Orbital rigidity for biextensions

In this chapter we prove that orbital rigidity holds for biextensions of p-divisible formal
groups over a perfect field xk of characteristic p. The main theorem 10.6.7 is a precise
generalization of theorem 7.1.1 on the orbital rigidity of p-divisible formal groups. For a
sustained deformation space Def (Xo),,, theorem 7.1.1 implies that orbital rigidity holds
for Def (Xo),,s When the p-divisible group X over s has exactly two slopes, and theorem
10.6.7 implies that Def (Xy).., is orbitally rigid when X, has three slopes.

The orbital rigidity of Def (Xo),,s When Xg has three slopes is the first nontrivial case
after the two-slope case. Its proof requires a new notion, called tempered perfections of
augmented Noetherian local domains over a perfect base field x of characteristic p. This new
tool can be applied to prove the orbital rigidity of Def (Xo),,, for all p-divisible groups Xo
with no restriction on the number of its slopes, and also the orbital rigidity for Tate-linear
formal varieties, a class of smooth formal varieties which include sustained deformation
spaces Def (Xo),,s and Def (Xo, ft0)g,s- In the introductory section 10.1 we will explain the
general idea of orbital rigidity, and the notion of Tate-linear formal varieties. The orbital
rigidity of Tate-linear formal varieties follows from the method of tempered perfections and
induction on the nilpotency class of the nilpotent group governing the Tate-linear formal
variety.

sus

10.1. What is an orbitally rigid equivariant formal variety?

In 10.1.1-10.1.2 we describe the general idea of “orbitally rigid equivariant formal va-
rieties with extra structures” in a categorical setting. The title of this chapter acquires
a precise meaning when one specialize to the structure of biextensions of p-divisible for-
mal groups. In 10.1.3-10.1.6.3 we explain the motivation of the orbital rigidity question
for biextensions of p-divisible formal groups, and outline how a new class of complete
augmented rings in characteristic p enters the proof of orbital rigidity for biextensions of
p-divisible formal groups.

10.1.1. Orbitally rigid equivariant formal varieties.

First we illustrate the idea of orbital rigidity in the category of equivariant local formal
varieties over an algebraically closed base field k of characteristic p. The objects in this
category are triples (2, G, u), where & = Spf(R) for a complete augmented Noetherian
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536 10. ORBITAL RIGIDITY FOR BIEXTENSIONS

local domain R over k, G is a topological group and e G x D — D is a left action of G
on 9.

(a) For any subgroups G’ of G, a G’-equivariant subquotient of P is a triple

!
(917@2) @1 HQQ ))

where 9 is a closed formal subvariety of @ over k, @5 is a G’-equivariant formal
subvariety over k, and f is a G’ -equivariant formal morphism.
(b) We say that a subgroup G of G operates strongly nontrivial on 9 if for every open

subgroup G’ of G and every G'-equivariant subquotient (21, D, 21 AN Dy ) of
9 with dim(22) > 0, the G’-action on P, is nontrivial.

(c) We say that (2,G) is orbitally rigid if for every subgroup G of G operating
strongly nontrivially on &, every irreducible closed formal subvariety of & over k
stable under the action of G is of a certain special form, with a nice structure.

An assertion that an equivariant formal variety (2, G) is strongly rigid must be accompa-
nied by a family of special formal subvarieties of &, defined directly in a structural way,
such that

e every formal subvariety W of & which is stable under some unspecified subgroup
G of G such that (2, G) is strongly nontrivial, is a special formal subvariety, and

e “most”, if not all, special subvarieties are stable under the action of some subgroup
G of G acting strongly nontrivially on 9.

We emphasize that the definition of special formal subvarieties must not make the orbital
rigidity of (2, G) an obvious tautology.

10.1.2. Orbitally rigid equivariant formal varieties with extra structures.

An G-equivariant formal variety @ over k considered for possible strong rigidity phe-
nomenon usually has a nice structure & which is respected by G-action. Suppose that this
is the case.

(a) It is natural to use a more restricted class of G’-equivariant §-subquotients, by
requiring in addition that the G’-equivariant maps @y < 2 and f : @y — Do
respect the structure &.

