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§1. Introduction

(1.1) We begin with an impressionistic description of the first part of the title. Throughout
this paper p denotes a prime number, and κ is a field of characteristic p.

A Tate-linear formal variety over κ is a noetherian smooth formal scheme over κ of with an
extra structure, called a Tate-linear structure. The Tate-linear structure of T is governed by
a sheaf N of nilpotent groups on Spec(κ) with the fpqc topology, and N determines T . On
a formal level, N looks like a “fundatmental group of T . Thus Tate-linear formal varieties
share certain group theoretic features with compact nilmanifolds.

A prominent feature of Tate-linear formal varieties is that every Tate-linear formal variety
T over a base field κ of characteristic p is assembled from a finite collection of isoclinic p-
divisible groups over κ. More precisely, the Tate-linear structure of T produces

• a finite subset slope(T ) ⊆ (0, 1] ∩Q, close the slopes of T ,

• a finite family of Tate-linear formal varieties T[a,b] indexed by pairs a, b ∈ slope(T ) with
a ≤ b,

• a structure of an isoclinic p-divisible group over κ on T[b,b] with slope b, for every
b ∈ slope(T ),
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• closed embeddings j[a1,b],[a2,b] : T[a2,b] → T[a1,b] for triples a1, a2, b ∈ slope(T ) such that
a1 ≤ a2 ≤ b,

• an action of the p-divisible group T[b,b] on T[a,b] compatible with the embedding j[a,b],[b,b]

of T[b,b] into T[a,b], for each pair (a, b) in slope(T ) with a ≤ b,

• formally smooth morphisms π[a,b1],[a,b2] : T[a,b2] → T[a,b1] for triples a, b1, b2 ∈ slope(T )
such that a ≤ b1 ≤ b2.

such that the action of T[b2,b2] on T[a,b2] makes π[a,b1],[a,b2] a T[b2,b2]-torsor over T[a,b1] whenever
(b1, b2)∩ slope(T ) = ∅. Thus T is assembled from its isoclinic building blocks T[a,a]’s through
a family of fibrations with p-divisible formal groups as fibers.

The second part of the title refers to following property of Tate-linear formal varieties.

Let T be a Tate-linear formal variety over a perfect field of characteristic p. Let
G be a compact p-adic Lie group, and let ρ : G → Aut(T ) be an action of G on
T which respects the Tate-linear structure. Assume that the action ρ of G on T
is strongly nontrivial. Then every reduced irreducible closed formal subscheme of
T stable under the action of G is a Tate-linear formal subvariety.

It is the main theorem of this article, c.f. 5.1. Two passages in the above statement need to
be clarified.

(a) Since the action ρ respects the Tate-linear structure on T , G operates on each isoclinic
building block T[a,a] of T . The assumption that ρ is strongly nontrivial means that
for every a ∈ slope(T ), none of the Jordan–Hölder component of the action dρ of
the Lie algebra Lie(G) of G on the Dieudonné module D∗(T[aa]) ⊗Z Q is the trivial
representation of Lie(G).

(b) A Tate-linear formal subvariety is a closed embedding j : T ′ → T of a Tate-linear
formal variety T ′ into T which respects the Tate-linear structures on T ′ and T .

The above assertion appears to be unreasonably strong at first sight, because there isn’t any
obvious reason why Tate-linear structures are so rigid that a very weak condition on ρ would
trigger such a robust response. All we can say is that the orbital rigidity phenomenon is
inextricably intertwined with Tate-linear structures. In some sense the class of Tate-linear
formal varieties is almost determined by this rigidity property if the examples in 1.2.2 are
included; c.f. 1.4 (i)–(iv).

(1.2) What are Tate-linear formal varieties

(1.2.1) Let κ be a field of characteristic p. A Tate-linear structure on a noetherian formal
scheme T over κ is by definition an isomorphism α : T ∼= NQ/N as sheaves on the category
Schκ of all κ-schemes with respect to the fpqc topology, where
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• N is a Tate unipotent group over κ, and

• NQ is the Mal’cev completion of N.

Such a pair (T, α) is called a Tate-linear formal variety over κ, and T is necessarily formally
smooth over κ, i.e. it is isomorphic to the formal spectrum of a formal power series ring
κ[[u1, . . . , um]] over κ.

We need to explain two critical ingredients in the above definition, Tate unipotent groups
and the Mal’cev completion of a torsion free nilpotent group.

(a) A Tate unipotent group over κ is a sheaf of groups on the big fpqc site Schκ together
with a decreasing filtration Fil•slN of normal subgroups indexed by (0, 1], with the
following properties.

– There exists a finite subset slope(N) ⊆ (0, 1] ∩ Q, called the slopes of N, such
that

grsFilsl
N := FilsslN/Fil>ssl N

is non-trivial if and only if s ∈ slope(N).

– [Fils1sl N,Fils2sl N]grp ⊆ Fils1+s2
sl N for all s1, s2 ∈ (0, 1], where [ , ]grp denotes the

group commutator (x, y) 7→ x−1y−1xy.

– For each s ∈ slope(N), there exists an isoclinic p-divisible group Ys over κ and an
isomorphism grsFilsl

N ∼= lim←−n Ys[p
n] as fpqc sheaves on Schκ. The transition maps

Ys[p
n+1]→ Ys[p

n] in the projective limit above are induced by [p]Yx , multiplication
by p on Ys.

See definition 3.2.4. Note that the sheaf N of groups is unipotent of class not exceeding
card(slope(N)), and is torsion-free and uniquely `-divisible for every prime number
` 6= p.

(b) NQ is the Mal’cev completion of the sheaf of torsion-free unipotent groups N. Recall
that the Mal’cev completion NQ of a torsion free unipotent group N is characterized
by the following property: NQ is a uniquely divisible unipotent group containing N
such that for every element x ∈ NQ, there exists a positive integer n > 0 such that
xn ∈ N . See §2 for a review and references.

Remark. To illustrate why it is essential to consider sheaves for the fpqc topology on
Spec(κ), we only need to examine the example 1.2.2 (i) of Tate-linear formal varieties: a
p-divisible formal group X over κ, whose associated Tate unipotent group is the p-adic Tate
module Tp(X) = lim←−nX[pn] of X, and the Mal’cev completion of Tp(X) is Tp(X)Q =
Tp(X) ⊗Z Q. Then Tp(X)(S) = (0) = Tp(X)Q(S) for every noetherian local κ-algebra
S. However Tp(X)Q/Tp(X) has many points with values in artinian local κ-algebras R;
an element of (Tp(X)Q/Tp(X))(R) corresponds to an element of (Tp(X)Q/Tp(X))(S) in a
faithfully flat commutative R-algebra S plus a descent datum for S/R.
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It is fair to say that the above definition of Tate-linear formal varieties feels dry and stale.
We will try to soften it with some examples and comments.

(1.2.2) Examples of Tate-linear formal varieties

(i) Every p-divisible group X over κ is a Tate-linear formal variety over κ. The Tate
unipotent group here is the p-adic Tate module of X, defines as the projective limit
Tp(X) := lim←−nX[pn] in the category of fpqc sheaves on Schκ.

(ii) Let X, Y, Z be p-divisible groups over κ. Every biextension E → X × Y of (X, Y )
by Z is a Tate-linear formal variety over κ. The Tate unipotent group N here is a
central extension of X × Y by Z, such that N is split over X and also over Y, so
that N is a semi-direct product of Z × X with Y and also a semi-direct product of
Z ×Y with X. Here X = lim←−nX[pn], Y = lim←−n Y [pn] and Z = lim←−n Z[pn]. The Weil
pairings βn : X[pn]× Y [pn]→ Z[pn], n ≥ 1 of the biextension E determines the group
commutator on NQ, and vice versa. See 4.3 for further explanation, and [21] for the
notion of biextensions.

(iii) Let X be a p-divisible group over κ, and let Def (X)sus be the closed formal subscheme
of the equi-characteristic deformation space of X representing all sustained deforma-
tions of X. Then Def (X)sus is a Tate-linear formal variety over κ. The associated
Tate unipotent group here is

Tp

(
Autst(X)0

)
:= lim←−Autst(X)0,

the projective limit of the neutral components of the projective system of stabilized
Aut group schemes of X. If s1 < · · · < sr are the distinct slopes of X, then
slope

(
Tp

(
Autst(X)0

))
consists of the r(r − 1)/2 numbers sj − si, i < j. Moreover

Tp

(
Autst(X)0

)
is nilpotent of class at most r − 1. See [7, Ch. 5 §4] for the definition

of the projective system Autst(X)0, and [7, Ch. 6 §5] for the definition of Def (X)sus.

(iv) Let (Y, λ) be a polarized p-divisible group, and let Def (Y, λ)sus be the closed formal
subscheme of the equi-characteristic deformation space of Y representing all sustained
deformations of (Y, λ). ThenDef (Y, λ)sus is a Tate-linear formal variety over κ attached
to the Tate unipotent group

Tp

(
Autst(Y, λ)0

)
:= lim←−Autst(Y, λ)0.

See [7, Ch. 5 §4] for the definition of Autst(Y, λ)0, and [7, Ch. 6 §6] for the definition of
Def (Y, λ)sus.

It follows that for every central leaf C in a Siegel moduli scheme Ag,d,n which classifies
g-dimensional polarized abelian varieties of degree d plus principle level-n structures
over an algebraically closed field k of characteristic p, n ≥ 3 and every k-point x0 in C,
the formal completion C/x0 is a Tate-linear formal variety over k. We recall that the
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central leaf C(x0) passing through a k-point x0 is the locally closed smooth subvariety
of C such that C(x0)(k) consists of isomorphism classes [(A, µ, ζ)] of g-dimensional
polarized abelian varieties (A, µ) over k with level-n structure ζ such that the polarized
p-divisible group (A[p∞], µ[p∞]) is isomorphic to (Y, λ); c.f. [22]. See also [8], [6] and
[7, Ch. 6] for a scheme-theoretic definition of central leaves via the notion of sustained
polarized p-divisible groups.

(1.2.3) Remark. (a) These examples show that for the Tate-linear formal variety TL(N)
attached to a Tate-unipotent group N over κ, one may regard N as “the Tate Zp-module of
TL(N)”, while the Mal’cev completion NQp may be thought of as “the Tate Qp-module” of
TL(N)”.

(b) The fundamental group Γ of a compact nilmanifold M is a finitely generated nilpotent
group. The Mal’cev correspondence says that there exists a nilpotent Lie Q-algebra n of
finite dimension over Q and an isomorphism between the Mal’cev completion ΓQ of Γ and
the Q-points of the nilpotent algebraic group N over Q with Lie algebra n. The injective
homomorphisms Γ ↪→ ΓQ ∼= N(Q) ↪→ N(R) identifies Γ as a co-compact discrete subgroup of
the nilpotent Lie group N(R), and M is isomorphic to N(R)/Γ. This is the analogy between
Tate-linear formal varieties and compact nilmanifolds mentioned in 1.2.1.

(c) Many Tate-linear formal varieties, including sustained deformation spaces Def (X)sus in
(ii), are cascades whose group-consituents are p-divisible formal groups, in the sense of [20].
It would be interesting to determine which ones among such cascades come from Tate-linear
formal varieties.

(1.3) How to prove orbital rigidity of Tate-linear formal varieties

(1.3.1) The orbital rigidity for p-divisible formal groups, first proved for formal tori in [4,
§6], and extended to all p-divisible formal groups in [5], relies on the method of hypocotyl
elongation. This is a result in what Abhyankar called “high school algebra”. See [5, Prop. 3.1]
for a precise statement, and also 6.7.2 for an equivalent formulation. In a simplified version,
this method allows one to deduced a desired equality of the form

f(g1(x), . . . , ga(x), h1(y), . . . , hb(y)) = 0

in a power series ring κ[[x1, . . . , xm, y1, . . . , ym]] over a field κ of characteristic p, where
f(u1, . . . , ua, v1, . . . , vb) is a formal power series over a field κ of characteristic p in two sets
of variables x and y, g1(x), . . . , ga(x) ∈ κ[[x1, . . . , xm]], h1(y), . . . , hb(y) ∈ κ[[y1, . . . , ym]],
from an infinite family of congruences

f(g1(x), . . . ,ga(x), h1(x)p
rn

), . . . , hb(x)p
rn

) ≡ 0 mod (x1, . . . , xm)dn ∀n ≥ n0

in a single set of variables x1, . . . , xm, provided that limn→∞
prn

dn
= 0.

In the proof of orbital rigidity of p-divisible formal groups, we are given a p-adic Lie group
G acting strongly nontrivially on a p-divisible formal group X, and a reduced irreducible
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closed formal subscheme W of X stable under G. We may assume that the p-divisible group
splits into a product Y ×Z, where Z is isoclinic and all slopes of Y are strictly smaller than
the slope of Z. We want to show that W is stable under the translation action by prZ(W ),
where prZ is the projection from X to Z. In other words, given any formal function φ on X
which vanishes on W , we want to show that the pull-back of φ to W ×W under the map
(w1, w2) 7→ w1 + prZ(w2) is the 0-function on W ×W . We apply hypocotyl prolongation,
where

• a = dim(X), b = dim(Z),

• f is the pull-back of φ to X ×X under the map (x1, x2) 7→ x1 + prZ(x2),

• the functions (g1, . . . , ga) are the coordinates of the inclusion map W ↪→ X,

• the functions (h1, . . . hb) are the coordinates of the composition of W ↪→ Z with the
endomorphism of Z attached to the action of an element v ∈ Lie(G) on Z, after
multiplying v by a power of p if necessary, and

• the required infinite family of congruence relations is the result of an easy first order
approximation to the “one-parameter subgroup” expG(ptnv), with t/r equal to the
slope of Z.

For a given pull-back f as above, we get many equalities as the outputs of hypocotyl elonga-
tion, one for each one-dimensional subspace of Lie(G). The condition that G acts strongly
non-trivially implies that the identities from varying v’s imply that f vanishes on W ×W
for every formal function φ on X which vanishes on X, as desired.

(1.3.2) Naturally one tries to use the same method tackle orbital rigidity for Tate-linear
formal varieties. But one encounters a serious difficulty, which shows up already in the first
nontrivial case of a biextension E of (X, Y ) by Z, where X, Y, Z are isoclinic p-divisible
groups over κ such that slope(X) + slope(Y ) = slope(Z) = t

r
, t, r ∈ N>0. Given a “one-

parameter subgroup” expG(ptmv) of G, in general there does not exist a morphism h : E → Z
such that translation by [ptn]Z ◦ h is a first-order approximation to the action of expG(ptnv)
in a large infinitesimal neighborhood Un of the base point of E. This difficulty led to the
uncertainly as to whether orbital rigidity holds only for p-divisible formal groups, or it is a
general phenomenon for all Tate-linear formal varieties. In the latter case, there is also the
related question on a good notion of Tate-linear formal varieties and their Tate-linear formal
subvarieties.

This unfortunate state of affairs lasted many years, until we realized that the compati-
bility relation between the actions of expG(ptnv) and expG(pt(n+1)v) on E shows the action
of the whole one-parameter subgroup expG(ptnv) on E can be approximated by a “gener-
alized formal morphism” from E to Z, whose coordinate functions lie in a non-noetherian
complete local ring S of “generalized formal functions” on E, sandwiched between the affine
coordinate ring RE of E and the completion (Rperf

E )∧ of the perfection of RE. This ring S
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is an example of tempered perfections of RE. The collection of tempered perfections of RE

is a filtered family of subrings of (Rperf
E )∧. Elements of (Rperf

E )∧ which lies in some tempered
perfection of RE are called tempered virtual functions on the formal scheme E. It turns out
that the method of hypocotyl elongation also holds for tempered virtual functions. After this
critical upgrade of the main technical tool, the strategy for orbital rigidity of p-divisible for-
mal groups also works for biextensions. See [5] for a first draft of this proof a few years ago,
and [7, Ch. 10] for an updated version. We refer to [7, Ch. 10 §7] for more information about
tempered perfections, and [7, Ch. 10 §5] for hypocotyl elongation in tempered perfections.
See also 6.5 (respectively 6.7) for a review of tempered perfections (respectively hypocotyl
elongation in tempered perfections).

(1.4) After the proof of orbital rigidity of biextensions of p-divisible formal groups, there was
no doubt that the same method would establish orbital rigidity of other equivariant formal
varieties, such as sustained deformation spaces Def (X)sus of (certain classes of) p-divisible
formal groups X over fields of characteristic p. The question was:

What would be a good notion of Tate-linear formal varieties which includes all
examples in 1.2.2 and has the orbital rigidity property?

A candidate was proposed in [6], based on the notion of terraced Tate unipotent groups
in 3.1. Tao Song proved an orbital rigidity result for sustained deformation spaces of p-
divisible groups with at most 4 slopes in his 2022 Penn thesis [29]. In [10] D’Addezio and
van Hoften defined a formal schemes over Fp with extra structures, corresponding to Tate-
linear formal varieties for which p is strictly bigger than the nilpotency class of the associated
Tate unipotent groups, and proved orbital rigidity using the method hypocotyl elongation
in tempered perfection.

The definition of Tate-linear formal varieties and subvarieties in this article is more flexible
than the one in [6]. In addition, the resulting class of Tate-linear formal varieties satisfy
properties (i)–(iv) below.

(i) Sustained deformation spaces of p-divisible groups over κ are Tate-linear formal vari-
eties.

(ii) Orbital rigidity holds for Tate-linear formal varieties.

(iii) Every Tate-linear formal variety T can be embedded, up to isogeny, in a sustained
deformation space Def (X)sus as a Tate-linear formal subvariety.

(iv) For every Tate-linear formal variety T and every Tate-linear formal subvariety T ′ of
T , there exists an action ρ

Euler
of an open subgroup of Zp on the pair (T, T ′) which

respects the Tate-linear structures.

The statement (iii) follows from 3.2.24, a consequence of an analog of Ado’s theorem. The
statement (iv) follows from 3.4.6.
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(1.5) The rest of this paper organized as follows. In §2 we review the Mal’cev completion
of torsion free nilpotent groups, the Mal’cev correspondence between nilpotent uniquely
divisible groups and nilpotent Lie Q-algebras, the Baker-Campbell-Hausdorff formula and its
inversion. The basics of Tate unipotent groups, their Mal’cev completions, and the associated
Tate unipotent Lie algebras are given in §3. The definition and elementary properties of Tate-
linear formal varieties are presented in §4. Orbital rigidity of Tate-linear formal varieties are
treated in §§5–6. The reduction steps are explained in §5, and the proof of the key theorem
5.2 is given in §6. Here is a more detailed guide.

(i) The scheme of the proof of 5.2 via hypocotyl elongation in tempered perfections is
explained in 6.6. In particular, given any element v ∈ Lie(G), a tempered virtual
morphism c̃[v] : TL(N) 99K Z constructed in 6.8, where Z is an isoclinic p-divisible
group acting on TL(N) such that TL(N) is a Z-torsor and TL(N)/Z is a Tate-linear
formal variety all of whose slopes are strictly smaller than the slope of Z. This virtual
morphism c̃[v] : TL(N) 99K Z can be thought of as the first order approximation for the
action on TL(N) of the one-parameter subgroup expG(pnv) for all sufficiently divisible
positive integers n; see 6.8.1 (a). It is fed into the hypocotyl elongation machine to
establish the desired equalities.

(ii) The tempered virtual morphism c̃[v] is constructed out of an infinite family of maps
cn[v]

∣∣
Un

from infinitesimal neighborhoods Un of the base points of TL(N) to Z. They
satisfy a compatibility relation 6.2.2. The map is the restriction to Un of a morphism
cn[v] defined in 6.2. A formula for the morphism cn[v]

∣∣
Un

is obtained in 6.3.6 using the
Baker-Campbell-Hausdorff formula, which implies the required compatibility property
6.2.2.

(iii) The equalities obtained from the hypocotyl elongation machine indicated in (i) means
that in the statement of 5.2, the given reduced irreducible formal subscheme of TL(N)
stable under the action of G is stable under translation by the schematic image of
the tempered virtual map c̃[v], for all v ∈ Lie(G). Statements 5.2 (a)–(b) follows
from this and the assumption that G operates strongly nontrivially on TL(N). The
inseparability assertion 5.2 (c) is deduced from the fact 6.8.1 (b) that c̃[v] respects the
Z-torsor structure of TL(N).

Acknowledgements. We owe an enormous intellectual debts to Mumford’s paper [21].
Biextensions of p-divisible groups, introduced in [21], provide an ideal testing ground for
determining whether orbital rigidity holds for Tate-linear formal varieties which are not
p-divisible formal groups. In addition, the explicit construction of the Weil pairings as struc-
tural cocycles of biextensions in [21, §5] kept us from going astray during the conception of
tempered virtual formal morphisms E 99K Z attached to one-parameter groups of automor-
phisms of a biextension E of (X, Y ) by Z. The first author would also like to thank the
support of a Simons Fellowship 561644 and a Simons Foundation collaboration grant 701067
during his research on the two related topics of this article.
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§2. Localization of nilpotent groups and Mal’cev completion

In this section we summarize some basic properties of nilpotent groups and their localizations.
Proofs can be found in the references cited in the next paragraph.

The Mal’cev completion of finitely generated torsion free nilpotent group was first con-
structed in [17], which relied heavily on the papers [18] [19] on fundamental groups of nil-
manifolds, i.e. homogeneous spaces for connected finite dimensional nilpotent Lie groups.
See also Raghunathan [26, Ch. 2] for an account of Mal’cev’s original approach. The Mal’cev
completion can be regarded as a special case of the theory of localization of (locally) nilpo-
tent groups, and was reworked by Lazard [16], Quillen [25] and others; c.f. [2], [15], [14]. For
general background on nilpotent groups, we refer to [11], [2], [30]; see also [9] for a textbook
treatment of nilpotent group accessible to advanced undergraduate students.

(2.1) For any group G, denote by

G = γ1(G) ⊇ γ2(G) ⊇ · · · ⊇ γi(G) ⊇ γi+1(G) ⊇ · · ·

the descending central series (or lower central series) of G, defined inductively by γi+1 =
[G, γi(G)]grp for all i ≥ 1. Here [G, γi(G)]grp is the subgroup of G generated by all commu-
tators [a, b]grp := a−1b−1ab with a ∈ G and b ∈ γi(G). Let

ζ1(G) ⊆ ζ2(G) ⊆ · · · ⊆ ζi(G) ⊆ ζi+1(G) ⊆ · · ·

be the ascending central series of G, defined inductively by ζ1(G) = Z(G), the center of G,
and ζi+1(G)/ζi(G) = Z(G/ζi(G)) for all i ≥ 1. We say that G is nilpotent of class at most c,
where c is a positive integer, if γc+1(G) = {1}, or equivalently if ζc(G) = G.

