

2,∧, and verify that it is an isomorphism. The “push-out” construction used in
the proof of [18, Theorem 2.1] gives us a Barsotti-Tate group over Hom

Zp

(
Tp(A[p∞]ét), A∧

)
.

By the Serre-Tate theorem (see [18, Theorem 1.2.1]) we get an abelian scheme over the
scheme Hom

Zp

(
Tp(A[p∞]ét), A∧

)
. This gives the arrow

α′ : Hom
Zp

(
Tp(A[p∞]ét), A∧

)
→ (Ao

g)
2,∧

we need. To see that this is isomorphism, one first observes that α induces an isomorphism
when one passes to the formal completion at a closed point of Ao

g. Since α is a morphism
over Ao

g, α is an isomorphism. It is also possible to construct the inverse arrow of α in a
step-by-step fashion using standard arguments in deformation theory. This is left to the
reader since the argument involved does not provide any extra insight.

(5.4.1) Remark (i) Prop. 5.4, as a generalization of the Serre-Tate moduli space, was
already known to S. Mochizuki in 1994, according to J. de Jong.

(ii) One can use Prop. 5.4 to give another proof of Prop. 5.3, at least in the case when Z
is normal. We leave this point to the interested reader.

(iii) Prop. 5.4 can also be formulated for an arbitrary ordinary principally polarized
abelian scheme A/S of relative dimension g with level-N -structure over Z(p): The ordinary
abelian scheme A/S gives rise to a classifying map fA : S → Ao

g. The graph Γf of fA is a
closed subscheme of S ×SpecZ(p)

Ao
g. Then the completion of S ×SpecZ(p)

Ao
g along Γf has a

natural structure of a formal torus. Of course it is just the pull-back of the formal torus in
Proposition 5.4.

(5.4.2) Remark Although we formulated proposition 5.3 only over a field of characteristic
p, the same proof is valid in the mixed characteristic case as well. Much stronger results are
available in the mixed characteristic case: A theorem in [22], published in [23], [24], says that
if X is a closed subscheme of Ag,1,N faithfully flat over W (k), and there exists a closed point
x0 of the fiber of X over k, such that the formal completion X/x0 of X at x0, as a formal
subscheme of the Serre-Tate formal torus A/x0

g,1,N over W (k), is equal to the translation by
a torsion point of a formal subtorus, then the characteristic 0 fiber of X is a subvariety of
Hodge type in Ag,1,N .

(5.5) Proposition Let Z be an irreducible closed subvariety of Aord
g,1,N /k

over k. Assume that

Z is a Tate-linear subvariety. Denote by Aord
g,1,N

∧
/W (k)

the p-adic completion of Aord
g,1,N /W (k)

→
SpecW (k). Then there exists a unique closed formal subscheme Z̃ of Aord

g,1,N
∧
/W (k)

, which is

formally smooth over W (k), and such that Z̃ ×Spf W (k) Spec k = Z, and the formal comple-

tion of Z̃ at every closed point z of Z is a formal subtorus of the Serre-Tate formal torus
(Ag,1,N /W (k))

/z over W (k).
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Before giving the proof of 5.5, it will be useful to record a lemma relating the standard
deformation theory to the canonical coordinates. Maximal generality is not attempted.

(5.5.1) Lemma Let S = Spec(R) and S ′ = Spec(R′) be affine schemes. Let ι : S ↪→ S ′ be
a nilpotent immersion, defined by an ideal I ⊂ R′. Let S0 ↪→ S ′ be closed immersion defined
by an ideal K ⊂ R′. Let G be a Barsotti-Tate group over S, and let G0 = G×S S0. Assume
that p is nilpotent in R0 := R′/K, and I ·K = (0). Then

(i) There exists a BT-group G′ → S ′ which extends G→ S.

(ii) The only S ′-automorphism of G′/S′ whose restriction to G/S is IdG/S , is the identity
automorphism of G′/S.

(iii) The set of all liftings G′ → S ′ of G → S over S ′ has a natural structure as a torsor
for tG0

⊗R0 tGto ⊗R0 I.

Lemma 5.5.1 is a theorem of Grothendieck; see [15], [21] and [17, Thm. 4.4].

(5.5.2) Lemma Notation as in 5.5.1. Suppose that

• We have K = pR′, I = pnR′ for a positive integer n ≥ 1.

• The commutative ring R0 := R/pR is normal and excellent.

• The smooth Fp-sheaves X∗(G
mult
0 )⊗Zp Fp and Tp(G

ét
0 )⊗Zp Fp on S0 are constant.

Then the following statements hold.

(i) There are natural isomorphisms

tG0
∼= (X∗(G

mult
0 )⊗Zp Fp)⊗Fp R0, tGt0

∼= (Tp(G
ét
0 )∨ ⊗Zp Fp)⊗Fp R0 .

(ii) The kernel of the canonical map

X∗(G
mult
0 )⊗Zp Tp(G

ét
0 )∨ ⊗Zp νp∞,S′ −→ X∗(G

mult
0 )⊗Zp Tp(G

ét
0 )∨ ⊗Zp νp∞,S

is naturally isomorphic to the sheaf on (S0)ét attached to the R0-module tG0
⊗R0tGt0⊗R0I.

(iii) Let G1, G2 be two liftings over S ′ of the BT-group G → S. Let α be the element of
tG0
⊗R0 tGt0 ⊗R0 I such that [G1] + α = [G2] according to the torsor structure on the

set of all S ′-liftings of the BT-group G→ S. Let β be the element of the kernel of the
map in the displayed formula in (ii) above, which corresponds to α under the canonical
isomorphism in (ii). Then the canonical coordinates q(G1 → S ′) and q(G2 → S ′) for
G1 → S ′ and G1 → S ′ are related by q(G2 → S ′) = q(G1 → S ′) + β.

Proof. The statement (i) is immediate from the hypotheses. The statement (ii) follows
from (i) and Prop. 2.2 (iii). To prove (iii), it suffices to verify it after making a base change
to the completion of a closed point of the base scheme S ′, by 2.1.6 and 2.2. But then the
statement follows from known properties of the standard Serre-Tate coordinates.

27



Proof of Prop. 5.5. A Tate-linear lifting of Z over a truncated Witt ring Wn(k) is unique
if it exists. Therefore it suffices to show that, for every positive integer n, there exists a Tate-
linear lift Zn of Z over Wn(k). In other words, there exists a closed subscheme of Aord

g /Wn(k)

which is formal smooth over Wn(k), and such that the formal completion Z
/z
n at any closed

point z of Z is a formal subtorus of the Serre-Tate formal torus Ag/z/Wn(k).

By the uniqueness of Tate-linear lifting, we can localize in the étale topology. First, we
may and do assume that Z is affine; write Z = Spec(R0). Passing to a finite étale cover, we
may and do assume that the smooth Fp-sheaves (X∗(A[p∞]mult)⊗ZpFp and Tp(A[p∞]ét)⊗ZpFp
on Z are constant We shall show, by induction on n, that there exists a Tate-linear lift Zn
of Z over Wn(k), for every positive integer n.

Assume, by induction, that Zn exists. Since Zn is affine and smooth over Wn(k), there
exists an affine scheme Sn+1 = Spec(Rn), which is smooth over Wn+1(k), and such that
Sn+1 ×Spec(Wn+1(k)) Spec(Wn(k)) ∼= Zn. Since Ag,1,N ×SpecZ Spec(Wn+1(k)) is smooth over
Wn+1(k), there exists a morphism fn+1 : Sn+1 → Aord

g,1,N ×SpecZ(p)
Spec(Wn+1(k)) which ex-

tends the closed immersion Zn ↪→ Aord
g,1,N×SpecZ(p)

Spec(Wn(k)). Notice that such a morphism
fn+1 is necessarily a closed immersion. By Lemma 5.5.2, we can adjust fn+1 by a suitable
element of tA/Z ⊗R0 tAt/Z ⊗R0 (pnRn) so that the coimage of the canonical coordinates

q(A/Sn+1) : Tp(A[p∞]ét)⊗Zp X∗(A[p∞]mult)∨ → ν
p∞,Sn+1

of the ordinary scheme A → Sn+1 induced by the adjusted morphism fn+1 is a smooth
Zp-sheaf, whose rank is equal to dim(Z). Then the subscheme

Zn+1 := fn+1(Sn+1) ⊆ Aord
g,1,N /Wn+1(k)

is a Tate-linear lifting in Aord
g,1,N /Wn+1(k)

of Z over Wn+1(k). We have finished the induction
step.

§6. Connection to the Hecke orbit problem
In this section we first consider the a local version of the ordinary Hecke orbit problem; see
6.5 for the set-up, and Theorem 6.6 for the solution. Then we apply Theorem 6.6 to relate
the Hecke orbit problem to Tate-linear subvarieties.

(6.1) Proposition Let k be an algebraically closed field. Let R be a topologically finitely
generated complete local domain over k. In other words, R is isomorphic to a quotient
k[[x1, . . . , xn]]/P , where P is a prime ideal of the power series ring k[[x1, . . . , xn]]. Then
there exists an injective local homomorphism ι : R ↪→ k[[y1, . . . , yd]] of complete local k-
algebras, where d = dim(R).

Proof. Denote by f : X → SpecR the normalization of the blowing-up of the closed point
s0 of S := SpecR. Let D = (f−1(s0))red be the exceptional divisor with reduced structure;
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it is a scheme of finite type over k. The maximal points of D are contained in the regular
locus Xreg of X, hence there exists a dense open subscheme U ⊂ D such that U ⊂ Xreg.
Pick a closed point x0 in U . Then the completion O∧X,x0

of the local ring OX,x0 is isomorphic
to k[[y1, . . . , yd]], and the natural map R→ O∧X,x0

is an injection.