(b) We say that a subgroup G of G operates strongly & -nontrivially on 9D if for every
open subgroup G’ of G, G’ operates nontrivially on every positive-dimensional
§-subquotient of (2, G’).

(c¢) Replacing “strongly nontrivially” by “strongly &-nontrivially” in 10.1.1 (c) results
in a corresponding notion of orbitally & -rigid equivariant formal varieties with & -
structure.

Clearly (2,G") is strongly &-nontrivial if it is strongly nontrivial. So orbital §-rigidity
implies orbital rigidity in the sense of 10.1.1(c). For certain structures &, for instance
when & = p-Div, the converse, with “if” replaced by “only if” in the preceding sentence,
is also true. If this is the case, then orbital &-rigidity is equivalent to orbital rigidity in
the sense of 10.1.1 (c).
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When & is p-Div (respectively when & is the structure Biext-rigid of biextensions of p-
divisible formal groups), the explicit definition of strongly &-nontrivial equivariant formal
varieties is given in 7.3.1 (respectively 10.2.7.4). In the main body 7.2-10.6 of this chapter,
strong nontriviality refers to either 7.3.1 or 10.2.7.4.

The statement “(2,Aut(D,S)) is orbitally &-rigid” is often shortened to “P is or-
bitally &-rigid”, or “the &-structure & is orbitally rigid”. For instance every p-divisible
formal group over a perfect field is strongly rigid, meaning that it is orbitally p-Div-rigid.
The main result of this chapter is that every biextension of p-divisible formal groups is
orbitally Biext-rigid.

Remark. (i) In algebraic geometry, “rigid” usually means “does not deform”, i.e. all
deformations are trivial. For instance tori and formal tori are rigid. As another example,
an abelian subvariety A of an abelian variety B has no nontrivial deformation inside B,
hence is rigid as abelian subvarieties; similarly p-divisible subgroups are rigid.

The notion of orbital rigidity discussed here is not based on deformation. It spirit
is closer to the rigidity theorems of Margulis, Mostow, Prasad and Ratner’s theorems on
unipotent flows.

(ii) In known examples, a special formal subvariety W in a orbitally rigid equivariant formal
variety & does not deform algebraically. More precisely, if W C 2 xSpf(k[[t]]) is a reduced
irreducible closed formal subscheme of 2 xSpf (k[[t]]) flat over Spf(k[[t]]), the closed fiber of
W is W, and the generic fiber of W is a special formal subvariety of & Xspec(k)Spec(k((t))),
then W = W x Spf(k[[t]]) C 2 x Spf(k[[t]])-

On the other hand, special formal subvarieties are often organized into families param-
eterized by suitable “p-adic varieties”. As an examples special subvariety of a formal torus
T over Fp are formal subtori of T. All d-dimensional formal subtori of a formal torus T" are
parametrized by the set of all d-dimensional Q,-vector subspaces of X, (1) ®z,Q,, where
X4 (T) is the co-character group of T'.

10.1.3. First examples of orbitally rigid formal varieties.
The simplest example of the orbital rigidity phenomenon is the case when 9 is a formal
torus over an algebraically closed field k of characteristic p and G = Z,*.

Let T be a formal torus over k. If W is a reduced irreducible closed
formal subscheme of T' which is stable under [1 + p"], for some integer
n > 2, then W is a formal subtorus of T.

It turns out that orbital rigidity also holds for p-divisible formal groups:

Let X be a p-divisible formal group over k. If W is a reduced irreducible
closed formal subscheme of X which is stable under a strongly non-trivial
action of a subgroup G of Aut(X), where Aut(X) consists of all group
automorphisms of X. Then W 1is a p-divisible subgroup of X .

See theorem 7.1.1. The assumption that G operates strongly nontrivially means that for
every non-trivial p-divisible subquotient Y of X stable under the action of an open subgroup
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G’ of G, the action of G’ on Y is nontrivial. Equivalently, no Jordan—Holder component of
the Lie(G)-module D(X)q is the trivial Lie(G)-module.