(2.2) (Hall–Petresco formula) For every free group Fm(x1, . . . , xm) with free generators
x1, . . . , xm, define words τn,m(x) = τn,m(x1, . . . , xm) ∈ Fm(x1, . . . , xm) recursively for n =
1, 2, . . . by

xn1 · · ·xnm = τ1,m(x)(
n
1) τ2,m(x)(

n
2) · · · τn,m(x)(

n
m).

(2.2.1) Lemma. The Hall–Petresco word τn,m lies in the n-th term of the descending central
series of the free group Fm(x1, . . . , xm), i.e.

τn,m(x1, . . . , xm) ∈ γn(Fm(x1, . . . , xm)) ∀n ∈ N≥1.

Moreover for any integer r ≥ 1, let

hm,r : Fm+r(y1, . . . , ym+r)→ Fm(x1, . . . , xm)

be the group homomorphism between free groups such that hm,r(yi) = xi for i = 1, . . . ,m and
hm,r(yr+j) = 1 for j = 1, . . . , r. Then

hm,r(τn,m+r(y1, . . . , ym+r)) = τn,m(x1, . . . , xm) ∀n ∈ N≥1.
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An application of the Hall–Petresco formula is the following result due to Blackburn.

(2.2.2) Proposition. For every pair p, c, where p is a prime number and c is a positive
integer, define an integer f(p, c) recursively (in c) by f(p, 1) = 0 and

f(p, c) = f(p, c− 1) + max{i ∈ N | pi ≤ c} ∀ c ≥ 2.

Then for every nilpotent group N of class at most c and every integer n ≥ f(p, c), every
finite product of pn-th power of elements of N is the pn−f(p,c)-th power of some element of
N .

The proof is by induction on the nilpotency class c of N , using the general fact that the
subgroup generated by the derived group of N and a single element of N has nilpotency
class at most c− 1.

(2.3) Localization of nilpotent groups

(2.3.1) Let Φ be the set of all prime numbers. Let P be a subset of Φ, and let P ′ := ΦrP
be the complement of P in Φ. For any non-zero integer n, we say that n is a P -number,
written symbolically as n|P∞, if every prime divisor of n is in P . We say that n is prime to
P , or gcd(n, P ) = 1, if n is a P ′-number, i.e. if no prime divisor of n is in P .

(2.3.2) A nilpotent group N is said to be torsion free if the map x 7→ xn from N to N is
injective for every non-zero integer n, or equivalent if the only element of N of finite order
is the unity element 1. More generally, for any subset P of the set Φ consisting of all prime
numbers, we say that N is P -torsion free if the self map x 7→ xn of N is injective for every
non-zero P -number n. This condition is equivalent to the apparently weaker condition that
if x ∈ N and xn = 1 for some non-zero integer n, then the order of x is prime to P .

A nilpotent group N is said to be divisible if the map x 7→ xn from N to N is surjective for
all non-zero integer n. More generally, N is said to be P -divisible for a subset P of Φ if the
self map x 7→ xn is surjective for every non-zero integer P-number n.

A nilpotent group N which is P -torsion free and P -divisible is also said to be uniquely
P -divisible. When P = Φ, we say that N is uniquely divisible.

(2.3.3) Lemma. Let N be a nilpotent group and let H ≤ N be a subgroup of N . Let Q ⊆ Φ
be a set of prime numbers.

(a) The subset
IQ(H,N) := {x ∈ N | xn ∈ H for some Q-number n}

is a subgroup of N .

(b) The subgroup IQ(H,N) of N is Q-isolated, i.e. if y ∈ N and there exists a Q-number
m such that ym ∈ IQ(H,N), then y ∈ IQ(H,N).
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(c) If H is a normal subgroup of N , then IQ(H,N) is also a normal subgroup of N .

In the special case when H = {1} is the trivial subgroup of N , the subgroup IQ,{1} consists
of all Q-torsion elements of N , and the quotient group N/IQ,{1} is Q-torsion free.

(2.3.4) Let P ⊆ Φ be a set of prime numbers. A group G is said to be P -local if the self
map x 7→ xn of G is bijective for every non-zero integer n with gcd(n, P ) = 1. Clearly a
nilpotent group N is ∅-local if and only if N is torsion free and divisible.

A group homomorphism εG,P : G → GP is said to be P -localizing if GP is p-local and
the map ε∗G,P : Hom(GP , H) → Hom(G,H) induced by εG,P is bijective for every P -local
group H. This universal property characterizes εG,P up to unique isomorphism, if such a
P -localizing homomorphism εG,P exists.

The basic theorem on localizations of nilpotent groups is the following.

(2.3.5) Proposition. For every set P ⊆ Φ of prime numbers and every nilpotent group
N , there exists a P -localizing homomorphism εN,P : N → NP , where NP is a nilpotent p-local
group. Moreover NP is nilpotent of class at most c if N is.

The assignment N  NP can be regarded as a functor LP from the category N of nilpotent
groups to the category NP of P -local nilpotent groups, which induces functors εP,c from the
category Nc of nilpotent groups of class at most c to the category NP,c of P -local nilpotent
groups of class at most c.

(2.3.6) Proposition. Let N be a nilpotent group. Let P ⊆ Φ be a set of prime numbers,
and let P ′ := ΦrP .

(a) The kernel Ker(εN,P ) of the P -localizing homomorphism εN,P : N → NP is equal to the
subgroup IP ′({1}, N), consisting of all elements x ∈ N such that there exists a non-zero
integer n prime to P with xn = 1.

(b) The localization functor LocP : N→ NP is exact. More precisely if HEN is a normal
subgroup of a nilpotent group N , then we have a commutative diagram

{1} // H
j //

εH,P

��

N
q //

εN,P

��

(N/H) //

εN/H,P

��

{1}

{1} // HP jP
// NP qP

// (N/H)P // {1}

with exact rows, i.e. jP identifies HP as a normal subgroup of NP , and qP is an epi-
morphism.

(c) Let α : N → N̄ be a homomorphism between nilpotent groups.

11



– The localization αP : NP → N̄P of α is injective if and only if Ker(α) ⊆
IP ′({1}, N), i.e. the order of every element of the kernel of α is finite and prime
to P .

– The homomorphism αP : NP → N̄P is surjective if and only if IP ′(α(N), N̄) = N̄ .
In other words for every element y ∈ N̄ , there exists an element x ∈ N and an
integer n prime to P such that yn = α(x).

(2.3.7) By definition the Mal’cev completion MC(N) of a nilpotent group N is the lo-
calization of N with respect the empty subset ∅ of prime numbers. The universal map
εN,∅ : N → N∅ = MC(N) identifies MC(N) is characterized up to a unique isomorphism by
the following properties:

(a) Ker(εN,∅) = Ntor, the subgroup of N consisting of all elements of N of finite order.

(b) MC(N) is a uniquely divisible nilpotent group.

(c) For every y ∈ MC(N), there exists a non-zero integer n and an element x ∈ N such
that yn = εN,∅(x).

(2.4) We will review the explicit construction of the Mal’cev completion and the Mal’cev
correspondence, following [25, Appendix A3]. The precise statement of the Mal’cev corre-
spondence is given in 2.4.6 and 2.4.7.

(2.4.1) For any group G, denote by Q[G] the group algebra of G over Q, consisting of all
finite formal Q-linear combinations of elements of G. Let IG be the augmentation ideal of
Q[G], equal to the Q-linear span of all elements of the form [y]− 1, y ∈ G. The completed
group algebra Q[[G]] is the formal completion of Q[G] with respect to the IG-adic filtration(
InG
)
n∈N of Q[G]. Let I∧G be the closure of IG in Q[[G]].

The subset 1 + I∧G of Q[[G]] is a subgroup of the group Q[[G]]× of invertible elements
of Q[[G]]. This group is uniquely divisible, or Q-powered: for every x ∈ I∧Q[[G]] and every

rational number a ∈ Q, define (1 + x)a ∈ 1 + I∧Q[[G]] by

(1 + x)a := 1 +
∑
m≥1

(
a

m

)
xm,

(
a

m

)
=
a(a− 1) · · · (a−m+ 1)

m!
.

So for every element y ∈ G of finite order, the image of [y] in Q[[G]]× is 1.

(2.4.2) The completed group algebra Q[[G]] has a natural co-commutative Hopf algebra
structure, whose co-multiplication map

∆Q[[G]] : Q[[G]] −→ Q[[G]]⊗̂QQ[[G]]

is the continuous Q-algebra homomorphisms such that ∆Q[[G]]([y]) = [y]⊗ [y] for all y ∈ G.
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(2.4.3) Define a subgroup Gplk(Q[[G]]) ⊆ 1 + I∧G by

Gplk(Q[[G]]) := {y ∈ 1 + I∧G | ∆Q[[G]] = y ⊗ y}.

Elements of Gplk(Q[[G]]) are called group-like elements in 1 + I∧G. Clearly Gplk(Q[[G]]) is a
subgroup of 1 + I∧G, and we have a canonical group homomorphism jG : G→ Gplk(Q[[G]]).

(2.4.4) Define a Lie Q-subalgebra Prim(Q[[G]]) of the Lie algebra attached to the associative
algebra Q[[G]] by

Prim(Q[[G]]) := {x ∈ I∧G | ∆Q[[G]](x) = x⊗ 1 + 1⊗ x.}

Elements of Prim(Q[[G]]) called primitive elements of the co-algebra underlying the Hopf
algebra Q[[G]].

(2.4.5) Denote by UPrim(Q[[G]]) the universal enveloping algebra of the Lie Q-algebra
Prim(Q[[G]]). Let ÛPrim(Q[[G]]) be the completion of UPrim(Q[[G]]) with respect to the
filtration of UPrim(Q[[G]]) by powers of the augmentation ideal Prim(Q[[G]])·UPrim(Q[[G]])
of UPrim(Q[[G]]). We have a natural continuous homomorphism

h : ÛPrim(Q[[G]]) −→ Q[[G]]

of Q-algebras.

(2.4.6) Proposition. Let N be a nilpotent group of class at most c, where c is a positive
integer. Let NQ := Gplk(Q[[N ]]), and let n := Prim(Q[[N ]]).

(a) The canonical group homomorphism

jN : N → NQ

is the localization of N with respect to the empty set ∅ of primes. In other words the
group NQ is uniquely divisible, the kernel Ker(jN) of jN is the subgroup Ntor consisting
of all elements of N of finite order, and for every element x ∈ NQ, there exists a
positive integer n and an element y ∈ N such that jN(y) = xn. In particular jN is an
isomorphism if and only if N is uniquely divisible.

(b) The natural map N/Ntor → Q[[N ]]/(I∧N)c+1 ∼= Q[N ]/Ic+1
N is injective.

(c) The Lie Q-algebra n is nilpotent of class at most c.

(d) The canonical Q-algebra homomorphism

h : Ûn −→ Q[[N ]]

is an isomorphism of Hopf algebras.
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(e) The exponential and the logarithm series define mutually inverse bijections

exp : n −→ NQ, x 7→ exp(x) =
∑
n≥0

xn

n!

and

log : NQ −→ n, y 7→ log(y) =
∑
n≥1

(−1)n−1 (y − 1)n

n
.

(f) The exponential/logarithm pair in (e) gives a one-to-one correspondence between the set
of all uniquely divisible subgroups of Gplk(Q[[N ]]) and the set of all Lie Q-subalgebras
of Prim(Q[[N ]]).

Remark. (i) Both infinite sums in (e) converge in the complete Hopf algebra Q[[N ]]. Note
that for every primitive element x in I∧N ⊆ Q[[N ]], we have

∆(exp(x)) =
∑
n≥0

∆(x)n

n!
= exp(x⊗ 1 + 1⊗ x)

= (exp(x)⊗ 1) · (1⊗ exp(x)) = exp(x)⊗ exp(x)

because x ⊗ 1 commutes with 1 ⊗ x, hence exp(x) ∈ NQ. Similarly for every group-like
element y in 1 + I∧N , we have

∆(log(y)) = log(∆(y)) = log(y ⊗ y) = log((y ⊗ 1) · (1⊗ y))

= log(y ⊗ 1) + log(1⊗ y) = log(y)⊗ 1 + 1⊗ log(y),

hence log(y) is primitive.

(ii) We will call n = Prim(Q[[N ]]) in 2.4.6 the Lie algebra of the uniquely divisible nilpotent
group NQ.

Let n be a nilpotent Lie Q-algebra, let Un be the universal enveloping algebra of n over
Q. Let Un+ be the augmentation ideal of Un, i.e. Un+ = n ·Un. Let Ûn be the completion of
Un with respect to the filtration of Un by powers of Un+, and let Ûn+ be the augmentation
ideal of Ûn, equal to the closure of Un+ in Ûn. The completed universal enveloping algebra
Ûn has a natural structure as a co-commutative Hopf algebra, with co-muliplication

∆Ûn : Ûn −→ Ûn ⊗̂QÛn

being the continuous algebra homomorphism such that ∆Un+(x) = x⊗1+1⊗x for all x ∈ n.
Denote by

Gplk(Ûn) := {y ∈ 1 + Un+ | ∆Ûn(x) = x⊗ 1 + 1⊗ x}

the subgroup of 1 + Un+ ≤ Ûn× consisting of all group-like elements in 1 + Un+.
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(2.4.7) Proposition. Let n be a nilpotent Lie Q-algebra of class at most c, where c is a
positive integer as in the previous paragraph.

(a) The group Gplk(Ûn) is uniquely divisible nilpotent group of class at most c.

(b) The canonical homomorphism

n −→ Un/(U+n)c+1

is injective.

(c) The canonical continuous homomorphism

Q[[Gplk(Ûn)]] −→ Ûn

is an isomorphism of complete Hopf algebras.

(2.4.8) Remark. (i) Propositions 2.4.6 and 2.4.7 show that the functor from the category
of all uniquely divisible nilpotent groups to and category of all nilpotent Lie Q-algebras,
which sends each uniquely divisible nilpotent group N to Prim(Q[[N ]]), is an equivalence,
and the functor which sends every nilpotent Lie Q-algebra n to Gplk(Ûn) is an essential
inverse. This is an explicit form of the Mal’cev correspondence.

(ii) Under the Mal’cev correspondence, subgroups correspond to Lie subalgebras, normal
subgroups correspond to Lie ideals, and quotient group correspond to quotient Lie algebras.
Moreover the Mal’cev correspondence preserves the nilpotency class.

(iii) The statement 2.4.6 (e) says that when a uniquely divisible nilpotent group N corre-
sponds to a nilpotent Lie Q-algebr n under the Mal’cev correspondence, we have functorial
bijections of sets

log : N
∼−→ n and exp : n

∼−→ N.

(2.4.9) (Baker–Campbell–Hausdorff formula) Let L(x, y)Z be the free Lie Z-algebra with
free generators x, y, embedding in the free associative Z-algebra Ass(x, y)Z with free gen-
erators {x, y}. Both L(x, y)Z and Ass(x, y)Z are naturally N-graded, such that x, y are
homogeneous of degree 1. Denote by L(x, y)nZ the homogeneous component of L(x, y)Z of
degree n, n ∈ N. Let L(x, y)Q := L(x, y)Z ⊗Z Q, and let Ass(x, y)Q := Ass(x, y)Z ⊗Z Q. Let

Âss(x, y)Q be the completion of Ass(x, y)Q with respect to powers of its augmentation ideal

mQ := mAss(x,y)Q . Let L(x, y)∧Q be the closure of L(x, y)Q in Âss(x, y)Q, naturally isomorphic
to the completion of L(x, y)Q with respect to the filtration by FilnL(x, y)Q := ⊕m≥nL(x, y)mZ .
Let

exp : L(x, y)∧Q −→ Âss(x, y)Q

be the exponential map given by the standard exponential series.
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The Baker–Campbell–Hausdorff formula asserts that there exists a unique element H(x, y)
in L(x, y)∧Q, which can be written in the form

H(x, y) =
∑
n≥1

Hn(x, y) =
∑
n≥1

∑
r+s=n,
r,s≥0

Hr,s(x, y)

such that
exp(x) · exp(y) = exp(H(x, y)).

where
Hr,s(x, y) ∈ 1

(r+s)! (r+s−1)!
L(x, y)nZ

is an element of 1
(r+s)! (r+s−1)!

L(x, y)Z of bi-degree (r, s) in (x, y), and

Hn(x, y) =
∑
r+s=n

Hr,s(x, y) ∈ 1
n! (n−1)!

L(x, y)Z

is of total degree n. Moreover H1,0(x, y) = x, H0,1(x, y) = y and

Hr,0(x, y) = 0 = H0,s(x, y) ∀ r ≥ 2, ∀ s ≥ 2.

Remark. (i) We refer to [28, Part I Ch.II §8] and [3, Ch.II §6] for Dynkin’s explicit form of
theHn(x, y)’s as an infinite series, from which the estimate of the denominator the coefficients
of Hr,s(x, y) follows. Better estimates of the denominators are available, but we won’t need
them.

(ii) The part of H(x, y) linear in y, namely the infinite series
∑

r,1Hr,1(x, y), is necessarily
of the form h(adx)(y), where h(t) is a formal power series in Q[[t]]. It is possible to evaluate
the formal power series h(t) and write it in a closed form in terms of more familiar functions
and their indefinite integrals; we won’t need this either.

Define a Lie Z-subalgebra L(x, y)! of L(x, y)Q by

L(x, y)! :=
∑
n≥0

L(x, y)nZ ⊗Z Z[1/c!].

Denote by L(x, y)∧! the completion of L(x, y)! with respect to the filtration

FilnL(x, y)! = ⊕m≥n L(x, y)m ⊗Z Z[1/n!].

For any m ≥ 1, the natural map L(x, y)!/FilmL(x, y)! −→ L(x, y)∧! /FilmL(x, y)∧! is an iso-
morphism, where FilmL(x, y)∧! is the closure of Film(x, y)! in FilmL(x, y)∧! . Since

Hn(x, y) ∈ L(x, y)m ⊗Z Z[1/n!]

for all n, H(x, y) belongs to the image of the canonical injection

L(x, y)∧! → L(x, y)∧Q.

This observation is useful for the Lazard correspondence 2.4.11.
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(2.4.10) Remark. One way to think about the Mal’cev correspondence is to identify the
two sets N and n using the mutually inverse bijections log and exp. So we have two structures
on this set: as a uniquely divisible nilpotent group and also as a nilpotent Lie Q-algebra.
This approach yields the following lowbrow version of the Mal’cev correspondence.

(a) For any nilpotent Lie Q-algebra n, the Baker–Campbell–Hausdorff (BCH) formula
defines a binary operation “multiplication” on the set underlying n, under which n
acquires the structure of a uniquely divisible nilpotent group. Note that for any two
elements x1, x2 ∈ n, the BCH formula in 2.4.9 for the product x1 · x2 is a finite sum:
zn(x1, x2) = 0 for all n bigger than the nilpotency class of n.

(b) Conversely, given any uniquely divisible nilpotent group N , there exists a structure
of a nilpotent Lie Q-algebra which gives rise to the group law on N via the BCH
formula as in (a). In particular there are two binary operations on the set underlying
N , addition and Lie bracket, uniquely determined by the group structure of N , under
which N becomes a Lie Q-algebra. Both the addition and the Lie bracket are given by
“universal formulas” involving products, inverse, raising to some rational power, and
passing to the limit. These formulas for x+y and [x, y] are elements of projective limit

lim←−
n

MC
(
F2(x, y)/γn(F2(x, y))

)
,

where
(
γn(F2(x, y))

)
n≥1

is the lower central series of F2(x, y).

These formulas for x + y and [x, y] are just one aspect of the problem on the “in-
verse Baker–Campbell–Hausdorff formula”: characterizing the addition and Lie bracket
structure on a uniquely divisible nilpotent group N in terms of the group structure of
N . We refer to [16, Ch. II, §2] for further information.

(2.4.11) Proposition. (Lazard correspondence) Let c be a positive integer. Let P≤c
be the set consisting all prime numbers not exceeding c. Let P>c be the set consisting of all
prime numbers strictly bigger than c.

(a) Let nZ[1/c!] be a nilpotent Lie Z[1/c!]-algebra of class at most c. The Baker–Campbell–
Hausdorff formula gives nZ[1/c!] the structure of a uniquely P≤c-divisible nilpotent group
of class at most c on the set underlying nZ[1/c!], such that the product of any two elements
u, v ∈ nZ[1/c!] is given by

u · v :=
∑

1≤n≤c

φ(u,v)(zn(x, y))

where φ(u,v) : L(x, y)!/Filc+1L(x, y)! −→ nZ[1/c!] is the Lie algebra homomorphism such
that φ(u,v)(x) = u and φ(u,v)(y) = v, and zn(x, y) ∈ L(x, y)n! is the homogeneous com-
ponent of degree n of the element z(x, y) ∈ L(x, y)∧! in 2.4.9.

(b) Let nZ[1/c!] and n′Z[1/c!] be nilpotent Lie Z[1/c!]-algebras of class at most c, and let
α : nZ[1/c!] → n′Z[1/c!] be a homomorphism of Lie algebras. Then α is also a group
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homomorphism with respect to the group structures on the sets underlying nZ[1/c!] and
n′Z[1/c!] via the Baker–Campbell–Hausdorff formula. Moreover the image of α is a Lie
ideal of n′Z[1/c!] if and only if it is a normal subgroup for the group structure on n′Z[1/c!].

(c) Conversely let NZ[1/c!] be a uniquely P≤c-divisible nilpotent group of class at most c.
There exists a unique nilpotent Lie Z[1/c!]-algebra structure of class at most c on
NZ[1/c!] whose associated nilpotent group law coincides with the group law of NZ[1/c!].
In other words the exact functor from the category of nilpotent Lie Z[1/c!]-algebras of
class at most c to the category of uniquely P≤c-divisible nilpotent groups of class at
most c described in (a)–(b) above is an equivalence.

§3. Tate unipotent groups and Lie algebras

(3.1) Definition. Let κ be a field of characteristic p. A terraced Tate unipotent group
over κ is a projective system N =

(
Ni, πi,i+1 : Ni+1 � Ni

)
i≥1

of finite group schemes Ni over
κ such that all transition homomorphisms πi,i+1 are epimorphisms, together with a finite
decreasing filtration

(
Fil•slNi

)
•∈(0,1]

indexed by the interval (0, 1], called the slope filtration

of N , which satisfies the following properties.

(i) For every i ≥ 1 and every t ∈ (0, 1], FiltslNi is a normal subgroup scheme of Ni over κ.
Moreover Fil>0

sl Ni = Ni, and Fil>1
sl Ni = (0) by convention.

(ii) For each i ≥ 1, the transition map πi,i+1 : Ni+1 � Ni respects the slope filtration and
induces epimorphisms FiltslNi+1 � FiltslNi for all t ∈ (0, 1].