(6.1.1) Remark (i) Prop. 6.1 can be regarded as a very weak version of desingularization.
In fact let R be the completion of the local ring at a closed point x of an algebraic variety X
over k, and let f : Y → X be a generically finite morphism of algebraic varieties such that
there exists a closed point y ∈ Y above x and Y is smooth at y. Then the natural map from
R := O∧X,x → OY,y gives the desired inclusion.

(ii) It is also possible to prove Prop. 6.1 using Néron’s desingularization: One first pro-
duces an injective homomorphism k[[t]] → R which is “generically smooth” in a suitable
sense, and a finite extension k[[t]] → k[[x]] such that there exists a k[[t]]-algebra homo-
morphism e : R → k[[x]]. Then one uses Néron’s desingularization procedure to smoothen
R⊗k[[t]] k[[x]] along the section e. This proof is more complicated than the one given above
though. The author would like to acknowledge discussion with F. Pop on alternative proofs
of Prop. 6.1.

(6.2) Proposition Let k be a field of characteristic p > 0. Let q = pr be a positive power
of p, r ∈ N>0. Let F (x1, . . . , xm) ∈ k[x1, . . . , xm] be a polynomial with coefficients in k.
Suppose that we are given elements c1, . . . , cm in k and a natural number n0 ∈ N such that
F (cq

n

1 , . . . , c
qn

m ) = 0 in k for all n ≥ n0, n ∈ N. Then F (cq
n

1 , . . . , c
qn

m ) = 0 for all n ∈ N; in
particular F (c1, . . . , cm) = 0.

Proof. P We may and do assume that k is perfect. Let σ : k → k be the automorphism
of k such that σ(y) = yq

−1
for all y ∈ k. For each n ∈ N and each polynomial f(x) =∑

I∈Nm aI xI ∈ k[x], denote by σn(f(x)) the result of applying σn to the coefficients of f(x);
i.e. σn(f(x)) :=

∑
I∈Nm σn(aI) xI ∈ k[x]. Here x stands for (x1, . . . , xm). The map f 7→ σ(f)

is a σ-linear automorphism of the ring k[x], and it preserves the increasing filtration of k[x]
by degree: For each a ∈ N, let Va be the k-subspace of k[x] consisting of all polynomials in
k[x] of degree at most a. Then σ : f → σ(f) is a σ-linear isomorphism from Va to itself, for
each a ∈ N.

Let I be the ideal in k[x] generated by all polynomials σn(F (x)) with n ≥ n0. We claim
that σ(I) = I. It is clear that σ(I) ⊆ I, for σ(I) is generated by the polynomials σn(F (x)),
n ≥ n0 + 1. On the other hand, for each a ∈ N, σ induces a σ-linear isomorphism from
I ∩ Va to σ(I) ∩ Va. Therefore dimk(I ∩ Va) = dimk(σ(I) ∩ Va). Since I ∩ Va ⊇ σ(I) ∩ Va,
we deduce that I ∩ Va = σ(I) ∩ Va, for every a ∈ N. Hence the k-vector space I ∩ Va is
spanned by Fq[x] ∩ I ∩ Va, by descent, for each a ∈ N. It follows that the ideal I ⊂ k[x] is
generated by I ∩ Fq[x]. Since (c1, . . . , cm) ∈ Spec(k[x1, . . . , xm]/I)(k) and I is defined over
Fq, (σb(c1), . . . , σb(cm)) lies in the zero locus of I for each b ∈ N. The Proposition follows.
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(6.2.1) Corollary Notation as in 6.2. Let d be the degree of F (x1, . . . , xm). Let V be the set
of all homogeneous polynomials in k[x1, . . . , xm] of degree d if F (x1, . . . , xm) is homogeneous;
and let V be the set of all polynomials in k[x1, . . . , xm] of degree at most d if F (x1, . . . , xm)
is not homogeneous. Assume instead that F (cq

n

1 , . . . , c
qn

m ) = 0 in k for all n0 ≤ n ≤ n1, and
n1 − n0 ≥ dimk(V ). Then F (cq

n

1 , . . . , c
qn

m ) = 0 for all n ∈ N.

Proof. For each a ∈ N, let Wa =
∑

n0≤n≤n0+a k · σn(F (x)). Clearly Wa ⊆ Wa+1 ⊆ V for
all a ∈ N. Suppose that Wa = Wa+1 for some a, then

Wa+2 = k〈σn0(F (x)), σ(Wa+1)〉 = k〈σn0(F (x)), σ(Wa)〉 = Wa+1 .

So if Wa = Wa+1, then Wa = Wb for all b ≥ a. Since n1 − n0 ≥ dim(V ), the ideal I in the
proof of 6.2 is generated by Wn1−n0 . So the apparently weaker assumption here is actually
the same as that in 6.2.

(6.3) Proposition Let k be a field of characteristic p > 0. Let f(u,v) ∈ k[[u,v]], u =
(u1, . . . , ua), v = (v1, . . . , vb), be a formal power series in the variables u1, . . . , ua, v1, . . . , vb
with coefficients in k. Let x = (x1, . . . , xm), y = (y1, . . . , ym) be two new sets of variables.
Let g(x) = (g1(x), . . . , ga(x)) be an a-tuple of power series without the constant terms:
gi(x) ∈ (x)k[[x]] for i = 1, . . . , a. Let h(y) = (h1(y), . . . , hb(y)), with hj(y) ∈ (y)k[[y]] for
j = 1, . . . , b. Let q = pr be a positive power of p. Let n0 ∈ N be a natural number. Let
(dn)n≥n0 be a sequence of natural numbers such that limn→∞

qn

dn
= 0. Suppose we are given

power series Rj,n(v) ∈ k[[v]], j = 1, . . . , b, n ≥ n0, such that Rj,n(v) ≡ 0 mod (v)dn for all
j = 1, . . . , b and all n ≥ n0. For each n ≥ n0, let φj,n(v) = vq

n

j + Rj,n(v), j = 1, . . . , b. Let
Φn(v) = (φ1,n(v), . . . , φb,n(v)) for n ≥ n0. Assume that

f(g(x),Φn(h(x))) = f (g1(x), . . . , ga(x), φ1,n(h(x)), . . . , φb,n(h(x))) = 0

as an element in k[[x]], for all n ≥ n0. Then f(g1(x), . . . , ga(x), h1(y), . . . , hb(y)) = 0 in
k[[x,y]].

Proof. Let t = (ti,J) be an infinite set of variables parametrized by indices (i, J) ∈
{1, . . . , b} × (Nm − {0}). Let

Hi(t; y) =
∑
i,J

ti,J yJ ,

so that if we write hi(y) =
∑

i,J ci,J yJ with all ci,J ∈ k, and let c = (ci,J)i,J , then hi(y) =
Hi(c; y) for each i = 1, . . . , b. Consider the formal power series

f(g1(x), . . . , ga(x), H1(t; y), . . . , Hb(t; y)) ∈ k[t][[x,y]]

and write it as
f(g(x),H(t; y)) =

∑
I,J∈Nm

AI,J(t) xIyJ ,

30



where H(t) is short for (H1(t), . . . , Hb(t)). Our assumption on Φn(v) implies that

f(g(x),Φn(h(x))) ≡ f(g(x),h(x)q
n

) mod (x)dn ∀n ≥ n0 .

Suppose that f(g(x),h(y)) =
∑

I,J AI,J(c) xIyJ 6= 0. Define a positive integer M2 by

M2 := inf { |J | : ∃ I s.t. AI,J(cq
n

) 6= 0 for infinitely many n ∈ N} .

Notice that the subset of Z>0 on the right-hand-side of the definition of M2 is non-empty:
There exists multi-indices I0, J0 such that AI0,J0(c) 6= 0, because f(g(x),h(y)) 6= 0. Hence
AI0,J0(cq

n
) 6= 0 for infinitely many n ∈ N, by Prop. 6.2. Define M1 ∈ Z>0 by

M1 := inf { |I| : ∃ J with |J | = M2 s.t. AI,J(cq
n

) 6= 0 for infinitely many n ∈ N } .

By Prop. 6.2, if either |J | < M2, or if |J | = M2 and |I| = M1, then AI,J(cq
n
) = 0 for all

n ∈ N.

Since limn→∞
qn

dn
= 0, there exists a natural number n2 such that qn2 > 2M1 and M1 +

qnM2 < dn for all n ≥ n2. We have

f(g(x),h(x)q
n

) = f(g(x),H(cq
n

; xq
n

)) =
∑
I,J

AI,J(cq
n

) xI+q
nJ .

So we obtain the following congruence

0 = f(g(x),Φn(h(x))) ≡ f(g(x),h(x)q
n

) mod (x)dn

≡
∑

|I|=M1,|J |=M2

AI,J(cq
n

) xI+q
nJ mod (x)M1+qnM2+1

for all n ≥ n2. The leading terms of the above congruence relations give us equalities∑
|I|=M1,|J |=M2

AI,J(cq
n

) xI+q
nJ = 0 ∀ n ≥ n2 (∗)

in the polynomial ring k[x].

We claim that all terms in left-hand-side of the equality (*) have different multi-degrees.
Suppose that two pairs of indices (I1, J1), (I2, J2) both satisfy |I1| = |I2| = M1, |J1| = |J2| =
M2, and I1 +qnJ1 = I2 +qnJ2 for some n ≥ n2. Then I1 = I2 and J1 = J2 because qn > 2M1.
We have verified the claim. So the equality (*) means that AI,J(cq

n
) = 0 if |I| = M1,

|J | = M2, and n ≥ n2. This contradicts the definition of M1.