The discovery of the orbital rigidity phenomenon for p-divisible formal groups was
motivated by the Hecke orbit problem, for central leaves in modular varieties of PEL type
such that the corresponding families of abelian varieties have only exactly two slopes. For
an Fp—point 2o of such a central leaf C, the formal completion C/%° of C at z, has a natural
structure as (a trivial torsor for) an isoclinic p-divisible formal group over F,. Moreover
there is a compact p-adic Lie group 7%, an open subgroup of the group of Q,-points of the
“Frobenius torus” attached to zy, which operates strongly nontrivially on C/0.

Suppose we are given an irreducible closed subvariety Z of C stable under all prime-to-p
Hecke correspondences of the ambient modular variety, and we want to prove that Z is
equal to C as predicted by the Hecke orbit conjecture. The assumption that Z is stable
under all prime-to-p Hecke correspondences implies that the formal completion Z/%0 C ¢/#0
of Z/* is stable under the action of T%,. So we obtain from orbital rigidity for p-divisible
formal groups that for every Fp—point zg of the normal locus of Z, the formal completion
Z/#0 corresponds to a p-divisible subgroup of the p-divisible formal group C/?°. This does
not prove the prediction, but it’s a good start. Here is a catchphrase of this initial result.

Every Hecke-invariant subvariety inside a central leaf with two slopes is
Tate-liner at every point.

10.1.4. In search of a good definition of Tate-linear formal varieties.

Naturally one tries to extend the orbital rigidity result for leaves with two slopes to a
general leaf C in a modular variety of PEL type, so that the above catchphrase holds. The
question below sums up the challenges.

Question Q1. How to define a good notion of “Tate-linear formal varieties”, and the
related notion of “special formal subvarieties” of a Tate-linear formal variety”, so that
every Tate-linear formal variety is orbitally rigid?

(In other words, the definitions of Tate-linear formal varieties and special formal subva-
rieties should ensure that every formal subvariety which is stable under a strongly nontrivial
action of a p-adic Lie group G on the ambient Tate-linear formal variety is a special formal
subvariety. We stress again that definitions which make the orbital rigidity assertion an
obvious tautology, being worse than useless, do not qualify.)

Given an E—poin‘c zo of C, the formal completion C/#0 is “assembled from” a family of
fibrations m; : 7; = Ti+1, 9 =0,...,a — 1, such that m; is the projection map of a torsor for
a p-divisible group Z; over Fp, To=C/%, and T, = Spec(E). We regard such a family of
fibrations as a weak form of a “Tate-linear structure on C/#0”, take a leap of faith, and set
forth the working hypothesis T1 and its variant T2 below.

Working hypothesis T1. The formal completion C/* at a closed point zy of a central
leaf C in a Siegel modular variety ‘Q{g,l,n,Eﬂ n > 3, ged(n,p) = 1, is a Tate-linear formal
variety.
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Working hypothesis T2. The sustained deformation space Def (Xo)y,s of a p-divisible
group Xo overE, 1s a Tate-linear formal variety.

10.1.5. Testing the first nontrivial case: biextensions of formal groups.
With a “Tate-linear formal variety” T being of the form C/# or Def (Xp),,, as in T1
or T2, the general question Q1 on orbital rigidity becomes more specific. In order to make

progress, it is a good idea to focus on the first nontrivial case, spelled out below.

Let X1, Xa, X3 be isoclinic p-divisible groups over Fp with slopes p1 < pe < usz. The
sustained deformation space Def (X1 x Xo x X3)SUlS has a natural structure as a biexten-
sion of Homly;, (X1, Xo) x Hom'y, (X2, X3) by Hom'y, (X1, X3).

Recall that given three commutative group schemes X,Y,Z over a base field k, a
biextension of X X Y by Z is a morphism E — X x Y plus two compatible relative group
laws. The first group law, for relative to Y, makes £ — Y an extension of Xy := X XY by
Zy = Z xY over Y, while the second group law, relative to X, makes £ — X an extension
of Yx by Zx over X. The best-known example is the Poincare bundle for an abelian variety
A; it is a biextension of A x A by G,,,, where A! is the dual abelian variety of A. Mumford
invented the concept of bi-extension in [76] to treat deformation and lifting problems for
polarized abelian varieties. See §10.2 for a review of the notion of biextensions.

