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1.1.

ABSTRACT. A Tate-linear structure on a smooth noetherian local formal scheme T over
a field x of characteristic p is an isomorphism T' =+ Ng/N of sheaves on the fpqc site
of Spec(k), where N is an fpqc sheaf of torsion free nilpotent on Spec(x) which admits a
central series N = Nj 2 Ny 2 --- 2 N¢y1 = (1) such that each subquotient N; /N;; is the
Tate Zp-module attached to a p-divisible group over , and Ng is the Mal’cev completion
of N. A smooth formal scheme over x with a Tate-linear structure is called a Tate-linear
formal variety over k. Examples of Tate-linear formal varieties include p-divisible formal
groups, biextensions of p-divisible formal groups, and formal completions at closed points of
central leaves in Siegel modular varieties in characteristic p. Tate-linear structures have a
remarkable rigidity property: if a reduced irreducible closed formal subscheme W of a Tate
linear formal variety T is stable under the action of a group of Tate-linear automorphisms
of T" which operates strongly nontrivially on 7', then W is a Tate-linear formal subvariety.
Proofs of statements in this survey article can be found in chapters 5-6 and 10-11 of [?].

1. WHAT ARE TATE-LINEAR STRUCTURES
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This is a survey of Tate linear structures on smooth formal varieties associated to Tate

unipotent groups. In every Tate-linear structure, there is a prime number implicitly referred

to, which will be denoted by p. This prime number p is fixed throughout this article.

A few soundbites may serve as lead-ins.

(a) A Tate unipotent group is analogous to the Tate Z,-modules of an abelian varieties

or a p-divisible group. It is a sheaf of unipotent groups on the big fpqc site of the
base field such that each graded piece of its ascending central series is the limit of a

projective system attached to a p-divisible group.

(b) A Tate-linear formal variety 7', or a formal variety 7" with a Tate-linear structure,
is assembled from finitely many p-divisible formal groups (XZ) through a family of

torsors of p-divisible formal groups over Tate-linear subquotients of T'. The assembly
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instruction is contained in a Tate unipotent group, which determines the Tate-linear
structure.

(c¢) The relation between a Tate-linear formal variety to its associated Tate unipotent
group is akin to the relation between a p-divisible group and its associated Tate Z,-
module. From a parallel group-theoretic perspective, Tate-linear formal varieties are
analogous to compact nilmanifolds. Under this analogy, the Tate unipotent group
associated to a Tate-linear formal variety corresponds to the fundamental group of a
compact nilmanifold.

(d) The formal completion C/™ at a closed point xg of a central leaf C of a Siegel modular
variety %,d,n,E7 which classifies polarized g-dimensional abelian varieties of polar-
ization degree d plus level-n structures, in characteristic p, has a natural Tate-linear
structure. The same is true for formal completions of central leaves of Shimura
subvarieties of 7 ;. & .

(e) Tate-linear structures are remarkably rigid: Suppose that 7" is a Tate-linear formal
variety assembled from a family (XZ) of p-divisible groups, and G is a closed subgroup
of the compact p-adic Lie group Autry,(7") consisting of all Tate-linear automorphisms
of T, such that G operates strongly nontrivially on T, in the sense that among
all Jordan—-Holder components of the Lie(G)-modules D, (X;) attached to the G-
equivariant p-divisible groups X;, none is the trivial representation of the Lie algebra
Lie(G) of G. Then every reduced irreducible closed formal subscheme of T stable
under the action of GG is a Tate-linear formal subvariety of T'.

1.2. To explain [1.1](a)—(c), let’s consider a p-divisible group X over a field K. It’s Tate
Z,-module T, (X) is the projective limit l'glnX[p"], and V,(X) :=T,(X)®zQ is it’s Tate
Qp-module. The p-divisible group X is canonically isomorphic to V,(X)/T,(X). This is
well-known if p is invertible in K, and is still true when p is equal to the characteristic of K
if the limit @n X|[p"] is taken in the category of sheaves of abelian groups on the big fpqc
site of Spec(K).

Recall that every torsion free nilpotent group N has an associated uniquely divisible
nilpotent group Ng, called the Mal’cev completion of N, which is a minimal element among
all uniquely divisible nilpotent group containing N. Moreover for every element z € N,
there exists a non-zero integer n such that ™ € N. When N is commutative, its Mal’cev
completion Ny is the familiar localization N ®z Q of N.

As indicated in (a), a Tate unipotent group N over a field k of characteristic p is sheaf
of unipotent groups on the big fpqc site of Spec(x) which is a successive extension of Tate Z,-
modules attached to p-divisible groups over k. The Mal’cev completion of a Tate unipotent
group N over « is an fpqc sheaf of uniquely divisible groups Ng on Spec(x) containing N.
The quotient sheaf Ng/IN is represented by a smooth formal scheme TL(N) over k. This
formal scheme TL(N) is, by definition, the Tate-linear formal variety attached to the Tate
unipotent group N. Put differently, a Tate-linear structure on a formal scheme X over k is
an isomorphism £ : X = Ng/N for a Tate unipotent group N over .

We remark that the inclusion N — Ng gives rise to a co-filtered family of finite locally free
covers TN, N ¢ TL(N') = TL(N) of TL(IN), where N’ is a Tate unipotent subgroup of
N such that N = Ng and 7N tLvy is the canonical projection. The sheaf Ng operates
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on the left of this projective tower (TL(N’) — TL(N))
algebraic correspondences on TL(N).

v and gives rise to a family of finite

Every Tate unipotent group IN over a field k of characteristic p carries three filtrations:
those given by the the ascending and descending central series, plus the slope filtration. Each
one gives rise to a family of torsors of p-divisible groups over Tate-linear formal varieties which
accomplishes the assembly task for the Tate-linear formal variety Ng/N mentioned in (b).

So far we have explained[1.1](a)—(b) and the first part of[l.1|(c). The analogy with compact
nilmanifolds refers to the fact that every connected compact nilmanifold M is isomorphic
to a homogeneous space G/T" of a connected and simply connected nilpotent Lie group G,
where I is a discrete cocompact torsion free subgroup of GG such that the isolator subgroup

IT,G)={re€G|dneNyyst. 2" €'}

of I' in GG is uniquely divisible and dense in G.

1.3.  We gather some properties of Tate-linear structures below.

(1) Examples of Tate-linear formal varieties include

(a) p-divisible formal groups over fields of characteristic p,

(b) biextensions of p-divisible formal groups over fields of characteristic p,

(¢) sustained deformation spaces of (polarized) p-divisible groups over fields of char-
acteristic p,

(d) formal completions at closed points of central leaves [?] in modular varieties of
PEL type,

(e) reduced irreducible formal subschemes of a Tate-linear formal variety 7" stable
under the strongly nontrivial action of a subgroup of the group Autry,(7) of all
Tate-linear automorphisms of T'.

Examples (¢), (d) guided us to the definition of Tate-linear formal varieties.

(2) Given any Tate-linear formal variety 7" over a field x of characteristic p, there exists
an isogeny « : T} — T of Tate-linear formal varieties and a Tate-linear embedding
p: Ty = Def (X),,, of T1 into the sustained deformation space of a p-divisible group
X over K.

(3) For every Tate-linear formal variety 1" over a perfect field x of characteristic p, there
is a non-zero element vgye 7 of the Lie algebra of Autry, (1) canonically attached to
T. A one-parameter subgroup prulerrn : P"Zy — Autrr(T') of the form

PEuler,T,n (t) = eXpAutTL(T) (t : UEuler,T) Vit e pnzp

for some natural number n is called an Fuler flow on T'. Every Euler flow operates
strongly nontrivially on 7". Moreover

fo eXpAUtTL(Tl)(t) = eXpAutTL(Tz)(t) of Vtep"Zy, Vn =ng.

for any Tate-linear morphism f : 77 — T, between Tate-linear formal varieties.

Careful readers likely have noticed that the above properties “almost determine” the class
of Tate-linear formal subvarieties of sustained deformation spaces Def (X) There aren’t
many good choices if the conditions (1)—(3) are imposed.

sus”
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1.4.  The motivation of the definition of Tate-linear formal varieties goes back to the Serre—

Tate local coordinates on deformation spaces of abelian varieties and p-divisible groups; see
7], [?, Appendix], [?].

The relation between the Serre—Tate formal tori and Shimura subvarieties of Siegel modular
varieties were investigated in [?], [?], [?]. Their results say that the formal completion at a
point of the ordinary locus of a Shimura subvariety of a Siegel modular variety is a formal
subtorus of the Serre-Tate formal torus. In [?] Moonen defined a notion of [p]-ordinary
p-divisible groups with prescribed endomorphisms, and showed that the deformation space of
a [p]-ordinary p-divisible group with prescribed endomorphisms has a natural structure as
a cascade: they are assembled from a family of biextensions, with p-divisible groups as the
basic building blocks.

Shortly after the notation of central leaves was introduced by Oort in [?], it was observed
that the formal completion C/*® at a closed point z, of a central leaf C in %717%@ has a
natural structure as an isoclinic p-divisible group with hight g(g 4+ 1)/2, if 2 corresponds
to a principally polarized abelian variety with exactly 2 slopes. Similarly the central leaf in
the deformation space of a p-divisible group with exactly two slopes has a natural structure
as an isoclinic p-divisible groups; see [?]. It follows that the central leaf in the deformation
space of a p-divisible group whose slope filtration splits carries a natural cascade structure.
The message was clear: the formal completion at a closed point of a central leaf in a Siegel
modular variety should carry a natural “Tate-linear structure”; similarly the central leaf in
the equi-characteristic p deformation space of any p-divisible group should have a natural
“Tate-linear structure”. But a precise definition codifying the general idea that Tate-linear
formal variety are put together from p-divisible formal groups was not pinned down.