(6.3.1) Remark When a = b and gi(x) = hi(x) for all i = 1, . . . , a, we obtain the following
special case of Prop. 6.3. Let T = Spf k[[u1, . . . , ua]], and let Φn : T → T , n ≥ n0, be a family
of morphisms which are very close to the Frobenius morphisms Frqn as in the statement of
Prop. 6.3, where Frqn : T → T corresponds to the morphism ui 7→ uq

n

i . Then for any closed
formal scheme Z of T , the schematic closure of the union of the graphs of Φn, n running
over all integers n ≥ n0, contains Z × Z.
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(6.3.2) Remark Prop. 6.3 is the key technical ingredient to the proof of Thm. 6.6. The
case of 6.3 made explicit in 6.3.1 is the proof of the case of Thm. 6.6, when the group G(Zp)
is equal to Z×p , and the action of Z×p on N is “multiplication with elements of Z×p according
to the Zp-module structure of N”.

(6.4) Lemma Let G be a connected linear algebraic group over a field F of characteristic
0, let V be a finite dimensional vector space over F , and let ρ : G→ GL(V ) be an F -rational
linear representation of G. Let g = Lie(G), and let dρ : g→ End(V ) be the differential of ρ.
The following statements are equivalent:

(i) The trivial representation 1G is not a subquotient of (ρ, V ).

(ii) There exist elements wi,j ∈ g, where i = 1, . . . , r, j = 1, . . . , ni, such that

r∑
i=1

dρ(wi,1) ◦ · · · ◦ dρ(wi,ni) ∈ GL(V ) .

Proof. The implication (ii)⇒ (i) is obvious. Conversely, assume (i). Replacing (ρ, V ) by its
semi-simplification, we may assume that (ρ, V ) is isomorphic to a direct sum ⊕bm=1 (ρm, Vm)
of irreducible representations of G. Each Vm is an irreducible g-module under dρm. By
Jacobson’s density theorem, for each m = 1, . . . , b, the statement (ii) holds with (ρ, V )
replaced by (ρm, Vm). An application of Sublemma 6.4.1 below with r = b finishes the proof.

(6.4.1) Sublemma Let K be an infinite field. Let V1, . . . , Vb be finite dimensional vector
spaces over K, and let A1, . . . , Ar be K-liner endomorphisms of V = ⊕bm=1 Vm such that
Ai(Vm) ⊆ Vm for each i = 1, . . . , r m = 1, . . . , b. Assume that for each m = 1, . . . , b, there
exists an i, 1 ≤ i ≤ r, such that det(Ai|Vm) 6= 0. Then there exist elements λ1, . . . , λr in K
such that

∑r
i=1 λiAi ∈ GL(V ).

Proof. Let t1, . . . , tr be variables, and consider the polynomial

f(t1, . . . , tr) := det

(
r∑
i=1

tiAi

)
=

b∏
m=1

det

(
r∑
i=1

tiAi|Vm

)
∈ K[t1, . . . , tr] .

It suffices to show that f(t1, . . . , tr) 6= 0: Every rational variety of positive dimension over an
infinite field K has at least a K-rational point, and the variety Spec(K[t1, . . . , tr,

1
f(t1,...,tr)

])
is clearly rational over K. For each m = 1, . . . , b, the polynomial

fm(t1, . . . , tr) := det(
r∑
i=1

ti Ti|Vm) ∈ K[t1, . . . , tr]

is not equal to zero by assumption, hence their product f(t1, . . . , tr) is not equal to zero.
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(6.5) We set up notation for the main result, Thm. 6.6, of this section. Let k be a field of
characteristic p > 0. Let T be a formal torus over k with cocharacter group N . In other
words N is a free Zp-module of finite rank, and T = N ⊗Zp Ĝm, where Ĝm is the completion
of Gm/k along the unit section.

(6.5.1) Let G be a connected linear algebraic group over Qp. Let V = N ⊗Zp Qp, and let
ρ : G → GL(V ) be a Qp-rational linear representation of G on V . Let G(Zp) be an open
subgroup of G(Qp) such that the Zp-lattice N ⊂ V is stable under G(Zp). The group G(Zp)
operates on the formal torus T via its action on the cocharacter group N of T .

(6.5.2) Let g = Lie(G) be the Lie algebra of G, and let dρ : g→ End(V ) be the differential
of ρ. Let g

Zp
be a Zp-lattice in g such that the Zp-lattice N in V is stable under dρ(g

Zp
). For

each element w ∈ g
Zp

, denote by α(w) the endomorphism of the formal torus T induced by
the endomorphism dρ(w) of N .

(6.6) Theorem Notation as in 6.5. Assume that the trivial representation 1G is not a
subquotient of (ρ,G). Suppose that Z is a reduced and irreducible closed formal subscheme
of T which is closed under the action of an open subgroup U of G(Zp). Then there exists a

unique Zp-direct summand N1 of N such that Z = N1 ⊗Zp Ĝm. Moreover N1 is stable under
the action of U , and V1 := N1 ⊗Zp Qp is a subrepresentation of (ρ, V ).

Proof. We may and do assume that k = kalg. Notice that once we show that Z is a formal
subtorus of T , the last sentence in the statement of 6.6 follows immediately.

Choose an integer n0 ≥ 2 such that expG(pn0w) ∈ U for every w ∈ g
Zp

. The rest of the
proof is organized into several steps. Among them the first step is the crucial one; it uses
Prop. 6.1 and Prop. 6.3.

Step 1. Denote by µ : T × T → T the group law of the formal torus T . Then for every
w ∈ g

Zp
, we have

µ ◦ (Id× α(w))(Z × Z) ⊆ Z .

We recall that α(w) is the endomorphism of T induced by dρ(w) ∈ EndZp(N).

Proof of Step 1. Write Ĝm = Spf[[u]] with comultiplication k[[u]] → k[[u, v]] given by
u 7→ u+v+uv. Choose a Zp-basis of N , which gives an isomorphism T ∼= Spf(k[[u1, . . . , ud]]),
d = dim(T ) = rankZp(N). The comultiplication map of the coordinate ring of T is

µ∗ : k[[u1, . . . , ud]]→ k[[u1, . . . , ud, v1, . . . , vd]]; µ∗ : ui 7→ ui + vi + uivi ∀ i .

Since the closed formal subscheme Z ⊆ T is assumed to be reduced and irreducible, it
corresponds to a prime ideal P of k[[u1, . . . , ud]]. By Prop. 6.1, there exists an injective
k-algebra homomorphism

ι : k[[u1. . . . , ud]]/P ↪→ k[[x1, . . . , xm]] m = dim(Z) .

Let gi(x) = ι(ui), i = 1, . . . , d, where x = (x1, . . . , xm).
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For each w ∈ g
Zp

and n ≥ n0, we know that expG(pnw) ∈ U if n ≥ n0, therefore

ρ(expG(pnw)) = IdN + dρ(w) ·
∑
i≥1

pin

i!
dρ(w)i−1

= IdN + dρ(w)

(
pn · IdN +

p2n

2!
dρ(w) +

p3n

3!
dρ(w)2 + · · ·

)
Since n ≥ n0 ≥ 2, we have limi→∞

pin

i!
= 0 in Zp by the following estimate on the p-adic

valuation ordp of pin

i!
:

ordp(
pin

i!
) = in−

∑
m≥1

b i
pm
c ≥ in− i

p− 1
.

We also have pin

i!
∈ Zp for each i ≥ 1. So

Epnw :=
∑
i≥1

pin

n!
dρ(w)i−1

is an endomorphism of N . Let βn,w be the endomorphism of the formal torus T induced
by Epnw, and let Φn(w) be the continuous endomorphism of the complete local k-algebra
k[[u1, . . . , ud]] corresponding to βn,w. For each n ≥ n0 and for i = 1, . . . , d, let

φi,n(w) := Φn(w)(ui) ∈ k[[u1, . . . , ud]] = k[[u]]

and define Ri,n(u) ∈ k[[u]] by

φi,n(w) = up
n

i +Ri,n(u) .

From the definition of Epnw, βn,w and φi,n(w), it is immediate that

Ri,n(u) ≡ 0 mod (u)p
b2n− 2

p−1c
.

We want to show that, for each element f1(u) ∈ P , the image

f(u,v) := (Id× α(w))∗ ◦ µ∗(f1(u))

of f1(u) in k[[u,v]] under the ring homomorphism (Id× α(w))∗ ◦ µ∗ belongs to the ideal

pr∗1(P ) · k[[u,v]] + pr∗2(P ) · k[[u,v]] .

Here α(w)∗ : k[[u]] → k[[u]] is the endomorphism of k[[u]] corresponding to the endo-
morphism α(w) of T , and pr∗1, pr∗2 : k[[u]] → k[[u,v]] correspond to the two projections
pr1, pr2 : T × T → T . Equivalently, we must show that

(ι⊗̂ι)(f(u,v) = f(g1(x), . . . , gm(x), g1(y), . . . , gm(y))
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is equal to 0 in k[[x,y]]. Since the automorphism of T induced by ρ(expG(pnw)) is equal to
µ ◦ (Id×α(w)) ◦ (Id× βn,w), the assumption that Z is stable under the action of expG(pnw)
translates into

f(g1(x), . . . , gm(x), φ1,n(w)(g(x)), . . . , φ1,n(w)(g(x))) = 0 ∀n ≥ n0 ,

where g(x) is short for (g1(x), . . . , gm(x)). Applying Prop. 6.3 to the present situation, we
conclude that f(g(x),g(y)) = 0. This finishes the proof of Step 1.