(iii) For every i ≥ 1, we have [FiltslNi,Filt
′

slNi]grp] ⊆ Filt+t
′

sl Ni for all t, t′ ∈ (0, 1], where
[ , ]grp denotes the group commutator (x, y) 7→ x−1y−1xy.

(iv) There exists a finite subset slope(N) of (0, 1] ∩ Q, such that for every t ∈ (0, 1] and
every i ≥ 1, the quotient group scheme grtNi := (FiltslNi)/(Fil>tsl Ni) is trivial if and
only if s ∈ slope(N)

(v) For every t ∈ [0, 1], there exists a p-divisible group Yt over κ which is either isoclinic of
slope t or trivial, such that the projective system grtFilsl

N :=
(
(FiltslNi)/(Fil>tsl Ni)

)
i≥1

of commutative finite group schemes over κ is isomorphic to the projective system(
Yt[p

i], [p] : Yt[p
i+1] � Yt[p

i]
)
i≥1

attached to the p-divisible group Yt. In other words

there exists a family of isomorphisms αt,i : grtFilsl
Ni

∼−→ Yt[p
i] such that the diagram

grtFilsl
Ni+1

αt,i+1

∼
//

grtπi,i+1

��

Ys[p
i+1]

[p]Yt[pi+1]

��
grtFilsl

Ni

αt,i

∼
// Ys[p

i]

Note that the p-divisible group Yt over κ is uniquely determined by grtFilsl
N .
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(3.1.1) Remark. (a) Conditions 3.1 (iii)–(iv) imply that the distinct members in Fil•slNi

form a finite central series for Ni. Hence Ni is a nilpotent group scheme of class at most
card

(
slope(N)

)
, for all i ≥ 1.

(b) The definition of terraced Tate unipotent groups can be extended to more general base
schemes S. For instance one can replace Spec(κ) by a scheme S in characteristic p, and
require that FilsslNi is finite locally free over S for every s ∈ (0, 1] and every i ≥ 1, in
addition to conditions (i)–(v) in 3.1. We have refrained from doing so, because the case
when the base scheme is a field of characteristic p is sufficient for applications we have in
mind.

(c) It is easy to see that the dimension dimκ(Lie(Ni)) of the tangent space of the finite group
scheme Ni is independent of i, and is equal to

∑
t∈sl(N) dimκ(Yt). We call this integer the

dimension of N , denoted by dim(N).

(3.1.2) Examples. (a) Clearly a p-divisible group Z over a field κ of characteristic p give
rise a terraced Tate unipotent group, with Zi = Z[pi] for all i ∈ N, and the transition maps
Z[pi+1]→ Z[pi] are induced by [p]Z .

It is not difficult to verify that every commutative terraced Tate unipotent group over a
field κ arises from a p-divisible group over κ. The proof is left to the readers as an exercise.

(b) The stabilized Aut group schemes of a (polarized) p-divisible group over a field of charac-
teristic p. These examples motivated the general notion of terraced Tate unipotent groups.

(b1) Let X be a p-divisible group over a field κ of characteristic p. The projective system
Autst(X)0 =

(
Autst(X)0

n

)
n≥1

of the neutral components of the stabilized Aut group

schemes of X[pn], endowed with the slope filtration induced from the slope filtration of
the stabilized End schemes Endst(X) =

(
Endst(X)n

)
n≥1

, is a terraced Tate unipotent
group over κ.

(b2) Similarly let (Y, µ : Y → Y t) be a polarized p-divisible group over κ. The projective
system Autst(Y, µ)0 =

(
Autst(Y, µ)0

n

)
n≥1

of the neutral components of the stabilized

Aut group schemes of (Y [pn], µ[pn]), is a terraced Tate unipotent group over κ.

See [7, Ch. 5] for details.

(c) This is a mild generalization of example (b) above. Let E be a p-divisible group over a
field κ of characteristic p. Suppose that for each i ≥ 1, Ei := E[pi] has a structure as a ring
scheme over κ, compatible with the abelian group structure, such that the all epimorphism
πi,i+1 : E[pi+1]→ E[pi+1] is a ring scheme homomorphism over κ. For each i, let E0

i be the
neutral component of Ei. Then E0

i is an ideal of Ei, for each i. Denote by d the number of
distinct slopes of E0 = lim−→E0

i . Then the (d + 1)-st power of the ideal E0
i is 0 for all i, and

e ≤ d. Let e be the smallest natural number such that (E0
i )
e+1 = (0) for all i.
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(c1) Let Ni = 1 + E0
i , which is a subgroup scheme of Ei. Then the projective system

(Ni, πi,i+1 : Ei+1,i)i≥1 is a terraced Tate unipotent group over κ, and each Ni is unipo-
tent of class at most e.

(c2) Suppose that in addition, we have involutions τi on Ei, which are compatible with
the transition maps πi,i+1. Let N ′i to be the subgroup scheme of 1 + E0

i consisting of
functorial points 1+xi of 1+E0

i such that (1+τi(xi))·(1+xi) = 1 = (1+xi)·(1+τi(xi)).
Let Ni be the intersection, over all m ∈ N of the schematic images of the projection
maps πi,i+m : E ′i+m → E ′i. Then the projective system (Ni)i≥1 is a terraced Tate
unipotent group over κ. The readers are encouraged to verify this assertion directly.

(3.1.3) Remark. In example (c) above, the smallest natural number e such that the (e+1)-
st power of E0

i is 0 may be substantially smaller than the number of slopes of E0. Consider
the case when E is the projective system of stabilized End group schemes Endst(X) of a
p-divisible group X over κ. If r is the number of distinct slopes of X, then the number
of slopes of E0 can be as high as r(r − 1)/2, while (E0

i )
r = (0). See [7, Ch. 5 §1] for more

information about the stabilized End group schemes Endst(X).

(3.2) Definition. Let N = (Ni, πi,i+1 : Ni+1 � Ni

)
i≥1

be a terraced Tate unipotent group
over a field κ of characteristic p. Denote by Schκ the category whose objects are κ-schemes
and morphisms are κ-morphisms between κ-schemes.

(a) Define the Tate module Tp(N) of N to be the limit

Tp(N) := lim←−
i

Ni,

where Ni is identified with a sheaf of groups for the fpqc topology on the category
Schκ, and the inverse limit is taken in the category of presheaves on Schκ. Since every
projective limit of sheaves in the category of presheaves is a sheaf, Tp(N) is a sheaf of
groups for the fpqc topology on the category Schκ.

(b) Define the slope filtration
(
Fil•slTp(N)

)
•∈(0,1]

of Tp(N) by

FiltslTp(N) := lim←−
i

FiltslNi ∀ t ∈ (0, 1].

Clearly grsFilsl
Tp(N) 6= 0 if and only if s ∈ slope(N).

(c) Define MC(Tp(N)) to be the presheaf on Schκ whose value on any κ-scheme S is the
Mal’cev completion of Tp(N)(S).

Similarly, define the slope filtration of the presheaf MC(Tp(N)) by

FiltslMC(Tp(N)) := MC(FiltslTp(N)) ∀ t ∈ (0, 1].
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(d) Define the Tate module Vp(N) of N , also denoted by Tp(N)Q, to be the sheafification
of the presheaf MC(Tp(N)) on the category Schκ with respect to the fpqc topol-
ogy. Similarly for every t ∈ (0, 1], let FiltslVp(N) be the sheafification of the presheaf
Fil•slTp(N).

(3.2.1) Remark. If N arises from a p-divisible group Z over κ as in 3.1.2, the resulting
fpqc sheaf Tp(Z) is clearly analogous in spirit to the usual Tate Z`-modules of Z for ` 6= p,
but it has not been among the standard tools of algebraic geometers. However the covariant
Dieudonnémodule D∗(Z) is an adequate stand-in for Tp(Z) in the case when κ is a perfect
field.

(3.2.2) Lemma. Let N =
(
Ni

)
i≥1

be a terraced Tate unipotent group over a field κ of
characteristic p.

(a) For every κ-scheme S, Tp(N)(S) is a torsion free nilpotent group of class at most
card(slope(N)), and uniquely `-divisible for every prime number ` 6= p.

(b) For every non-zero integer n, the map x 7→ xn induces an automorphism on the presheaf
of sets underlying the presheaf of nilpotent groups MC(Tp(N)), and also an automor-
phism on the sheaf of sets underlying the sheaf of nilpotent groups Vp(N). In particular
for every κ-scheme S, the group Vp(N)(S) is torsion-free nilpotent and divisible.

(c) For every quasi-compact κ-scheme S, Vp(N)(S) is canonically isomorphic to the
Mal’cev completion of the nilpotent torsion free group Tp(N)(S). In other words
Vp(N)(S) = MC(Tp(N)(S)).

Proof. The statements (a), (b) are obvious. The statement (c) is proved by induction
on card(slope(N)), using the general statement on sections (and cohomologies) over quasi-
compact objects of a filtered colimit of sheaves on a site. See [1] SGA 3 Exp.VI Thm. 5.1,
[27, https://stacks.math.columbia.edu/tag/090G Lemma 0738].

When card(slope(N)) = 1, N is the projective system attached to an isoclinic p-divisible
group over κ, and Vp(N) is the limit of the inductive system

Tp(N)
[p]−→ Tp(N)

[p]−→ · · · [p]−→ Tp(N)
[p]−→ · · · ,

which is a very special case of the general statement in the previous paragraph.
Suppose that card(slope(N)) ≥ 2. Let a = maxslope(N). We have a short exact sequence

1→ FilaslN → N → N/FilaslN → 1

and a commutative diagram

1 //MC(Tp(FilsslN)(S)) //

α '
��

MC(Tp(N)(S)) //

β
��

MC(Tp(N/FilsslN)(S)) //

γ '
��

1

1 //Vp(FilsslN)(S) //Vp(N)(S) //Vp(N/FilsslN)(S)

where α and γ are bijections. So β is also a bijection.
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(3.2.3) Remark. Let φiMC(N) be the sub-presheaf of MC(N) such that

φiMC(N)(S) = {x ∈ MC(N)(S) | xpi ∈ Tp(N)(S)}

for every κ-scheme S. It is easily verified that φiMC(N) is a subsheaf of Vp(N) for the fpqc
topology, and

Vp(N) = lim−→
i→∞

φiMC(N)

as an sheaf of sets on Schκ for the fpqc topology. So we can apply the general fact recalled
in the proof of 3.2.2 to finish the proof of 3.2.2 (c), without going through the induction
argument.

(3.2.4) Definition. Let κ be a field of characteristic p. A Tate unipotent group over κ is
a sheaf N on Schκ with respect to the fpqc topology together with a decreasing filtration
Fil•slN of normal subgroups of N, such that there exists a finite subset slope(N) ⊆ (0, 1]∩Q
with the following properties.

• [Fils1sl N,Fils2sl N]grp ⊆ Fils1+s2
sl N for all s1, s2 ∈ (0, 1], where FilsslN = 0 if s > 1 by

convention, and [ , ]grp denotes the group commutator (x, y) 7→ x−1y−1xy.

• grsFilsl
N 6= (0) if and only if s ∈ slope(N).

• For every t ∈ slope(N), there exists a non-trivial p-divisible group Yt over κ such that

grtN := FiltslN/Fil>tsl N ∼= lim←−
n

Yt[p
n],

where lim←−n Yt[p
n] is the projective limit of the projective system

(
Yt[p

n]
)
n≥1

with tran-

sition map induced by [p]Yt , and the limit is taken in the category of sheaves on Schκ
for the fpqc topology.

(3.2.5) Remark. (i) Clearly the Tate Zp-module Tp(N) of terraced Tate unipotent group
N =

(
Ni

)
i≥1

is a Tate unipotent group.

(ii) Conversely a terraced Tate unipotent group N =
(
Ni

)
i≥1

is determined by its Tate

module Tp(N) and the decreasing family of normal subgroups Ui := Ker(Tp(N) � Ni) of
Tp(N). But unlike the case when N is commutative, we don’t know a simple way to recover
these normal subgroups Ui’s directly from Tp(N) and its slope filtration.

(iii) We don’t know whether every Tate unipotent group N is isomorphic to the Tate module
Tp(N) of some terraced Tate unipotent group N =

(
Ni

)
i≥1

.

(3.2.6) Lemma. Let N be a Tate unipotent group over a field κ. For every κ-scheme S, N
is a torsion free nilpotent group and is uniquely `-divisible for every prime number ` 6= p.

Proof. Omitted.
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(3.2.7) Definition. Let N be a Tate unipotent group over a field κ of characteristic p.

(a) Denote by NQ the sheafification of the presheaf MC(N) on Schκ with respect to the
fpqc topology.

(b) Define the dimension of N to be

dim(N) =
∑

t∈slope(N)

dim(Yt),

where Yt is a p-divisible group over κ such that grtN ∼= lim←−n Yt[p
m] as in 3.2.4.

(3.2.8) Lemma. Let N be a Tate unipotent group over a field κ of characteristic p.

(a) For every κ-scheme S, NQ(S) is a uniquely divisible.

(b) For every quasi-compact κ-scheme S, NQ(S) is the Mal’cev completion of N(S).

Proof. Omitted.

(3.2.9) Definition. Let N and N′ be Tate unipotent groups over a field κ of characteristic
p.

(a) A κ-homomorphism α from N to N′ is an isogeny if α induces an isomorphism from
NQ to N′Q.

(b) A κ-homomorphism up to isogeny from N to N′ is a homomorphism from NQ to N′Q.

(c) A quasi-isogeny over κ from N to N′ is a group isomorphism over κ from NQ to NQ.
If there exists a quasi-isogeny from N to N′, we say that N and N′ are isogenous.

Remark. The Mal’cev correspondence gives the following equivalent definitions of 3.2.9 (a)–
(c), where Lie NQ and LieN′Q are the fpqc sheaves of Lie algebras on Schκ attached to NQ
and N′Q as in 3.2.14.

(a′) A κ-homomorphism α from N to N′ is an isogeny if α induces an isomorphism from
Lie NQ to Lie N′Q.

(b′) A κ-homomorphism up to isogeny from N to N′ is a homomorphism of fpqc sheaves
of Lie Qp-algebras from Lie NQ to Lie N′Q.

(c′) A quasi-isogeny over κ from N to N′ is a Lie Qp-algebra isomorphism from Lie NQ to
Lie N′Q.

(3.2.10) Definition. Let N =
(
Ni,Fil•slNi, πi,i+1 : Ni+1 → Ni

)
i≥1

be a terraced Tate

unipotent group over a field κ of characteristic p. A terraced Tate unipotent subgroup N ′ is
a family of subgroup schemes

(
N ′i ⊆ Ni

)
i≥1

such that
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(a) The restriction to N ′i of every transition morphism πi,i+1|Ni+1
factors through N ′i and

defines an epimorphism π′i,i+1 : N ′i+1 � N ′i .

(b) The projective family of finite group schemes Ni, together with the filtration

Fil•slN
′
i := N ′i ∩ Fil•slNi ∀ • ∈ (0, 1],

is a terraced Tate unipotent group
(
N ′i ,Fil•slN

′
i , π
′
i,i+1

)
i≥1

over κ.

(3.2.11) Lemma. Let κ be a field of characteristic p. Let N be a terraced Tate unipotent
group over κ, and let N ′ be a terraced Tate unipotent subgroup over κ. The Tate Zp-module
Tp(N

′) of N ′ is co-torsion free in Tp(N), i.e.

Tp(N
′) = Tp(N) ∩Vp(N

′).

The proofs of lemma 3.2.11 and lemma 3.2.12 below are left to the readers.

(3.2.12) Lemma. Let N be a Tate unipotent group over a field κ of characteristic p. Let n
be a positive integer.

(a) The subgroup Npn of N generated by all pn-th powers of local sections of N is a Tate
unipotent subgroup of N over κ.

(b) The subgroup Npn of NQ generated by all local sections of NQ whose pn-th power are
in N is a Tate unipotent group over κ containing N.

(3.2.13) Definition. Let κ be a field of characteristic p.

(a) A Tate unipotent Lie Zp-algebra N over κ is a sheaf of Lie Zp-algebras for the fpqc
topology on Schκ such that there exist a p-divisible group Y over κ and family of
isomorphisms

αn : N/pnN
∼−→ Y [pn], n ≥ 1,

which are compatible in the sense that the diagram

N/pn+1N
αn+1

∼
//

πn
��

Y [pn+1]

[p]

��
N/pnN

αn
∼

// Y [pn]

commutes for every n ≥ 1, where πn is the natural epimorphism from N/pn+1N to
N/pnN.

(b) A Tate unipotent Lie Qp-algebra over κ is a sheaf of Lie Qp-algebras for the fpqc
topology on Schκ isomorphic to N ⊗Zp Qp for some Tate unipotent Lie Zp-algebra N
over κ.
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(3.2.14) Definition. Let N be a Tate unipotent group over κ, and let NQ be the Mal’cev
completion of N.

(a) Denote by LieNQ the sheaf of Lie Q-algebras on Schκ for the fpqc topology attached
to NQ under the Mal’cev correspondence. The Q-module structure on LieNQ extends
uniquely to a Qp-module structure. This sheaf of Lie Qp-algebras LieNQ is called the
Lie Qp-algebra of N and NQ.

(b) Suppose that N is nilpotent of class at most p− 1. Under the Lazard correspondence,
N corresponds to a sheaf LieN of Lie Zp-algebras on Schκ for the fpqc topology. We
call it the Lie Zp-algebra of N

Lemma 3.2.15 below follows directly from definition 3.2.14.

(3.2.15) Lemma. Let N be a Tate unipotent group over κ.

(a) The Lie Qp-algebra LieNQ is a Tate unipotent Lie Qp-algebra over κ.

(b) If N is nilpotent of class at most p− 1, then the sheaf LieN corresponding to N under
the Lazard correspondence is a Tate unipotent Lie Zp-algebra over κ, which is nilpotent
of class at most c.

(3.2.16) Lemma. Let N be a Tate unipotent group over a field κ of characteristic p. Let
LieNQ be the Lie algebra of the Mal’cev completion NQ of N, and logNQ

: NQ → LieNQ
be the associated logarithm map. The Lie Zp-subalgebra generated by logNQ

(N) is a Tate
unipotent Lie Zp-algebra over κ.

Proof. Omitted.

(3.2.17) Lemma. Let N be a Tate unipotent Zp-Lie algebra over Q.

(a) There exists a Tate unipotent group N over κ, unique up to isogeny, such that LieNQ
is isomorphic to N⊗Zp Qp.

(b) If N is nilpotent of class at most p − 1, then there exists a Tate unipotent Lie group
N, unique up to isomorphism, such that LieN is isomorphic to N.

Proof. The statement (b) is immediate from the Lazard correspondence. The sufficiency
part of statement (a) follows from the Mal’cev correspondence. It remains to prove the
existence part (a).

Let c be the nilpotency class of N. Let NQp be the fpqc sheaf of nilpotent groups on
Schκ attached to N under the Mal’cev correspondence. The BCH formula recalled in 2.4.9
implies that for any positive integer m satisfying the condition that

(3.2.17.1) 2 ordp(n!) ≤ m(n− 1) ∀n ∈ N with 2 ≤ n ≤ c,

the subsheaf exp(pmN) is a subgroup of NQp . Moreover this subgroup of NQp is a Tate
Zp-module of a Tate unipotent group.
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(3.2.18) Remark. From the standard estimate ordp(n!) < n
p−1

, one sees that the condition

(3.2.17.1) on m is satisfied if m ≥ 4
p−1

and p ≥ 3, or if m ≥ 2.

(3.2.19) Lemma. Let N be a torsion free nilpotent group of class at most c, where c is
a positive integer. Let NQ be the Mal’cev completion of N . Let nQ be the Lie Q-algebra
attached to NQ under the Mal’cev correspondence, and let logNQ

: NQ
∼−→ nQ be the logarithm

map.
There exists a positive integer n0 = n0(c), depending only on c, such that the subset

logNQ
(Nn) of n is a Lie Z(p)-subalgebra of n for all positive integers n which are multiples

of n0. Here Nn denotes the subgroup of N generated by the subset {zn|z ∈ N} of all n-th
powers in N .

Proof. Let F = F (x, y) be the free group in variables x, y, let
(
γi(F (x, y))

)
i≥1

be the

descending central series of F2. Consider the torsion free nilpotent group F/γc+1(F ) of class
c and its Mal’cev completion (F/γc+1(F ))Q. It suffice to show that when N = F/γc+1(F ),
we have

logNQ
(xn) + logNQ

(yn), [logNQ
(xn), logNQ

(yn)] ∈ logNQ
(Nn) ∀n s.t. n0(c)|n,

where n0(c) is a constant depending only on c.
The last statement can be proved by induction on c, a standard method in the theory of

nilpotent groups. We will use the method of typical sequences in [16, Ch. II, §§1–2], which is
more illuminating. FQ be the Mal’cev completion of F = F (x, y), Let F∧Q be the completion
of FQ with respect to its lower central series. According to [16, Ch. II, Thm. 1.5], there exist
uniquely determined elements zi, wi ∈ γi(F∧Q ), i ∈ N≥1, such that

exp
(

log(xt) + log(yt)
)

= zt1z
t2

2 · · · zt
i

i · · · , exp
(
[log(xt), log(yt)]

)
= wt1w

t2

2 · · ·wt
i

i · · · .

It is clear from the BCH formula that z1 = xy and w1 = 1. Denote by z̄i (respectively
w̄i) the image of zi (respectively wi) in F∧Q/γc+1(F∧Q ) ∼= FQ/γc+1(FQ). Pick positive integers
a2, . . . , ac, such that

z̄aii , w̄
bi
i ∈ F∧/γc+1(F∧) ∼= F/γc+1F for i = 2, . . . , c.

Let n0 = lcm(a2, . . . , ac). Then z̄t
i

i , w̄
ti

i ∈ (F/γc+1(F ))n for all i = 1, . . . , c.

Let N be a Tate unipotent group over a field κ of characteristic p, which is nilpotent of class
at most c, where c is a positive integer. Let NQp := LieNQp be the Lie Qp-algebra of the

Mal’cev completion NQ of N. Let log : NQ
∼−→ NQp be the logarithm map from NQ to NQp .

For each positive integer n, denote by Npn the fpqc sheaf on Schκ which is the smallest sheaf
of subgroups of N generated by all pn-th powers of local sections of N.

(3.2.20) Corollary. Notation as in the preceding paragraph. There exists a positive in-
teger n1 = n1(c), depending only on c, such that for every integer n ≥ n1, the subsheaf
log(Npn) of NQp is stable under addition and Lie bracket. Consequently log(Npn) is a Tate
unipotent Lie Zp-subalgebra of NQp. Moreover log(Npn)⊗Z Q = NQp.
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Proof. This assertion holds with n1(c) = ordp(n0(c)), where n0(c) is as in 3.2.19.