Part of the difficulty was that the notion of central leaves relies on the “pointwise” concept
of geometrically fiberwise constant p-divisible groups, and it was unclear what a geometri-
cally fiberwise constant p-divisible group over an artinian local ring should mean. This
difficulty was removed by the notion of sustained p-divisible groups, a scheme-theoretic up-
grade of the notion of geometrically fiberwise constant p-divisible groups; see [?], [?]. Anal-
ysis of sustained deformation spaces of p-divisible groups revealed the central role of the
projective system of stabilized Aut group schemes @ut**(X) (respectively @ut™ (Y, \)) of a
p-divisible group X (respectively a polarized p-divisible group (Y, \)): A sustained p-divisible
group modeled on X is a right «ut™(X)-torsor, while a sustained polarized p-divisible
group modeled on (Y, \) is a right @/ut**(Y, \)-torsor. Moreover the sustained deformation
space Def (X),,. is canonically isomorphic to V,(/ut*(X))/T,(«/ut* (X)), where the fpqc
sheaf T, (2ut** (X)) of nilpotent groups is the limit of the projective system «Zut**(X), and
V,(ut* (X)) is the Mal’cev completion of T, (27ut**(X)). Similarly the sustained deforma-
tion space Def (Y, ), is isomorphic to V,(ut** (Y, X))/T,(«ut* (Y, X)). These examples
quickly led to a tentative formulation of the notion of Tate-linear formal subschemes of sus-
tained deformation spaces in [?, 6.2], followed by the general notion of Tate unipotent groups

and Tate-linear formal varieties in [2.1] 2.2] and [?, Ch. 11].
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The rigidity property of Tate-linear structures was first observed in the case of p-divisible
formal groups; see [?, §6], [?, §8] and [?]. The rigidity of p-divisible formal groups traces
back to [?, Larsen’s Example, p. 443 and [?, Prop. 4, p.471], and was used in the proof [?]
of the Hecke orbit conjecture for Siegel modular varieties and Hida’s theorem [?] on the
vanishing of the Iwasawa p-invariant of p-adic Hecke L-functions. For a long time it was
unclear whether the rigidity property indicated in (e) holds for other formal schemes
which are assembled from p-divisible groups, for instance biextensions of p-divisible formal
groups over algebraically closed fields of characteristic p. There were difficulties in adapting
the proof of rigidity in [?, §6] and [?] to the case of biextensions. On the other hand no
counter-examples were found. Eventually those technical obstacles were overcome through
the notion of tempered perfections. The resulting proof of the rigidity of biextensions also
works for general Tate-linear formal varieties. We refer to [?, Ch. 10-11] for more information
about tempered perfections and the method of hypocotyl elongation in these non-noetherian
complete local domains.

Tao Song has generalized the proof of orbital rigidity of biextensions of p-divisible for-
mal groups in [?, Ch.10], and proved the orbital rigidity of the sustained deformation
space Def (X), . of a p-divisible group X with at most 4 slopes in his 2022 Penn thesis
[?7]. D’Addezio and van Hoften [?] have defined a class of Tate-linear formal varieties over
perfect fields of characteristic p, under the assumption that p is strictly bigger than the
nilpotency class of the Tate unipotent Lie algebra in question. They proved orbital rigidity
of these Tate-linear formal varieties using the method of hypocotyl elongation in tempered
perfections in an earlier draft of [?, Ch.10]. This rigidity result linearizes the Hecke orbit
problem, so that their results on monodromy of linear p-adic differential equations can be
brought to bear.

1.5. The rest of this article is organized as follows. The definition and basic properties
of Tate unipotent groups and Tate unipotent Lie algebras are explained in §2] which also
contains a summary on localizations of nilpotent groups and the Mal’cev completion.
Basic properties of Tate-linear formal varieties are indicated in §3] The two families of
examples of Tate-linear formal varieties mentioned in (1), biextensions of formal groups
and sustained deformation spaces of (polarized) p-divisible groups, are explained in and
respectively. The definition of Euler flows, which are “universal automorphisms” of
Tate-linear formal varieties, is in [2.15, The proof of the main rigidity theorem of Tate-
linear formal varieties is sketched in 6} The two ingredients of the proof, tempered virtual
functions and hypocotyl elongation in tempered perfections, are explain in §5. A number of
open questions are collected in §7]

1.6. The author would like to acknowledge his intellectual debts to Mumford’s beautiful
paper [?]. Biextensions of p-divisible groups, introduced in [?], provide an ideal testing
ground for the validity of orbital rigidity of Tate-linear formal varieties. In addition, the
explicit construction of the Weil pairings as structural cocycles of biextensions in [?, §5] was
enormously helpful during the conception of notion of tempered virtual formal morphisms
E --» Z attached to one-parameter groups of automorphisms of a biextension E of (X,Y)
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by Z. He would also like to thank the support of a Simons Fellowship 561644 and a Simons
Foundation collaboration grant 701067. Lastly he thanks the referee for a very careful reading
and suggestions for improvement.

2. TATE UNIPOTENT GROUPS AND TATE UNIPOTENT LIE ALGEBRAS

Definition 2.1. Let x be a field of characteristic p, and let S = Spec(r). Let N be a sheaf
of groups with respect to the fpqc topology on the category of all schemes over S. We say
that N is a Tate unipotent group over S if there exist

e a natural number c,

e a central series (1) = Ng € N; € Ny C --- C N, = N of fpqc sheaves of normal
subgroups N; of N with [N;, N|gp, € Ny for i =1,..., ¢, where [, |gp, is the group
commutator (z,y) — z~ly lay,

e p-divisible groups Xy, ..., X, over S, and

e isomorphisms

Ni/Niy = Tp(X;) == lim Xip"] i=1,....¢,

where the transition maps X;[p"™] — X;[p"] in the projective system (X;[p"]) _

are induced by [p|x,, multiplication by p on X;, and the projective limit T,(X;) is
taken in the 2-category of sheaves of abelian groups on the big fpqc site Spyqe of S.

The minimum of all ¢’s satisfying the above conditions is called the nilpotency class of N.
The fpqc sheaf T,(X;) above is called the Tate Z,-module of X;. The p-divisible group X;,
as an fpqc sheaf of abelian groups, is canonically isomorphic to (T,(X;) ®z Q)/T,(X;).

Every Tate unipotent group over a field x of characteristic p admits a slope filtration.
More precisely, (2.1)) is equivalent to the alternative definition (2.2)) below.

Definition 2.2. Let x be a field of characteristic p. A Tate unipotent group over k is a
sheaf of nilpotent groups N for the fpqc topology on the category &ceh,. of all schemes over
k, together with a decreasing filtration (Fil;lN) >0 DY sheaves of normal subgroups indexed
by non-negative real numbers, with the following properties.
e Fil)N = N, and Fil5N = (1) for all s > 1.
o [Fil)N, Fil’? Ny, C Fil} "N for all s;,s9 > 0, where [, |qp denotes the group
commutator (z,y) — zy lay.
e There exists a finite subset slope(N) C (0,1]NQ such that gry;; N # (0) if and only
if 5 € slope(N), where gryy; N := FiljN/Filj°N.
e For every t € slope(N), there exists a non-trivial p-divisible group Y; over x such
that

grgN = lim Y [p"],
where I'LnnY;[p”] is the projective limit of the projective system (Yy[p"]) _, with
transition map induced by [p]y;, and the limit is taken in the category of sheaves of
abelian groups on &ch,, for the fpqc topology.
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Remark. (i) Definition [2.2]is used in [?, Ch.11]. In the slope filtration Fil3N of N is
uniquely determined by the group structure of N: The Lie algebra £ieNg of the Mal’cev
completion of N, which is a sheaf of Lie Q,-algebras on the big fpqc site of &¢b,., admits a
slope filtration. The slope filtration on £ieNg gives rise to a slope filtration on Ng via the
Mal’cev correspondence. The slope filtration on N is induced from the slope filtration on
Ng.

(ii) That every Tate unipotent group over « in the sense of [2.2] satisfies the conditions in[2.1]is
straight forward. To show that every Tate unipotent group N over the spectrum of a field x
of characteristic p in the sense of [2.1] carries a slope filtration with the properties required in
[2.2] one uses the Mal’cev correspondence and the fact that every p-divisible group x admits
a unique slope filtration, similar to the argument indicated in (i). See remark

(iii) The slopes of a Tate unipotent group N over x together with their multiplicities form
a multiset, uniquely determined by N, called the slope sequence of N. In definition this
multiset is the union of the slope sequences of the p-divisible groups X;’s; in definition
it is the union of the slope sequences of the isoclinic p-divisible groups Y;’s.

Remark. It is easy to see that every Tate unipotent group N is torsion free and uniquely
(-divisible for every prime number ¢ different from p.

2.3. Localization of nilpotent groups.

Let P be a subset of the set ® of all prime numbers, and let °P be the complement of P
in ®. A P-number is a non-zero integer all of whose prime divisors are contained in P. A
non-zero integer is said to be prime to P if and only if it is a “P-number.

A group G is P-torsion free (respectively P-divisible, respectively uniquely P-divisible) if
the self map x — 2" of G is injective (respectively surjective, respectively bijective) for every
P-number n. When P = ®, we say that G is torsion free (respectively divisible, respectively
uniquely divisible).

Let P C & and °P = ® \ P as before. For every nilpotent group N, there exists a group
homomorphism ey p : N — Np, uniquely determined up to unique isomorphism, such that
Np is uniquely P¢-divisible and the map ey p : Hom(Np, H) — Hom(N, H) induced by
en,p is bijective for every uniquely °P-divisible group H. The assignment N ~» Np defines
a functor Locp from the category of all nilpotent groups to the category of all uniquely
°P-divisible nilpotent groups.

The localization functor Locp preserves short exact sequences. More precisely, the local-
ization ap of a homomorphism « : N7 — Ny between nilpotent groups is injective (respec-
tively surjective) if and only if the order of every element of Ker(«) is finite of order prime
to P (respectively for every element x5 € Ny, there exists an element x; € Ny and a non-zero
integer n prime tode P such that =8 = a(z1)).

2.4. Mal’cev completion and Mal’cev correspondence.

The Mal’cev completion MC(N) of a nilpotent group N is, by definition, the localization
of N with respect to the empty subset () of ®. In other words, MC := Locy. The universal
homomorphism ey : N — MC(N) is characterized by the following properties.

o Ker(eyp) = Nior, the subgroup of N consisting of all elements of N of finite order.
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e MC(N) is a uniquely divisible nilpotent group.
e For every y € MC(N), there exists a non-zero integer n and an element z € N such
that y™ = enp(2).