Step 2. Let (wi,j), i = 1, . . . , r, j = 1, . . . , ni be a finite family of elements in g
Zp

. Consider
the following homomorphism

s :

(r+1)−times︷ ︸︸ ︷
T × · · · × T −→ T

(x0, x1, . . . , xr) 7−→ x0 +
r∑
i=1

α(wi,1) ◦ · · ·α(wi,ni)(xi)

of formal tori. Then s(Z × Z × · · · × Z) ⊆ Z. In particular we have σ(Z × Z) ⊆ Z, where

σ : T × T → T

is the homomorphism of formal tori defined by

σ : (x, y) 7→ x+
a∑
i=1

α(wi,1) ◦ · · ·α(wi,ni)(y) .

Proof of Step 2. One sees from Step 1 that α(w)(Z) ⊆ Z for every w ∈ g
Zp

. The
assertion in Step 2 now follows by an easy induction.

Step 3. The closed formal scheme Z ⊆ T is closed under the group law. In other words,
µ(Z × Z) ⊆ Z.

Proof of Step 3. According to Lemma 6.4, one can find wi,j ∈ g
Zp

, i = 1, . . . , r, j =
1, . . . , ni, such that the element

A :=
r∑
i=1

dρ(wi,1) ◦ · · · ◦ dρ(wi,ni)

is an injective endomorphism of the Zp-module N . Let α : T → T be the endomorphism
of T induced by A. Then Id × α : Z × Z → Z × Z is a dominant morphism. By Step 2,
µ ◦ (Id× α)(Z × Z) ⊆ Z. Therefore µ(Z × Z) ⊆ Z.

Step 4. The closed formal subscheme Z ⊆ T is a formal subtorus of T .
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Proof of Step 4 and End of Proof of Theorem 6.6. For every abelian group M
and any integer a, denote by [a] = [a]M the multiplication by a on M . For each integer n,
let Tn be the kernel of the endomorphism [pn]T : T → T of T . Step 3 tells us that Z ∩ Tn is
stable under the group law for each n ≥ 0. Since [−1] is equal to [pn − 1] on Tn, Z ∩ Tn is
a subgroup scheme of Tn for each n ≥ 0. Taking the limit as n → ∞, we conclude that Z
is a formal subgroup scheme of T . Since Z is assumed to be reduced and irreducible, Z is a
formal subtorus of T . This finishes the proof of Step 4 and Theorem 6.6.

(6.6.1) Remark (i) In some sense the effect of Prop. 6.1 is to reduce the reduces the proof
of Thm. 6.6 to the case when Z is formally smooth over k.

(i) In application to the Hecke orbit problem, often one only needs a weakened version
of Thm. 6.6, when the irreducible closed formal subscheme Z is assumed, in addition, to be
formally smooth over k.

(iii) The statement of Thm. 6.6 has to be modified if the irreducibility assumption on Z
is eliminated. Then one can only conclude that Z is the union of a finite number of formal
subtori of T .

(iv) The analogue of 6.6 in the case of mixed characteristics seems quite plausible. Using
the same notation as in 6.5, the statement of the analogue is as follows. Let T̃ be the formal
torus over W (k) with cocharacter group N . Let Z̃ be an irreducible closed formal subscheme
of T̃ which is flat over W (k) and stable under the action of an open subgroup U of G

Zp
.

Then (it seems quite likely that) Z is a formal subtorus of T̃ over W (k).

With the help of Thm. 6.6, it is not difficult to verify the above conjectural statement if
one adds the additional assumption that Z̃ is formally smooth over W (k).

(v) The naive characteristic-zero analogue of 6.6 is false. We leave it to the readers to
find an example of an irreducible closed subscheme Z of a two-dimensional formal torus T
over C stable under [n]T for all 0 6= n ∈ Z such that Z is not a formal subtorus of T .

(6.6.2) Remark An examination of the proof of Thm. 6.6 reveals that the statement of
Thm. 6.6 can be strengthened as follows. In the set-up of 6.6, assume that G is a p-adic
analytic Lie group, g is the Lie algebra of G, a finite dimensional vector space over Qp. Let
ρ : G → GL(V ) be an analytic linear representation of G such that the trivial Qp-linear
representation dρ : g → End(V ) of g on V does not contain the trivial representation of g

as a subquotient. The irreducible closed formal subscheme Z of T is assumed to be stable
under the action of an open subgroup U of G. Then the conclusion of Thm. 6.6 still holds,
by the same proof. Only the statement of Lemma 6.4 requires an obvious modification to
the present context, namely the statement of Lemma 6.4 (i) should be changed to: “The
trivial representation of the Lie algebra g is not a subquotient of (dρ, V ).”
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(6.7) As an application of Theorem 6.6, we shall show that the `-adic Hecke orbit of an ordi-
nary point of a modular variety of PEL-type over F is a linear. Here the adjective “ordinary”
is taken in the naive sense, meaning that the underlying abelian variety is ordinary.

(6.7.1) We recall the definition of PEL-data with good reduction at a prime number p; see
[19, §5]. A PEL-data consists of

• a finite-dimensional central simple algebra B over Q, which is unramified above p, (i.e.
B is unramified at every place v of the center of B which divides p.)

• a positive definite involution ∗ = ∗B of B,

• an order OB ⊂ B which is maximal at p and stable under the involution ∗ of B,

• a non-degenerate alternating Q-bilinear pairing 〈·|·〉 : V × V → Q on a finitely gener-
ated B-module V , such that the B-module structure is hermitian with respect to the
involution ∗ and the pairing 〈·|·〉,

• a ∗-homomorphism h : C→ C⊗QR, where C is the commutator subalgebra EndB(VR)
of B in EndQ(V ), with the involution ∗C induced by ∗B and the pairing 〈·|·〉, such
that the real-valued symmetric bilinear form (v, w) 7→ 〈v|h(

√
−1)w〉 on V is positive

definite,

• a self-dual OB-lattice Λp in V ⊗Q Qp,

• a compact open subgroup K(p) of G(A
(p)
f ), where G is the linear algebraic group over

Q such that its R-valued points for any Q-algebra R are given by

G(R) =
{
x ∈ (C ⊗Q R)× |xx∗C ∈ R×

}
.

(6.7.2) LetM be the PEL-type moduli scheme defined by a given PEL input-data as above,
defined over Spec OE ⊗Z Z(p), where E is the Shimura reflex field attached to the PEL-data.
Points of M have the form (A, λ, ι, η̄), where A is an abelian variety, with a separable
polarization λ, an OB-action ι, and a level-structure η̄, compatible with the given PEL-data.
We refer to [19, §5] for the precise definition. We fix a geometric point p : OE → Fp of
Spec OE in characteristic p, and denote by M/Fp

the fiber product M×Spec OE ,p SpecFp.
Abusing terminology, we call M/Fp

a reduction of M in characteristic p.

(6.7.3) For any prime number ` 6= p, the elements of G(Q`) gives rise to finite étale algebraic
correspondences onM

Fp
. We call these the `-adic Hecke correspondences onM/Fp

. Similarly

algebraic correspondences on M/Fp
defined by elements of G(A

(p)
f ) will be called the prime-

to-p Hecke correspondences of M/Fp
.
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Let x0 be a point of M/Fp
(k), where k is an algebraically closed field containing Fp. Let

` be a prime different from p. The countable subset of M/Fp
(k), consisting of points which

are images of x0 under some `-adic (resp. prime-to-p) Hecke correspondences on M/Fp
, is

called the `-adic (resp. prime-to-p) Hecke orbit of x0, denoted by H`(x0) (resp. H(p)(x0).) Let
Z`(x0) (resp. Z(p)(x0)) be the Zariski closure of H`(x0) (resp. H(p)(x0)) inM/Fp

. It is easy to

see that Z`(x0) and Z(p)(x0) are both smooth at x0, using with the general fact that Z`(x0)
and Z(p)(x0) are generically smooth and the group-like property of Hecke correspondences.
This statement generalizes the standard fact that every orbit (with the reduced structure)
for the action of an algebraic group acting on an algebraic variety is smooth.

Let x0 = (A0, λ0, ι0, η̄0) ∈ M/Fp
(k) be a geometric point of M/Fp

as above. Assume
moreover that A0 is an ordinary abelian variety. By the Serre-Tate theorem, the formal
completionM/x0 ofM/Fp

at x0 has a natural structure as formal torus, naturally isomorphic
to

Homsym
OB⊗ZpZp

(Tp(A0[p∞]ét), A0[p∞]mult) .

(6.8) Proposition Notation as above. In particular x0 = (A0, λ0, ι0, η̄0) is a point of the
PEL-type moduli space M/Fp

over Fp, and A0 is is an ordinary abelian variety. The the

formal completion Z(p)(x0)/x0 at x0 of the Zariski closure of the prime-to-p Hecke orbit of x0

is a formal subtorus of the Serre-Tate formal torus M/x0

/Fp
.

Proof. Denote by D the the finite dimensional semi-simple Q-algebra EndOB(A0)⊗ZQ, and
let ∗D be the Rosati involution on D induced by the polarization λ0. Let H be the reductive
algebraic group over Q whose Q-rational points consist of all elements h ∈ D× such that
h · h∗D ∈ Q×. It is easy to see that there is a natural embedding ξ : H(A

(p)
f ) ↪→ G(A

(p)
f )

of H(A
(p)
f as a subgroup of G(A

(p)
f ). Moreover elements of H(Qp) operates naturally as

quasi-isogenies on the Barsotti-Tate group A[p∞]. Since x0 is defined over some finite field,
D is not too small: it contains a commutative semisimple algebra K1 over Q such that
[K1 : K]2 = dimK(C), where K is the center of simple algebra B.