(3.2.21) Lemma. Let N1,N2 be Tate unipotent groups over a field κ of characteristic p,
and let α : N1 → N2 be an isogeny. There exists a positive integer n such that Npn

2 ⊆ α(N1).

(3.2.22) Lemma. Let κ be a field of characteristic p. Let N1 and N2 be Tate unipotent
groups over κ. Let α be a quasi-isogeny from N1 to N2.

(a) There exists a Tate unipotent group N3 over κ and an isogeny β : N3 → N1 such that
α ◦ β is an isogeny from N3 to N1.

(b) There exists a Tate unipotent group N4 over κ and an isogeny γ : N2 → N4 such that
γ ◦ α is an isogeny from N1 to N4.

The proofs of lemma 3.2.21 and 3.2.22 are left to the readers.

(3.2.23) Lemma. Let NQ be a Tate unipotent Lie Qp-algebra over a field κ of characteristic
p. There exists a p-divisible group X over κ and an embedding of the fpqc sheaf NQ of Lie
Qp-algebras to the fpqc sheaf of Lie Qp-algebras underlying the sheaf of nilpotent associative
Qp-algebras (without unity) Vp(Endst(X)0) on Schκ.

Proof. Let U(NQ) be the universal enveloping algebra of NQ over Qp, an fpqc sheaf of
associative algebras on Schκ with a canonical injection  : NQ → U(NQ) and an increasing
filtration Fildeg, where

Fildeg≤nU(NQ) =
∑

0≤m≤n

(
⊗m NQ → U(NQ)

)
.

Each Fildeg≤n has a natural decreasing slope filtration indexed by [0,∞). These slope filtra-
tions are compatible with the inclusions Fildeg≤n ↪→ Fildeg≤n. Together they define a slope
filtration Filslope on U(NQ).

Consider the quotient U(NQ)/Fil>1
slopeU(NQ), whose slopes are contained in the inter-

val [0, 1]. There exists a p-divisible group X over κ, unique up to isogeny, such that
(lim←−nX[pn]) ⊗Z Q ∼= U(NQ)/Fil>1

slopeU(NQ). Since Fil>1
slopeU(NQ) is an ideal of U(NQ), the

quotient U(NQ)/Fil>1
slopeU(NQ) is a sheaf of algebras over Qp. The composition

NQ
 // U(NQ) // U(NQ)/Fil>1

slopeU(NQ)

is an injection because every slope of NQ is contained in (0, 1]. So the restriction to NQ of
the regular representation of U(NQ)/Fil>1

slopeU(NQ) is also an injection.

Remark. Lemma 3.2.23 is an analog of Ado’s theorem for Tate unipotent Lie Qp-algebras.
Corollary 3.2.24 rephrases it in terms of Tate unipotent groups.

(3.2.24) Corollary. Let N be a Tate unipotent group over a field κ of characteristic p.
There exists a p-divisible group X over κ and an embedding NQ ↪→ Vp

(
Autst(X)0

)
.

Proof. Immediate from 3.2.23 and the Mal’cev correspondence.
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(3.3) Dieudonné theory of Tate unipotent Lie algebras over perfect fields

In this subsection κ is a perfect field of characteristic p.

(3.3.1) Definition. Let N be a Tate unipotent Lie Zp-algebra over κ. The covariant
Dieudonné module D∗(N) of N is the projective limit of the classical covariant Dieudonné
modules of the commutative group schemes representing N/pnN:

D∗(N) := lim←−
n

D∗(N/pnN).

In other words D∗(N) is the Dieudonné module of the p-divisible group Y over κ such that
N ∼= lim←−n Y [pn] in the category of fpqc sheaves on Schκ. The Lie bracket on N induces a
Λ(κ)-bilinear pairing

[ , ] = [ , ]D∗(N) : D∗(N)× D∗(N) −→ D∗(N)

which satisfies the Jacobi identity.
In the above we have followed the notation scheme in [7], denoting the ring of p-adic Witt

vectors with entries in κ by Λ(κ). The Dieudonné modules D∗(N/pnN) are left modules over
the Dieudonné ring Rκ, which contains Λ(κ) and elements F and V. We refer to [24] for an
exposition of covariant Dieudonné theory.

(3.3.2) Lemma. Let N be a Tate unipotent Lie Zp-algebra over κ, and let D∗(N) be its
Dieudonné module. The following identities

[Vx,Vy]D∗(N) = V([x, y]D∗(N))

[Fx, y]D∗(N) = F([x,Vy]D∗(N))

[x,Fy]D∗(N) = F([Vx, y]D∗(N))

hold for all x, y ∈ D∗(N).

(3.3.3) Definition. A connected Dieudonné Lie algebra over κ is a left module L over the
Dieudonné ring Rκ together with a Λ(κ)-bilinear pairing

[ , ] : L× L→ L

such that the following conditions hold.

• L is a free Λ(κ)-module of finite rank.

• All slopes of L are strictly positive.

• The bilinear pairing [ , ] on L satisfies the Jacobi identity and the identities in 3.3.2.
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All connected Dieudonné Lie algebras over κ for (the objects of) an additive category. A
morphism from an object L1 to an object L2 consists of all Rκ-module homomorphisms
h : L1 → L2 such that

h
(
[x, y]D∗(N1)

)
= [h(x), h(y)]D∗(N2), h(Fx) = F(h(x)), h(Vx) = V(h(x))

for all x, y ∈ L1.

Lemmas 3.3.4 and 3.3.5 below follow from multilinear Dieudonné theory; see [12, Ch. 2] and
[13, 1.2].

(3.3.4) Lemma. The functor N  D∗(N) from the category of Tate unipotent Lie Zp-
algebras over κ to the category of connected Dieudonné Lie algebras over κ is fully faithful.
Explicitly, this means the following.

Let N1,N2 be Tate unipotent Lie Zp-algebras over κ, and let D∗(Ni) be the Dieudonné
module of Ni, i = 1, 2. Denote by HomTate unip

κ (N1,N2) the set consisting of all homomor-
phisms of Tate unipotent groups over κ from N1 to N2. Let HomLie

Rκ(D∗(N1),D∗(N2)) be the
set consisting of all Λ(κ)-linear homomorphisms h : D∗(N1)→ D∗(N2) such that

h
(
[x, y]D∗(N1)

)
= [h(x), h(y)]D∗(N2), h(Fx) = F(h(x)), h(Vx) = V(h(x))

for all x, y ∈ D∗(N1). The map which send each element α ∈ HomTate unip
κ (N1,N2) to the ele-

ment D∗(α) ∈ HomLie
Rκ(D∗(N1),D∗(N2)) induced by α is a bijection from HomTate unip

κ (N1,N2)
to HomLie

Rκ(D∗(N1),D∗(N2)).

(3.3.5) Lemma. The covariant Dieudonné functor D∗ induces an equivalence from the cat-
egory of Tate unipotent Lie Zp-algebras over κ to the category of connected Dieudonné Lie
algebras over κ.

(3.3.6) Definition. A connected Dieudonné Lie algebra over κ up to isogeny is a left
(Rκ ⊗Z Q)-module LQ together with a Λ(κ)Q-linear Lie bracket [ , ]LQ : LQ × LQ → LQ,
such that there exists a connected Dieudonné Lie algebra L over κ, such that LQ = L⊗Z Q
as a left module over R ⊗Z Q, and the Lie bracket [ , ]LQ is induced from the Lie bracket
[ , ]L : L× L→ L for L.

(3.3.7) Corollary. The covariant Dieudonné functor D∗ induces an equivalence from the
category of Tate unipotent Lie Qp-algebras over κ to the category of connected Dieudonné
Lie algebras over κ up to isogeny.

(3.4) The group of automorphisms of a Tate unipotent group

(3.4.1) Definition. Let N be a Tate unipotent group over a field κ of characteristic p,
and let NQ be its Mal’cev completion.

(a) Denote by Aut(N) the compact p-adic Lie group consisting of all automorphisms of
the fpqc sheaf N of nilpotent groups on Schκ.
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(b) Denote by Aut(NQ) the locally compact p-adic Lie group consisting of all automor-
phisms of the fpqc sheaf NQ on Schκ.

(3.4.2) Lemma. Let N be a Tate unipotent group over a field κ of characteristic p, and let
NQ be the Mal’cev completion of N. Let NQ = Lie NQ be the Tate unipotent Lie Qp-algebra
attached to NQ via the Mal’cev correspondence.

(a) There is a natural embedding Aut(N) ↪→ Aut(NQ), which identifies Aut(N) as a com-
pact subgroup of the locally compact p-adic Lie group Aut(NQ).

(b) The p-adic Lie group Aut(NQ) is naturally isomorphic to the group Aut(NQ) of auto-
morphisms of the Tate unipotent Lie Qp-algebra NQ.

(c) Suppose that the field κ is perfect. Then Aut(NQ) is naturally isomorphic to the group
of all automorphisms α of the left (Rκ ⊗Z Q)-module D∗(NQ) such that

[α(x), α(y)] = α([x, y]) ∀x, y ∈ D∗(NQ).

Here D∗(NQ) is the connected Dieudonné Lie algebra up to isogeny attached to the Tate
unipotent Lie Qp-algebra NQ.

Proof. The statement (a) follows from the theory of localization of nilpotent groups. The
statement (b) follows from the Mal’cev correspondence. The statement (c) follows from (a)
and the Dieudonné theory of Tate unipotent Lie algebras.

Remark. Note that the description of Aut(NQ) in (c) shows that Aut(NQ) is the group of
Q-points of a linear algebraic group over Qp.

(3.4.3) Lemma. Let N be a Tate unipotent group over a field κ of characteristic p. Let
slope(N) be the set of slopes of N. For each t ∈ slope(N), let grtFilsl

N := FiltslN
/

Fil>tsl N.

(a) The canonical homomorphism

Aut(N)
γ //

∏
t∈slope(N) Aut(grtFilsl

N)

between compact p-adic groups is a closed embedding.

(b) The canonical homomorphism

Aut(NQ)
γQ //

∏
t∈slope(NQ) Aut(grtFilsl

NQ)

between locally compact p-adic groups is a closed embedding.

Proof. Omitted.

(3.4.4) Lemma. Notation as in 3.4.2.
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(a) The embedding Aut(N) ↪→ Aut(NQ) of p-adic Lie groups induces an isomorphism

Lie(Aut(N))
∼−→ Lie(Aut(NQ))

of their Lie algebras.

(b) The Lie algebra Lie(Aut(NQ)) of the p-adic Lie group Aut(NQ) is naturally isomorphic
to the Lie Qp-algebra Der(NQ) consisting of all derivations of the fpqc sheaf of Lie
algebras NQ on Schκ.

The proofs of 3.4.4 and 3.4.5 are left as an exercise.

(3.4.5) Lemma. Let NQ be a Tate unipotent Lie Qp-algebra. For each t ∈ slope(NQ), let
grtFilsl

NQ := FiltslNQ
/

Fil>tsl NQ. Let gr•Filsl
NQ := ⊕t∈slope(NQ)grtFilsl

NQ, with induced Lie bracket

[ , ]gr•Filsl
NQ : (gr•Filsl

NQ)× (gr•Filsl
NQ)→ gr•Filsl

NQ.

(a) The canonical homomorphisms

EndLie(NQ) // EndLie

(
gr•Filsl

NQ
)

and
AutLie(NQ) // AutLie

(
gr•Filsl

NQ
)

are injections.

(b) Suppose that κ is a perfect field, and let D∗(NQ) be the Dieudonné Lie algebra over κ
up to isogeny associated to NQ.

(b1) The Tate unipotent Lie Qp-algebras NQ and gr•Filsl
NQ are isomorphic.

(b2) The natural map from EndLie(NQ) (respectively AutLie(NQ)) to the set of all endo-
morphisms (respectively automorphisms) α of the left (Rκ ⊗Z Q)-module D∗(NQ)
such that α([x, y]) = [α(x), α(y)] for all x, y ∈ D∗(NQ) is a bijection.

(b3) The Lie algebra Lie Aut(NQ) of Aut(NQ) is naturally isomorphic to the set
DerLie

(
D∗(NQ)

)
of all derivations of the connected Dieudonné Lie algebra up to

isogeny D∗(NQ), consisting of all endomorphisms D of the left (Rκ⊗Z Q)-module
D∗(NQ) such that

D([x, y]D∗(NQ)) = [Dx, y]D∗(NQ) + [x,Dy]D∗(NQ) ∀x, y ∈ D∗(NQ).
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(3.4.6) Euler’s flow on Tate unipotent Lie algebras.
Let κ be a field of characteristic p. Let NQ be a Tate unipotent Lie Qp-algebra over

p. Assume that slope filtration of NQ splits, i.e. there exists Qp-submodules NQ,s of NQ
attached to isoclinic p-divisible groups Xs over κ of slope of slope s, where s ranges over
slope(NQ), such that

NQ = ⊕s∈slope(NQ)NQ,s.

Then under the Lie bracket of NQ, we have

[NQ,s,NQ,s′ ] ⊆ NQ,s+s′ ∀ s, s′ ∈ (0, 1],

with the convention that NQ,s = (0) if s 6∈ slope(NQ). Note that assumption on NQ holds
automatically if the base field κ is perfect.

Let b0 be the least common multiple of denominators of slopes of NQ. Define additive
endomorphisms φmb0 of NQ by

φmb0
∣∣
NQ,s

= pmb0s · idNQ,s ∀ s ∈ slope(NQ).

for all m ∈ N. Then φmb0 is an automorphism of the Tate unipotent Lie algebra NQ, and is
a linear analog of the mb0-th iterate of the relative Frobenius map for NQ.

Define a derivation DEuler of NQ by

DEuler

∣∣
NQ,s

= s · idNQ,s ∀ s ∈ slope(NQ).

The family of automorphisms φmb0 indexed by N can be thought of as a discrete version of
the flow associated with the derivation DEuler.

(3.4.7) Definition. Let N be a Tate unipotent group over a field κ of characteristic p.
Let NQ be the Tate unipotent Lie Qp-algebra attached to the Mal’cev completion NQ of
N. Let κ̄ be an algebraic closure of κ. Let (NQ)κ̄ be the base chage of NQ from Spec(κ)
to Spec(κ̄). Let G be a p-adic Lie group, and let ρ : G → Aut(N) be a continuous group
homomorphism. Let g = Lie(G) be the Lie algebra of G, and let dρ : g → Lie(Aut(N)) be
the homomorphism of Lie algebras induced by ρ.

We say that the action ρ of G on N is strongly nontrivial if the action of g on D∗((NQ)κ̄)
induced by dρ does not contain the trivial representation of g as a subquotient.

Remark. In 3.4.7, the condition that the action ρ on N is strongly nontrivial is equivalent
to the condition that the action of G on the base change (grtN)κ̄ of grtN is strongly nontrivial
for every slope t of N.
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§4. Tate-linear formal varieties

(4.1) Definition. Let κ be a field of characteristic p. Let Artκ be the category of aug-
mented artinian local κ-schemes; it is the opposite category of the category whose objects
are (R, j : κ → R, ε∗ : R → κ), where R is a commutative local ring with 1, j and ε∗ are
unital ring homomorphisms, and ε∗ ◦ j = idκ. Let Artκ,fppf be the site on the category Artκ
with fppf topology.

Let N be a Tate unipotent group over κ. Let NQ be the Mal’cev completion of N, which
is a sheaf on Schκ of uniquely divisible nilpotent groups for the fpqc topology. Consider
the sheaf NQ/N of left N-coset on the site Schκ,fpqc. Its restriction to Artκ,fppf is a sheaf on
Artκ,fppf, which we denote by TL(N):

TL(N) :=
(
NQ/N

)∣∣
Artκ,fppf

.

Proposition 4.2 below says that the fppf sheaf TL(N) is represented by a connected smooth
formal κ-scheme topologically of finite type over κ. Abusing the notation, we denote this
smooth formal κ-scheme again by TL(N).

(4.1.1) Remark. The sheaves N and NQ do not have many sections over noetherian κ-
schemes. In fact N(Spec(R)) = 0 = NQ(Spec(R)) for any commutative noetherian local
κ-algebra R. In contrast the quotient sheaf NQ/N has many points over spectra of artinian
κ-algebras, as shown in 4.2 below. The proof of 4.2 depends on 4.2.1, an analog of Hilbert’s
theorem 90 for p-divisible formal groups.

(4.1.2) Lemma. Let κ be a field of characteristic p. Let N be a Tate unipotent group over
κ, and let Z be a Tate unipotent subgroup of N contained in the center of N such that the
quotient N/Z is also a Tate unipotent group over κ. Then the action of the p-divisible group
TL(Z) = ZQ/Z on TL(N) induced by the translation action of Z on N makes TL(N) a
TL(Z)-torsor over TL(N/Z).

The proof is easy and omitted.

(4.2) Proposition. We use the notation in 4.1.

(a) For any s, t ∈ (0, 1] with t ≥ s, the fppf sheaf TL(FilsslN/Fil>tsl N) on Artκ,fppf, natu-

rally isomorphic to
(

FilsslNQ
/(

Fil>tsl NQ ·FilsslN
))∣∣∣

Artκ,fppf
, is represented by a connected

augmented smooth formal κ-scheme whose dimension is dim(FilsslN/Fil>tsl N).

(b) For any s, t1, t2 ∈ (0, 1] with t1 ≥ t2 ≥ s, the natural map

πs,t1,t2 : TL(FilsslN/Fil>t1sl N)→ TL(FilsslN/Fil>t2sl N)

is represented by a smooth formal κ-morphism between smooth formal κ-schemes. In
particular πs,t1,t2 induces a surjection

TL(FilsslN/Fil>t1sl N)(R)� TL(FilsslN/Fil>t2sl N)(R)

for every artinian local κ-algebra R.
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Proof. The assertion that the fpqc sheaves

TL
(
FilsslN/Fil>tsl N

)
and

(
FilsslNQ

/(
Fil>tsl NQ) · FilsslN

))∣∣∣
Artκ,fppf

are naturally isomorphic follows from the exactness of localization functors on the category
of nilpotent groups.

The rest of the statement (a) is proved by induction on card(slope(FilsslN/Fil>tsl N)). The
case when card(slope(FilsslN/Fil>tsl N)) = 1 is obvious. To simplify the notation, we may
and do assume that s = min(slope(N)), and t = max(slope(N)). Consider the short exact
sequence

1 −→ FiltslN −→ N −→ N/FiltN −→ 1,

with FiltslN contained in the center of N, and the associated short exact sequence

1 −→ FiltslNQ −→ NQ −→ (N/FiltslN)Q −→ 1.

Since TL(N/FiltslN) is naturally isomorphic to NQ/(FiltslNQ ·N), the natural map

π : TL(N) −→ TL(N/FiltslN)

has a natural structure as a Yt-torsor, where Yt is the p-divisible group over κ such that
lim←−n Yt[p

n] ∼= grFilsl
N. To show that TL(N) is represented by an augmented formal scheme

of finite type over κ, it suffices to show that for every augmented artinian local scheme S
over κ and every κ-morphism z : S → TL(N/FiltslN), the fpqc sheaf

Lz := (NQ/N)×((N/FiltslN)Q/(N/FiltslN), z) S

over S has a section over S, and is representable by a formal scheme over S. Lemma 4.2.1
below shows that Lz has a section over S. That Lz is representable by a trivial Yt-torsor
follows from fpqc descent. We have proved the statement (a).

The statement (b) follows from (a), because πs,t1,t2 is a formal morphism between smooth
formal κ-schemes topologically of finite type over κ, which induces a surjection on tangent
spaces.

(4.2.1) Lemma. Let κ be a field of characteristic p. Let X be a p-divisible formal group
over κ, i.e. all slopes of X are strictly positive. Let (R,m) be a commutative artinian local
κ-algebra. For every i ≥ 1, we have

Hi
fpqc(Spec(R), X) = Hi

fppf(Spec(R), X) = Hi
et(Spec(R), X) = Hi

zar(Spec(R), X) = 0.

In particular, every X-torsor over Spec(R) for the fpqc topology admits a section over
Spec(R).
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Proof. This statement is “well-known” for Hi
et(Spec(R), X) and Hi

zar(Spec(R), X). We
give a proof that Hi

fpqc(Spec(R), X) = 0. The rest can be proved by the same argument.
Let n0 be the smallest natural number such that mn0+1 = 0. For each j = 0, 1, . . . , n0, we

have a natural closed embedding ιj : Spec(R/mj+1) ↪→ Spec(R). The sheaf X = lim−→n
X[pn]

on the category of all κ-schemes with respect to the fpqc topology has a decreasing filtration

FiljX = Ker
(
X −→ ιj∗ι

∗
jX
)
, j = 0, 1, . . . , n0

with Filn0 = 0. Moreover we have natural isomorphisms

FiljX/Filj+1X ∼= OSpec(R)⊗R(mj/mj+1), j = 0, 1, . . . , n0.

Since the cohomology group Hi
fpqc

(
Spec(R),OSpec(R)⊗R (mj/mj+1)

)
with coefficient sheaf

associated to the coherent OSpec(R)-module OSpec(R)⊗R(mj/mj+1) is zero for every i ≥ 1, we
conclude that Hi

fpqc(Spec(R), X) = 0 for all i ≥ 1.

(4.2.2) Definition. Let N be a Tate unipotent group over a field κ of characteristic p.
Denote by DefTor (N) the deformation functor of the trivial right N-torsor on the category
Artκ of augmented artinian local κ-schemes.

(4.2.3) Proposition. Let N be a Tate unipotent group over a field κ of characteristic p.
The natural map

δN : TL(N) −→ DefTor (N)

is an isomorphism of formal schemes over κ. In other words for every augmented artinian
local κ-scheme S, δN induces a bijection TL(N)(S)

∼−→ DefTor (N) (S)..

Proof. Suppose first that card(slope(N)) = 1, i.e. N is isomorphic to lim←−nX[pn] for an
isoclinic p-divisible formal group X over κ. Consider the exact sequence

H0(S,NQ) // TL(N)(S)
δN // H1

fpqc(S,N) // H1
fpqc(S,TL(N))

attached to the short exact sequence

0 −→ N −→ NQ −→ TL(N) −→ 0

of fpqc sheaves of abelian groups on Spec(κ). We know from 4.2.1 that

H1
fpqc(S,TL(N)) ∼= H1

fpqc(S,X) = (0).

We also know that
H0(S,N) ∼= HomS(Qp/Zp, X) = 0

because Homκ(Qp/Zp, X) = 0. We have shown that 4.2.3 holds when card(slope(N)) = 1.
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The general case is proved by an easy induction on card(slope(N)). Let t = max(slope(N)).
Consider the short exact sequence 1→ FiltslN→ N→ N/FiltslN→ 1 and the commutative
diagram

TL(FiltslN)(S) //

��
δ
Filt

sl
N,S

��

TL(N)(S) //

δN,S
��

TL(N/FiltslN)(S)

��
δN/Filt

sl
N,S

��
DefTor

(
FiltslN

)
(S) // DefTor (N) (S) // DefTor

(
N/FiltslN

)
(S).