The Mal’cev correspondence asserts that there is an equivalence between the category
of uniquely divisible nilpotent groups and the category of nilpotent Lie Q-algebras. If a
uniquely divisible nilpotent group N corresponds to a nilpotent Lie (Q-algebra n, then the
nilpotency class of N is equal to the nilpotency class of n, and there are mutually inverse
bijections

expy :n— N, logy: N —n,
such that the function

nxn—n, (x,y)— logy(expy(z +y))

from n x n to n is given by the Baker-Campbell-Hausdorff (BCH) formula. Recall that the
BCH formula is a specific element of the completion of the free Lie Q-algebra in variables
{X,Y} with respect to its descending lower central series; see [?, PartI, Ch.I1§8] and [?,
Ch.I1§6] for Dynkin’s explicit form of the BCH formula. Note that for each uniquely di-
visible nilpotent group NN corresponding to a niopotent Lie Q-algebra n, the infinite series
logy(expy(x +v)) is a finite sum.

There is an “integral version” of the Mal’cev correspondence, due to Lazard, but restricted
to the case when the nilpotency class is “small”. Let ¢ be a positive integer, and let P<. be
the set of all prime numbers not exceeding c. The Lazard correspondence asserts that there
is an equivalence of categories between the category of all uniquely P<.-divisible nilpotent
groups of class at most ¢, and the category of nilpotent Z[1/c!]-algebras of class at most c.

We refer to [?], [?], [?], [?], [?] for general information about nilpotent groups and their lo-
calizations, [?], [?], [?, Ch. 2], [?], [?] for the Mal’cev completion and Mal’cev correspondence,
and [?] for the Lazard correspondence.

Definition 2.5. Let N be a Tate unipotent group over a field x of characteristic p.

(a) Let MC(IN) be the presheaf on &ch,, whose value on any k-scheme S is MC(IN(SS)),
the Mal’cev completion of N(S). Here &c¢bh,, is the category of k-schemes.

(b) Denote by Ng the sheafification of the presheaf MC(N) on Gcbh,, with respect to the
fpqc topology.

(c) The fpqc sheaf Ng of uniquely divisible nilpotent groups corresponds, under the
Mal’cev correspondence, to an fpqc sheaf of Lie (Q-algebras. The Lie Q-algebras
structure of the latter sheaf extends naturally to an fpqc sheaf of Lie Q,-algebras,
denoted by LieNg. We call £ieINg the Tate unipotent Lie Q,-algebra attached to N.

(d) Let N’ be another Tate unipotent group over .

(d1) A k-homomorphism up to isogeny from N to N is a k-homomorphism from Ng
to N.

(d2) A k-isogeny from N to N’ is a k-homomorphism from N to N’ which induces
an isomorphism from Ng to Ng. A quasi-isogeny over x from N to N is a &
isomorphism from Ng to Ng.



TATE-LINEAR FORMAL VARIETIES 9

Lemma 2.6. Let N, N’ be Tate unipotent groups over a field k of characteristic p, and
let @ : Nog — Ng be a k-homomorphism up to isogeny from N to N'. There exists a k-
homomorphism 3 : N — N’ such that the homomorphism from Nq to N induced by 3 is
equal to p"a for a positive integer n > 0.

Definition 2.7. Let s be a field of characteristic p.

(a) A Tate unipotent Lie Z,-algebra over & is an fpqc sheaf 91z, of Lie Z,-algebras on &ch,,
such there exists a p-divisible group N over x and an isomorphism T, (N) = 91, of
fpqc sheaves of Z,-modules on Scby,.. Here T, (N) = im N [p"] is the Tate Z,-module
of N.

(b) A Tate unipotent Lie Q,-algebra over & is an fpqc sheaf of Lie Q,-algebras on &cb,,,
isomorphic to Nz, @z, Q, for some Tate unipotent Lie Z,-algebra Iz, over x.

Remark. (i) In (a), under the isomorphism T,(N) = Nz, , the Lie algebra structure on
Nz, corresponds to a projective family ([, Jnn : N[p"] x N[p"] = N[p"]) _, of Lie algebra
structures on N[p"], compatible with the transition maps N[p"t!] — N[p"]. Moreover the
slope filtration on N corresponds to a filtration on 91z, also called the slope filtration on
Nz
(ii) Let N be a Tate unipotent group over r in the sense of definition . It is easy to see
that the fpqc sheaf £ieNg of Lie Q,-algebras on Spec(k) is a Tate unipotent Lie Q,-algebra
over k in the sense of The slope filtration on £ielNg induces a slope filtration on Ng

via the Mal’cev correspondence, hence N is a Tate unipotent group in the sense of This
shows that the definitions [2.1] and [2.2] are compatible; c.f. [2]

Lemma 2.8. Let Ng, be a Tate unipotent Lie Q,-algebra over a field k of characteristic p.
There exists a Tate unipotent group N over k and an isomorphism £ieNg = g,. Note that
Ngq is determined by Ng, up to unique isomorphism, according to the Mal’cev correspondence.

Definition 2.9. The fpqc sheaf uniquely divisible nilpotent groups Ng in is called the
Tate unipotent group up to isogeny attached to the Tate unipotent Lie Qp-algebra Ng,.

p*

2.10. We explain two families of examples of Tate unipotent groups and Tate unipotent
Lie algebras, from the theory of sustained p-divisible groups. See [?], [?], [?, Ch. 5] for more
information.

(a) Let X be a p-divisible group over a field x of characteristic p. For each positive integer
n, the stabilized End group scheme &nd®(X),, at level-n attached to X is, by definition, the
schematic image

Image (7 4w : Snd(X[p"™]) = énd(X[p"))), N >>0

of the restriction homomorphisms 7, .y for N sufficiently large, where &nd(X[p"]) is the
ring scheme over x whose S-points are in functorial bijection with S-endomorphisms of X [p"],
for all k-schemes S. The ring scheme &nd*(X),, is finite over k for every n. Restricting
endomorphisms of X [p"™] to X [p"] gives epimorphisms &nd**(X), 11 — &nd*(X),, and we
get a projective system (gnd(X [p”]))n>1 of ring schemes over k. Note that we also have
natural monomorphisms (End*(X),, +) < (End®(X)ny1, +); the resulting inductive system
is a p-divisible group over k. However these monomorphism do not respect multiplication.



10 CHING-LI CHAI

Let &nd**(X)? be the neutral component of &nd**(X),,; it is a nilpotent ring scheme without
unity. Again we have a projective system (&nd*'(X )91)”>1 of nilpotent ring schemes. Let
utt(X), = (End*(X),)*, the group of units of &nd*(X),. Clearly the neutral component

utst(X)Y of Gutt(X), is equal to 1 + &End**(X)?2.

Consider the projective system @ut™(X)° := (/ut**(X)J) _ of nilpotent group schemes
over x, and let -
T, (ut" (X)) := Jim aut™(X)?

be the projective limit of «Zut**(X) as an fpqc sheaf on Spec(x). We also have an fpqc sheaf
of nilpotent Z,-algebras

T, (End* (X)) == Jm End™* (X)L,

Formally adding 1 to the sheaf of nilpotent Z,-algebras T,(&nd™ (X)) gives us an fpqc sheaf
of groups 1+ T,(&hd™(X)?), naturally isomorphic to T (/ut*(X)?).

The sheaf T,(ut*(X)?) is a Tate unipotent group over x. From the natural action
of T,(énd** (X)) on T,(X), it is easy to see that if X has r distinct slopes, then both

T,(6nd* (X)) and T, (ut*(X)°) have "2 slopes. On the other hand, the r-th power

of the ideal T,(&nd™ (X)) of T,(&nd® (X)) is (0), and T,(ut**(X)?) is nilpotent of class
r—1.

Define the Tate Q,-algebra V,(&nd**(X)°) of &nd™(X)° by
V,(End™*(X)?) := T,p(End™ (X)) @2 Q,

an fpqc sheaf of nilpotent Q,-algebras on Spec(k).
e The Mal’cev completion of T,(«ut**(X)°), denoted by V,(«ut**(X)?), is

Vy(ut™ (X)) = T (ut™(X)")g = 1+ V,(énd™(X)"),

the sheaf of groups obtained from the sheaf of nilpotent Q,-algebras V,(&nd* (X))
by formally adding 1 to the latter.

e The slope filtrations on T, (ut**(X)°) and V,(«ut**(X)?) are induced by the slope
filtration on T,(&nd™ (X)), or equivalently the slope filtration on the p-divisible
group whose p"-torsion subgroup scheme is &nd**(X)?.

e The Tate unipotent Lie Q,-algebra £ie V,(«/ut**(X)?) corresponding to the sheaf
V,(2ut**(X)°) of uniquely divisible nilpotent groups under the Mal’cev correspon-
dence is the sheaf of Lie Q,-algebras underlying the nilpotent associative Q,-algebra
V,(End*(X)).

e The exponential map

exp : V,(énd™(X)°) — V,(ut™(X)?)

is given by the truncated exponential series

r—lzn
Zi—>1+znzlm,
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while the logarithm map
log : V,(@ut™ (X)) — V,(&nd™ (X))

is given by the truncated logarithm series

r—1 u—1)"
o S e

where r is the number of distinct slopes of the p-divisible group X.

(b) For every polarized p-divisible group (Y, \) over a field x of characteristic p, the po-
larization A induces an involution 7 on the fpqc sheaf V,(&nd*(Y)) = Jm End*(Y),, of

Q,-algebras on Spec(r), and also on the sheaf V,(&hd®(Y)?) of nilpotent associative Q,-
algebras.

e The subsheaf V,(&nd*(Y)?)™="! of V,,(nd**(Y')") is a Tate unipotent Lie subalgebra
of V,(&nd*(Y)?) over k.

e The Tate unipotent group up to isogeny corresponding to V,(&hd**(Y)?)"™="! is the
sheaf U(Vp(gndSt(Y)O), 7') of unitary groups attached to the sheaf of nilpotent asso-
ciative Q,-algebras with involution (Vp(gndSt(Y)O),T), whose points consists of all
functorial points z of V,(&nd®(Y)?) such that z 4+ 2"+ 22" =0=z2+4 27 + 27 - 2.

o Let out™ (Y, \)? = («/ut*(Y,\)]), . be the projective system of connected stabilized

Aut group scheme of (Y, \), where
utt (Y, \)Y = (Image(rmmN:&%ut(Y[p"*N], Ap™t™N)) — @ut (Y [p"], )\[p”])))o, N>0

for each n. The projective limit T,(ut™(Y,\)?) := lim /ut*(Y,\); is a Tate
unipotent group over k, naturally isomorphic to the intersection of T,(«Zut™(Y")?)
and U(V,(énd*(Y)?),7) in V,(ut*(Y)°):

T, (ut(Y,\)") 2 U(V,(énd™(Y)"),7) N T,(ut™(Y)°).

e The Mal’cev completion V,(&uts* (Y, \)?) of T, («/ut** (Y, \)?) is naturally isomorphic
to U(V,(&nd™*(Y)?), ).
e The exponential map

exp : V,(&nd™(YV))) =1 — U(V,(énd™(Y)°), 7)
and the logarithm map
log : U(Vp(é"nds't(Y)o7 T)) — V,(End (Y)?)=!
are given by the truncated exponential series
r—=1 .,
z+—= 1+ anl 4
and the truncated logarithm series
r—1 yne1(u=1)n
wes Yy (L)

respectively, where r is the number of distinct sums of Y.
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Proposition below is an analog of Ado’s theorem. It says that up to isogeny, every
Tate unipotent group can be realized as a TL subgroup of the Tate module of the stabilized
Aut group of a p-divisible group.