Buoyed by optimism, we make a further working hypothesis that all biextensions of
p-divisible formal groups are Tate-linear, and arrive at the orbital rigidity question for
biextensions Q2 below.

Working hypothesis T3. Every biextension of p-divisible formal groups over F, is Tate-
linear.

We emphasize that the “working hypotheses” T1-T3 will acquire mathematical mean-
ing only after precise definitions of “special formal subvarieties” are given.

Challenge Q2 (Orbital rigidity question for biextensions in loose form). Let
X,Y, Z be p-divisible formal groups over F,, and let £ — X XY be a biextension of X xY
by Z. Let G be a closed subgroup of Autpiext(F) acting strongly nontrivially on E.

(a) Define a good notion of “special formal subvarieties” of a biextension E as above.
(b) Show that every reduced irreducible formal subscheme W of E closed under the
action of G is a special formal subvariety of E.

By definition, the group of automorphisms of a biextension of X X Y by Z as above
is a subgroup of Aut(X) x Aut(Y) x Aut(Z). The assumption that G operates strongly
nontrivially on £ means that the induced actions of G on X, Y, Z are all strongly nontrivial
as explained in 10.1.3. See 10.2.3.1 and 10.2.7.3 for more information about automorphisms
of a biextension.

For the question Q2, a reasonable expectation is that a special formal subvariety T of a
biextension 7 : E — X x Y should be “almost” a torsor for a p-divisible subgroup Z’ C Z,
over a p-divisible subgroup U of X x Y. To be more specific, we expect that every special
formal subvariety T' of a biextension F as in Q2 satisfies the following expectations.
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(E1) The intersection of T' with the closed fiber 771(0,0) 2 Z, with reduced structure,
is a p-divisible subgroup Z’ of Z.

(E2) The formal subvariety T' C F is stable under the translation action by Z’ for the
Z-torsor structure attached to the biextension £ — X x Y.

(E3) The map T/Z' — X x Y induced by 7, from the reduced irreducible formal
subscheme T'/Z" of E/Z' to X x Y, factors as a composition

T/7' T U X x Y,

where U is a p-divisible subgroup of X x Y, and the formal morphism g, is finite,
dominant and purely inseparable.

The expectations (E1)-(E3) enables us to formulate a more precise version Q2' of the
question Q2.

Challenge Q2 (Orbital rigidity question for biextensions). Let X,Y,Z be p-
divisible formal groups over F,, let 7 : E — X X Y be a biextension of X x Y by Z,
and let G be a closed subgroup of Autpext(E) operating strongly nontrivially on E.

(a') Let U be a p-divisible subgroup of X x Y stable under the action of G. Find a
necessary and sufficient condition on U, for the existence of a G-invariant reduced
irreducible formal subscheme W of E above U such that the morphism W — U
is finite, dominant and purely inseparable.

(b’) Suppose that W is a reduced irreducible closed formal subscheme of E stable
under the action of G. Prove the following statements.

(i) The formal scheme (WNZ),eq, the intersection WNZ with reduced structure,
is a p-divisible subgroup of Z.

(ii) The formal morphism g¢ : W/(W N Z)ed — X x Y is finite and

W,(WNZ)yed
purely inseparable.

Note that in the situation of (ii), orbital rigidity for p-divisible formal groups tells
us that the schematic image of ¢ is a p-divisible subgroup of X x Y.

W1<sz)red

It turns out that the question (a') can be answered using orbital rigidity for p-divisible
formal groups. The necessary and sufficient condition asked in (&) is
Oy (b1 (ur), pry (uz)) = 6, (pry (uz), pry (u1))

for all n > 1 and all functorial points (ui,u2) of U x U; see 10.3.2 and 10.3.4.1. Here
pryx : F— X and pry : E — Y are the composition of 7 : E — X x Y with the projections
pr; : X xY — X and pry: X XY — Y respectively, and

(0 : X[p") x Y[p"] = Z[p"))

n>1

is the family of Weil pairings attached to the biextension F, whose construction is reviewed
in 10.2.5.1.