Let Up be the compact open subgroup of H(Qp) consisting of all elements of H(Qp)
which operate naturally as isomorphisms on A[p∞]. We have a natural action of Up on the

Serre-Tate torus M/x0

/Fp
, by “transport of structures”.

Consider the subgroup H(Q) ∩ Up of H(Q), consisting of all elements h ∈ H(Q) whose
image in H(Qp) belongs to Up. The Hecke correspondences given by elements of the image
of the composition

H(Q) ∩ Up ↪→ H(A
(p)
f )

ξ−→ G(A
(p)
f

all have x0 as a fixed point. Therefore the closed formal subscheme Z(p)(x0) is stable under
the action of the image in Up of any elements of H(Q) ∩ Up. By the weak approximation
theorem, H(Q) ∩ Up is p-adically dense in Up. Hence the Z(p)(x0) is stable under the action
of any element of Up.
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We are all set to apply Theorem 6.6. The closed formal subscheme Z(p)(x0) of the formal

torus M/x0

/Fp
is formally smooth, since Z(p)(x0) is smooth at x0. The action of Up on M/x0

/Fp

comes from the natural linear action of Up on the cocharacter group

HomZp

(
Tp(A0[p∞]ét), X∗(A0[p∞]mult)

)
.

It is easy to see that the above linear representation of Up, when tensored with Qp, does
not contain the trivial representation as a subquotient. In fact this statement already holds
with Up replaced with its intersection with the group of unitary similitudes attached to the
CM-algebra K. So all conditions in 6.6 are met, and Prop. 6.8 follows.

(6.8.1) Remark The argument in 6.8 actually proves a more general statement: Let W ⊂
M/Fp

be a closed subvariety of M/Fp
stable under all prime-to-p Hecke correspondences.

Assume that W contains an ordinary point x0 ∈ M/Fp
(Fp), and the completion W /x0 of W

at x0 is reduced and irreducible. Then W /x0 is a formal subtorus of the Serre-Tate formal
torus M/x0

/Fp
.

(6.8.2) Remark It is tempting to try to prove a stronger version of 6.8, with Z(p)(x0)/x0

replaced by Z`(x0)/x0 , using the strengthened form of Thm. 6.6 in Remark 6.6.2. The biggest
obstacle is that the algebraic group H may not have much Z[1/`]-points other than those
coming from the subgroup Gm ⊂ H. This difficulty appears, for instance, in the case when
D is a CM-field and every place of the maximal totally real subfield F of D above ` stays
prime in D. For then the group of `-units (OF ⊗Z Z[1/`])× in F× is of finite index in the
group of `-units (OD ⊗Z Z[1/`])× in D×.

§7. Some Conjectures
In this section we present several conjectures on families of ordinary abelian varieties in
characteristic p. A shorter description of them can be found in 1.3.

(7.1) Conjecture Given a PEL-input data with good reduction at p as in 6.7.1. Let M/Fp

be a reduction in characteristic p of the modular variety attached to the given PEL-type as
in 6.7.2. Let x be a closed point of M such that the abelian variety Ax is ordinary.

(i) The prime-to-p Hecke orbit of x is Zariski dense in M
Fp

.

(ii) Let ` be a prime number different from p. Then the `-adic Hecke orbit of x in M/Fpbar

is Zariski dense in M/Fpbar.

Remark Clearly 7.1(ii) implies 7.1(i).

(7.2) Conjecture Let k be an algebraically closed field of characteristic p > 0. Let X0 ⊆ Ag
be a Tate-linear subvariety of Aord

g /
k over k. Then X0 can be lifted to a Tate-linear subvariety

X of Aord
g /W (k)

which is smooth over W (k).

39



(7.2.1) Remark (i) The statement of 7.2 means that the Tate-linear formal lifting X∞
of X0, which is a closed formal subscheme of the p-adic completion of Aord

g /W (k)
, is equal

to the p-adic completion of a closed subscheme X of Aord
g /W (k)

, necessarily smooth over

W (k). By Grothendieck’s algebraization theorem, the assertion of 7.2 is equivalent to
saying that X∞ can be extended to a closed formal subscheme of the p-adic completion
of one (hence every) toroidal compactification of Ag.

(ii) Suppose that 7.2 holds, and k = Fp. Then [22, 5.2] tells us that the generic fiber
of X ×SpecW (k),τ SpecC is a subvariety of Ag of Hodge type, for every embedding
τ : W (k) ↪→ C. So we can view 7.2 as a (conjectural) characterization, in terms of a
simple geometric property in characteristic p, for a subvariety of Aord

g over k to be the
reduction of (a Hecke translate of) a Shimura subvariety of Ag in characteristic 0.

(7.3) We establish notation for the rest of this section. Following the notation in §4, let k is
an algebraically closed field of characteristic p > 0, let S be an irreducible normal scheme of
finite type over k, and let s̄ be a geometric point of S. Let A be a principally polarized abelian
scheme over S of relative dimension g ≥ 1 with ordinary fibers. The Barsotti-Tate group
A[p∞] → S attached to A → S is an example of ordinary Barsotti-Tate group considered
in §4. Define smooth Zp-sheaves U, V on Sét by U = Tp(A[p∞]ét), V := X∗(A[p∞]mult) as in
4.1.

(7.3.1) Denote by GSps̄,Qp the group of symplectic similitudes on ωs̄,Qp(D(A)∨) = V (1)s̄,Qp⊕
Us̄,Qp , with respect to the symplectic pairing induced by the principal polarization.

We often write elements of GSps̄,Qp in block form

(
A B

C D

)
according to the decomposition

ωs̄,Qp(D(A)∨) = V (1)s̄,Qp ⊕ Us̄,Qp above. For instance, the entry “B” denotes a element of
Hom(Us̄,Qp , V (1)s̄,Qp). Let Ps̄,Qp be the parabolic subgroup of GSps̄,Qp consisting of element of

GSps̄,Qp of the form

(
A B

0 D

)
. Let Ls̄,Qp be the parabolic subgroup of GSps̄,Qp , often called the

standard Siegel parabolic subgroup, consisting of element of GSps̄,Qp of the form

(
A 0

0 D

)
;

(7.4) Conjecture There exists a connected reductive subgroup Gs̄,Qp of GSps̄,Qp such that

(i) The neutral component (AutT(A[p∞])(ωs̄,Qp))
0 of AutT(A[p∞])(ωs̄,Qp), the p-adic mon-

odromy group of A/S, is a parabolic subgroup of Gs̄,Qp, and is equal to the neutral
component (Gs̄,Qp ∩ Ps̄)0 of Gs̄ ∩ Ps̄,Qp.

(ii) The neutral component (Gs̄,Qp ∩ Ls̄,Qp)0 of Gs̄,Qp ∩ Ls̄,Qp is a Levi subgroup of the
connected p-adic monodromy group (AutT(A[p∞])(ωs̄,Qp))

0.
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(7.4.1) Remark A consequence of 7.4 is that AutT′(A[p∞])(ωs̄∗,Qp), the monodromy group
of the smooth Qp-sheaf V (A[p∞])(1)Qp ⊕ U(A[p∞])Qp , is a (possibly disconnected) reductive
group over Qp.

(7.5) We set up notation for a conjecture for the family of ordinary abelian varieties A/S,
analogous to the Mumford-Tate conjecture for abelian varieties over number fields. For each
geometric point s̄ of S, denote by Ãs̄ the Serre-Tate canonical lifting of As̄, which is an
abelian scheme over W (κ(s̄)). Let τ : W (κ(s̄)) ↪→ C be an embedding of W (κ(s̄)) into the
field of complex numbers.

(7.5.1) Denote by Hs̄,τ the first Betti cohomology group H1(τ(Ãs̄)(C),Q) of the complex

points of τ(Ãs̄). The Betti cohomology group Hs̄,τ carries a natural Hodge structure. There
is a canonical isomorphism

Hs̄,τ ⊗Z Zp
∼−→ ωs̄,Qp(D(A)∨)

because ωs̄,Qp(D(A)∨) is canonically isomorphic to the first étale homology group of A.

(7.5.2) Denote by GSps̄,Q the group of symplectic similitudes on Hs̄,τ with respect to the
symplectic pairing on Hs̄,τ , induced by the principal polarization on As̄.

Recall that a connected reductive subgroup G of GSps̄,Q over Q is said to be of Hodge
type if there is a family of Hodge cycles {cα} in tensor constructions of Hs̄,τ such that G is
the largest subgroup of GSps̄,Q fixing each cα. A reductive Lie subalgebra g of Lie(GSps̄,Q) is
said to be of Hodge type if g is a Hodge substructure of Lie(GSps̄,Q). A connected reductive
Q-subgroup GSps̄,Q is of Hodge type if and only if its Lie algebra is of Hodge type.

(7.6) Conjecture (i) There exists a reductive subgroup Gs̄,τ of GSps̄,Q over Q of Hodge
type such that Gs̄,τ ×Spec Q SpecQp satisfies the requirements of 7.4.

(ii) There exists a reductive Lie subalgebra gs̄,τ over Q of Hodge type such that

(gs̄,τ ⊗Q Qp) ∩ Hom
(
U(A[p∞]s̄)Qp , V (A[p∞]s̄)(1)Qp

)
= N(A[p∞])(1)s̄

(7.6.1) Remark (i) By Deligne’s theorem of absolute Hodge cycles on abelian varieties, the
statements in 7.6 are independent of the choice of the complex embedding τ : W (κ(s̄)) ↪→ C.

(ii) Clearly, Conj. 7.6 (i) implies Conj. 7.6 (ii).

(iii) Let G1 be the smallest algebraic subgroup over Q of GSps̄,Q which is of Hodge type
and such that Lie(G1)⊗QQp contains N(A[p∞])(1)s̄. Then G1 is a candidate for 7.6 (i), and
Lie(G1) is a candidate for 7.6 (ii).