Proposition 2.11. Let Ng, be a Tate unipotent Lie Q,-algebra over a field x of character-
istic p. There exists a p-divisible group X over k and an embedding

Ng, = Vp(énd™*(X)?)

of the fpqc sheaf Ng, of Lie Qp-algebras into the fpqc sheaf of Lie Qy-algebras underlying the
sheaf of milpotent associative Q,-algebras (without unity) V,(&End*(X)°) on Sch,.

Lemma 2.12. Let N be a Tate unipotent group over a field k of characteristic p.

(a) The group Aut(Ng) of automorphisms of the Mal’cev completion Ng of N has a
natural structure as a p-adic Lie group. It is the group of Q,-points of a linear
algebraic group over Q.

(b) The group Aut(N) of automorphisms of N is a compact open subgroup of Aut(Ng).

(c) The Lie algebra Lie(Aut(Ngq)) of Aut(Ng) is naturally isomorphic to the Lie Q,-
algebra consisting of all Q,-linear derivations 0 : £ieNg — £ielNg of the Tate unipo-
tent Lie Qp-algebra L£ieNg attached to N.

2.13. Suppose that « is a perfect field of characteristic p. Then the covariant Dieudonné
theory tells us that a Tate unipotent Lie Z,-algebra 91z, corresponds to a free module
D, (NMz,) of finite rank over the ring W(x) of p-adic Witt vectors with entries in &, together
with semilinear operators F,V on D,(91z,) and a skew symmetric W(x)-bilinear map

Lo T=15 Do, - De(Mz,) X D.(Nz,) — D.(Ng,),

satisfying the following properties.

G) [, [y, 2] + o, [ 2] + (2 [, 9]] = O for all 2,3, = € D, ()
(ii) F(a-2) = o(a)-F(z) and V(a-z) = 0! (a) - V(x) for all a € W(k) and all z € D,(Ny,).
(iii) [V(z),V(y)] = V([z,y]) for all z,y € D,(Nz,).
(iv) [F(x),y] = F([z,V(y)]) and [z, F(y)] = F([V(z),y]) for all z,y € D.(Ng,).
Here o denotes the canonical lifting of Frobenius on W(k).
Similarly a Tate unipotent Lie Q,-algebra Mg, over x corresponds to a finite dimensional
vector space D, (Mg, ) over W(k) ®z Q, together with operators F,V and a skew bilinear map
[, ]:D.(MNg,) x D(Ng,) — D,(Ng,), satisfying conditions (i)—(iv) above.

2.14.  Suppose that the base field & is perfect. Let g, be a Tate unipotent Lie Q,-algebra.
Then the slope filtration on Ng, splits, and we have a canonical decomposition

m(@p = ®S€S10pe(m@p ) fJ/ts,(@p )

where 9, g, = V,(N) for some isoclinic p-divisible group N, over &, for each s € slope(Ng, ).
Moreover

M50, Mo 0,0, € Nors0, V5,8 € slope(Ng, ).
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Definition 2.15. Let s be a perfect field of characteristic p. Let

me - @séslope(m(@p)ms,@p
be the slope decomposition of Mg, of a Tate unipotent Lie QQ,-algebra.

(a) Denote by Ogyler the derivation of g, such that Ogyier(us) = su, for all s € slope(g, )
and all functorial points u, of 9 g, .
The element of the Lie algebra Lie(Aut(g,)) of Aut(g) corresponding to Jgyler
will be called the Euler vector field on 9g,, denoted again by Ogyier-
(b) Let N be a Tate unipotent group over x whose Mal’cev completion Ny is the Tate
unipotent group up to isogeny attached to Mg,. A closed subgroup of the p-adic Lie
group Aut(IN) of the form

{ eXpAut(NQ) (t : aEuler) t e U}

for an open subgroup U of (Z,, +) is called an Fuler flow on N.

Remark. (i) In the case when N is the Tate Z,-module of a p-divisible group X, the Euler

flows correspond to the subgroups {[a|x | @ € 1+ p"Z,} of Aut(X), where n ranges through

all inters n > 1 if p # 2, and all integers n > 2 if p = 2.

(ii) Every homomorphism A : g, — ‘ﬁ(’@p between Tate unipotent Lie Q,-algebras respects

the Euler vector fields on 91 and 9V, in the sense that aEuler% oh=ho aEuleerp. Similarly
P

every homomorphism « : N — N’ between Tate unipotent groups respects Euler flows on N
and N,

(iii) Let by be the least common multiple of all denominators of slope(Mg,). The map ¢™
from Mg, to itself such that ¢ (u,) = p**u, for all functorial points u, of M, g, is an
endomorphism of the fpqc sheaf g, of Lie Q,-algebras on Spec(x). It is an analog of the
bo-th iterate of the relative Frobenius of Ng, .

3. TATE-LINEAR FORMAL VARIETIES

Proposition 3.1. Let N be a Tate unipotent group over a field k of characteristic p. The
fpqc sheaf Ng/N on Spec(k) is represented by a noetherian local formal scheme smooth over
K, 1somorphic to the formal spectrum of a formal power series ring over k in finitely many
variables.

Definition 3.2. Let « be a field of characteristic p.

(a) Let T be a noetherian local formal scheme over k. A Tate-linear structure on T is
an isomorphism ¢ : 7" = Ng/N from the fpqc sheaf on Spec(k) represented by T
to the fpqc sheaf Ng/N, where N is a Tate unipotent group over x. We will denote
the quotient Ng/N by TL(N), and call it the Tate-linear formal variety attached to
the Tate unipotent group N.

(b) A Tate-linear formal variety over  is pair (T,¢ : T = Ng/N) consisting of a formal
k-scheme T" and a Tate-linear structure ¢ on 7'

Definition 3.3. Let TL(N;) and TL(Ny) be Tate-linear formal varieties over a field x of
characteristic p.
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(a) A formal morphism f : TL(N;) — TL(INs) over « is Tate-linear, or a T'L morphism,
if there exists a homomorphism A : N; — N over x which induces f. Note that such
a homomorphism A is unique if it exists.

(b) A TL morphism TL(h) : TL(N;) — TL(N2) induced by a homomorphism h : Ny —
N, over k is said to be an isogeny (respectively a quasi-isogeny) if h is.

Definition 3.4. Let N be a Tate unipotent group over a field x of characteristic p. Let G
be a closed subgroup of the group of all Tate-linear automorphisms of TL(N). We say that
G operates strongly nontrivially on TL(N) if G corresponds to a closed subgroup of Aut(N)
such that every Jordan-Holder component of the Lie(G)-module D, (Mg, ,a12) is non-trivial,
where %2 is an algebraic closure of x and Ng, ks 18 the base change to k¥ of the Lie

Qp-algebra Mg, of N.

Remark. Every Euler flow (2.15) on N induces a subgroup of TL-automorphisms of TL(IN)
acting strongly nontrivially on TL(IN).

Lemma below implies that a Tate-linear formal variety can be assembled from p-
divisible formal groups through a finite collection of torsors for p-divisible formal groups.

Lemma 3.5. Let N be a Tate unipotent group over a field k of characteristic p. Let Z be
a Tate unipotent subgroup of N contained in the center Z(N) of N, such that N/Z is a
Tate unipotent group. Then the map m : TL(N) — TL(IN/Z) induced by the quotient map
N — N/Z has a natural structure as a TL(Z)-torsor over TL(N/Z).

3.6. Biextensions as Tate-linear formal varieties.
Let X, Y, Z be p-divisible formal groups over a field « of characteristic p. Let X = T, (X),
Y =T,(Y), Z=T,(Z) be the Tate Z,-modules of X,Y, Z respectively. Let

q

1 Z N XxY——1

be a central extension of X x Y by Z, which splits over X and also over Y. Then N is a
Tate unipotent group over k. We choose and fix embeddings X < N and Y — N which
splits the central extensions Z ~— ¢~ 'X — X and Z — ¢~'Y — Y respectively, and regard
X and Y as sheaves of subgroups of N.

Let E := TL(N) be the Tate-linear formal variety over  attached to N. By [3.5 we have
a canonical translation action of Z on E and a projection map 7 : E — X X Y such that £
is a Z-torsor over X x Y. We will explain below an enhancement of the Z-torsor structure
on £ — X x Y to a biextension of (X,Y’) by Z, and identify the family of Weil pairings of
this biextension in terms of the group structure of IN.

Remark. Strictly speaking, the input data which produce the biextension structure on F
include the embeddings X < N and Y < N. This fine point is suppressed below.
(a) We know from the exactness of localization functors for nilpotent groups that the Mal’cev

completion Ng of N is a central extension of Xg X Yg by Zg. The group commutator

[, ]grvaQ :Ng x Ng — Ng, [y, ng)gp = nflnglnlng Vn;,ny € Ng
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on Ng induces a skew-symmetric bilinear pairing
<, >N@I(XQXYQ)X<XQXYQ)—>ZQ
such that the diagram

[ ) }grp,NQ

NQ X NQ NQ

lQQXQQ TV
< s )NQ

(Xg x Yg) x (Xg x Yq) Zy

commutes.

(b) We will define relative group laws
+1IEXyE—)E and +22EXXE—>E

on E, which will give E a biextension structure. See [?] for the notion of biextensions.