10.1.6. The method of hypocotyle elongation through tempered perfections.
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10.1.6.1. The question (b') is harder and requires a new idea. We will first describe the
main tool in proving orbital rigidity for p-divisible formal groups, theorem 7.2.1 and its
important special case 7.2.2. It works like this. Suppose you have a reduced irreducible
Noetherian local formal scheme ) over a perfect field s of characteristic p and a sequence
of congruence relations on Y = Spf(R, m), which can be interpolated by “a single formula”
consisting of

e a formal power series f(uq,...,uUq,v1,...,0p), and
e formal functions ¢1,...,9q,h1,...hy Emon Y,

so that the infinite sequence of congruence relations can be written in the form

n

(%) F(g1s- s ga B2 B ) =0 (mod m®), n > ny,

where r is a fixed positive integer and d,, is a sequence of positive integers such that
limy, 00 pdr—’n = (. This method, which we call hypocotyl elongation, says that the congru-
ences (x) imply the equality

flai®1,...,6.®1,1®hy,...,1®@hy) =0

on Y x Y. Thus the congruences (x) modulo mP™" | of formal functions on ) belonging to
mP"" | “grows” to an equality of formal functions on ) x ). See 7.1.2 for a more detailed
introduction to hypocotyl elongation.

The key step in proving orbital rigidity for p-divisible formal groups is as follows. We
are given a p-divisible group X = X; x Xo over an algebraically closed base field x of
characteristic p, such that X is isoclinic of slope p1, X1[F"] = X1[p€] for suitable positive
integers r, c with & = p1, while all slopes of Xs are strictly smaller than p;. There is a p-
adic Lie group G acting strongly non-trivially on X, and we are given a reduced irreducible
formal subscheme W of X stable under G. For any element C' € Lie(X) N End(X), let
®c : X x X — X be the morphism which sends every functorial point (z,z) of X x X
to x4+, C(prxl(x')). We need to show that (W x W) C W, or equivalently, the formal
function O (f)|lwxw on W x W is equal to 0 for every formal function f € Iy, where Iy
consists of all formal functions on X which vanishes on W.

Consider the one-parameter subgroup exp(p2Zp - () in G. The G-invariance of W
tells us that (exp(p”C’)*f) ‘W = 0 for every f € Iyy. For n > 0, we have a “first order
approximation” exp(p"C) = idx + p"“C (mod p**¢) from the Taylor series expansion of
the automorphism exp(p"“C)) of X. Using such first order approximations, the equalities
(exp(p”CC' ) f ) ‘W = 0 gives us an infinite sequence of congruence relations. With a suitable
choices of regular parameters for the coordinate rings of X; and X, one sees that these
congruence relations has precisely the form (x), for the formal function ®ff on X x X.
Applying the method of hypocotyl elongation to the function ®¢ (W), we obtain the desired
conclusion that ®c(W xW) C W for every element C' € Lie(X) N End(X).

10.1.6.2. It is natural to try to generalize the above method to prove (b') in question
Q2’, but one encounters several difficulties.
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e Unless the biextension F of X x Y by Z is split, there is no natural “projection
map” from E to Z with good properties.

e Any “explicit formula” of the action of G C Autpiext(E) through an exponential
map from an subgroup of the Lie algebra Lie(G) must involve the Weil pairings
for E, which complicates things.

e But the most serious obstacle has to do with the method of hypocotyl elongation.
For a given one parameter subgroup exp(pQZ}7 -v) in G, the infinitely many con-
gruence relations resulting from the assumption that W is stable under G cannot
be interpolated by a “single formula” as in 10.1.6 (%), which consists of a suitable
formal power series in several variables and a finite number of elements of the
affine coordinate ring of W.

Because of these difficulties, especially the last one, for a very long time it was completely
unclear whether orbital rigidity actually holds for biextensions, or it is a pipe dream stem-
ming from excessive optimism.