(7.7) Conjecture Suppose that Conjecture 7.6 holds. Let ` be a prime number, ` 6= p. For
every geometric point s̄ of S, denote by Gals̄,Q`(A) the `-adic monodromy group of A with
base point s̄, namely the Q`-Zariski closure of the image of π1(A, s̄) in GL(H1,ét(A,Q`)).
Then Gs̄,τ ×SpecQ SpecQ` is equal to Gals̄,Q`(A)0.
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(7.7.1) Remark Conjectures 7.6 and 7.7 combined can be thought of as a generalization
of the Mumford-Tate conjecture for ordinary abelian varieties in characteristic p. A refor-
mulation is that the group G1 defined in 7.6.1 satisfy the statements in 7.6 and 7.7.

(7.8) Here some relations between the conjectures.

(1) Conj. 7.2 implies Conj. 7.1 (i).

(2) Conj. 7.6 (ii) implies Conj. 7.2.

(3) Conj. 7.6 implies Conj. 7.4.

(7.8.1) Remark

(i) Prop. 6.8 is the main ingredient of the implication (1), since it is not hard to check that the
only non-empty Shimura subvariety of M/Fp

stable under all `-adic Hecke correspondences
is M/Fp

.

(ii) The implications (2) and (3) are immediate.

(iii) It seems that Conj. 7.4 (ii), a semisimplicity statement about the naive p-adic mon-
odromy group, offers a possible approach to the conjectures in this section. At the present
time, Conj. 7.4 is known to hold only in a few instances. They include Igusa’s theorem on
the local monodromy at a supersingular elliptic curve, and also its generalization in [6].

(iv) Exploiting the action of the local automorphism group at a basic point of Z`(x0), one can
(often) show that Z`(x0) is equal to Z(p)(x0). In other words, the Zariski closure of the `-adic
Hecke orbit of x0 in M/Fp

is equal to the Zariski closure of the prime-to-p Hecke orbit of x0

in M/Fp
. Therefore Conj. 7.2(ii) is equivalent to the apparently weaker statement, 7.2(i).

§8. Tate-linear subvarieties of Hilbert modular varieties
In this section we prove a special case of Conj. 7.2: Every Tate-linear subvariety of a Hilbert
modular variety comes from a Shimura subvariety. This statement holds for Hilbert modular
varieties attached to a product of totally real number fields, that is a product of a finite
number of Hilbert modular varieties in the usual sense, each attached to a totally real
number field. The proof uses a theorem of de Jong on extending homomorphisms between
Barsotti-Tate groups. For simplicity of exposition we restrict to the traditional case of one
totally real field.

(8.1) We fix a totally real number field F and a prime number p for the rest of this section.

(8.1.1) Fix an auxiliary integer N ≥ 3, (N, p) = 1. LetM(F )/Z =M(F )N/Z be the Hilbert
modular scheme over SpecZ classifying abelian schemes A→ S of relative dimension [F : Q],
with multiplication by OF and a principal level-N structure as defined in [13]. For any scheme
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T , a T -valued point of M(F )/Z is the isomorphism class of a triple (A, ι, η), where A → T
is an abelian scheme over T of relative dimension [F : Q], ι : OF → EndT (A) is a ring
homomorphism, and η is a level-N structure, such that the natural map

Homsym
OF

(A,At)⊗OF A→ At

is an isomorphism. Let M(F ) = M(F )/Fp := M(F )/Z ×SpecZ SpecFp be the reduction of
M(F )/Z modulo p, classifying abelian scheme in characteristic p with real multiplication by
OF as above.

(8.1.2) Denote by M(F )ord the ordinary locus of M(F ), i.e. the dense open subscheme of
M(F ) whose points correspond to ordinary abelian varieties with multiplication by OF . We
remark that for everu A→ T inM(F )ord(T ), the relative Lie algebra Lie(A/T ) satisfies the
freeness condition in [26]: It is a free OF ⊗Z OT -module of rank one. It is well-known that
M(F )ord is smooth of dimension g = [F : Q]. Similarly, for every totally real field E, denote
by M(E) the Hilbert modular scheme over Fp attached to E, and M(E)ord the ordinary
locus in M(E).

(8.1.3) For any point x ∈ M(E)ord(Fp), let Ax be the corresponding abelian variety with
multiplication by OE. The Barsotti-Tate group Ax[p

∞] splits canonically as a direct sum

Ax[p
∞] = ⊕℘|pAx[℘∞] ,

where ℘ runs through primes ideals ℘ of OE above p. Each Ax[℘
∞] is a Barsotti-Tate group

of height 2 [O℘ : Zp], and sits in the middle of a short exact sequence

0→ Ax[℘
∞]mult → Ax[℘

∞]→ Ax[℘
∞]ét → 0 ,

where Ax[℘
∞]mult and Ax[℘

∞]ét denotes the toric part and the maximal étale quotient of
Ax[℘

∞] respectively. The p-adic Tate module Tp(Ax[℘
∞]ét) of Ax[℘

∞]ét is a free O℘-module
of rank one, so is the character group of Ax[℘

∞]mult. The formal completion at x of the
moduli scheme M(F )×SpecFp SpecFp has a canonical product structure

(M(F )×SpecFp SpecFp)
/x =

∏
℘|p

HomO℘(Tp(Ax[℘
∞]ét), Ax[℘

∞]mult) .

Notice that each factor HomO℘(Tp(Ax[℘
∞]ét), Ax[℘

∞]mult) is an [OD,℘ : Zp]-dimensional for-
mal torus, with a natural action by O℘.

(8.2) Given a totally indefinite quaternion division algebra D over a totally real number
field E, we choose and fix a maximal order OD of D. Denote byM(D)/Z the moduli scheme
such that for every scheme T , each element of M(D)/Z(T ) corresponds to the isomorphism
class of a triple (A→ T, ι, η), where
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• A→ T is an abelian scheme of relative dimension 2 [E : Q],

• ι : OD → EndT (A) is a ring homomorphism such that

TrOT (ι(d)|Lie(A/T )) = the image of TrE/Q(Tr0
D/E(d)) in OT ∀ d ∈ OD,

where Tr0
D/E : D → E is the reduced trace, and

• η is a principal level-N structure for some auxiliary integer N ≥ 3 with (N, p) = 1, not
specified in the notation M(D)/Z.

(8.2.1) LetM(D) =M(D)/Z×SpecZSpecFp be the reduction ofM(D)/Z modulo p. Denote
byM(D)ord the ordinary locus inM(D), that is the largest open subscheme ofM(D) over
which the universal abelian scheme is ordinary. It is known that the ordinary locusM(D)ord

is non-empty if and only if the quaternion algebra D is unramified at every prime ℘ of OE

above p; see the proof of 8.3.1 for the “only if” part.

(8.2.2) Assume that the quaternion algebra D is unramified at every prime ℘ of OE above
p. For any point x ∈ M(D)ord(Fp), let Ax be the corresponding abelian variety with multi-
plication by OD. The Barsotti-Tate group Ax[p

∞] splits canonically into a direct sum

Ax[p
∞] = ⊕℘|pAx[℘∞]

where ℘ runs through primes ℘ of OE above p. Each Ax[℘
∞] is a Barsotti-Tate group of

height 4 [O℘ : Zp], and sits in the middle of a short exact sequence

0→ Ax[℘
∞]mult → Ax[℘

∞]→ Ax[℘
∞]ét → 0 ,

where Ax[℘
∞]mult and Ax[℘

∞]ét denotes the multiplicative part and the maximal étale quo-
tient of Ax[℘

∞] respectively. The p-adic Tate module Tp(Ax[℘
∞]ét) of Ax[℘

∞]ét is a module
over OD,℘ := OD⊗OE O℘, isomorphic to the standard representation of OD,℘

∼= M2(O℘). The
same statement holds for the character group of Ax[℘

∞]mult. The formal completion at x of
the moduli scheme M(F )×SpecFp SpecFp has a canonical product structure

(M(F )×SpecFp SpecFp)
/x =

∏
℘|p

HomOD,℘
(Tp(Ax[℘

∞]ét), Ax[℘
∞]mult) .

Notice that each factor HomOD,℘
(Tp(Ax[℘

∞]ét), Ax[℘
∞]mult) is a [O℘ : Zp]-dimensional formal

torus, with a natural action by O℘.

(8.3) Let Z ⊆M(F )ord ×SpecFp SpecFp be a smooth irreducible subscheme of the ordinary
locus of M(F )

Fp
=M(F ) ×SpecFp SpecFp. We assume that dim(Z) ≥ 1, and that for each

closed point x ∈ Z, the formal completion Z/x is a formal subtorus of the Serre-Tate formal
torusM(F )/x

Fp
. The goal of this section is to prove that Z is a Shimura subvariety ofM(F )ord

Fp
.
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The last statement means that there exists a Shimura subvariety W ofM(F )×SpecZ SpecQ
such that there is one irreducible component of the ordinary locus of the reduction modulo
p of W which coincides with Z.

(8.3.1) Lemma Let K be a field of characteristic p. Let A be an ordinary abelian variety
over a field K, with dim(A) = [F : Q]. Suppose that there exists an embedding F ↪→
EndK(A) ⊗Z Q. Assume moreover that EndK(A) ⊗Z Q does not contain any commutative
semisimple subalgebra of dimension 2 dim(A) over Q. Then A is K-isogenous to Bn, where
n is a positive integer and B is a K-simple abelian variety over K. Let D = EndK(B)⊗ZQ,
so that EndK(A)⊗Q ∼= Mn(D). There are two possibilities.