(i) Given a functorial point y of Y, pick a functorial point y, on Yy lifting y. The fiber
(pry o m)~1(y) of E over y consists of all elements of the form [z - x - yo|, where z is
a functorial point of Zg, x is a functorial point of Xg, and [z - x - yo| is the image of
z-x-yo in TL(N) = E. Two functorial points [z - X - yo| and [z - X2 - yo] of E, over
the same k-scheme are equal if and only

X;—x2€ X and (X3 —Xo,Yo)Ng + 21 — 22 € Z.

(ii) For any two functorial points [z1 -X;-yo| and [z2-X2-yo] of E, over the same r-scheme,
define their sum under +; by

(21 - X1 - yo| +1 [22 - X2 - Yo| == [(z1 + 22) - (X1 + X2) - ¥ol.

This gives a well-defined morphism +; : £ Xy E to E.

Moreover for each functorial point y of Y, the sheaf of commutative groups (pr, o
7)~!(y) under the group law +; is the push-out of the top row by the vertical arrow
&y in the commutative diagram

1 —~Zy-X Zo - Xg Xo/X = X — 1
«| | |-
1 Z (pryo ) 1(y) X 1.

with exact rows. Here &, : Zg - X — Z is the group homomorphism given by
§y(z-x) = (X,yo)ng modZ  Vz € Zg, Vx € X,

and y is a representative of y in Xg.
(iii) Similarly, define a group law +5 : £ X x £ — X relative to X by

[Z1-y2 - Xo] +2 (21 - Y2 - Xo] = [(Z1 + 22) - (y1 +¥2) - X0l

for functorial points xg € X, y1,y2 € Y, Z1, 22 € Z with values in the same k-scheme.
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For each functorial point z of X, the sheaf of commutative groups (pr; o 7)~!(z) is an
extension of Y by Z, which sits in the push-out diagram

1—>Z¢g Y— 7y Yg——= Yo /Y=Y —>1

4

1 Z (pr; o)~ (z) Y 1,

where 1, : Zg - Y — Z is given by
ne(z-y) = (y,xo) modZ = —(xXg,y) modZ VzecZg VyeY.

(c) A straight forward calculation shows that the family of Weil pairings
P X[P" X Y[p"] — Z[p"]

attached to the biextension £ — X X Y constructed in (B) above, with the sign convention
in [?], is expressed in terms of the Lie bracket on Ng by

Bn(xny yn) = pn <Xn7 Yn>N@a
for all functorial points (x,, y,) of X[p"] x Y [p"]| and liftings (x,,y,) in (p7"X) x (p™™Y) of
(Zn; Yn)-

Since every biextension of p-divisible groups is determined up to isomorphism by its Weil
pairings, the above formula for (3, identifies the biextension structure on £ = TL(N). On the
other hand, the skew symmetric pairing (, )n, is easily recovered from the family (3,)n>1
of Weil pairings. So the Tate unipotent group N is also determined by the biextension
E — X xY up to isomorphism.

The formula for the Weil pairings also shows that every biextension of p-divisible formal
groups arises from a Tate-linear formal variety associated to Tate unipotent group N sat-
isfying the conditions in the first paragraph of Thus every Tate-linear formal variety
TL(N) over a perfect field attached to a Tate unipotent group IN of nilpotency class at most
2 is isogenous to a biextension of p-divisible formal groups.

3.7. Sustained deformation spaces are Tate-linear formal varieties.

(a) Let X be a p-divisible group over a field x of characteristic p. Let Def (X), , be the
sustained deformation space of X, such that for every augmented commutative artinian local
r-algebra R, Def (X),, (R) is canonically identified with the set of all equivalence classes
of sustained p-divisible groups over R whose closed fiber is X. It is shown in [?, Ch.5]
that Def (X)_,, is represented by a smooth formal scheme over x, and there is a natural

isomorphism

sus

(x : TL(T,(ut™(X)")) = Def (X)

The gist is as follows. Let R be an augmented artinian local x-algebra.

sus *

e A sustained p-divisible group X over R is strongly sustained modeled on X, because
its closed fiber is X. Therefore X corresponds to a right torsor for the projective
system @Zut®*(X) of stabilized Aut group schemes.
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e A (rigidified) right «ut**(X)-torsor over R is induced by a right «7ut*(X)°-torsor
over R, unique up to isomorphism. The latter is the same as a right torsor for
T, (ut**(X)?).

e An R-valued point of TL(T,(«/ut**(X)?) determines a right T),(/ut**(X)°)-torsor.
This defines a natural map Cy : TL(T,(«ut**(X)?)) = Def (X),,.-

e The fact that (x is an isomorphism is a special case of a more general statement on
the deformation of torsors for Tate unipotent groups. A d’evisage argument reduces
the latter statement to the case of a commutative Tate unipotent group, which is
known.

(b) Let (Y, A) be a polarized p-divisible group. Let Def (Y, A). . be the sustained deformation

functor of (Y, A). Similar to (a) above, Def (Y, ), is represented by a smooth formal scheme
over k, and we have a canonical isomorphism

Gt TL(T,(/ut™ (Y, A)°)) = Def (Y, A)

sus

sus *

It follows that for every IF,-point gy of a central leaf C in a moduli space Ay 4nw Withn >3
and ged(n,p) = 1, such that zy corresponds to a polarized abelian variety (Ag, Ag) with
level-n structure, the formal completion C/*0 of C at x has a natural Tate-linear structure

Goo # TL(Ty(ut™ (Auy [p™], Aa [p™])")) = €/,

Such a group-theoretic description of the local structure of central leaves in Siegel modular
varieties motivated the notion of Tate-linear formal varieties.

Proposition 3.8 below provides a “trivial estimate” of the actions of one-parameter subgroups
of Aut(Ng) on a Tate-linear formal variety TL(IN).

Proposition 3.8. Let N be a Tate unipotent group over a field k of characteristic p. Let
s € (0,1] be a real number such that max(slope(N)) < s < 1. Let U be a finitely generated
Z,-submodule of the Lie algebra of the p-adic Lie group Aut(Ng). There exist constants
co,no € N such that for every n > ng and every B € U, the exponential eXpAut(NQ)(p"B)
of p"B is an element of Aut(N) which operates trivially on the infinitesimal neighborhood
TL(N)[Frl"/*1=%] of the base point of TL(N). Here TL(N)[Frl™/*I=¢] denotes the inverse
image under the relative Frobenius morphism Fan/SJ;CO . TL(N) — TL(N)®"™70) of the

TL(N
base point of TL(N)®™/*7%).

4. ORBITAL RIGIDITY OF TATE-LINEAR STRUCTURES

Tate-linear formal varieties satisfy a strong rigidity property, theorem below. The
special case when the Tate unipotent group N is commutative, i.e. the Tate-linear formal
variety TL(N) is a p-divisible formal group X over x and N = T, (X), is the main result of

7).

Theorem 4.1 (Orbital rigidity of Tate-linear formal varieties). Let k be a perfect field of
characteristic p, and let N be a Tate unipotent group over k. Let G be a closed subgroup
of Aut(N) acting strongly nontrivially on N. Let W be a reduced irreducible closed formal
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subscheme of TL(N). If W is stable under the action of G on TL(N), then W is a Tate-
linear formal subvariety of TL(IN). In other words, there exists a unique cotorsion free Tate
unipotent subgroup N’ of N such that W = TL(N').

Let Ay be the highest slope of N and let Z = Filg‘fN be the Tate unipotent subgroup of
N isomorphic to T,(Z) of an isoclinic p-divisible group Z over x with slope A;, such that
all slopes of N/Z are strictly smaller than A;. An easy induction on the number of distinct
slopes of N shows that theorem follows from the case when N is isoclinic, which is a

special case of [?], plus and below.

Theorem 4.2. Notation and assumptions as in the above paragraph.

(a) The reduced closed subscheme (W N Z)ea of Z is a p-divisible subgroup of Z. Here
(W N Z)yeq is the largest reduced closed subscheme of Z contained in W .

(b) The formal subscheme W of TL(N) is stable under the action of the p-divisible sub-
group 7' :== (W N Z)yeq of Z.

Let Z! be the Tate unipotent subgroup of Z corresponding to Z'. Let Ny := N/Z'.

The quotient Wy := W /Z' is an irreducible closed formal subscheme of TL(N;), and
is stable under the action of G. Let 7w : TL(N;) — TL(INy) be the map associated to
the quotient map Ny — Naj.

(¢) The restriction ﬁ‘Wl : Wi — TL(Nsy) of m: TL(IN;) — TL(Ny) to W/Z; is purely
iseparable.

Theorem 4.3. Let Ny be a Tate unipotent group over a field k of characteristic p. Let G
be a p-adic Lie group acting strongly nontrivially on Ny. Let Zy be a Tate unipotent normal
subgroup of Ny stable under the action of G, such that Min(slope(Z;)) > Max(slope(Ny)),
where Ng := N /Z;.

Suppose that the projection map 7 : TL(IN;) — TL(Ny) admits a G-equivariant section &.
Then & is a TL morphism, i.e. there exists a G-equivariant group homomorphism ¢ : Ny —
N, of fpqc sheaves on Schy,, which splits the quotient homomorphism Ny — Na, such that &
is equal to the TL morphism TL(1)) : TL(Ny) — TL(INy) induced by 1.

Remark 4.4. (i) The proof of theorem uses rigidity of p-divisible groups in [?], and is
easier than theorem [4.21 Here is a sketch.

The slope decompositions of £ie(N;)g for ¢ = 1,2 provide a canonical isomorphism
Lie((Ny)g) = LieZg @ Lie((N2)g). To prove .3 it suffices to show that the existence
of a G-equivariant section of 7 : TL(N;) — TL(N2) implies that the sheaf £ie((INy)g) of
Qp-submodules of Lie((IN3)g) is stable under the Lie bracket of £ie((INy)g), or equivalently,

[D. (Sie((Ng)@))S, D, (Sie((N2)@))s’]D*(Sie(Nl)@g) =(0)

for all slopes s, s" of Ny such that s + 5" > Max(slope(Ny)), where D, (Sie((Ng)Q))t denotes
the slope-t component of the Dieudonné module D, (£ie((N2)g)) of Lie((Ns)g), regarded as
a submodule of D, (£ie((Ny)g)), for every ¢ € slope(Ny).