10.1.6.3. The way to solve this conundrum is to introduce a suitable class of rings of
“generalized formal functions”. They provide extension rings of any given complete aug-
mented Noetherian local domain (R, m) over a perfect base field x of characteristic p, and
lie between R and the completion of the perfection of R. They are not Noetherian, unless
R = &k, but they satisfy certain weak version of finiteness properties enjoyed by Noether-
ian local domains. We call them completed tempered perfections of the input complete
Noetherian local domain (R, m), or tempered perfections for short. Elements of tempered
perfections of R are called tempered virtual functions on the formal scheme Spf(R).

The usefulness of tempered virtual functions for the orbital rigidity question Q2 is
threefold. First, there are many “tempered virtual morphism” from a biextension E to the
fiber group Z with good properties. Secondly for each one parameter subgroup exp(p2Zp-v)
in GG, the infinite sequence of congruence relation resulting from the first order approxi-
mation of the Taylor expansion of exp(p"* - v), for a suitable positive integer a, can be
interpolated by single formula which involves only a finite number of tempered virtual
functions. Thirdly the method of hypocotyl prolongation extends to tempered virtual
functions; see 10.5.6 and 10.5.3. Armed with the tempered virtual functions, the previous
strategy for proving orbital rigidity for p-divisible groups also works for biextensions. The
final result is stated in theorem 10.6.7.

Readers are advised to go to 10.7.1 for an introduction to tempered perfections. The
definitions of several families of tempered perfections and their basic properties are collected
in the appendix 10.7 of this chapter. Most of the basic algebraic properties of this new class
of rings are still unexplored. We have resisted the temptation of developing a theory of
tempered perfections of formal schemes and formal group. Instead proofs are given directly
in terms of these rings and related co-algebras and co-actions.

10.1.7. The notion of Tate-linear formal varieties revealed. The desired properties
of Tate-linear formal varieties have been discussed in 10.1.4. It is time to reveal what we
believe is a good notion of Tate-linear formal varieties.
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10.1.7.1. Definition. Let x be a field of characteristic p. A Tate-linear unipotent group
N over k is a projective system (IN;);>1 of finite group schemes N; over s with epimor-
phic transition homomorphisms m; ;41 : N;41 — INV; together with a compatible system of
decreasing filtrations FilN; indexed by (0, 1], satisfying the following properties.

(1) 7ri,i+1<Fﬂ§1Ni+1) = Fﬂ:]Nz foralli>1 and all s € (0, 1]

(ii) There exists a finite subset slope(N) of (0,1] N Q, such that for every s € (0, 1]
and every i > 1, the quotient group scheme gr®N; := FiljN;/ Fil;sNi is trivial if
and only if s € slope(N).

(iii) For every ¢ > 1, the distinct elements in the filtration Fil§N; form a finite central
series of subgroup schemes of ;.

(iv) For each s € (0, 1], there exists an p-divisible group Y; over xk which is either 0 or
isoclinic with slope s, such that the projective system

gr*N = (gr*N; == Filg N; /Fil{°N;) .o,

is isomorphic to the projective system (Ys [p'], Ys[p' T ﬂ Ys[p’])z> attached to
Ys. -

Elements of the finite subset slope(/N) C (0, 1]NQ are said to be the slopes of N. Note that

N is a projective system of nilpotent groups of class at most card(slope(/N)). Moreover N

is uniquely ¢-divisible for every prime number ¢ # p.

1

10.1.7.2. Definition. Let N = (Ni)z'>1 be a Tate-linear unipotent group over a field
of characteristic p. -

(a) The Tate module T),(N) of N is the limit
T,(N) = lim N;
i

of the projective system NN, as a sheaf of groups on the category of x-schemes with the
fpgc topology. Clearly T),(NN) is a sheaf of torsion free nilpotent group of class at most
card(slope(NN)). Moreover it is uniquely ¢-divisible for every prime number ¢ # p.

(b) Define V,(N) = Tp(N)g to be the Mal’cev completion of Tj,(N). It is a sheaf of
torsion free divisible nilpotent group of class at most card(slope(V)) for the fpqc topolgy
on the category of k-schemes.