• (Type I) The algebra D is a totally real number field E, [E : Q] = dim(B), F contains
E, and [F : E] = n.

• (Type II) The algebra D is a totally indefinite quaternion division algebra over a totally
real number field E, dim(B) = 2 [E : Q], F contains E, and [F : E] = 2n. Moreover
the quaternion algebra D is unramified at every prime ℘ of OE above p.

Proof. Everything except the last sentence in the (Type II) case follows from [5] p. 464,
Lemma 6. The possibilities of (Type III) and (Type IV) do not occur because A is ordinary
and does not have “sufficiently many complex multiplications”.

Suppose that D is of type III. We may and do assume that OE operates on B. Then for
every prime ℘ of E above p, the ordinary Barsotti-Tate group B[℘∞] has height 4 [E℘ : Qp],
and its multiplicative part and eétale quotient are Barsotti-Tate groups of height 2 [E℘ : Qp].
So the injection D ⊗E E℘ ↪→ EndK(B[℘∞])⊗Z Q forces D to be unramified at ℘.

(8.3.2) Remark In Lemma 6 on p. 464 of [5], the case of Type III (b) does not occur
under the assumptions there, because the totally real field F cannot be embedded into the
symmetric part of Mn(D).

(8.3.3) Proposition Let Z be an irreducible smooth Tate-linear subscheme of the ordinary
locus M(F )ord ×SpecFp SpecFp of the Hilbert modular scheme as in the beginning of 8.3.

(I) Suppose that EndZ(A/Z)⊗Z Q is isomorphic to Mn(E) for a subfield E of F as in the
Type I case of Lemma 8.3.1. Then there exists a finite flat correspondence

M(E)ord

/Fp

π←− ˜M(E)ord
/Fp

β−→M(F )ord

/Fp

from M(E)ord

/Fp

π←− to M(F )ord

/Fp
and an irreducible smooth subvariety W of M(E)ord

/Fp

satisfying the following properties.

(i) The morphism π is the projection map of a Igusa-type level-structure. In particular
it is a finite flat morphism.
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(ii) The morphism β is a finite.

(iii) The subvariety W is Tate-linear. That is for each closed point x ∈ W (Fp), the
formal completion is W /x is a formal subtorus of the Serre-Tate torus reviewed
at the end of 8.1.3.

(iv) There exists an irreducible component W̃ of π−1(W ) such that β(W ) = Z.

(v) Let B → W be the restriction to W of the universal abelian scheme overM(E)ord

/Fp
.

Then EndW (B)⊗Z Q = E.

(II) Suppose that EndZ(A/Z)⊗ZQ is isomorphic to Mn(D) for a totally indefinite quaternion
division algebra over a subfield E of F as in the Type II case of Lemma 8.3.1. Then
there exists a finite correspondence

M(D)or
/Fp

π←− ˜M(D)ord
/Fp

β−→M(F )ord

/Fp

from M(D)ord

/Fp

π←− to M(F )ord

/Fp
and an irreducible smooth Tate-linear subvariety W of

M(D)ord

/Fp
satisfying the following properties.

(i) The morphism π is the projection map of a Igusa-type level-structure. In particular
it is a finite flat morphism.

(ii) The morphism β is a finite.

(iii) The subvariety W is Tate-linear. That is for each closed point x ∈ W (Fp), the
formal completion is W /x is a formal subtorus of the Serre-Tate torus reviewed
at the end of 8.2.2.

(iv) There exists an irreducible component W̃ of π−1(W ) such that β(W ) = Z.

(v) Let B → W be the restriction to W of the universal abelian scheme overM(E)ord

/Fp
.

Then EndW (B)⊗Z Q = D.

Proof. This Proposition is essentially a corollary of Lemma 8.3.1.

(8.3.4) Remark Prop. 8.3.3 is a reduction step for showing that the Tate-linear subvariety
Z ofM(F )ord is the reduction of a Shimura subvariety. Roughly, 8.3.3 produces the smallest
Shimura subvariety ofM(F )ord containing Z, which is defined by endomorphisms of abelian
varieties. The two cases of Prop. 8.3.3 will be referred as Case I and Case II respectively.

We record a technical result 8.4 on Barsotti-Tate groups before giving further properties
of the Tate-linear subvariety W in Prop. 8.3.3.

(8.4) Proposition Let R be a reduced excellent commutative ring such that p = 0 in R.
Let S = SpecR.
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(i) Let X → S be a truncated Barsotti-Tate group of level n over S, which is an extension
of an étale BTn group X ét → S by a toric BTn group Xmult → S. Suppose that s is a
point of S such that the extension

0→ Xmult ×S S/s → X ×S S/s → X ét ×S S/s → 0

splits over the formal completion of S at s. Then there exists an open neighborhood U
of s in S such that the extension

0→ Xmult ×S U → X ×S U → X ét ×S U → 0

splits over U . Notice that the above splitting is unique because OS is reduced.

(ii) Let Y → S be a Barsotti-Tate group over S which is an extension of an étale BT group
Y ét → S by a toric BT group Y mult → S. Suppose that s is a point of S such that the
extension

0→ Y mult ×S S/s → Y ×S S/s → Y ét ×S S/s → 0

splits over the formal completion of S at s. Then there exists an open neighborhood U
of s in S such that the extension

0→ Y mult ×S U → Y ×S U → Y ét ×S U → 0

splits over U . The above splitting is unique because OS is reduced.

Proof. Clearly the statement (ii) follows from the statement (i). So it suffice to prove the
statement (i). According to Artin’s approximation theorem in [1], the assumption of (i) tells
us that there exists an étale neighborhood U1 → S of s such that

0→ Xmult ×S U1 → X ×S U1 → X ét ×S U1 → 0

splits over U1. The two pull-backs of the splitting over U1 to U1×S U1 by the two projections
pr1, pr2 : U1×S U1 → U1 coincide since the U1×S U1 is reduced. So the unique splitting over
U1 descends to a splitting over a Zariski neighborhood U of s. Another way to prove (i) is
to apply the fpqc decent to S/s → Spec OS,s, using the fact that O∧S,s ⊗OS,s O∧S,s is reduced,
instead of the approximation theorem. Here O∧S,s denotes the completion of the local ring
OS,s.

(8.4.1) Remark In the case when R is a reduced excellent local ring containing Fp, X
ét is

the constant group Z/pnZ over SpecR and Xmult = µpn over SpecR, Prop. 8.4 (i) becomes
the following consequence of Lemma 2.1.6. If a unit u ∈ R is equal to the pn-th power of
an element in the formal completion R∧ of R, then there exists an element v ∈ R such that
vp

n
= u.

(8.5) Proposition Notation as in Prop. 8.3.3.
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(i) In Case I, there exists a dense open subscheme U of W and a non-empty subset J of
the set of all primes of OE above p, such that

W /x =
∏
℘∈J

HomO℘(Tp(Bx[℘
∞]ét), Bx[℘

∞]mult)

for each closed point x ∈ U(Fp). Here Bx denotes the fiber at x of the universal abelian
scheme B →M(E).

(ii) In Case II, there exists a dense open subscheme U of W and a non-empty subset J of
the set of all primes of OE above p, such that

W /x =
∏
℘∈J

HomOD,℘
(Tp(Bx[℘

∞]ét), Bx[℘
∞]mult)

for each closed point x ∈ U(Fp). Here Bx denotes the fiber at x of the universal abelian
scheme B →M(D).

Proof. We provide a proof for Case I; the proof for Case II is similar and is left to the
reader. The argument consists of an application of Zarhin’s theorem on Tate’s conjecture,
combined with Chabotarev’s density theorem. See [27], [28] for Zarhin’s theorem, and the
remark in 8.5.1 (i).

In Case I we are given an irreducible Tate-linear subvariety W inM(E)ord×SpecFpSpecFp
such that endomorphism ring of the restriction B → W to W of the universal abelian scheme
over M(E) is equal to OE. Let ` 6= p be a prime number. Let q be a power of p such that
the subvariety W of M(E)ord is the base change from Fq to Fp of a subscheme W1 of
M(E)ord×SpecFp SpecFq. Let η1 be the generic point of W1, and let η be a geometric generic
point of W . Let ρ

`
: Gal(η/η1) → GLOE⊗ZZ`(T`(Bη)) be the Galois representation attached

to the `-adic Tate module of B → W1.

By Zarhin’s theorem, the Zariski closure of the image of ρ
`

in GLE⊗Q`(V`(Bη)) ∼=
GL2(E ⊗Q Q`) is a reductive subgroup G` of GLOE⊗ZZ`(T`(Bη)), and EndG`(V`(Bη)) =
E ⊗Q Q`. Hence the derived group of G` is equal to SLOE⊗ZZ`(T`(Bη))

A standard argument, using [4, §7, Cor. 7.9], shows that the image of ρ
`

is an open
subgroup of G`(Q`). By Chabotarev’s density theorem, the subset Σ ⊂ |W1| consisting of
all closed points w of W1 such that the Zariski closure of the subgroup generated by Frw is
a maximal torus of G0

` has positive density.

Let y be a closed point in the subset Σ above. The formal completion W
/y
1 of W1 at y is

a formal subtorus of the Serre-Tate formal torus

M(E)/y =
∏
℘|p

HomO℘(Tp(By[℘
∞]ét), By[℘

∞]mult) .