An easy induction reduces this assertion to the case when Z; is isoclinic. By functoriality
of the slope decomposition and the Lie bracket structures of £ie((IN;)q) further reduces the
assertion to the special case when Ny has at most 2 slopes. In this situation TL(N) is
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isogenous to a biextension, and the desired conclusion is deduced from the orbital rigidity
of p-divisible formal groups applied to suitable maps produced from the section £ and the
biextension structure of TL(INy).

(ii) The proof of uses the method of hypocotyl prolongation in tempered perfections,
discussed in §5] An outline of the proof of [£.2]is given in [6]

Remark 4.5. For every Tate unipotent subgroup N; of a Tate unipotent group N over
a field k of characteristic p, there exists an Euler flow on the Tate-linear formal variety
TL(N) which sends the Tate-linear formal subvariety TL(V); to itself. So the definition of
Tate-linear formal varieties is tightly constrained by the orbital rigidity property the
requirement that the sustained deformation spaces Def (X)_ _ of p-divisible groups over s
are Tate-linear formal varieties and proposition [2.11]

sus

5. TEMPERED VIRTUAL FUNCTIONS AND HYPOCOTYL ELONGATION

The proof of orbital rigidity for Tate-linear formal varieties|4.1|uses the the general strategy
of the proof of orbital rigidity of p-divisible formal groups [?]: To show that a formal power

series f(u1,...,Uq,V1,...,U,) Over k in 2a variables is identically zero, it suffices to produce
a infinite sequence of congruence relations
q" " — d
flzy,.. xg, 2l . 28 ) =0 (mod(xl, e Ta) ”),

where ¢ is a power of p, and (d,),>n, s a sequence of positive integers such that

lim L =0,
We call this the method of hypocotyl elongation. See for a slightly more general formu-
lation.

5.1. Tempered virtual functions. The notion of tempered virtual functions on noe-
therian local formal schemes in characteristic p was discovered during the investigation of
the rigidity phenomenon of biextensions of p-divisible formal groups. We explain this in the
simplest nontrivial case, a biextension 7 : E — X xY of (X,Y) by Z, where Z, X, Y are iso-
clinic p-divisible formal groups over a perfect field s of characteristic p, with slopes Ay, Ag, A3
respectively, \; = Ay + A3, and the family of Weil pairings (6n c X[p" xY]p'| = Z [p”])n>1
is non-trivial. If one naively follows the method of hypocotyl elongation [5.3, one would at-
tempt to find a projection morphism 3 : £ — Z from E to Z, and use it to construct a “first
order asymptotic approximation” of the action on E of any given one-parameter subgroup
of Autpiet(F). However this is a non-starter, for there is no projection morphism F — Z
which is natural in any sense.

Next one tries to find, for each given one-parameter subgroup exp(tv) of Autpiext(F), where
v is an element of Lie(Autpiext(F)) and ¢ ranges through an open subgroup p™Z, of (Z,,+),
a morphism 3[v] : E — Z which interpolates the action of exp(tv) on E. This attempt fails
again. However if one analyzes this failure more closely, one sees that the root cause is that
the ring of all formal functions on F is “too small”. If one enlarges the affine coordinate
ring R of E to a suitable extension ring R}, contained in the completion of the perfection
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of Ry, one gets a “virtual morphism 3[v] : E --» Z with coefficients in R%” which has
the desired properties. Here a virtual morphism £ --» Z is interpreted as a continuous
k-linear homomorphism from the affine coordinate ring of Z to R},. See steps 2-3 of @ for
a description of the process of producing such a virtual S[U] in the more general setting of
Tate-linear formal varieties.

Tempered virtual functions on the formal spectrum Spf(R) of a complete noetherian inte-
gral domain (R, m) over a perfect field x of characteristic p are elements contained in tempered
perfections of (R, m). There are several filtered inductive families of tempered perfections
of (R, m). These families are cofinal with each other, so their inductive limits focoincide. In
[5.2] we give a summary of tempered perfections of complete augmented local domains over
perfect fields of characteristic p, and refer to [?, Ch. 10.7] for more information.

5.2. Tempered perfections. Let x be a perfect field of characteristic p, and let (R, m) be
a complete augmented noetherian local integral domain over k&, i.e. structural homomorphism
k — R of the s-algebra R induces an isomorphism x — R/m.

(a) There is a family

( (R’ m)ps?;fr’;b[iol )r,s,z‘o

of non-noetherian complete augmented local domains over s, sandwiched between (R, m)
and the completion ((R, m)PH)" of its perfection (R, m)P®f, with integer parameters r, s, ig
satisfying

O0<r<s, i9=>0.

Recall that the perfection R**" of (R, m) has a decreasing filtration Fil§ , R indexed by
real numbers, defined by

Fil}

prert {{x € Rt | 3j € Nsit. a? € m(“'pﬂ} if w>0
deg T

Rperf if ©w<0

The completed perfection ((R, m)P*)" of R is the completion of RP*! with respect to the
above filtration. The filtration Fil3,, on RP*" induces a decreasing filtration on ((R, m)P)",

denoted again by Filg,,.

By definition, (R, m)zc(;frb[m] is the completion of the subring
Z ¢—n7’ (mns—io)
n>1

of RP*f with respect to the filtration given by powers of the ideal generated by m, where
¢ is the Frobenius endomorphism x ~ 2P of RP*f. Every closed subring of the completed
perfection of R which lies between R and (R, m)g?;i’;b[io] for some parameters (r, s, ) is said
to be a tempered perfection of (R, m).

Clearly each (R, m)i?;){?iio] is a tempered perfection of (R,m). This family of complete
augmented local domains over k is filtered in the following sense: given any two rings Ry, Rs
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in this family, there is a third ring R3 in the family which contains both R; and R,. The
union

tmp perf .__ perf, b
(R7 m) T Ur,s,io (R7 m) 5:97; o]
is a subring of ((R, m)P*H)" which contains RP!| but strictly smaller than ((R, m)Pei)”.
Elements of (R, m)™PPet will be called tempered elements of the completed perfection
((R,m)*")" of R. The filtration Filj,, on the completed perfection (RP*)" induces a filtra-
tion on each tempered perfection of (R, m).

(b) There are other versions of families

f, f,b f,
((R»mﬂ?;rﬁo] )r,s,io’ ((R, m) % b )A,b,d and ( (R, m)ifz;d# )A,b,d

of tempered perfections of (R, m), indexed by parameters (7, s,ip) and (A, b, d) respectively.

Each of these three families is cofinal with the family ( (R, m)i?;f;;b[io] )T 5.4, For instance each

ring (R, m)°“’ is contained in (R, m)’"™” for a suitable (A, b,d), and each (R, m)%"%” is
$:07;i0] Abid Abid

o £,b
contained in a (R, m)’%”

s:¢7;io
to the subring (R, m)"™PPe! consisting of all tempered elements of ((R, m)P*H)". Any ring
in one of the above families is a tempered perfection of (R,m). It is instructive to regard
elements of (R, m)"™PPef a5 a sort of “tempered generalized functions” on the formal scheme
Spf(R). We will call elements of (R, m)™PPet tempered virtual functions on Spf(R).

E Therefore the union of rings in each of these families is equal

(c) For fixed parameters (r, s, i), the assignment

rf, b
(R, m) ~ (R, m)§e¢r7[lo]

is functorial in (R, m). Moreover the continuous x-algebra homomorphism

b £,b f,b
h’: <R17m1)}:;)’“;[i0] — (R27m2>}<)silz;r;[io]

induced by a continuous k-algebra homomorphism
h: (Rl,ml) — (Rg,mg)
is surjective (respectively injective) if h is surjective (respectively injective). The same is

true for the formations of (R, m)i?;f;;?;o}, ((R,m)fjg’; )A,b,d and ((R, m)ie’lr)f’d# )A@d.

(d) We illustrate the general idea of tempered virtual functions with the family

(KU N

of tempered perfections of power series ring &[[t1, . . ., t,,]], depending on parameters (E, ¢, d),
where F,c,d are real numbers, £ > 0,C' > 0,d > 0. As we have already mentioned, this
family of tempered perfections of kl[[ti,...,t,]] is cofinal with each of the four families of
tempered perfections of k[[t1,...,tn]].
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By definition w((t! ... 2 7)) gz consists of all formal power series of the form

E brt!
Iesupp(m:b:E;C,d)

such that b; €  for all I € supp(m :b: F;C,d). Here
e supp(m :b: E;C,d) is the sub-semigroup of (N[%]m, +) given by

supp(m : b : E;C,d) := {1 € N[]%]m | 1], < max(C - (1|, + d)",1) }.

o N[%]m is the sub-semigroup of (Z[%]m,—i—) consisting of all m-tuples (i1, ...,4,) in
Z[é]m with all entries i; > 0.
o For each I = (i1,...,0y) € N[%]m, 1], is the usual p-adic norm of I given by

—ordp(max(i1,....,tm))

], ==p 1
while |I], is the archimedean norm of I given by
Iy =414+ im.

In particular the p-adic norm of [ is bounded by a polynomial fg . 4(|/|,) of the archimedean
norm of I, for all I in supp(m :b: E;C,d).

(e) If we replace the archimedean norm ||, on N [%]m by the max norm
[I]oo = max(iy, ...,17),
we get a ring w((t! ... ,t’,;;oo»gj. The resulting family
(WU T NET),
of tempered perfections k|[t1,. .., t,]] is cofinal with the family (/{((ﬂfﬂo, . ,t{;;oo»g;Z)E d

as well.

Proposition below, called hypocotyl elongation in commutative noetherian local domains
over perfect fields of characteristic p, is the main input of the proof of rigidity of p-divisible
formal groups in [?]. It follows from propositions 2.1 and 3.1 of [?], and provides a way
to establish power series relations f(ui,...,uq,v1,...,0) between functions on a product
formal scheme Spf(R) x Spf(R) of the form prigy,...,prig, and prihi, ..., prihy.

Proposition 5.3 (Hypocotyl elongation in complete noetherian local domains).