Just as the stabilized Aut groups discussed in 5.4, we have a Lie theory for Tate-linear
unipotent groups.

o Let N = (Ni)z‘>1 be a Tate-linear unipotent group over a field x of characteristic

p. Define Lie(V,(NV)) to be the sheaf of Lie Qp-algebras on the big fpqc site of
Spec(k), with the addition law and the Lie bracket on Lie(V,(NN)) given by the
inverse Baker-Campbell-Hausdorff formula.

e The construction of Lie(V,(IN)) comes with isomorphisms of sheaves

exp : Lie(V,(N)) = V,(N) and log: V,(N) = Lie(V,(N)),
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inverse to each other, such that Q,-Lie subalgebras of Lie(V,(/N)) correspond to
torsion free divisible subgroups of V,(N). This is the Mal’cev correspondence in
the theory of nilpotent groups.

e There exists a p-divisible group L over s, such that the additive group underlying
Lie(V,(N)) is isomorphic to (l&nl L[pi]) ®7Q, where the projective limit is taken
in the category of fpqc sheaves on the category of k-schemes.

e Let ¢ < card(slope(IN)) be the smallest positive integer such that NNV is nilpotent of
class at most c. If p > ¢, there is an integral version of the Lie theory of N, known
as the Lazard correspondence in the theory of nilpotent groups. In this case we
have a sheaf Lie(T,(NV)) of Lie Z,-algebras, and mutually inverse isomorphisms

exp : Lie(T,p(N)) = Tp(N) and log: T,(N) = Lie(T,(N)).

Moreover there is a p-divisible group L over k, such that the additive group
underlying Lie(T,(V)) is isomorphic to Jm, L[p'].

10.1.7.3. Definition. Let N = (Ni)z'>1 be a Tate-linear unipotent group over a field k

of characteristic p. Define the Tate-linear formal variety TL(N) attached to N to be the
smooth formal scheme over x which represents the sheaf V,(IV)/T,(N), i.e.

TL(N) := V,(N)/T,(N).

Alternatively, TL(NN) can be defined as the deformation space of compatible systems of right
N-torsors. In other words there exists a canonical isomorphism between V,(N)/T,(N)
and the deformation space of right N-torsors. The argument in the case when IV is either
duts (X)) for some p-divisible group X over k or Zuz*'(Y, \) for some polarized p-divisible
group (Y, \) over x shows that these two definitions are equivalent.

Clearly every homomorphism h : N; — N between Tate-linear unipotent groups
induces a morphism h, : TL(N;) — TL(N2) between Tate-linear formal varieties.

This group theoretic definition of Tate-linear formal varieties also allows us to define
isogenies and Hecke correspondences in the context of Tate-linear formal varieties.

10.1.7.4. Definition. Let N be a Tate-linear unipotent group over a field  of character-
istic p. A closed formal subscheme Z of the Tate-linear formal variety TL(N) over & is a
Tate-linear formal subvariety if there exist a Tate-linear unipotent subgroup N’ of N such
that T,(N') is co-torsion free in Tp(NN) and the morphism TL(N’) — TL(N) associated
to N’ < N is the closed embedding Z < TL(N).

Note that the map TL(N’) — TL(NV) attached to the embedding N’ < N is a mono
because Tj,(N’) is co-torsion free in Tp(N).

10.1.7.5. With the notion of Tate-linear formal varieties specified, the general orbital
rigidity property below acquires a precise meaning. We set up the notations first.

Let N be a Tate-linear unipotent group over a perfect field x of characteristic p, and let
TL(N) be the Tate-linear formal variety attached to N. For each slope s of N, let Yj
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be the p-divisible group over k such that gr®(N) is isomorphic to the projective system
(Ya[p], Ys[p"] P, Yi[p']) -, attached to Y.

(Orbital rigidity for Tate-linear formal varieties) We use the notation in the pre-
ceding paragraph. Let G be a p-adic Lie group acting on N, such that the induced action
of G on Yy is strongly nontrivial for every slope s of N. If W is a reduced irreducible
subvariety of TL(N) stable under the action of G, then W is a Tate-linear formal variety.