For the top row of the above diagram, 4.2 (b) implies that the inverse image of every ele-
ment of TL(N/FiltslN)(S) under the map TL(N)(S)→ TL(N/FiltslN)(S) is a torsor for the
commutative group TL(FiltslN). For the bottom row, the inverse image of every element
of DefTor

(
N/FiltslN

)
(S) under the map DefTor (N) (S) → DefTor

(
N/FiltslN

)
(S) is either

empty or is a torsor for the commutative group DefTor
(
FiltslN

)
(S) ∼= Yt(S), where Yt is a

p-divisible group over κ such that lim←−n Yt[p
n] ∼= FiltslN. We have seen that the vertical arrow

δFiltslN,S
is bijective, while the vertical arrow δN/FiltslN,S

is bijective by induction. It follows
that δN,S is a bijection.

(4.2.4) Definition. Let κ be a field of characteristic p.

(i) The Tate-linear formal variety attached to a Tate unipotent group N over κ is the
smooth formal scheme T over κ which represents the (restriction to Artκ of the) fpqc
sheaf TL(N) on Schκ. We will abuse notation and use TL(N) to denote the formal
scheme representing it, if no confusion is likely.

(ii) A Tate-linear formal variety over κ is a pair
(
T, ζ : T

∼−→ TL(N)
)
, where T is a formal

scheme over κ, N is a Tate unipotent group over κ, and ζ is an isomorphism of formal
schemes over κ. The isomorphism ζ is said to be a Tate-linear structure on the formal
scheme T .

Remark. A Tate-linear formal variety T in 4.2.4 is a homogeneous space under N in the
category of fpqc sheaves on Schκ. From this perspective, Tate-linear formal varieties are
analogous to compact nilmanifolds.

(4.3) Biextensions of p-divisible formal groups as Tate-linear formal varieties.
Let κ be a field of characteristic p. We will show that every biextension of p-divisible

formal groups over κ is a Tate-linear formal variety attached to a Tate unipotent group with
nilpotency class at most 2. The construction also shows that every Tate-linear formal variety
attached to Tate unipotent groups of nilpotency class at most 2 is isogenous to a biextension
of p-divisible formal groups, if the base field κ is perfect.

(4.3.1) We set up notation for the rest of 4.3. Let N be a Tate unipotent group over κ,
which contains commutative Tate unipotent subgroups X,Y,Z, such that N is a central
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extension of X×Y by Z which is split over X and also over Y. In other words the following
conditions are satisfied.

(i) Z is contained in the center of N, and N/Z is commutative.

(ii) The maps Z × X → Z · X and Z × Y → Z · Y given by the group law of N are
isomorphisms. Moreover the subgroups Z ·X and Z ·Y of N are both normal.

(iii) N is a semi-direct product of Z×X with Y, and also a semi-direct product of Z×X
with Y

Passing to the Mal’cev completions, we see that the Mal’cev completion NQ of N is a central
extension of XQ ×YQ by ZQ which is split over XQ and also over YQ. Let q : N� X×Y
and qQ : NQ � XQ ×YQ be the quotient maps of the central extension N of X ×Y by Z
(respectively NQ of XQ ×YQ by ZQ). The group commutator

[ , ]grp,NQ : NQ ×NQ −→ NQ, [n1,n2]grp = n−1
1 n−1

2 n1n2 ∀n1,n2 ∈ NQ

on NQ induces a skew-symmetric bilinear pairing

〈 , 〉NQ : (XQ ×YQ)× (XQ ×YQ) −→ ZQ

such that the diagram

NQ ×NQ

qQ×qQ
��

[ , ]grp,NQ //NQ

(XQ ×YQ)× (XQ ×YQ)
〈 , 〉NQ // ZQ

� ?

OO

commutes. Let X := TL(X) = XQ/X, Y := TL(Y) = YQ/Y and Z := TL(Z) = ZQ/Z be
the p-divisible groups corresponding to X, Y and Z respectively. Group laws on X,Y,Z and
X, Y, Z will be written additively, to conform with the usual notation for p-divisible groups
and biextensions.

Let π : TL(N)→ TL(X×Y) be the morphism attached to the quotient maps q and qQ. Let
E := TL(N), so that π : E → X × Y has a natural structure as a Z-torsor.

(4.3.2) We use the notation in 4.3.1. The Z-torsor structure on E over X × Y admits a
natural enhancement to a biextension of (X, Y ) by Z, with the relative group laws +1 :
E ×Y E → E and +2 : E ×X E → E defined as follows.1

1Here +1 is “addition along the first set of variables”, while +2 is “addition along the second set of
variables”. This is the convention in [21, pp. 320–321], where Mumford explains the construction of the Weil
pairings of biextensions of p-divisible groups. Unfortunately this convention is opposite to the convention in
[21, pp. 310–311], where +1 and +2 denote the group laws relative to the first and second factor of the base
respectively.
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(1a) Given a functorial point y of Y , pick a functorial point y0 on YQ lifting y. The fiber
(pr2 ◦ π)−1(y) of E over y consists of all elements of the form [z · x · y0], where z is
a functorial point of ZQ, x is a functorial point of ZQ, and [z · x · y0] is the image
of z · x · y0 in TL(N) = E. One checks that two functorial points [z1 · x1 · y0] and
[z2 · x2 · y0] of Ey over the same κ-scheme are equal if and only

x1 − x2 ∈ X and 〈x1 − x2,y0〉NQ + z1 − z2 ∈ Z.

Here zi · xi · y0 refers to product according to the group law on NQ, i = 1, 2, and
〈x1 − x2,y0〉NQ + z1 − z2 is a shorthand version of 〈x1 −XQ x2,y0〉NQ +ZQ z1 −ZQ z2.

For any two functorial points [z1 ·x1 ·y0] and [z2 ·x2 ·y0] of Ey over the same κ-scheme,
define their sum under +1 by

[z1 · x1 · y0] +1 [z2 · x2 · y0] := [(z1 + z2) · (x1 + x2) · y0].

It is not difficult to verify that this gives a well-defined morphism +1 : E ×Y E to E.

(1b) It follows directly from the definition in (1a) that for each functorial point y of Y , the
sheaf of commutative groups (pr2 ◦ π)−1(y) under the group law +1 is the push-out of
the top row by the vertical arrow ξy in the commutative diagram

1 // ZQ ·X //

ξy
��

ZQ ·XQ //

��

XQ/X = X //

=

��

1

1 // Z // (pr2 ◦ π)−1(y) // X // 1 .

with exact rows. Here ξy : ZQ ·X→ Z is the group homomorphism given by

ξy(z · x) = 〈x,y0〉NQ mod Z ∀ z ∈ ZQ, ∀x ∈ X,

where y0 is a representative of y in XQ. Clearly ξy depends only on y ∈ YQ/Y, and
not on the representative y0 of y.

(2a) Similarly, given any functorial point x of X, pick a representative x0 of x in XQ. Points
of the fiber (pr1◦π)−1(x) of E → X×Y over y consists of all points of the form [z·y·x0],
where z (respectively y) runs through all points of ZQ (respectively YQ). Two points
[z1 · y1 · x0] and [z2 · y2 · x0] are equal if and only if

y1 − y2 ∈ Y and z1 − z2 + 〈y1 − y2,x0〉NQ ∈ Z.

The sum of two points [z1 ·y1 ·x0] and [z2 ·y2 ·x0] of (pr1 ◦π)−1(x) under +2 is defined
as

[z1 · y2 · x0] +2 [z1 · y2 · x0] := [(z1 + z2) · (y1 + y2) · x0].
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(2b) The sheaf of commutative groups (pr1 ◦ π)−1(x) in (2a) is an extension of Y by Z,
which sits in the push-out diagram

1 // ZQ ·Y //

ηx

��

ZQ ·YQ //

��

YQ/Y = Y //

=

��

1

1 // Z // (pr1 ◦ π)−1(x) // Y // 1 ,

where ηx : ZQ ·Y → Z is given by

ηx(z · y) = 〈y,x0〉 mod Z = −〈x0,y〉 mod Z ∀ z ∈ ZQ, ∀y ∈ Y.

Logically, one still needs to check that the two relative group laws +1,+2 are compatible,
to complete the proof that (π : E → X × Y,+1,+2) is a biextension of (X, Y ) by Z. The
require compatibility condition is this: for any functorial points x1, x2 of X, y1, y2 of Y , and
points uij of E above (xi, yj),

(u1,1 +1 u2,1) +2 (u1,2 +1 u2,2) = (u1,1 +2 u1,2) +1 (u2,1 +2 u2,2)

holds. The verification is straight forward and left to the readers.

(4.3.3) To identify the biextension π : E → X × Y of (X, Y ) by Z constructed above, we
need to compute its Weil pairings

βn : X[pn]× Y [pn] −→ Z[pn], n ≥ 1,

since every biextension can be reconstructed from its Weil pairings. There is of course a
choice of sign in the definition of the Weil pairings of a biextension. We will follow the
convention in [21]. We recall the recipe in [21, pp. 320–321].

(a) For each positive integer n, construct a canonical splitting

φn : X[pn]× Y [p2n] −→ (1X × [pn]Y )∗E|(X[pn]×Y [p2n])

of the restriction to X[pn]× Y [p2n] of (1X × [pn]Y )∗E, a biextension of (X[pn], Y [p2n])
by Z, as follows.

– Given any pair (xn, y2n) of functorial points of X[pn] × Y [p2n], after passing to
a suitable finite faithfully flat cover of the base scheme of (xn, y2n), one chooses
a functorial point un ∈ E(xn,y2n) such that [pn]+1(un) is equal to ε+1(y2n), where
ε+1 : Y → E is the 0-section of the relative group law +1. Clearly un is unique
up to translations by elements of Z[pn].

– Define φn(xn, y2n) by
φn(xn, y2n) = +2(un).
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Clearly φn(xn, y2n) is a well-defined point of E above (xn, p
ny2n). One easily verifies

that the map
φn : X[pn]× Y [p2n]→ (1X × [pn]Y )∗E|(X[pn]×Y [p2n])

is bi-additive.

(b) For each bn ∈ Y [pn], there exists a unique element βn(xn, yn, bn) ∈ Z such that

βn(xn, yn, bn) ∗ φn(xn, yn + bn) = φn(xn, yn),

where βn(xn, yn, bn) ∗ φn(xn, yn + bn) is the translation of φn(xn, yn + bn) by the point
βn(xn, yn, bn) for the Z-torsor structure of E. It turns out the βn(xn, yn, bn) is inde-
pendent of yn, and descends to a bilinear map

βn : X[pn]× Y [pn] −→ Z[pn].

Remark. The splittings φn above are constructed through normalizations using the group
law +1. Reversing the roles of +1 and +2, one can construct canonical splittings ψn of
([pn]X × 1Y )∗E|(X[p2n]×Y [pn]), and define bilinear pairings γn : X[pn] × Y [pn] → Z[pn] by
γn(an, yn) ∗ ψn(x2n + an, yn) = ψn(x2n, yn) for all x2n ∈ X[p2n], all an ∈ X[pn] and all
yn ∈ Y [pn]. It turns out that γn = −βn on X[pn]× Y [pn].

(4.3.4) Going back to the biextension π : E = TL(N) → X × Y attached to the Tate
unipotent group N, we want to compute its Weil pairings βn : X[pn] × Y [pn] → Z[pn].
Of course one suspect that these pairings are likely related to the skew symmetric pairing
〈 , 〉NQ : XQ ×YQ → ZQ, but there is an obvious question about the sign.

First we compute the canonical splittings. Given any functorial points (xn, y2n) of E above
X[pn] × Y [p2n], choose liftings xn of xn and y2n of y2n in p−nX and p−2nY respectively,
after passing to a suitable fpqc cover of the base scheme of (xn, y2n). Passing to a higher
fpqc cover if necessary, one chooses a functorial point zn of ZQ such that [zn · xn · y2n] is
normalized with respect to +1, in the sense that [pn]+1([zn · xn · y2n]) = [pnzn · pnxn · y2n] is
the 0-element of the group

(
(pr2 ◦ π)−1(y),+1

)
. This means that

〈pnxn,y2n〉NQ +ZQ p
nzn ∈ Z.

By definition,

φn(xn, y2n) = [pn]+2([zn · xn · y2n]) = [pn]+2

(
[ (zn + 〈xn,y2n〉NQ) · y2n · xn ]

)
=
[(
pnzn + 〈pnxn,y2n〉NQ

)
· pny2n · xn

]
=
[

(−〈pnxn,y2n〉) · xn · pny2n

]
.

Notice that the last expression,
[

(−〈pnxn,y2n〉)·xn ·pny2n

]
, indeed depends only on (xn, yn).

If follows immediately that for any functorial point (xn, bn) of X[pn]× Y [pn], we have

βn(xn, bn) = pn〈xn,bn〉NQ

for all liftings (xn,bn) in (p−nX)× (p−nY) of (xn, bn). We state this result in 4.3.5 below.
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(4.3.5) Proposition. Let X, Y, Z be p-divisible groups over a field κ of characteristic p.
Let X = lim←−nX[pn], Y = lim←−n Y [pn], Z = lim←−n Z[pn] be the commutative Tate unipotent
groups attached to X, Y, Z respectively. Let N be a Tate unipotent group over κ which is a
central extension of X×Y of Y split over X and Y as specified in 4.3.1. Let E → X × Y
be the biextension of (X, Y ) by Z attached to E = TL(N). Then the Weil pairing

βn : X[pn]× Y [pn] −→ Z[pn], n ≥ 1

of the biextension E is given by

βn(xn, yn) = pn〈xn,yn〉NQ

for all functorial points (xn, yn) of X[pn]× Y [pn] ∼= (p−nX/X)× (p−nY/Y) and any lifting
(xn,yn) of (xn, yn) in (p−nX)× (p−nY), with values in an fpqc cover of the base scheme of
(xn, yn). Here 〈 , 〉NQ : XQ ×YQ → ZQ is the Qp-bilinear map

(x,y) 7→ [x,y]grp,NQ x ∈ XQ, y ∈ YQ

from XQ ×YQ to ZQ.

(4.3.6) Corollary. Let X, Y, Z be p-divisible groups over a field κ of characteristic p.
Let X = lim←−nX[pn], Y = lim←−n Y [pn], Z = lim←−n Z[pn] be the commutative Tate unipotent
groups attached to X, Y, Z respectively. Given any biextension π : E → X×Y , there exists a
Tate unipotent group N over κ which is a central extension N of X×Y by Z which is split
over X and Y, such that the biextension TL(N) → X × Y of (x, Y ) by Z is isomorphic to
π : E → X × Y .

Proof. Let
(
βn :X[pn]×Y [pn]→ Z[pn]

)
n≥1

be the family of Weil pairings of the biextension
E. Because the βn’s satisfy the compatibility condition

βn(pxn+1, pyn+1) = pβn+1(xn+1, yn+1) ∀xn+1 ∈ X[pn+1], ∀ yn+1 ∈ Y [pn+1],

There exists a unique Zp-bilinear pairing β̃ : X ×Y −→ Z such that for any point (xn, yn)
of X[pn]× Y [pn]

βn(xn, yn) = p−n β̃(x, y) mod Z,

where x and y are points of X and Y such that xn = p−nx mod X and yn = p−ny mod X.
It suffices to show that there exists a central extension N which is split over X and Y, such
that

[x,y]grp = β̃(x,y)

for all functorial points (x,y) ∈ X×Y.

Define a fpqc sheaf of nilpotent algebras A without unity on Schκ whose underlying additive
group is X⊕Y ⊕ Z, with multiplication defined as follows.

• Z ·X = X · Z = Z ·Y = Y · Z = Z · Z = Y ·Y = X ·X = Y ·X = 0.
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• x · y = β̃(x,y) for all functorial points (x, y) of X×Y.

Let N be the subgroup 1 + A of units in the sheaf of algebras Zp ⊕A, and let η : A → N
be the map η(a) = 1 + a for all functorial points a of A. Define commutative subgroups
X′,Y′,Z′ of N by X′ = 1 + X, Y′ = 1 + Y, and Z′ = 1 + Z. Clearly η induces canonical
group isomorphisms X ∼= X′, Y ∼= Y′ and Z ∼= Z′. It is not difficult to see that N is a Tate
unipotent group. Clearly N is a central extension of X′ × Y′ by Z′ which is split over X′

and Y′. Moreover the group commutators of elements of X′ with elements of Y′ are given
by

[η(x), η(y)]grp = η(β̃)

for all functorial points (x,y) of X×Y.

(4.3.7) Definition. Let N and N′ be Tate unipotent groups over κ.

(a) A formal morphism f : TL(N)→ TL(N′) over κ is Tate-linear, or a TL-morphism, if
there exists a homomorphism α : N→ N′ such that f = TL(α).

(b) A TL-morphism TL(N) → TL(N′) over κ induced by a homomorphism α : N → N′

of Tate unipotent groups over κ is an isogeny if α is an isogeny.

(c) The Tate-linear formal varieties TL(N) and TL(N′) are isogenous if N and N′ are
isogenous.

(4.3.8) Definition. Let TL(N) be a Tate-linear formal variety attached to a Tate unipo-
tent group N over a field κ of characteristic p. A Tate-linear formal subvariety, or a
TL-subvariety, of TL(N) is a closed formal subscheme which is the image of a closed TL-
embedding TL(N′) ↪→ TL(N), where N′ is a co-torsion free Tate unipotent subgroup of
N.

(4.3.9) Corollary. Let N be a central extension of X × Y by Z as in 4.3.1. Let X =
TL(X), Y = TL(Y) and Z = TL(Z). Let E = TL(N), endowed with the natural biextension
structure of (X, Y ) by Z as in 4.3.2. An closed formal subscheme T of E is a Tate-linear
formal subvariety of E in the sense of [7, §10.3] if and only if T is a Tate-linear formal
subvariety in the sense of 4.3.8.

Note that in [7, §10.3], the notion of Tate-linear formal subvarieties of a biextension p-
divisible formal groups is defined directly in terms of the biextension structure ofE. The
proof of 4.3.9 is an easy exercise using proposition 4.3.5.

(4.3.10) Corollary. Let N be a Tate unipotent group over a perfect field κ of charac-
teristic p. Suppose that there exists Tate unipotent subgroup Z of the center of N such that
N/Z is a commutative Tate unipotent subgroup. There exist p-divisible formal groups X, Y
over κ, a biextension E of (X, Y ) by Z, a Tate-linear formal subvariety W of E, and an
isogeny W → TL(N) of Tate-linear formal varieties.
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Proof. We prove the following equivalent statement.

Let N be a Tate unipotent Lie Qp-algebra over κ. Suppose that there Tate
unipotent Lie Qp-subalgebra Z of the center of N such that the quotient N/Z is
commutative. There exist commutative Tate unipotent Lie Qp-algebras X,Y over
κ, a central extension E of X×Y split over X and Y, and a Tate unipotent Lie
Qp-subalgebra W of E, and an isomorphism N

∼−→W.

Since κ is perfect, there exists a commutative Tate unipotent Lie Qp-algebra U over κ and
an isomorphism N ∼= Z⊕ U compatible with the Qp-module structures. Of course. The Lie
bracket [ , ]N on N induces a skew symmetric Qp-linear pairing 〈 , 〉 : U× U→ Z.

Define a skew symmetric pairing

[ , ] : (U⊕ U)× (U⊕ U) −→ Z

by
[u1 + v1, u2 + v2] := 〈u1, u2〉 − 〈v1, v2〉

for all functorial points (u1, v1), (u2, v2) of U ⊕ U over the same base scheme. This skew
symmetric pairing [ , ] defines a Tate unipotent Lie Qp-algebra structure on E := Z⊕U⊕V

Define commutative Tate unipotent Lie Qp-subgroups X (respectively Y) of U ⊕ U to
be the images of the diagonal homomorphism u 7→ (u, u) (respectively the anti-diagonal
homomorphism u 7→ (u,−u)) from U to U⊕U. Clearly U⊕U = X⊕Y. Moreover the central
extension E of U⊕ U by Z splits over X and Y.

(4.4) Let N be a Tate unipotent group over a field κ of characteristic p. We give a crude
congruence estimate for element in a “one-parameter subgroups” exp(pnB) in the automor-
phism group Aut(N) of N, for n sufficiently large, where B is an element of the Lie algebra
of Aut(N)

(4.4.1) Definition. For each n ∈ N, let

FrnTL(N)/κ : TL(N) −→ TL(N)(pn)

be the n-th iterate of the relative Frobenius morphism for TL(N). Define TL(N)[Frn] to be

TL(N)[Frn] :=
(
FrnTL(N)/κ

)−1
(∗TL(N)(p

n)),

where ∗TL(N)(p
n) is the base closed point of the formal scheme TL(N)(pn).

The following proposition 4.4.2 gives “trivial estimates” for the action of one-parameter
families of automorphisms of a Tate-linear formal variety.

(4.4.2) Proposition. Let N be a Tate unipotent group over a field κ of characteristic p.
Let NQp = LieNQ be the Tate unipotent Qp-Lie algebra associated to the Mal’cev completion
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NQ of N. Let s ∈ (0, 1] such that max(slope(N)) ≤ s ≤ 1. Let U be a finitely generated
Zp-submodule of the Lie algebra Der(NQ) of the p-adic Lie group Aut(NQ) = Aut(NQp).
There exist constants c0, n0 ∈ N such that for every n ≥ n0 and every B ∈ U , the exponential
expAut(NQ)(p

nB) of pnB is an element of Aut(N) which operates trivially on the infinitesimal

neighborhood TL(N)[Frbn/sc−c0 ] of the base point of TL(N).

Proof. The basic idea here is that the statement 4.4.2 follows from the following two
estimates.

(a) Since the all slopes of NQp = LieNQ are ≤ s, the effect of Frm should “divide [pms−c1 ]”
for some positive constant c1.

(b) The effect of exp(pnB)− 1 should be “divisible by pn” for n large.

Preliminary reductions
By 3.2.20, there exists a constant m1 such that log(Npm) is a Tate unipotent Lie Zp-

subalgebra of NQp such that log(Npm) ⊗Z Q = NQp , for all m ≥ m1. So we may and do
assume that log(N) is a Tate unipotent Lie Zp-subalgebra NZp of NQp , NQp = NZp⊗ZQ, and
exp(NZp) = N. The functoriality of the Frobenius morphisms and the exponential/logarithm
pairs for NQ and NQ tells us that for each r ∈ N, TL(N)[Frr] is the image in TL(N) the
image of (

FrrNQ

)−1(
N

(pr)
Zp

)
under the exponential map expNQ

: NQp −→ NQ.

where FrrNQ
: NQp → N

(pr)
Qp is the r-th power of the relative Frobenious of NQ.