Both formal tori above are defined over the finite field κ(y). So the cocharacter group

X∗(W
/y
1 ) of W

/y
1 , a subgroup of the cocharacter group X∗(M(E)/y) of M(E)/y, is stable

under the action of the Frobenius element Fry.
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Let qy = Card(κ(y)). The Frobenius element Fry generates a commutative semisimple
subalgebra Q(Fry) of End0

κ(y)(By) := Endκ(y)(By) ⊗Z Q, and L := E(Fry) is a totally imag-
inary quadratic extension of the totally real field E. Let H be the linear algebraic group
over Q such that H(Q) = (End0

κ(y)(By))
×, and let T be the Q-Zariski closure of the cyclic

subgroup FrZy of H(Q) generated by Fry. Since Fry ∈ H(Q), T ×SpecQ SpecQ`′ is equal to

the Q`′-Zariski closure of FrZy in H×SpecQ SpecQ`′ , for all prime numbers `′, including p. We

know that the Q`-Zariski closure of the cyclic subgroup FrZy of GLE⊗QQ`(V`(By))(Q`) is a
maximal torus of a reductive subgroup G` of GLE⊗QQ`(V`(By)), and the derived group of G`

is equal to SLE⊗QQ`(V`(By)). This implies that the Q-torus T contains the norm-one torus
T1 of the induced torus ResL/Q(Gm), characterized by the property that T1(Q) consists of all
elements t ∈ L× such that NmL/E(t) = 1.

Since the abelian variety By is ordinary, the quadratic extension L of E splits over every
prime ideal ℘ of OE containing p Write L℘ = L℘̃1

×L℘̃2
, where ℘̃1 , ℘̃2 are the two prime ideals

of OL above ℘, such that the image of Fry in L℘ has the form (u℘, u
′
℘), with u℘ ∈ O×℘̃1

and

u′℘ ∈ qy · O×℘̃2
. We have canonical isomorphisms E℘

∼−→ L℘̃i , i = 1, 2. Under these canonical

isomorphisms, we can regard u℘ as a unit of O℘, and identify u′℘ with the element qy · u−1
℘ in

O℘. Recall that the p-adic Tate module of Bx[℘
∞]ét and the cocharacter group of Bx[℘

∞]mult

are both free O℘-modules of rank one. The Frobenius element Fry operates on Tp(Bx[℘
∞]ét)

via the unit u℘ of O℘, and it operates on the cocharacter group of Bx[℘
∞]mult via the element

u′℘ ∈ O×℘ . We refer to [11] for the facts used here.

For each prime ideal ℘ of OE, let R℘ be the induced torus ResE℘/Qp(Gm) over Qp. Let
Rp =

∏
℘|p R℘. The fact that the Q-torus T contains the norm-one torus T1 implies that

the cyclic subgroup up := (u℘) ∈ (
∏

℘|p R℘)(Qp) = Rp(Qp) is Zariski dense in Rp. Hence the

cyclic subgroup generated by u2
p is also Zariski dense in Tp.

Recall that W
/y
1 is a formal subtorus of the Serre-Tate formal torus∏

℘|p

HomO℘(Tp(By[℘
∞]ét), By[℘

∞]mult) .

over κ(y), hence its cocharacter group is a Zp-direct summand of the cocharacter group of
the Serre-Tate formal torus stable under the action of the Frobenius element Fry. More-
over the cocharacter group X∗(M(E)/y) of the Serre-Tate formal torus has a natural struc-
ture as a free

∏
℘|p O℘-module of rank one. We have seen that Fry operates on the Serre-

Tate formal torus via the element u2
p ∈

∏
℘|p O×℘ ⊂ Tp(Qp). So the Zariski density of

u2
p in Rp implies that the cocharacter group X∗(W

/y
1 ) of the formal torus W

/y
1 , as a Zp-

direct summand of the cocharacter group of X∗(M(E)/y) of the Serre-Tate formal torus,
and is stable under the action of

∏
℘|p O℘. Therefore there exists a non-empty subset J

of primes of OE above p such that X∗(W
/y
1 ) =

(∏
℘∈J O℘

)
· X∗(M(E)/y). Equivalently,

W
/y
1 =

∏
℘∈J HomO℘(Tp(By[℘

∞]ét), By[℘
∞]mult). An application of Prop. 8.4 finishes the

proof of 8.5.
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(8.5.1) Remark (i) The main results in [27], [28] are stated for function fields of charac-
teristic p 6= 2. The restriction p 6= 2 can be removed; see Thm. 4.7, chap. V of [14].

(ii) Actually the statements (i), (ii) hold for all point x ∈ W (Fp), but we do not need
this fact for Thm. 8.6.

(iii) After Prop. 8.5, our goal is to show that the subset J is equal to the set of all primes
of OE above p. Clearly this implies that the Tate-linear subvariety Z ⊆ M(F )ord

/Fp
comes

from the Shimura subvarietyM(E)ord in Case I, and from the Shimura subvarietyM(D)ord

in Case II.

(8.6) Theorem Notation as in 8.3.3 and 8.5. Then the subset J ⊆ {℘ : ℘ lies above p} is
equal to the set of all prime ideals of OE containing p. In other words, the linear subvarieties
U and W are both open subscheme of M(E)ord in Case I, and are open subschemes of
M(D)ord in Case II.

Proof. We give a proof for Case I here; the same argument applies to Case II after obvious
modifications. After shrinking Z and W in 8.3.3 and 8.5, we may and do assume that
U = W .

Let J ′ be the set of all prime ideals ℘ of OE above p such that ℘ /∈ J , and we assume
that J ′ 6= ∅. Let B[p∞] → W be the Barsotti-Tate group attached to the restriction to W
of the universal abelian variety B → M(E). For each prime ℘ of OE, denote by Y℘ → W
the factor (B → W )[℘∞] of B[p∞]→ W . Consider the decomposition

B[p∞]/W =

(∏
℘∈J

Y℘

)
⊕

(∏
℘∈J ′

Y℘

)

of the Barsotti-Tate group B[p∞] → W over W . For each closed point x of W and each
℘ ∈ J ′, the Barsotti-Tate group Y℘ ×W W /x over the formal completion of W /x splits into
the direct sum of its toric part and its maximal étale quotient. By Prop. 8.4, we deduce
that Y℘ splits uniquely as the sum of its multiplicative part and its maximal étale quotient.
This splitting of Y℘ gives two orthogonal idempotents e℘,mult and e℘,ét in EndW (Y℘), with
the following properties.

• The idempotents e℘,mult and e℘,ét commute with the action of O℘ on Y℘,

• e℘,mult + e℘,ét = IdY℘ ,

• The image of e℘,mult is the multiplicative part of Y℘, and the image of e℘,ét is naturally
isomorphic to the maximal étale quotient of Y℘.

In particular, we see that

EndW (B[p∞]) ⊇ (⊕℘∈JO℘)⊕ (⊕℘∈J ′ (O℘ · e℘,mult ⊕ O℘ · e℘,ét)) ) ⊕℘|p O℘ = OE ⊗Z Zp .
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On the other hand, Theorem 2.6 of [10] tells us that

EndW (B[p∞]) = EndW (B)⊗Z Zp = OE ⊗Z Zp .

This is a contradiction, hence J ′ = ∅.

(8.6.1) Remark It is known that M(E)ord is dense in M(E) and is geometrically irre-
ducible; see [13]. Hence U andW are both dense open subschemes ofM(E)ord×SpecFpSpecFp.
It is a folklore that the method of [13] can be used to show, as a “routine exercise”, that
M(D)ord is geometrically irreducible if D is unramified at every prime ℘ of OE above p.
However this statement does not seem to have been documented in the literature.

(8.6.2) Remark The method used in the proof of Thm. 8.6 can be applied to prove the
other conjectures in §7 in the case of Hilbert modular varieties; that is, when the base scheme
S is contained in the ordinary locus M(F )ord of a Hilbert modular variety, and the family
of ordinary abelian varieties is the restriction to S of the universal abelian scheme over
M(F )ord. We leave the proof to the interested readers.
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930. Springer-Verlag, 1982.

[4] A. Borel. Linear Algebraic Groups. Benjamin, 1969. Notes taken by Hyman Bass.

[5] C.-L. Chai. Every ordinary symplectic isogeny class in positive characteristic is dense
in the moduli. Invent. Math., 121:439–479, 1995.

[6] C.-L. Chai. Local monodromy for deformations of one-dimensional formal groups. J.
reine angew. Math., 524:227–238, 2000.

[7] R. Crew. F-isocrystals and their monodromy groups. Ann. Sci. Éc. Norm. Sup., 25:429–
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[19] R. E. Kottwitz. Points on some Shimura varieties over finite fields. J. Amer. Math.
Soc., 2:373–444, 1992.

[20] H. Matsumura. Commutative Algebra. Benjamin/Cummings, 1980.

[21] W. Messing. The Crystals Associated to Barsotti-Tate Groups: with Applications to
Abelian Schemes, volume 264 of Lecture Notes in Math. Springer-Verlag, 1972.

[22] B. Moonen. Special Points and Linearity Properties of Shimura Varieties. PhD thesis,
University Utrecht, 1995.

[23] B. Moonen. Linearity properties of shimura varieties. I. J. Alg. Geom., 7:539–567, 1998.

[24] B. Moonen. Linearity properties of shimura varieties. II. Compositio Math., 114:3–35,
1998.

52



[25] A. Ogus. F -isocrystals and de Rham cohomology II–convergent isocrystals. Duke Math.
J., 51(4):765–850, 1984.

[26] M. Rapoport. Compactifications de l’espace de modules de Hilbert-Blumenthal. Com-
pos. Math., 36:255–335, 1978.

[27] J. G. Zarhin. Isogenies of abelian varieties over fields of finite characteristics. Math.
USSR Sbornik, 24:451–461, 1974.

[28] J. G. Zarhin. Endomorphisms of abelian varieties over fields of finite characteristics.
Math. USSR Izvestija, 9(2):255–260, 1975.

53