Let k be a perfect field of characteristic p. Let u = (uy,...,u,), v .= (v1,...,v) be
two tuples of variables, and let f(u,v) € k[[u,v]] be a formal power series in variables
ULy« vy Uq, V1, . . ., Uy With coefficients in k. Let (R,m) be an augmented noetherian complete
local domain R over k such that k = R/m. Let gi,...,qa,h1,...,hy be elements of the
mazimal ideal m. Let ng € N and let (d,,)n>n, be a sequence of positive integers and let q be
a power of p such that lim,, . % = 0. Suppose that

() flor, .- 9o b .. b ) =0 (mod m™)
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for all n > ng. Then

flar®l,...,0.21,1®@hy,...,1®hy) =0
in the completed tensor product R®LR, where RQ,R is the formal completion of the local
domain R®, R.

Proposition [5.4] extends to tempered perfections, and allows g1, ..., g4, h1,...,hy to be
tempered virtual functions on Spf(R). See [?, Ch. 108§5] for a proof.

Proposition 5.4 (Hypocoptyl elongation in tempered perfections). Let (R, m) be an
augmented complete Noetherian local domain over a perfect field k of characteristic p.

o Let g1,y Gmyhay ..., hu be elements of the maximal ideal of (R, m)i‘fg’db.
o Let f(ur, ..., Um,v1,...,05) be an element of
T S 7 i SRS L § Y

)

which lies in the closure of the image of

—o0\\ E,b —o0\\ E,b —o0 =\ E,b
(W ))la @ K07 Nelg — B0 )l

o Let g =p" be a power of p for some positive integer r. Let (dp)nen, n>n, be a sequence
of positive integers such that lim, % = 0.

Suppose that

n

n S1dn erf, b
() FlGt e gm kBT =0 (mod Fildr (R, m)i,b,;d,)
in (R, m)iefrg’,,bd, for all sufficiently large natural numbers n. Then

f(gl®17agm®171®h1771®hm’):0

. . ~ erf, b ~
in the completed tempered perfection <R®,€R, mR@nR)i’,b’;d’ of R®.R.
Remark 5.5. (a) The condition in that the relation f(uq,...,uq,v1,...,vp) lies in the

closure of the image of n((gp"”»g;z Qr m<(yp’°°>)§;2 — /i((gpfoo,ypﬂo))g;;; may seem to

be too stringent at first sight. However some subtleties in tensor products of tempered per-
fections are to be expected, if one recalls analogous situations in the theory of distributions,
such as the Schwartz kernel theorem.

(b) The proof of orbital rigidity of Tate-linear formal varieties uses the special case of propo-
sition [5.4| when the relation f(u,v) is an element of k[[uy, ..., uq, v1,...,vp)]-

(¢) In[5.3 f is a formal function on a product formal scheme X x Y, where X = Spf(x[[u]]),
Y = Spf(k[[v]]), and the tuple (g1,...,4,) (respectively (hq,...,hy)) represents a formal
r-morphism from Spf(R) to X (respectively Y'). Coordinates are similarly involved in the
statement of proposition [5.4l Proposition below is a “coordinate-free” formulation of
5.4 The special case when Sy is the affine coordinate ring of an isoclinic p-divisible group
Z of slope A\; such that Z[pM™] = Z[Fr? with ¢ = p™ is used in the proof of orbital
rigidity of Tate-linear formal varieties. The condition Z[p*™] = Z[Fr9] implies that there
is a coordinate system on Z in which the endomorphism [p*1™], corresponds to “raising all
coorinates to the p™-th power”.
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Proposition 5.6 (Hypocoptyl elongation in tempered perfections reformulated).
Let k be a perfect field of characteristic p which contains a finite field with ¢ = p" elements.
Let (R,m), (S1,my) and (S3, ms) be augmented commutative noetherian local domains over
k. Assume that Sy has an Fy-model Sy, , i.e. an augmented noetherian local subring Sy,
over IF, such that the natural map SQ’[F‘q(quli — Sy is an isomorphism.

o Let ¢ = ¢ : S — Sy be the r-linear continuous ring endomorphism of Sy which
sends every element x € Sy, to 2.

o Let g1 : S1 — (R, m)i"ef&b and gs : Sy — (R, m)iez,f’db be continuous k-linear ring
homomorphisms from S; to (R, m)i‘?g’db, i=1,2.
o Let f be an element of the completed tensor product (S, ml)ff%lb.dl ®r (Sg,mQ)inﬁ;;dQ
for parameters (Ay,by,dy) and (Ag, by, ds).
o Let (dy)nen, n>n, be a sequence of positive integers such that lim,, . Zl—n = 0.
o Let (AV,d') be suitable parameters such that the homomorphisms g; extends to a
. . . f,b f,b .
continuous k-linear homomorphism g} = (S, ;)57 — (R, w50, fori=1,2.
Let (¢ -g3)o(1® ((bZ)”) be the composition
M o,y 19(65)" My iy 9o £,
(Sl’ ml)iel,budl O <52’ m2)i€2,b2;d2 (Sl’ ml)flﬁl;dl s <S2’ m2)ie2,b2;d2 (R’ m)?‘\?,b';d’ :
Suppose that

n — :1dn erf, b
(1) (g~ )0 (L@ (6)") (/)= 0 (mod Filgs, (R, m)%52,)
for all sufficiently large natural numbers n. Then
. erf,b 2 erf, b
(g? ® g;)(f) =0 in (Ra m)i/,b/;d/ Rk (R7 m)i/,b/;d/ )
where ¢} ® g5 denotes the composition

b b
perf, b A perf, b 91993 perf,b 2 perf, b
(St m0)3, 5y @ (S2:Ma)iy, p i, == (Bom) Gy O (B m) Gy -

PRroOOF. This is an easy consequence of 5.4, 0

6. AN OUTLINE OF THE PROOF OF THEOREM

Let Z := V,(Z)/T,(Z), an isoclinic p-divisible group. Let A; be the slope of Z, let ry €

N.o be the denominator of A;, let Ay := max(slope(N,)), and let ¢; := max(3L, ;). By

assumption A\; > ¢;. Choose a positive integer multiple r; of ry and a positive integer

s1 such that ry < s1, s161 € N and 5161 < rA;. Let gz, be a Z,-lattice in the Lie algebra

kie(?u;c(NQ)) of Aut(Ng) which contains a Q,-basis of Lie(Aut(Ng)), and expyy(ng)(92,) C
ut(N).

Step 1. Reduction to the case when the following conditions hold.

e We may assume that « is an algebraically closed field.
e We may assume that there exists a positive integer ry such that Ker(Fr?) = Z[poM],
where Fr? : Z — Z(P") is the ry-th iterate of the relative Frobenius of Z.
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Step 2. We know from [3.§ that there exist constants ng,cy € N such that the restriction
to ! (TL(Ny)[Frl™/*11=%]) of the Tate-linear automorphism eXPaut(Ng) (P"v) of TL(N) is
equal to the translation by a formal morphism

du[v] : 7w (TL(Ny) [Frl/Ad =)y — 7,
for all n > ng and all v € gz, i.e.
OXPauy(Ng) (P"0)(2) = dnlv](z) * =
for all functorial points z of w1 (TL(Ny)[Frl"/*1l=e]).

Analyze the maps 3,,[v] using the first order term in the Baker—-Campbell-Hausdorff formula
to show the following compatibility property of these maps: There exist constants ny,c; € N,
ny > ng, such that [n/q | —c; < |[n/X2] — ¢, and

(5n+1 [U] - [p]Z o 5n[/U]) ‘TL(N)[Fan/ﬂJ_Cl] =0
for all n > n; and all v € g, We will use the following slightly weaker form of this
compatibility property.

There exists a constant my such that

@1) (‘))(m-i-l)?"l)\l [U] - [p”)\l]z © 5)mT1>\1[v]) ’TL(N)[FrmSI] =0
for allm > my and all v € g9, -

Step 3. Let Rz and Rr be the affine coordinate rings of Z and 7" = TL(N) respectively.
Out of the family (f)W1 A |TL (N)[Fwwl])m>m0 of maps, which satisfies the compatibility relation

@.1), one produces a tempered virtual formal morphism 5[1}] : T --» Z which interpolates

the maps 3,2, |TL(N)[F‘rm31]’ such that

([p™**] 7 0 3[u]) * idy

is in some sense an “asymptotic expansion” of the automorphism exp @)(pm”)‘lv) up to
the first order, for m > 0.

The actual meaning of a tempered virtual formal morphism 5[1}] : T --» Z is a continuous
k-linear ring homomorphism 3[v]* from Ry to a tempered perfection

Sol* : Ry — (RT,mT)gfgfj

for suitable parameters (A,b,d). The idea is to define 3[v]*(f) for every formal function f
on Z by
1) = 1im (s, [0 gn ) (1))

m—00

The compatibility relation @1) guarantees that the above limit exists as a tempered virtual

. f
function, i.e. an element of (Ry, mT)ieZ,;ib for some parameters (A, b, d).
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Step 4. Apply the method of hypocotyl elongation in tempered perfections, [5.4] and [5.6} to
conclude that W is stable under the translation by the schematic image of d[v] : W --» Z.
This assertion means that

(©2) (((gw 0 3[]) @ qw) o ™) (f) = 0
for all f in the ideal Iy of Ry which defines W and all v € gz,. Here

e qw : Ry — Ry is the natural surjective ring homomorphism from Ry to the affine
coordinate ring Ry, of the closed subscheme W of T

° qlf/v : (RT)T:; — (RW)I:::; is the continuous ring homomorphism between tempered
perfections induced by ¢y, and

o (¢4 o3[v]*) ® qw) o p* is the composition

(4503 [v]" ) Raw

Rr £ Rz, Ry

erf,b ~
(RW)Z,b;d ®’§RW

We adopt a good coordinate system on Z, under which the ring endomorphism [p™"1A1]3
of Rz becomes “raising all coordinates of Z to the p"*™-th power”. The property of d[v]
that exp Aut(NQ)(pm”Alv) is well approximated by ([p™" 1], o 3[v]) * idy guarantees that the
congruences required by the hypocotyl elongation method are satisfied.

Step 5. Proof of [4.2](a)—(b).

Note that the statement [1.2](a) that (W N Z)yeq is a p-divisible subgroup Z’ of Z follows
from orbital rigidity of p-divisible formal groups. The conclusion of step 4 implies that
(WM Z)req is stable under translation by the sum, over all elements v € gz, of the schematic

images of 3[v] ’W . W --» Z. Tt is clear that the restriction of 3[v] to Z is the endomorphism of
Z induced by v. It follows quickly from the assumption that G operates strongly nontrivially
on TL(IN) that W is stable under translation by Z’.