Let G = Aut(NQ) = Aut(NQ). We may and do assume that expG(B) ∈ G for all B ∈ U .

Apply the slope estimate for the p-divisible group NQp/NZp
Since s ≥ max(slope(N)) there exists constants r1, d1 ∈ N such that(

FrrNQ

)−1(
N

(pr)
Zp

)
⊆ p−(rs+d1)NZp ∀ r ≥ r1.

The formula
expG(pnB) = id +

∑
j≥1

pnjBj

j!

plus the standard estimate for ordp(j!) shows that the restriction to the image in TL(N) of(
Fr
bn/sc−dd1/se
NQ

)−1(
N

(pbn/sc−dd1/se)
Zp

)
of the action of expG(pnB) is the identity map, for all n ≥ s(r1 + d1) + 2.

(4.5) Remark. There are many questions one may ask related to the notion of Tate-linear
formal varieties. We mentioned one in 1.2.3 (c). Another line of inquiry is to develop a
theory of families of Tate-linear formal varieties, which include (a) below as examples, and
make progress on questions (b)–(d).
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(a) Let C be a central leaf on a moduli space of abelian varieties of PEL type over Fp .
Let (C × C)∆C be the formal completion of C × C along the diagonal ∆C. Then the
projection map pr1 : C×C → C makes (C×C)∆C a family of Tate-linear formal varieties
over C.

(b) Let W be a Newton polygon stratum in Siegel modular variety over Fp . For each
Fp-point x0 ofW , there is a flat formal morphism πx0 :W/x0 → Spf(Rx0), where Rx0 is
completion local Fp-domain, such that W/x0 is a family of Tate-linear formal varieties
over Spf(Rx0), and the closed fiber π−1

x0
(x0) is C(x0)/x0 , the formal completion at x0 of

the central leaf C(x0) passing through x0.

(c) In the case when the base field is a finite field, develop a theory of quasi-canonical
liftings of Tate-linear formal varieties over mixed-characteristic complete discrete val-
uation rings with finite residue fields.

(d) Let C be a central leaf in a Siegel modular variety Ag,d,n,Fp over Fp . Develop a good
notion of Tate-linear subvarieties of C and their quasi-canonical liftings (if the latter
exist).

§5. Orbital rigidity: the statement and reduction steps

Theorem 5.1 below is the main rigidity result of this article.

(5.1) Theorem. Let κ be a perfect field of characteristic p, and let N be a Tate unipotent
group over κ. Let G be a p-adic Lie group acting strongly nontrivially on N. Let W be
a reduced irreducible closed formal subscheme of TL(N). If W is stable under the strongly
nontrivial action of G on TL(N), then W is a Tate-linear formal subvariety of TL(N). In
other words, there exists a unique co-torsion-free Tate unipotent subgroup N′ of N such that
W = TL(N′).

(5.1.1) Remark. (a) The statement 5.1 depends only on the isogeny class N, because the
map TL(α) : TL(U)→ TL(N) induced by an isogeny α : U→ N is purely inseparable.

(b) An easy descent argument shows that it suffices to prove 5.1 when the base field κ is
algebraically closed.

(5.1.2) Corollary. Let κ be a perfect field of characteristic p, and let N1,N2 be Tate
unipotent groups over κ. Let G be a p-adic Lie group acting strongly nontrivially on Tate-
linear formal varieties TL(N1) and TL(N2) attached to N1 and N2 respectively. Then every
G-equivariant morphism of formal schemes f : TL(N1) → TL(N2) over κ is Tate-linear,
i.e. there exists a unique homomorphism h : N1 → N2 over κ of Tate unipotent groups such
that f = TL(h).

Proof. Apply 5.1 to the graph of f .
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(5.1.3) Remark. Theorem 5.1 has been proved in two cases:

• When N is commutative, i.e. N corresponds to a p-divisible group over κ. This is [5,
Thm. 4.3].

• When N is a central extension of a product X×Y of two commutative Tate unipotent
groups by a commutative Tate unipotent group Z which is split over X and also over
Y as in 4.3.1. This is the main result [7, §10.6] in view of 4.3.9.

Therefore 4.3.10 tells us that 5.1 holds whenever N is nilpotent of class at most 2, i.e. if
there exists a Tate unipotent subgroup Z contained in the center of N such that N/Z is a
commutative Tate unipotent group.

(5.1.4) Remark. Theorem 5.1 will be proved by induction on card(slope(N)). In 5.4 we
show that 5.1 follows formally from theorems 5.2 and 5.3 below. We will prove 5.3 later in
this section, by reducing it to the case of biextensions. Theorem 5.2 will be proved in §6
using the method of hypocotyl elongation in tempered perfections.

Lemma 5.1.5 says that orbital rigidity of N is a property depending only on the isogeny
class of N, or equivalently the Tate unipotent Qp-Lie algebra LieNQ of N. In the rest of this
section, this method of “modification by a suitable isogeny” will be used frequently, without
formally invoking 5.1.5.

(5.1.5) Lemma. Let N and N′ be isogenous Tate unipotent groups over a perfect field κ of
characteristic p. The statement 5.1 holds for N if and only if it holds for N′.

Proof. Let α : N′′ → N and α′ : N′′ → N′ be isogenies of Tate unipotent groups
over There exists an open subgroup G1 of G such that the action of G on N lifts to N′′

and descends to N′, so that α and α′ are both G1-equivariant. The G1-equivariant maps
TL(α) : TL(N′′) → TL(N) and TL(α′) : TL(N′′) → TL(N′) are both purely inseparable.
It follows that a reduced formal subscheme W of TL(N) is G1-equivariant (respectively a
Tate-linear formal subvariety) if and only if (TL(α)−1(W ))red is. The same holds for TL(α′).

We will use the following notation in theorem 5.2.

• Let κ be a perfect field of characteristic p, and let N be a Tate unipotent group over
κ.

• Let G be a p-adic Lie group acting strongly nontrivially on the Tate-linear formal
variety TL(N) attached to N.

• Let W be a reduced irreducible closed formal subscheme of N which is stable under
the action of G.

• Let λ1 = max(slope(N)), let Z = Filλ1sl N. Let Z = TL(Z) be the p-divisible group
attached to Z, which operates naturally on TL(N).
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• Let N2 := N/Z.

• Let π : TL(N) −→ TL(N2) be the map induced by the quotient map N� N2.

Clearly TL(N) is a torsor over TL(N2) under the translation action of Z on TL(N). From
orbital rigidity of p-divisible formal groups we know that the reduced closed formal subscheme
(W ∩ Z)red of Z is a union of p-divisible formal subgroups of Z.

(5.2) Theorem. Notation and assumptions as in the above paragraph.

(a) The reduced closed subscheme (W ∩ Z)red of Z is a p-divisible subgroup of Z.

(b) The formal subscheme W of TL(N) is stable under the translation action of the p-
divisible subgroup Z ′ := (W ∩ Z)red of Z.

Let Z′ be the Tate unipotent subgroup of Z corresponding to Z ′. Let N1 := N/Z′.
The quotient W1 := W/Z ′ is an irreducible closed formal subscheme of TL(N1), and
is stable under natural action of G. Let π̄ : TL(N1)→ TL(N2) be the map associated
to the quotient map N1 � N2.

(c) The restriction π̄
∣∣
W1

: W1 −→ TL(N2) of π̄ : TL(N1) → TL(N2) to W/Z1 is purely
inseparable.

The proof of theorem 5.2 is deferred to §6.

The setup of theorem 5.3 is as follows. Let N1 be a Tate unipotent group over a field
κ of characteristic p. Let G be a p-adic Lie group acting strongly nontrivially on N1. Let
Z1 be a Tate unipotent normal subgroup of N1 such that Z1 is stable under the action
of G, and the quotient N2 := N1/Z1 is a Tate unipotent group over κ. Assume that
min slope(Z1) > max slope(N2).

(5.3) Theorem. Notation and assumptions as in the previous paragraph. Suppose that the
projection map π : TL(N1) → TL(N2) admits a G-equivariant section ξ. Then ξ is a TL
morphism, i.e. there exists a G-equivariant group homomorphism ψ : N2 → N1 of fpqc
sheaves on Schκ which splits the quotient homomorphism N1 � N2, such that the section ξ
of π is equal to the map TL(ψ) : TL(N2)→ TL(N1) induced by ψ.

(5.4) Theorems 5.2 and 5.3 imply the main theorem 5.1.

This is completely formal. Given a closed irreducible formal subscheme W of TL(N) stable
under G as in 5.1. Let λ1, Z and Z = TL(Z) be as in the paragraph preceding theorem
5.2. Let Z ′ := (W ∩ Z)red, a p-divisible subgroup of Z stable under G, by orbital rigidity
for p-divisible formal groups [5]. Consider N1 := N/Z, W1 := W/Z ′ ⊆ TL(N1), and
π̄ : TL(N1)→ TL(N2). By induction card(slope(N)), the schematic image of W1 under the
purely inseparable morphism π̄

∣∣
W1

: W1 → TL(N2) is equal to TL(N4) for a Tate unipotent
subgroup N4 of N2. Let N3 be the inverse image of N4 under the quotient homomorphism
N1 � N2. Thus we have W1 ⊆ TL(N3),
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Since the restriction to W1 of the projection map π4 : TL(N3) → TL(N4) is purely
inseparable, there exists an isogeny α : N6 → N4 such that for the Tate unipotent group

N5 := N3 ×N4,α N6,

the projection map π5 in the diagram

TL(N5)

π6
��

(TL(α)∗W1)red
//

π5
��

⊇oo W1

π3

��

⊆ // TL(N3)

π4
��

TL(N6) TL(N6) α //=oo TL(N4) = // TL(N4)

is an isomorphism. Let ξ be the inverse of π5, which is a G-equivariant section of the
projection π6 : TL(N5)→ TL(N6).

Theorem 5.3 applied to the section ξ of π6 says that there exists a G-equivariant ho-
momorphism ψ : N6 → N5 which is a section of the quotient map N5 � N6, such that
TL(ψ) : TL(N6)

∼−→ (TL(α)∗W1)red. Let N7 be the smallest co-torsion free Tate unipotent
subgroup of the image of ψ(N6) in N3 under the map N5 = N3 ×N4,α N6 −→ N3. Let
N′ be the inverse image of N7, which is a sheaf of subgroups of N1, under the quotient
homomorphism N� N1, i.e. N′ := N×N1 N7. This Tate unipotent subgroup N′ of N has
the required property that W = TL(N′).

(5.5) Theorem. Let κ be a field of characteristic p. Let N,Z′ be Tate unipotent groups over
κ. Let G be a p-adic Lie group which operates strongly nontrivially on N and Z′. Assume
that max(slope(N)) < min(slope(Z′)). Let ξ : TL(N)→ TL(Z′) be a formal morphism over
κ. If ξ is G-invariant, then ξ is the trivial map.

Proof. An easy induction on the number of slopes of Z′ shows that it suffices to prove
5.3 in the case when Z′ is isoclinic, i.e. TL(Z′) is an isoclinic p-divisible group with slope λ′.
Let λ1 = max(slope(N)) < λ′. Denote by η : G→ Aut(N) and ρ : G→ Aut(Z′) the actions
of G on N and Z′ respectively.

Enlarge the base field κ if necessary, we may assume that κ is algebraically closed.
Composing ξ : TL(N) → Z ′ with a suitable isogeny Z ′ → Z ′′, we may and do assume that
there exists a positive integer r such that rλ′ ∈ N, and the complete κ-algebra Γ(Z ′,OZ′) is
topologically generated by formal functions f on Z ′ such that [prλ

′
]∗f = fp

r
. In other words

Z ′ is the base change to κ of a p-divisible formal group Y over the finite subfield Fq with
q := pr elements, and there exists an isomorphism β : (Z ′)(pr) ∼−→ Z ′ such that

[pmrλ
′
]Z′ = βm ◦ FrmrZ′ ∀m ∈ N,

where FrmrZ′ : Z ′ → (Z ′)(pmr) is the mr-th iterate of the relative Frobenius map for Z ′, and
βm : (Z ′)(pmr) ∼−→ Z ′ is the m-th iterate of β.

Let B be an element of g := Lie(G) such that expG(uB) ∈ G for all u ∈ Zp, and the
element dρ(B) in End(Z ′)⊗QQ is in End(Z ′). We will abuse the notation and write ρ(B)
instead of dρ(B).
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We know from the standard exponential series that

Ker(ρ(expG(pnB)))− [1]Z′) = Ker(ρ(pnB))

for all n ≥ 2. In other words there exists an automorphism γn of Z ′ such that

ρ(expG(pnB)))− [1]Z′ = γn ◦ ρ(pnB) ∀n ≥ 2.

Hence
ρ(expG(pmrλ

′
B)))− [1]Z′ = γmrλ′ ◦ ρ(B) ◦ βm ◦ FrmrZ′

for all m ≥ 2. It follows that for every formal function f in the maximal ideal mZ′ of
Γ(Z ′,OZ′), there exists a unit uf,B,m ∈ Γ(Z ′,OZ′)× such that

(5.5.1) ρ(expG(pmrλ
′
B)))∗f − f = uf,B,m · (ρ(B)∗

(
γ∗mrλ1f))p

mr)
Let m = mTL(N) be the maximal ideal of the pointed formal scheme TL(N). From 4.4.2

we know that there exist constants c6, n6 ∈ N such that for all natural numbers n ≥ n6, we
have

(5.5.2) η(expG(pnB))∗g − g ∈ m(pbn/λ1c−c6 )

for all formal functions g ∈ Γ(TL(N,OTL(N))) on the formal scheme TL(N). Here m(pbn/λ1c−c6 )

is the ideal of Γ(TL(N),OTL(N)) generated by all pbn/λ1c−c6-th powers of elements of m.

Let f be any formal function in the maximal ideal mZ′ of Γ(Z ′,OZ′). Combine (5.5.1) and
(5.5.2) with g = ξ∗f , n = mrλ′, we get

η(expG(pmrλ
′
B))∗ξ∗f − ξ∗f = ξ∗ρ(expG(pmrλ

′
B))∗f − ξ∗f

= (ξ∗uf,B,m) ·
(
ξ∗ρ(B)∗(γ∗mrλ1f)

)pmr ∈ mpbmrλ
′/λ1c−c6

for all m ≥ dn6/rλ
′e. It follows that there exist constants m7, c7 ∈ N such that

ξ∗ρ(B)∗γ∗mrλ1f ∈ mpbmr((λ
′/λ1)−1)c−c7

for all m ≥ m7 and all f ∈ mZ′ . Therefore

ξ∗ρ(B)∗f ∈ mpbmr((λ
′/λ1)−1)c−c7

for all f ∈ mZ′ and all m ≥ m7, since γmrλ1 is an automorphism of Z ′. It follows that

(5.5.3) ξ∗ρ(B)∗f ∈
⋂

m≥m7

mpbmr((λ
′/λ1)−1)c−c7 = (0) ∀ f ∈ mZ′ .

Since G operates strongly nontrivially on Z ′, by [5, 4.1.1] there exist positive integers
b1, . . . , bm, elements Bi,j ∈ Lie(G) indexed by pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ bi,
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such that expG(uBij) ∈ G for all u ∈ Zp and ρ(Bi,j) ∈ End(Z ′) for all pairs (i, j) as above,
and the element

A :=
m∑
i=1

ρ(Bi,1) ◦ · · · ◦ ρ(Bi,bi) ∈ End(Z ′)

is an isogeny. It follows from (5.5.3) that

ξ∗A∗f = f ∀ f ∈ mZ′ .

In other words the composition A ◦ ξ : TL(N) → Z ′ is trivial, which implies that the map
ξ : TL(N)→ Z ′ is also trivial because A is an isogeny.

(5.6) Proof of theorem 5.3.

We are given

• a quotient homomorphism π : N1 � N2 of Tate unipotent groups whose kernel Z is a
Tate unipotent subgroup of N1 such that every slope of Z is strictly bigger than every
slope of N2,

• a p-adic Lie group acting strongly nontrivially on N1 and N2, such that π is G-
equivariant,

• a G-equivariant section ψ of the TL morphism π = TL(π) : TL(N1)→ TL(N2).

We want to produce a G-equivariant homomorphism ξ : N2 → N1 such that π ◦ ξ = idN2

and ψ = TL(ξ).
The proof consists of a number of steps, eventually reducing 5.3 to the case when N1 has

at most 3 slopes, which is covered by the case when TL(N1) is a biextensions of p-divisible
formal groups.

Reduction steps.

(1) Climbing up along the slope filtration of Z, we may and do assume that Z is isoclinic
of slope λ1 ∈ (0, 1].

(2) It suffices to show that there exists a G-equivariant homomorphism ξ : N2 → N1 such
that π ◦ ξ = idN2 , because 5.5 implies that the two G-equivariant sections ξ and TL(ξ)
of π : TL(N2)→ TL(N2) are equal.

(3) It suffices to show that there exists a G-equivariant homomorphism ξQ : NQ → N1

such that the composition πQ ◦ξQ = id(N2)Q , where πQ : (N1)Q → (N2)Q is the Mal’cev
completion of π.

(4) Let N1,Qp and N2,Qp be the Tate unipotent Lie Qp-algebras corresponding to (N1)Q and
(N2)Q respectively. According to the Mal’cev correspondence, it suffices to show that
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the projection map N1,Qp → N2,Qp admits a G-equivariant section ηQp . Equivalently,
the central extension

0→ ZQp → N1,Qp → N2,Qp → 0

splits, where ZQp is the Tate unipotent Lie Qp-algebras corresponding to (Z)Q.

(5) Since the base field κ is perfect, both N1,Qp and N2,Qp split into direct sums of isotypic
components, to the effect that the sheaf of commutative groups underlying N1,Qp is
canonically isomorphic to the sheaf of commutative groups underlying N2,Qp ⊕ ZQp .
Moreover ZQp lies in the center of the Lie Qp-algebra N1,Qp , and the quotient Lie
algebra N1,Qp/ZQp is canonically isomorphic to N2,Qp . We want to show that the
subsheaf N2,Qp of N1,Qp is closed under the Lie bracket of N1,Qp .

(6) For each s ∈ slope(N2), denote by N2,s the component of N2,s with slope s, so that

N1,Qp = ZQp ⊕s∈slope(N2) N2,s.

We know that for any two elements s, s′ ∈ slope(N2),

[N2,s,N2,s′ ]N2,Qp
⊆ N2,s+s′ .

Recall that Z is isoclinic of slope λ1, and λ1 > max(slope(N2)). So we are reduced to
showing that

[N2,s,N2,s′ ]N2,Qp = (0) ∀ s, s′ ∈ slope(N2) with s+ s′ = λ1.

It remains to show that the statement in the last reduction step (7) holds. For any
s, s′ ∈ slope(N2) such that s+ s′ = t, let N3,s,s′ be the Tate unipotent Lie Qp-subalgebra

N3,s,s′ :=

{
ZQp ⊕N2,s ⊕N2,s′ if s 6= s′

ZQp ⊕N2,s if s = s′

of N1,Qp , and let N4,s,s′ be the Tate unipotent Lie Qp-subalgebra

N4,s,s′ :=

{
N2,s ⊕N2,s′ if s 6= s′

N2,s if s = s′

of N1,Qp . Let N3,s,s′,Q be the sheaf of uniquely divisible subgroups of (N1)Q corresponding to
N3,s,s′ under the Mal’cev correspondence. Define a co-torsion free Tate unipotent subgroup
N3,s,s′ of N1 by

N3,s,s′ := N1 ∩N3,s,s′,Q.

Similarly, let N4,s,s′,Q be the uniquely divisible subgroup of (N2)Q corresponding to N4,s,s′ ,
and let N4,s,s′ be the co-torsion free Tate unipotent subgroup

N4,s,s′ := N2 ∩N4,s,s′,Q
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of N2. Clearly N3,s,s′ and N4,s,s′ are stable under the action of G, and

TL(N3,s,s′) = TL(N1)×TL(N2) TL(N4,s,s′).

Moreover the restriction ξ|TL(N4,s,s′ )
of the section ξ of π : TL(N1)→ TL(N2) to TL(N4,s,s′)

is a G-equivariant section of the projection map TL(N3,s,s′)→ TL(N4,s,s′). As remarked in
5.1.3, this special case of 5.3 is known, because it is a consequence of the orbital rigidity
of biextensions of p-divisible formal groups proved in [7, Ch. 10]. So the quotient map
N3,s,s′ � N4,s,s′ has a section, therefore [N2,s,N2,s′ ] = 0.

§6. Proof via hypocotyl elongation in tempered perfections

(6.1) Notation

(6.1.1) We will use the following notation in this section.

• κ is a field of characteristic p.

• Let N be a Tate unipotent group over κ.

• Let λ1 := max(slope(N)), and Z := Filλ1sl N.

• Let N2 := N/Z, a Tate unipotent subgroup over κ.

• Denote by NQ (respectively N2,Q and Z) the Mal’cev completions of N (respectively
N2 and Z).

• Denote by N (respectively N2 and Z) the Tate unipotent Lie Qp-algebras attached to
NQ (respectively N2,Q and Z). Let

expN : N −→ NQ and expN2
: N2 −→ N2,Q

be the exponential maps for NQ and N2,Q respectively.

• Let Aut(NQ) = Aut(N) be the p-adic Lie group consisting of all automorphisms of
NQ. Let Aut(N) be the compact p-adic Lie group consisting of all automorphisms of
N. It is a closed subgroup of Aut(NQ).

• Let g(N) := Lie(Aut(NQ)) (respectively g(N2) := Lie(Aut(N2,Q)) ) be the Lie algebra
of Aut(NQ) (respectively Aut(NQ)).

• Let τN : NQ → NQ/N = TL(N) be the quotient map from NQ to the Tate-linear formal

variety TL(N). Let eN : N→ TL(N) be the composition N
expN //NQ

τN // TL(N) .

• Let G be a compact p-adic Lie group, and let ρ : G→ Aut(N) be a strongly nontrivial
continuous group homomorphism.
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• Denote by dρ : Lie(G) → g(N) the Lie algebra homomorphism attached to ρ. We
often abuse the notation and write ρ instead of dρ.

• Let π : TL(N)→ TL(N2) be the projection map between Tate linear formal varieties
induced by the quotient homomorphism N� N2.

• Let g := Lie(G) be the Lie algebra of G, and let gZp
be a Lie Zp-subalgebra of the Lie

algebra g such that g = gZp
⊗ZpQp and expG(gZp

) ⊆ G.

(6.2) Definition. Let λ2 = max(slope(N2)). According to 4.4.2, there exist constants
n0, c0 ∈ N, n0 ≥ 2, such that for every n ≥ n0 and every element v ∈ gZp , the element

expG(pnv) of G operates trivially on TL(N2)[Frbn/λ2c−c0 ], where

Frbn/λ2c−c0 : TL(N2)→ TL(N2)(pbn/λ2c−c0 )

is the (bn/λ2c − c0)-th iterate of the relative Frobenius morphism on TL(N2).