Step 6. It remains to prove the assertion (C) that the restriction ﬁ‘Wl to Wy of the

formal morphism 7 : TL(N;) — TL(IN3y) is purely inseparable. Clearly we may and do
assume that (W N Z).q is equal to the singleton consisting of the base point of Z. We need
to show that W is purely inseparable over TL(Ny).

We use the property of the virtual tempered formal morphism S[U} that it behaves nicely
with respect to the Z-torsor structure of TL(IN):

(63) S](z % ) = v(z) *3v](z) ¥ functorial points (z, ) of Z x TL(N).

Strictly speaking, the property @3) should be interpreted as a statement that a suitable
diagram of ring homomorphisms commute. We will gloss over this technical point here and
describe the argument in geometric terms. The idea is that, if W is not purely inseparable
over TL(IN3), then we can find two x[[t]]-valued points &1, & of W, such that they differ by
a non-zero k|[t]]-point § of Z, say & = § * &. Then (6]3) implies that v(d) is a x[[¢]]-point
of W Z for all v € gz,. Since GG operates strongly non-trivially on TL(IN), we conclude
that W N Z contains a non-zero «[[t]]-valued point. This contradicts the assumption that

(W N Z)wea = (0). We have finished the sketch of the proof of [4.2] and refer to [?] for details.



TATE-LINEAR FORMAL VARIETIES 27

7. OPEN QUESTIONS

Question 7.1. Clarify the relation between cascades and Tate-linear formal varieties.

Remark. Many Tate-linear formal varieties, including the sustained deformation spaces
Def (X),,, of p-divisible groups X over fields of characteristic p, have natural cascade struc-
tures in the sense of [?]. It is likely that additional constraints need to be imposed on the
WEeil pairings of the intermediate biextensions of a given cascade constituted from p-divisible
formal groups over a field x of characteristic p, in order to force the cascade to have a
Tate-linear structure over k.

7.2. Let X be a p-divisible group over an algebraically closed field x of characteristic p. Let
Def (X) be the equi-characeristic p deformation space of X. Let W = W(X) be the largest
reduced closed subscheme of Def (X ) such that every x[[t]]-point of W corresponds to a p-
divisible group over x[[t]] with constant Newton polygon. Denote by R the affine coordinate
ring of W, an augmented complete noetherian local k-algebra with maximal ideal m. Let
X be the universal p-divisible group over W. For every pair (m,n) of positive integer, let
W,, = Spf(R/m™*"1) and let
ESM(X)mn 1= Fsomw,, (prZ%[p”]\Wm, pr“{%[pnﬂwm),

the Isom scheme over W, x W,, between the pull-backs of X[p"] of the two projections maps
pr,pry : Wi X Wiy — Wi Let mmnmnti @ ESM(X)mnti — Esm(X)mn be the natural
restriction map for every ¢ € N. Let

Esm™ (X)) = Image (Esm(X) mnin — ESM(X)pn), N >0,

be the schematic image of 1y, p.mntn for sufficiently large IV, a scheme of finite type over
W,, X W,,. Let

R(X)mn := Image(E5m(X)mn — Wi X Wiy)

be the schematic image of the map &sm(X),,n — Wy X Wy, Since each R(X),,, is an
Artinian scheme, R(X),,,, stabilizes as n — co. Let

R(X)m = R(X)mn forn>0.

Let S,, be the affine coordinate ring of R(X),,, a quotient of (R/m™"!)®, (R/m™ ). We
have natural x-linear homomorphisms

Gmam+1 * Smi1 = O,
corresponding to the natural morphisms
Jmttm : R(X)m = R(X)m1-
Let S:=lim Sy, and let R(X) := Spf(S). Let
fx - R(X) = W(X)
be the morphism induced by the first projection pr; : W(X) x W(X) — W(X)
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Similarly, for a polarized p-divisible group (Y, \) over k, we have a formal morphism
fya t R(D,A) = W(Y,A)

defined in an analogous way, where W(Y,\) is the largest reduced closed subscheme of
Def (Y, A) corresponding to deformations of (Y, A) with constant Newton polygon.

Question. Are the formal morphisms fx and fyx flat? Do they have other regularity
properties, if any?

Remark. (a) Question stems from an attempt to analyze the equivalence relation “lying
on the same central leat” in a given Newton polygon stratum of a Siegel modular variety in
characteristic p. A good understanding of the morphism R(2),A) — W(Y, ) may lead to
a notion of “families of Tate-linear formal varieties” involving a notion of “families of Tate
unipotent groups”.

(b) It seems plausible that for “generic” X and (Y, ), the morphisms fy and fy, are flat.

Question 7.3. Develop a theory of families of Tate-linear formal varieties, i.e. Tate-linear
formal schemes over general base schemes. Does a version of hold in such a theory?

Remark. It is tempting to define the notion of a Tate unipotent group N over a general
base scheme S exactly as in without the restriction that S is the spectrum of a field of
characteristic p, then define Ng/N to be the Tate-linear formal scheme over S attached to
N. However such a definition may be too restrictive. It may be better to impose weaker
conditions. A starting point can be the following: one requires that N is a sheaf of nilpotent
groups on the big fpqc site of S, and there exists a p-divisible group X over S with the
following properties.
(a) The Lie Q,-algebra LieNg of the Mal’cev completion N is isomorphic to the Q,-Tate
module V,(X) attached to a X.
(b) T,(X) is a sheaf of Lie Z,-submodules of £ieNg.
(c) The exponential of the sheaf of Lie Z,-subalgebras T,(X) of £ieNg is an fqpc sheaf
of nilpotent subgroups of N isogenous to N.

Question 7.4. Let Z be a reduced irreducible closed subscheme of a central leaf C in a
Siegel modular variety over F,. Suppose that the formal completion Z/%0 of Z at an F,-point
zy € Z(F,) is a Tate-linear formal subvariety of C/*°. Show that the formal completion Z/2
is a Tate-linear formal subvariety of C/* for every x € Z(F,).

Remark. The question asks for a “principle of analytic continuation” of Tate linearity.

One may need to pass to the normalization of Z to sidestep the potential issue that Z/®

might have self-intersection.

7.5. Let Q be the algebraic closure of Q in an algebraic closure @3 of Q. Let (’)@p be the

ring of integers of Q,. Let Sg be a Shimura subvariety of a Siegel modular variety 7 4. /o

over Q. Let S% he the Zariski closure of S@ in 4, 105 > and let SE be the closed fiber of
D

SZar which is a closed subscheme of the closed fiber <7, 4, s of %y 4 105
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Question. Suppose that SE is contained in the Zariski closure of a central leaf C in 47 4, B
Let 2o € (S5 NC)(F,) be an F,-point of Sg,NC. Show that the formal completion (Sg NC)/=o
of Sg NC at xo is a Tate-linear formal subvariety of C/o,

Remark. The desired conclusion in is known when p is large relative to g. So this
question is about small primes, including primes ramified with respect to the input data for
the Shimura variety Sg.

Question 7.6. Let C be a central leaf in a Siegel modular variety over E. Let zp € C (Fp)

be an Fp—point of C. Determine which Tate-linear formal subvarieties of C/* are of the form
(S NC )/®0 for some Shimura subvariety S of <7, 4., /g as in .

Question 7.7. (a) Determine whether every Tate-linear formal variety over a field of char-
acteristic p admits a lifting to characteristic 0 (in the sense of an answer to [7.3]).

(b) Generalize the notion of complex multiplication tdo Tate-linear formal varieties over a
field of characteristic p.

(c) Let T be a Tate-linear formal variety over a finite field x of characteristic p, with suffi-
ciently many complex multiplication in the sense of an answer to (b) above. Does T admit
a “quasi-canonical lifting” to characteristic 0 in a suitable sense?

(d) Let O be the ring of integers of a finite extension field of @Q,. Is there a good p-adic
Hodge theory for Tate-linear formal varieties over Spec(O)?

7.8. Let O be the ring of integer of a finite extension field K of Q,. Let k = O/m be
the residue field of O. Let X,Y be p-divisible groups over O whose closed fibers X, Y,
are isoclinic of slopes ux, uy respectively, and pux < py. For every positive integer n, let
I, = H0omgpec(0) (X [p"], Y [p"]) be the Hom scheme over Spec(O) from X [p"] to Y[p"], and
let T, n41: H41 — J€, be the homomorphism over O such that

(Y[p"] = Y[P"']) o mpnia(h) = ho (X[p"] — X[p"*'])

for every functorial point h of 7, 1. Let H,, be the Zariski closure in .77, of the generic fiber
of J¢,. Clearly H, is a commutative finite locally free group scheme over O, because 7, is
proper over O.

Question. Is the homomorphism 7, ,41|m,,, : Hoy1 — H, induced by m, 11 flat (hence

faithfully flat) over O, for every positive integer n?

Remark. Question [7.§8[is a test of a naive approach to the general question on lifting Tate-
linear formal varieties from characteristic p to characteristic 0. It seems likely that the answer
is negative in general. If so, one would like to find some conditions on the p-divisible groups
X and Y over O under which the answer to [7.§ is affirmative.

7.9. There are many obvious questions about tempered perfections. We mention two here.
Let xk be a perfect field of characteristic p. For any augmented complete noetherian local
domain (R,m) over , denote by (R, m)"™PPef the ring consisting of all tempered virtual
functions on Spf(R).
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(i) Investigate the spaces consisting of all continuous valuations of topological k-algebras
,m respectively (R, m)%, ), endowed with suitable topologies. Describe
R, m)tmppert tively (R, m)?%""), endowed with suitable topologies. Describ
them explicitly in the case when R is the formal power series ring over x in 2 variables.
(ii) Develop a geometric theory of tempered perfections of not-necessarily-local formal
schemes, modeled on the usual theory of formal schemes.

Remark. (a) Perhaps the strongest motivation here is that tempered perfections might be
useful in questions unrelated to Tate-linear structures.

(b) A subsequent quest after (ii) is to develop a theory of crystals over tempered perfections
of formal schemes, such as tempered perfections of (C x C)/A¢, where C is a central leaf in a
Siegel modular variety %d,nfp, and (C x C)/2¢ is the formal completion of C x C along its
diagonal subscheme Ac.
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