For every n ≥ n0, define

cn[v] : π−1
(
TL(N2)[Frbn/λ2c−c0 ]

)
−→ Z

to be the unique morphism from TL(N2)[Frbn/λ2c−c0 ] to Z such that

ρ(exp(pnv))
∣∣
π−1(TL(N2)[Frbn/λ2c−c0 ])

= cn[v] ∗ idπ−1(TL(N2)[Frbn/λ2c−c0 ]).

In other words,
ρ(exp(pnv))(x) = cn[v](x) ∗ x

for every functorial point x of π−1(TL(N2)[Frbn/λ2c−c0 ]), where cn[v](x) ∗ x is the translation
of x by cn[v](x) for the Z-torsor structure of TL(N). Let

ς1 := max(λ1
2
, λ2) = max

(
λ1
2
,max(slope(N2))

)
.

Note that
λ2 ≤ ς1 < λ1.

The statement 6.2.1 is immediate from the definition of cn[v].

(6.2.1) Corollary. The map cn[v] is compatible with the Z-torsor structure of TL(N) in
the following sense: For every functorial point (z, x) of Z × π−1(TL(N2)[Frbn/λ2c−c0 ]) and
any v ∈ gZp, we have

cn[v](z ∗ x) =
(

expG(pnv)·z
)
∗ cn[v](x).

(6.2.2) Proposition. We use the notation in 6.2. There exist constants n1, c1 ∈ N with
n1 ≥ n0 such that for all n ≥ n1, we have bn/ς1c − c1 ≤ bn/λ2c − c0, and(

cn+1 [v]− [p]Z ◦ cn[v]
)∣∣

TL(N)[Frbn/ς1c−c1 ]
= 0

for all v ∈ gZp
.
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(6.2.3) Remark. The compatibility statement 6.2.2 will be proved in 6.3.8 as a conse-
quence of a formula 6.3.6 for cn[v]. The effect of restricting to TL(N)[Frbn/ς1c−c1 ] is to strip
all terms of higher order in v in the formula for cn[v], so that cn[v] is equal to its first-
order approximation on the infinitesimal neighborhood TL(N)[Frbn/ς1c−c1 ] of the base point
of TL(N). See 6.3.7.

(6.3) A formula for the map cn[v].

Assume that the base field κ is perfect.

(6.3.1) Since κ is perfect, both N and N2 admit decompositions as direct sums of Tate
unipotent Lie Qp-algebras attached to isoclinic p-divisible groups. In particular we have a
canonical decomposition

N ∼= Z⊕N2.

Under this decomposition, the Lie bracket [ , ]N on N has the form

[ (z1, u1), (z2, u2, ) ]N =
(
βN(u1, u2), [u1, u2]N2

)
∀u1, u2 ∈ N2, ∀ z1, z2 ∈ Z,

where [ , ]N2 denotes the Lie bracket for N2, and

βN : N2 ×N2 −→ Z

is a Z-valued skew-symmetric bilinear pairing on N2.
Let N2 = ⊕s∈slope(N2)N2,s be the slope decomposition of N2, where N2,s is the isoclinic

component of N2 with slope s. Clearly each N2,s is stable under the action of G, so is Z.
Moreover the Lie bracket [ , ]N is G-equivariant, or equivalently [ , ]N2 and βN are both
G-equivariant. In addition,

[N2,s,N2,s′ ]N2 ⊆

{
N2,s′s if s+ s′ ∈ slope(N2),

(0) if s+ s′ 6∈ slope(N2),

and
βN
(
N2,s,N2,s′

)
= (0) unless s+ s′ = λ1.

The statements in lemma 6.3.2 below follow easily from the above discussion.

(6.3.2) Lemma. There exists a Tate unipotent Lie Zp-subalgebra N2,Zp of N2,Q and a Tate
unipotent Lie Zp-subalgebra ZZp of Z with the following properties.

(1) N2,Zp ⊗Q Q = N2, and ZZp ⊗Q Q = Z.

(2) Both N2,Zp and ZZp are stable under the action of G.

(3) The direct sum ZZp ⊕ N2,Zp =: NZp is a Tate unipotent Lie Zp-subalgebra of N. In
other words βN(N2,Zp ,N2,Zp) ⊆ NZp.
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(4) The image expN(NZp) of NZp under the exponential map expN : N → NQ is a Tate
unipotent subgroup of N isogenous to N. Consequently expN2

(N2,Zp) is a Tate unipo-
tent subgroup of N2. Similarly the exponential map expZ identifies ZZp with a Tate
unipotent subgroup of Z, and the inclusion map expZ(ZZp) ↪→ Z is an isogeny.

(5) For every n ∈ N, the relative Frobenius morphism FrnNZp/κ
: NZp → N

(pn)
Zp is compatible

with the direct sum decomposition

NZp = ZZp ⊕N2,Zp

and the bilinear pairing βN. In other words,

FrnNZp/κ

(
[u, v]N2

)
=
[
FrnNZp/κ

(u),FrnNZp/κ
(v)
]
N

(pn)
2

and
FrnNZp/κ

(
βN([u, v])

)
= βN(pn)

(
FrnNZp/κ

(u),FrnNZp/κ
(v)
)

for all functorial points (u, v) of NZp×NZp.

(6.3.3) We continue with the setup in 6.3.2. Let n0, c0 be as in definition 6.2. Let n be a
natural number such that n ≥ n0. Let (z, u) be a functorial point of Z⊕N2 = N such that

Fr
bn/λ2e−c0
N2,Zp

(u) ∈ N
(pbn/λ2e−c0 )
2,Zp , so that the element eN(z, u) = τN(expN(z, u)) of TL(N) lies in

π−1
(
TL(N2)[Frbn/λ2e−c0 ]

)
. Let v = (C,B) be an element of Lie(Aut(N)) with components

C ∈ End(ZZp) and B ∈ End(N2,Zp), so that v is a derivation of the Lie Zp-algebra NZp .
Shrinking NZp if necessary, we may and do assume that expAut(N)(Zp·v) ∈ Aut(N). We would

like to compute cn[v](eN(z, u)), which is equal to the restriction to π−1
(
TL(N2)[Frbn/λ2e−c0 ]

)
of the image of

expN(z, u)−1 · expN(expG(pnv)·(z, u))

= expN(z, u)−1 · expN

(
expG(pnC)·z, expG(pnB)·u

)
= expZ((expG(pnC)− 1)z) · expN(u)−1 · expN(expG(pnB)u)

under the map τN : NQ → TL(N). So cn[v](eN(z, u)) · expZ(−(expG(pnC)− 1)z) is equal to
the restriction to π−1

(
TL(N2)[Frbn/λ2e−c0 ]

)
of the image of

expN(−u) · expN

(
expG(pnB)u

)
= expN(−u) · exp

(
u+ pnBu+

∑
m≥2

pmn

m!
Bmu

)
.

Note that ordp(
pmn

m!
) ≥ m(n− 1) ≥ 2 for all m ≥ 2.

The BCH formula applied to exp(−x) · exp(x+ y) tells us that there exist elements θr,s(x, y)
in the free Lie algebra L(x, y) over Q with free generators {x, y}, where (r, s) ranges through
all pairs with r, s ∈ N, s ≥ 1, such that θr,s(x, y) is homogeneous of bi-degree (r, s) for all
r, s ∈ N, such that

(6.3.3.1) exp(−x) · exp(x+ y) = exp(θ(x, y)) = exp
(∑

r≥0, s≥1
θr,s(x, y)

)
,
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where θ(x, y) :=
∑

r,s θr,s(x, y). We are interested in the part θ′(x, y) :=
∑

r,1 θr,1(x, y) of
θ(x, y) which is linear in y. Note that there exists an infinite power series f(t) ∈ Q[[t]] such
that θ′(x, y) = f(adx)(y).

(6.3.4) Definition. Let θr,s(x, y) be the homogeneous elements of bi-degree (r, s) in the
free Lie algebra L(x, y) over Q in (6.3.3.1). For any functorial point u of N2 ⊆ N, any
v = (C,B) ∈ Lie(Aut(N)) with components C ∈ End(ZZp) and B ∈ End(N2,Zp), consider
the functorial point θ′(u, pnBu)) of N, where θ′(x, y) =

∑
r,1 θr,1(x, y) is the element of

L(x, y)∧ defined in the preceding paragraph.

Define functorial points γ(u,Bu) ∈ Z (respectively δ(u,Bu) ∈ N2) as the Z-component
(respectively N2-component) of θ′(u,Bu). In other words

θ′(u,Bu) = γ(u,Bu) + δ(u,Bu), γ(u,Bu) ∈ Z, δ(u,Bu) ∈ N2.

For each n ∈ N, let

γ(u, pnBu) = [pn]Z(γ(u,Bu)), δ(u, pnBu) = [pn]N2(δ(u,Bu)).

Remark. Since the inverse image of N
(pbn/λ2e−c0 )
Zp under the relative Frobenius map

Fr
bn/λ2e−c0
N : N→ N(pbn/λ2e−c0 )

is stable under the Lie bracket, the functoriality of the Frobenius maps implies that

Fr
bn/λ2e−c0
N γ(u,Bu) ∈ Z

(pbn/λ2e−c0 )
Zp , Fr

bn/λ2e−c0
N δ(u,Bu) ∈ N

(pbn/λ2e−c0 )
2,Zp .

(6.3.5) Lemma. We keep the notation in 6.3.3–6.3.4. There exist natural numbers n2 ≥ n0

and c2 ≥ c0, for all functorial points u of N2 ⊆ N with Fr
bn/λ2e−c2
N2

(u) ∈ N
(pbn/λ2e−c2 )
2,Zp and all

element v = (C,B) ∈ Lie(Aut(N)) with components C ∈ End(ZZp) and B ∈ End(N2,Zp), the
following statements hold for all n ≥ n2.

(a) pbn((λ1/λ2)−1)c · γ(u, pnBu) ∈ ZZp, and δ(u, pnBu) ∈ N2,Zp.

(b) The restriction to π−1
(
TL(N2)

)
[Frbn/λ2c−c2 ] of the image of

expN(−γ(u, pnBu)) · expN(−u) · exp
(
u+ pnBu+

∑
m≥2

pmn

m!
Bmu

)
in TL(N) is 0, namely the 0-element of Z.

Proof. The statement (a) follow from the remark after 6.3.4, that

Fr
bn/λ2e−c0
N γ(u,Bu) ∈ Z

(pbn/λ2e−c0 )
Zp and Fr

bn/λ2e−c0
N δ(u,Bu) ∈ N

(pbn/λ2e−c0 )
2,Zp ,

because Z is isoclinic of slope λ1, and λ2 = max(slope(N2).
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(b) By the BCH formula, there exist elements ηm,j(x0, x1, . . . , xm) in the free Lie algebra
over Q with free generators {x0, . . . , xm}, where m, d ranges through all positive integers,
with the following properties: Each ηm,d(x0, x1, . . . , xm) is a sum of elements homogeneous
elements ηm,d,i such that

degx1θm,d,i + 2 deg{x2,...,xm}θm,d,i ≥ 2, deg{x1,...,xm}θm,d,i = d,

and

expN(−γ(u, pnBu)) · expN(−u) · exp
(
u+ pnBu+

∑
m≥2

pmn

m!
Bmu

)
= exp

(
δ(u, pnB) +

∑
m,d≥1

ηm,d(u, p
nB, p2nB2u, . . . , pmnBmu)

)
Note that ηm,d(u, p

nB, p2nB2u, . . . , pmnBmu) = 0 if N is nilpotent of class at most d− 1.

Since the inverse image of N
(pbn/λ2e−c2 )
2,Zp under the relative Frobenius map

Fr
bn/λ2e−c2
N2

: N2 → N
(pbn/λ2e−c2 )
2

is stable under the Lie bracket,

ηm,d(u, p
nB, p2nB2u, . . . , pmnBmu) ∈ ZZp ⊕N2,Zp

for all m, d, after passing to a bigger constant c2 if necessary. The statement 6.3.5 follows
from the assumption that expN(ZZp ⊕N2,Zp) ⊆ N.

We summarize the above calculation in proposition 6.3.6 below.

(6.3.6) Proposition. Let n2, c2 be as in 6.3.5. Let (z, u) be a functorial point of Z⊕N2 =

N with Fr
bn/λ2e−c2
N2

(u) ∈ N
(pbn/λ2e−c2 )
2,Zp . Let v = (C,B) be an element of ZZp ⊕N2,Zp. Then the

restriction
cn[v](eN(z, u))

∣∣
π−1(TL(N2)[Frbn/λ2c−c2 ])

of cn[v](eN(z, u)) to π−1(TL(N2)[Frbn/λ2c−c2 ]) is equal to the image in Z = ZQ/Z of the
element

expZ

(
(expG(pnC)− 1)·z + γ(u, pnBu)

)
of ZQ. In other words[

cn [v](eN(z, u)) ∗ eZ

(
(1− expG(pnC))·z − γ(u, pnBu)

)]∣∣
π−1(TL(N2)[Frbn/λ2c−c2 ])

= 0.

The following corollary 6.3.7 of proposition 6.3.6 gives an approximation of the map cn[v]
which is linear in v.

(6.3.7) Corollary. There exist constants n1 ≥ n2 and c1 ≥ c2 such that[
cn [v](eN(z, u))−

Z
eZ

(
pnCz + γ(u, pnBu)

)]∣∣
π−1(TL(N2)[Frbn/λ2c−c2 ])

≡ 0 (mod mpbn/ς1c−c1
Z )

for all n ≥ n1. In other words

cn[v](eN(z, u))
∣∣
mp
bn/ς1c−c1
Z

= eZ

(
pnCz + γ(u, pnBu)

)∣∣
mp
bn/ς1c−c1
Z

57



(6.3.8) Proof of 6.2.2. Clearly it suffice to prove the statement 6.2.2 after extending
the base field κ to the perfect closure of κ. So we may and do assume that κ is perfect.
Proposition 6.2.2 follows immediately from the approximate formula 6.3.7 for cn[v] and
cn+1[v].

(6.4) Assume from now on till the end of §6 that the base field κ is algebraically closed.

(6.4.1) Let Z be the isoclinic p-divisible group TL(Z) over κ. After a suitable modification
of N by an isogeny, and passing to a suitable open subgroup of G and a suitable open Lie
Zp-subalgebra of g, we may and do assume that there exists a positive integer r0 such that
r0λ1 ∈ N

Ker(Frr0Z ) = [pr0λ1 ]Z

and the properties in 6.3.2 are satisfied. This assumption on Z in force throughout the rest
of §6.

It follows that there exists an isomorphism Z(pr0 ) α
∼
// Z such that α ◦ Frr0Z = [pr0λ1 ]Z .

Then the affine coordinate ring of Z is topologically generated by formal functions f on Z
such that α∗f = f ⊗ 1 ∈ OZ⊗(κ, σ

r0
κ )κ. Such formal functions form the affine coordinate ring

of a model of Z over the finite field Fpr0 .

Choose a positive integer multiple r1 of r0 and an integer s1 such that

r1 < s1, s1ς1 ∈ N, and s1ς1 < r1λ1.

(6.4.2) Corollary. There exists a constant m1 such that for all m ≥ m1, we have mr1−
c0 ≤ ms1, and (

c(m+1)r1λ1 [v]− [pr1λ1 ]Z ◦ cmr1λ1 [v]
)∣∣

TL(N)[Frms1 ]
= 0

for all v ∈ gZp
.

Note that ms1 < bmr1λ1/ς1c − c1 for all m sufficiently large, because s1ς1 < r1λ1, hence
TL(N)[Frms1 ] ⊆ TL[Frbmr1λ1/ς1c−c1 ].

(6.4.3) Remark. (a) Corollary 6.4.2 is a weaker form of proposition 6.2.2. It says that for
any v in the lattice gZp of the Lie algebra g of G, the sequence of maps(

cmr1λ1 [v] : TL[Frms1 ]→ Z
)
m≥m1

indexed by integers m ≥ m1 is [pr1λ1 ]-compatible with respect to φs1 in the sense of [7, §10.7].

(b) The congruence in 6.4.2 becomes stronger for larger values of s1
r1

. Note that

s1

r1

<
λ1

ς1
= min

(
2,
λ1

λ2

)
.

(6.5) Review of tempered perfections.

In 6.5, κ denotes a field of characteristic p.
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(6.5.1) In [7, Ch. 10.7], given a complete augmented noetherian local integral domain (R, )
over κ, we introduced a family (

(R,m)perf, [
s:φr;[i0]

)
r,s,i0

of non-noetherian complete augmented local domains over κ sandwiched between (R,m)
and the completion ((R,m)perf)∧ its perfection (R,m)perf, with integer parameters r, s, i0
satisfying

0 < r < s, i0 ≥ 0.

Recall that the perfection Rperf of (R,m) has a decreasing filtration Fil•degR
perf indexed by

real numbers, defined by

FiludegR
perf :=

{{
x ∈ Rperf | ∃j ∈ N s.t. xp

j ∈ mdu·p
je} if u ≥ 0

Rperf if u ≤ 0

The completed perfection ((R,m)perf)∧ of R is the completion of Rperf with respect to the
above filtration. The filtration Fil•deg on Rperf induces a decreasing filtration on ((R,m)perf)∧,
denoted again by Fil•deg.

By definition, (R,m)perf, [
s:φr;[i0] is the completion of the subring∑

n≥1

φ−nr
(
mns−i0

)
of Rperf with respect to the filtration given by powers of the ideal generated by m.

Each ring (R,m)perf, [
s:φr;[i0] is called a tempered perfection of (R,m). This family of complete

augmented local domains over κ is filtered in the following sense: given any two rings R1, R2

in this family, there is a third ring R3 in the family which contains both R1 and R2. The
union

(R,m)tmp perf :=
⋃

r,s,i0
(R,m)perf, [

s:φr;[i0]

is a subring of ((R,m)perf)∧ which contains Rperf, but strictly smaller than ((R,m)perf)∧.
Elements of (R,m)tmp perf will be called tempered elements of the completed perfection
((R,m)perf)∧ of R. The filtration Fildeg on the completed perfection (Rperf)∧ induces a filtra-
tion on each tempered perfection of (R,m).

(6.5.2) Given a complete augmented noetherian local domain (R,m) over κ, there are other
versions of families(

(R,m)perf,#
s:φr;[i0]

)
r,s,i0

,
(

(R,m)perf, [
A,b;d

)
A,b,d

and
(

(R,m)perf,#
A,b;d

)
A,b,d

of tempered perfections of R, indexed by parameters (r, s, i0) and (A, b, d) respectively.

Each of these three families is cofinal with the family
(

(R,m)perf, [
s:φr;[i0]

)
r,s,i0

. For instance

each ring (R,m)perf, [
s:φr;[i0] is contained in (R,m)perf, [

A,b;d for a suitable (A, b, d), and each (R,m)perf, [
A,b;d
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is contained in a (R,m)perf, [
s:φr;[i0]. Therefore the union of rings in each of these families is

equal to the subring (R,m)tmp perf of all tempered elements of ((R,m)perf)∧. Any ring in
one of the above families is said to be a tempered perfection of (R,m). It is instructive
to regard elements of (R,m)tmp perf as some sort of “tempered generalized functions on the
formal scheme Spf(R). Since “generalized” is an overused word, we will call elements of
(R,m)tmp perf tempered virtual functions on Spf(R).

(6.5.3) For fixed parameters (r, s, i0), the assignment

(R,m) (R,m)perf, [
s:φr;[i0]

is functorial in (R,m). Moreover the continuous κ-algebra homomorphism

h[ : (R1,m1)perf, [
s:φr;[i0] → (R2,m2)perf, [

s:φr;[i0]

induced by a continuous κ-algebra homomorphism

h : (R1,m1)→ (R2,m2)

is surjective (respectively injective) if h is surjective (respectively injective). The same is

true for the formations of (R,m)perf,#
s:φr;[i0],

(
(R,m)perf, [

A,b;d

)
A,b,d

and
(

(R,m)perf,#
A,b;d

)
A,b,d

.

(6.5.4) We illustrate the general idea of tempered virtual functions with the family(
κ〈〈tp

−∞

1 , . . . , tp
−∞

m 〉〉E, [C; d

)
E,c,d

of tempered perfections of power series ring κ[[t1, . . . , tm]], depending on parameters (E, c, d),
where E, c, d are real numbers, E > 0, C > 0, d ≥ 0. This family of tempered perfections of
κ[[t1, . . . , tm]] is cofinal with each of the four families of tempered perfections of κ[[t1, . . . , tm]]
mentioned in 6.5.1.

By definition κ〈〈tp
−∞

1 , . . . , tp
−∞
m 〉〉E, [C; d consists of all formal power series of the form∑

I∈supp(m:[:E;C,d)
bI t

I

such that bI ∈ κ for all I ∈ supp(m : [ : E;C, d). Here

• supp(m : [ : E;C, d) is the sub-semigroup of (N[1
p
]m,+) given by

supp(m : [ : E;C, d) :=
{
I ∈ N[1

p
]m
∣∣ |I|p ≤ max

(
C · (|I|σ + d)E, 1

) }
.

• N[1
p
]m is the sub-semigroup of (Z[1

p
]m,+) consisting of all m-tuples (i1, . . . , im) in Z[1

p
]m

with all entries ij ≥ 0.
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• For each I = (i1, . . . , im) ∈ N[1
p
]m, |I|p is the usual p-adic norm of I given by

|I|p := p−ordp(max(i1,...,im)),

while |I|σ is the archimedean norm of I given by

|I|σ := i1 + · · ·+ im.

In particular the p-adic norm of I is bounded by a polynomial fE,c,d(|I|σ) of the archimedean
norm of I, for all I in supp(m : [ : E;C, d).

If we replace the archimedean norm |I|σ on N[1
p
]m by the max norm

|I|∞ := max(i1, . . . , ip),

we get a ring κ〈〈tp
−∞

1 , . . . , tp
−∞
m 〉〉E,#C; d . The resulting family(

κ〈〈tp
−∞

1 , . . . , tp
−∞

m 〉〉E,#C; d

)
E,c,d

of tempered perfections κ[[t1, . . . , tm]] is cofinal with the family
(
κ〈〈tp

−∞

1 , . . . , tp
−∞
m 〉〉E, [C; d

)
E,c,d

as well.

(6.6) How tempered virtual formal functions are used to prove rigidity

The notion of tempered perfections is critically important to the proof of rigidity of
biextensions of p-divisible formal groups, and it plays a similar role in the proof of orbital
rigidity of Tate-linear formal varieties. Both of the two components of proof of theorem 5.1,
described in 6.6.1 and 6.6.3 below, use tempered formal functions TL(N) in an essential way.

(6.6.1) For each element v ∈ Lie(Aut(N)), define a tempered virtual morphism

c̃[v] : TL(N) 99K Z

which interpolates the action of exp(pmr1λ1v) on TL(N) for all m� 0.

Technically, such a tempered virtual morphism means a continuous κ-linear ring homomor-
phism

RZ
c̃[v]∗ //

(
RTL(N)

)perf, [

A,b;d

from the affine coordinate ring RZ := Γ(Z,OZ) of Z to a tempered perfection
(
RTL(N)

)perf, [

A,b;d

of RTL(N) := Γ(TL(N),OTL(N)) with suitable parameters A, b, d. Such a tempered virtual
morphism is constructed from the compatibility statement 6.2.2 of the maps cn[v], as the
limit

lim
m→∞

[p−r1t1 ] ◦ cmr1λ1 [v]

in a suitable sense. This tempered virtual morphism c̃[v] can be regarded as a substitute
for the “derivative” of the action on TL(N) of the “one-parameter subgroup” exp(pnv) with
discrete parameter n ∈ N, n� 0. It has the following properties:
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(a) The restriction of c̃[v] to the closed formal subscheme Z ⊆ TL(N) is equal to the
restriction v|Z of v to Z, regarded as an element of End(Z)⊗Z Q.

(b) More generally, c̃[v] is compatible with the Z-torsor structure of TL(N).

(6.6.2) Remark. (i) In the setting of 6.1.1, there isn’t any natural map from TL(N) to
Z = TL(Z) in the category of formal schemes over κ. However as indicated in (a) above,
there are many tempered virtual morphisms from TL(N) to Z = TL(Z), one for each discrete
one parameter subgroup in Aut(TL(N)) associated to elements of Lie(Aut(TL(N)). In the
special case when v = 1

λ1
DEuler in the notation of 3.4.6, we get a tempered virtual morphism

from TL(N) to Z which is a projection, i.e. its restriction to Z is the identity map idZ on Z.

(ii) The restriction c̃[v]
∣∣
Z

of c̃[v] to Z corresponds to the composition

RZ
c̃[v]∗ //

(
RTL(N)

)perf, [

A,b;d

q[Z //
(
RZ

)perf, [

A,b;d
,

where q[Z is the homomorphism between tempered perfections induced by the quotient ho-
momorphism qZ : RTL(N) → RZ .

(iii) The property (b) above should mean, in spirit, that c̃[v](z ∗ x) = c̃[v]
∣∣
Z

(z) +Z c̃[v](x)

for all functorial points (z, x) of Z × TL(N), if c̃[v] is a morphism of formal schemes. At
present (before a general theory of “tempered formal schemes” is available), it means that
the following diagram

RZ
µ∗ //

c̃[v]∗

��

RZ⊗̂κRTL(N)

(c̃[v]|Z)∗⊗ jRTL(N)
��(

RTL(N)

)perf, [

A,b;d

(µ∗)[ //
(
RZ

)perf, [

A,b;d
⊗̂κ
(
RTL(N)

)perf, [

A,b;d

commutes, where µ∗ : RZ → RZ⊗̂κRTL(N) corresponds to the Z-torsor structure on TL(N)

and jRTL(N)
is the inclusion map of RTL(N) ↪→

(
RTL(N)

)perf, [

A,b;d
.

(6.6.3) Given a reduced irreducible closed formal subscheme W of TL(N) stable under the
action of G as in 5.2, we will use the method of hypocotyl elongation in tempered perfections
to show that W is closed under the translation action of schematic image of c̃[v]

∣∣
W

: W 99K Z
for the Z-torsor structure on TL(Z).

The schematic image of the restriction c̃[v]
∣∣
W

to W of c̃[v] refers to the closed subscheme
of Z corresponding to ideal

Iv,W := Ker
(
RZ

c̃[v]∗ //
(
RTL(N)

)perf, [

A,b;d

q[W //
(
RW

)perf, [

A,b;d

)
of RZ = Γ(Z,OZ), where q∗W is the homomorphism induced from the quotient homomor-
phism qW : RTL(N) → RW := Γ(W,OW ). Translated into algebra, the above assertion means
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that for every formal function f ∈ RZ which lies in the prime ideal corresponding to W , the
image of f under the composition

RTL(N)
µ∗ // RZ⊗̂κRTL(N)

(q[W ◦c̃[v]∗)⊗qW //
(
RW

)perf, [

A,b;d
⊗̂κRW

is 0.
Such an element ((q[W ◦ c̃[v]∗)⊗ qW )(µ∗f) is a tempered virtual function on W ×W , in

two sets of variables, one from each of the two factors of W ×W . We want to conclude that
it is 0. The available information is an infinite family of congruences, from the interpolation
property of c̃[v]. This is where the method of hypocotyl elongation comes in. This method
was first used in [5], in the context of augmented complete noetherian local domains over κ.
We need a version for tempered perfection, summarized in 6.7 below.

(6.7) Hypocotyl elongation in tempered perfections

(6.7.1) The statement 6.7.2, which follows from propositions 2.1 and 3.1 of [5], embod-
ies the method of hypocotyl elongation for commutative noetherian local domains over
perfect fields of characteristic p. It provides a way to establish a power series relation
f(u1, . . . , ua, v1, . . . , vb) between functions on a product formal scheme Spf(R) × Spf(R) of
the form pr∗1g1, . . . , pr∗1ga and pr∗2h1, . . . , pr∗2hb. Proposition 6.7.3 extends 6.7.2 to tempered
perfections, and allows g1, . . . , ga, h1, . . . , hb to be tempered virtual functions on Spf(R).

(6.7.2) Proposition. Let κ be a perfect field of characteristic p. Let u = (u1, . . . , ua),
v = (v1, . . . , vb) be two tuples of variables, and let f(u,v) ∈ κ[[u,v]] be a formal power
series in variable u1, . . . , ua, v1, . . . , vb with coefficients in κ. Let (R,m) be an augmented
Noetherian complete local domain R over κ such that κ

∼−→ R/m. Let g1, . . . , ga, h1, . . . , hb
be elements of the maximal ideal m. Let n0 ∈ N and let (dn)n≥n0 be a sequence of positive
integers and let q be a power of p such that limn→∞

qn

dn
= 0. Suppose that

f(g1, . . . , ga, h
qn

1 , . . . , h
qb

b ) ≡ 0 (mod mdn)

for all n ≥ n0. Then

f(g1 ⊗ 1, . . . , ga ⊗ 1, 1⊗ h1, . . . , 1⊗ hb) = 0

in the completed tensor product R⊗̂kR, where R⊗̂kR is the formal completion of the local
domain R⊗κ R.

(6.7.3) Proposition. Let (R,m) be an augmented complete Noetherian local domain over
a perfect field κ of characteristic p.

• Let g1, . . . , gm, h1, . . . , hm′ be elements of the maximal ideal of (R,m)perf, [
A,b;d .
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• Let f(u1, . . . , um, v1, . . . , vm′) be an element of

κ〈〈up
−∞

1 , . . . , up
−∞

m , vp
−∞

1 , . . . , vp
−∞

m′ 〉〉
E, [
C; d

which lies in the closure of the image of

κ〈〈up−∞〉〉E, [C; d ⊗κ κ〈〈v
p−∞〉〉E, [C; d −→ κ〈〈up−∞ , vp−∞〉〉E, [C; d.

• Let q = pr be a power of p for some positive integer r. Let (dn)n∈N, n≥n0 be a sequence
of positive integers such that limn→∞

qn

dn
= 0.

Suppose that

(†) f(g1, . . . , gm, h
qn

1 , . . . , h
qn

m′) ≡ 0
(

mod Fildndeg(R,m)perf, [
A′,b′;d′

)
in (R,m)perf, [

A′,b′;d′ for all sufficiently large natural numbers n. Then

f(g1 ⊗ 1, . . . , gm ⊗ 1, 1⊗ h1, . . . , 1⊗ hm′) = 0

in the completed tempered perfection
(
R⊗̂κR,mR⊗̂κR

)perf, [

A′,b′;d′
of R⊗̂κR.

(6.7.4) Remark. (a) The condition in 6.7.3 that the relation f(u1, . . . , ua, v1, . . . , vb) lies in

the closure of the image of κ〈〈up−∞〉〉E, [C; d ⊗κ κ〈〈vp
−∞〉〉E, [C; d −→ κ〈〈up−∞ , vp−∞〉〉E, [C; d may seem

a little odd at first sight. However some subtleties in tensor products of tempered perfections
are to be expected, by the analogous situation in the theory of distributions, such as the
Schwartz kernel theorem.

(b) The proof of orbital rigidity of Tate-linear formal varieties uses the special case of proposi-
tion 6.7.3 when the relation f(u,v) is an element of κ[[u1, . . . , ua, v1, . . . , vb]]. We don’t know

whether there is a natural class of subspaces of
(
κ[[u1, . . . , ua, v1, . . . , vb]]

)tmp perf
, larger than

the class of all closures of images of κ〈〈up−∞〉〉E, [C; d⊗κκ〈〈vp
−∞〉〉E, [C; d −→ κ〈〈up−∞ , vp−∞〉〉E, [C; d for

some parameters E, c, d, such that the conclusion of 6.7.2 holds. There are many other ques-
tions about tempered perfections that we have not considered with any degree of seriousness,
some of which are mentioned in [7, Ch. 10 §7].

(c) Proposition 6.7.5 below is a “coordinate-free” version of 6.7.3. When applied to the
proof of orbital rigidity of Tate-linear formal varieties, S2 is the affine coordinate ring of an
isoclinic p-divisible group Z of slope λ1 such that Z[pλ1r] = Z[Frq], q = pr.

(6.7.5) Proposition. Let κ be a perfect field of characteristic p which contains a finite
field with q = pr elements. Let (R,m), (S1,m1) and (S2,m2) be augmented commutative
noetherian local domains over κ. Suppose that S2 has a Fq-model S2,Fq , i.e. an augmented
noetherian local subring S2,Fq over Fq such that the natural map S2,Fq⊗̂Fqκ → S2 is an
isomorphism.
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• Let φ = φq : S2 → S2 be the κ-linear continuous ring endomorphism of S2 which sends
every element x ∈ S2,Fq to xq.

• Let g1 : S1 → (R,m)perf, [
A,b;d and g2 : S2 → (R,m)perf, [

A,b;d be continuous κ-linear ring

homomorphisms from Si to (R,m)perf, [
A,b;d , i = 1, 2.

• Let f be an element of the completed tensor product (S1,m1)perf, [
A1,b1;d1

⊗̂κ (S2,m2)perf, [
A2,b2;d2

for parameters (A1, b1, d1) and (A2, b2, d2).

• Let (dn)n∈N, n≥n0 be a sequence of positive integers such that limn→∞
qn

dn
= 0.

• Let (A′, b′, d′) be suitable parameters such that the homomorphisms gi extends to a

continuous κ-linear homomorphism g[i : (Si,mi)
perf, [
Ai,bi;di

→ (R,m)perf, [
A′,b′;d′ for i = 1, 2.

Let (g[1 · g[2) ◦ (1⊗ (φ[q)
n) be the composition

(S1,m1)perf, [
A1,b1;d1

⊗̂κ (S2,m2)perf, [
A2,b2;d2

1⊗(φ[q)
n

// (S1,m1)perf, [
A1,b1;d1

⊗̂κ (S2,m2)perf, [
A2,b2;d2

g[1·g[2 // (R,m)perf, [
A′,b′;d′ .

Suppose that (
(g[1 · g[2) ◦ (1⊗ (φ[q)

n)
(
f) ≡ 0

(
mod Fildndeg(R,m)perf, [

A′,b′;d′

)
for all sufficiently large natural numbers n. Then

(g[1 ⊗ g[2)(f) = 0 in (R,m)perf, [
A′,b′;d′ ⊗̂κ (R,m)perf, [

A′,b′;d′ ,

where g[1 ⊗ g[2 denotes the composition

(S1,m1)perf, [
A1,b1;d1

⊗̂κ (S2,m2)perf, [
A2,b2;d2

g[1⊗g[2 // (R,m)perf, [
A′,b′;d′ ⊗̂κ (R,m)perf, [

A′,b′;d′ .

Proof. This is an easy consequence of 6.7.3.

(6.8) Construction of a tempered virtual morphism c̃[v] : TL(N) 99K Z

Suppose we are given an element v ∈ Lie(Aut(N)) satisfying the conditions in 6.3.3. For
every n ≥ n0, we defined a map

cn[v] : π−1
(
TL(N2)[Frbn/λ2c−c0 ]

)
−→ Z

in 6.2. According to 6.4.2, the restrictions cmr1λ1 [v]
∣∣
TL(N)[Frms1 ]

satisfy the compatibility

condition

c(m+1)r1λ1 [v]
∣∣
TL(N)[Frms1 ]

= [pr1λ1 ]Z ◦ cmr1λ1 [v]
∣∣
TL(N)[Frms1 ]

∀m ≥ m1.
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Let RZ := Γ(Z,OZ) and RT := Γ(TL(N),OTL(N)) be the affine coordinate rings of Z and
TL(N) respectively. We want to produce, out of the family of maps cmr1λ1 [v], a continuous
κ-linear ring homomorphism

c̃[v]∗ : RZ → (RT ,mT )perf, [
A,b;d

for some parameters (A, b, d). Such an homomorphism is, by definition, a tempered virtual
morphism c̃[v] : TL(N) 99K Z from TL(N) to Z.

For any a ∈ N, the κ-linear continuous ring homomorphism [pa]∗ : RZ → RZ is purely
inseparable and induces an isomorphism from Rperf

Z to itself. Given any element f ∈ RZ ,(
cmr1λ1 [v]

∣∣
TL(N)[Frms1 ]

)∗
(f) is an element of RT/m

pms1
T . The compatibility condition of the

maps cmr1λ1 [v] implies that(
cmr1λ1 [v]

∣∣
TL(N)[Frms1 ]

)∗
([pr1λ1 ]∗f) ≡

(
c(m+1)r1λ1 [v]

∣∣
TL(N)[Fr(m+1)s1 ]

)∗
(f)

As was shown in [7, Ch. 10 §7], there exists a natural number i0 ∈ N, depending only on m1,
such that the congruence classes(

cmr1λ1 [v]
∣∣
TL(N)[Frms1 ]

)∗
([pmr1λ1 ]∗)−1(f)

converges, in an obvious sense, in the tempered perfection (RT ,mT )perf, [
s:φr;[i0] of RT . Define

c̃[v]∗ : RZ → (RT ,mT )perf, [
s:φr;[i0] by

c̃[v]∗(f) = lim
m→∞

(
cmr1λ1 [v]

∣∣
TL(N)[Frms1 ]

)∗
([pmr1λ1 ]∗)−1(f) ∀ f ∈ RZ .

(6.8.1) Corollary. We keep the notation and assumptions in 6.3.6. Let v be an element
of Lie(Aut(NQ)) such that expAut(NQ)(Zp v) ⊆ Aut(N), and let ρ0(expAut(NQ)(p

λ1r1mv))∗ be

the ring automorphism of (RT ,mT )perf, [
s:φr;[i0] corresponding to the action of expAut(NQ)(p

λ1r1mv)

on TL(N).

(a) The action of exp(pλ1r1mv) on TL(N) satisfies the congruence relation

ρ0(expAut(NQ)(p
λ1r1mv))∗ ≡ id + (c̃[v]∗ ◦ [pλ1r1m]∗Z) mod Films1deg (RT ,mT )perf, [

s:φr;[i0]

for all sufficiently large natural numbers m.

(b) The tempered virtual map c̃[v] : TL(N) 99K Z is compatible with the Z-torsor structure
in the sense that

c̃[v](z ∗ x) = (dρ0(v)(z)) ∗ c̃[v](z)

for all functorial points (z, x) of Z × TL(N). Here ρ0 is the identity map of Aut(N)
corresponding to the tautological action of Aut(N) on N. In particular the restriction
c̃[v]
∣∣
Z

of c̃[v] to Z is equal to the dρ0(v)
∣∣
Z

, an endomorphism of Z.

Proof. The statement (a) follows from the construction of c̃[v]. The meaning of the
statement (b) has been explained in 6.6.2 (ii)–(iii). It follows from 6.2.1 and the construction
of c̃[v].
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(6.9) Proof of Theorem 5.2. Let W be a reduced irreducible closed formal subscheme
of T = TL(N) stable under the action of G. Recall that the base field κ is assumed to be
algebraically closed, and Ker(Frr0Z ) = [pr0λ1 ]Z . We have also fixed a positive integer multiple
r1 of r, and an integer s1 such that r1 < s1, s1ς1 ∈ N, s1ς1 < r1λ1.

Step 1. Claim. Suppose that v is an element of Lie(G) such that expG(Zpv) ⊆ G. Then
W is stable under the translation action by the schematic image of c̃[v] : W 99K Z.

The meaning of this claim, as explained in 6.6.3, is that(
((q[W ◦ c̃[v]∗)⊗ qW ) ◦ µ∗

)
(f) = 0

for all f in the ideal IW of RT which defines W , where ((q[W ◦ c̃[v]∗) ⊗ qW ) ◦ µ∗ is the
composition

RT
µ∗ // RZ⊗̂κRT

(q[W ◦c̃[v]∗)⊗qW //
(
RW

)perf, [

A,b;d
⊗̂κRW .

Clearly it suffices to show that(
(q[W ◦ c̃[v]∗)⊗ q[W

)
(µ∗(f)) = 0

for all f ∈ IW , because the canonical arrow j
RW

: RW →
(
RW

)perf, [

A,b;d
in the commutative

diagram below

RT
µ∗ // RZ⊗̂κRT

=

��

(q[W ◦c̃[v]∗)⊗qW //
(
RW

)perf, [

A,b;d
⊗̂κRW

1⊗j
RW

��

RZ⊗̂κRT

(q[W ◦c̃[v]∗)⊗q[W //
(
RW

)perf, [

A,b;d
⊗̂κ
(
RW

)perf, [

A,b;d

is injective. This is a consequence of proposition 6.7.5, where the required family of congru-
ence conditions follows from the fact that W is stable under the action of ρ(expG(pmλ1r1)) for
all sufficiently large natural number m, and the congruence property 6.8.1 (a) of the discrete
one-parameter family ρ(expG(pmλ1r1)) of automorphisms of TL(N). The claim is proved.

Step 2. Clearly the close formal subscheme Z ′ := (W ∩Z)red of Z is stable under the action
of G. So by orbital rigidity of p-divisible formal groups [5], Z ′ is a p-divisible subgroup of Z.

Suppose that v ∈ Lie(G) is an element of the Lie algebra of G such that expG(Zpv) ⊆ G.
Since the restriction of c̃[v] to Z is equal to the action of dρ(v) on Z according to 6.8.1,
schematic image of c̃[v] : W 99K Z contains dρ(v)(Z). So step 1 tells us that W is stable
under the translation action by the p-divisible formal subgroup dρ(v)(Z ′).

Since G operates strongly nontrivially on Z ′, we know from [5, Lemma 4.1.1] that there
exist elements vi,j ∈ Lie(G), indexed by pairs (i, j), i = 1, . . . , a, j = 1, . . . , bi, such that
expG(Zpvi,j) ⊆ G for all (i, j), and

(∑a
i=1 dρ(vi,1) ◦ · · · ◦ dρ(vi,bi)

)∣∣
Z′

is an isogeny from Z ′

to itself. In particular
∑a

i=1 dρ(vi,1)(Z ′) = Z ′. Therefore W is stable under the translation
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action by Z ′. We have proved the statements (a) and (b) of 5.2. It remains to prove 5.2 (c),
which asserts that the formal morphism π̄

∣∣
W1

: W1 → TL(N2) is purely inseparable. Here

N1 = N/Z′, N2 = N/Z, π̄ : TL(N1) → TL(N2) is the morphism attached to the quotient
map N1 � N2, W1 = W/Z ′ ⊆ TL(N1), and π̄

∣∣
W1

is the restriction of π̄ to W1.

Step 3. To prove the statement 5.2 (c), we may and do assume that Z ′ = (W ∩Z)red = (0).
We need to show that the formal morphism π|W : W → TL(N2), which is finite because
(W ∩ Z)red = (0), is purely inseparable.

Suppose that π|W is not purely inseparable. Then there exist two κ[[u]]-valued points of
W , ξ1, ξ2 : Spf(κ[[u]]) → W , such that π ◦ ξ1 = π ◦ ξ2 and ξ1 6= ξ2. Let δ : Spf(κ[[u]]) → Z
be the κ[[u]]-valued point of Z such that ξ1 = δ ∗ ξ2, i.e. ξ1 is the translation of ξ2 by δ
with respect to the Z-torsor structure of π : TL(N)→ TL(N2). The condition that ξ1 6= ξ2

means that δ 6= 0.
Let v be any element of Lie(G) such that expG(Zpv) ⊆ G, and let Zv be the smallest

subgroup of Z containing the schematic image of c̃[v]. According to step 1, W is stable
under translation by the schematic image of c̃[v], therefore W is stable under the translation
by Zv. Corollary 6.8.1 (b) tells us that

c̃[v](ξ1) = c̃[v](δ ∗ ξ2) = (dρ(v)(δ)) ∗ c̃[v](ξ2).

So dρ(v)(δ) is a κ[[u]]-valued point of Zv, and W is stable under translation by dρ(v)(δ).
Choose elements vij ∈ Lie(G), i = 1, . . . , a, j = 1, . . . , bi with expG(Zpvij) ⊆ G, such that

the endomorphism

α :=
(∑a

i=1
dρ(vi,1) ◦ · · · ◦ dρ(vi,bi)

)∣∣
Z

of Z is an isogeny from Z to itself, just as in the argument of step 2. Then α(δ) is a non-
trivial κ[[u]]-valued point of Z, and W is stable under translation by α(δ). It follows that
α(δ) is a non-trivial κ[[u]]-valued point of (W ∩Z)red, which is a contradiction. So the formal
morphism π

∣∣
W

: W → TL(N)2 is purely inseparable. We have finished the proof of theorem
5.2, and also the proof of theorem 5.1.

Remark. The proof of 5.2 (c) in step 3 of 6.9 was presented in a geometric language. The
readers may want to compare with the more algebraic, and possibly more convincing version
of this argument in [7, Ch. 10 §7]. The argument there for the pure inseparability of π̄

∣∣
W

in
the case when TL(N) is a biextension of p-divisible formal groups works for all Tate linear
formal varieties.
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Zürich, 2010. arXiv:1009.2460.

[13] S. M. H. Hedayatzadeh, Exterior powers of π-divisible modules over fields, J. Number
Theory, 138 (2014), pp. 119–174.

[14] P. Hilton, Localization and cohomology of nilpotent groups, Cahiers Topologie Géom.
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