As mentioned already, the orbital rigidity for Tate-linear formal varieties as stated above
can be proved by the argument used for the case of biextension. The key is the method of
hypocotyle elongation via tempered perfections, combined with induction on the number
of slopes of the Tate-linear unipotent group N governing the Tate-linear formal variety
TL(N). A detailed proof, together with general properties of Tate-linear formal varieties,
will be published elsewhere.

We decided to present the proof of the special case of biextension, instead of gen-
eral Tate-linear formal varieties, for several reasons. The biextension case corresponds to
Tate-linear formal varieties TL(N) where N is nilpotent of class at most 2. All essen-
tial difficulties after the case of p-divisible formal groups show up in the biextension case.
Its proof has the advantage of simplicity, with the main ideas clearly exhibited, and not
shrouded by induction or the theory of Tate-linear formal varieties. In addition, the easier
part of the proof of orbital rigidity for all Tate-linear formal varieties, which generalizes
10.3.4.1 and does not involve tempered perfections, can be reduced to the biextension case.
This book is too long already, and we hope the readers would not mind not seeing a proof
of the most general here.

10.2. Biextension basics

The notion of biextensions of commutative groups was first introduced by Mumford in
[76] and further developed by Grothendieck in expositions VI, VII of [18].

10.2.1. Definition. Let R be a Noetherian complete local ring whose residue R/m is a
field of characteristic p, and S := Spf(R). Let X,Y, Z be p-divisible groups over R (resp.
commutative formal groups) over R. A biextension of X xgY by Z is a 5-tuple

(m:E—>XxgY, +1:EXy E—FE, +9: ExxE—FE, e:Y > FE e&:X—E)

where F is the formal spectrum of a Noetherian complete local ring formally smooth over
R, 7 is an S-morphism, +; and €; are Y-morphisms, +5 and €2 are X-morphisms. In
addition the following properties are satisfied.

(0) The morphism 7 is formally smooth and faithfully flat.
(1a) The pair (41, €1) makes E a p-divisible group (resp. commutative smooth formal
group) over Y with 0-section ;.
(Ib) The projection map 7 : E — X XgY is a group homomorphism for the group
law 471 and the base change to Y of the group law +x : X xg X — X of the
p-divisible group X.
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(2a) The pair (42, €2) makes E a p-divisible group (resp. commutative smooth formal
group) over X with O-section es.

(2b) The projection map 7 : E — X xgY is a group homomorphism for the group law
49 and the base change to X of the group law +y : Y xgY — Y of the p-divisible
group Y.

(3a) The S-morphism

ZXSYHE7 (Z,y)i—)2+261(y)

defines an S-isomorphism from Z x5 Y to £ X (xx4v) (0x x5 Y).
(3b) The S-morphism

ZxsgX = E, (z,x)— z+] e(x)

defines an S-isomorphism from Z xg X to £ X (xxgy) (X xg0y).
(4) (compatibility of the two relative group laws) For any formal scheme T over S
and any four T-valued points w1, wi2, wo1, woe of E such that

m(wi1) = mi(wiz), mi(wer) = w1 (wae), mo(wir) = ma(wa1), mo(wi2) = m1(wa2)

where 71 := pry o and 7w := pry o 7 are the two projections from F to X and YV
respectively, the equality

(w11 +2 wi2) +1 (w21 +2 w22) = (w11 +1 w21) +2 (W12 +1 wa2)

holds.

Remark. (i) Conditions (1a) and (1b) assert that the relative group law +; on E over Y
is an extension of (the base change to Y of) X by (the base change to Y of) Z. Similarly
(2a) and (2b) say that the relative group law 42 on E over X is an extension of (the base
change to X of) Y by (the base change to X of) Z.

(ii) In 10.2.1 the group law +; (respectively +3) denotes “addition along the first (respec-
tively the second) of the two variables (X,Y)”. This is consistent with the usage in [76,
p. 320] but different from the convention in [76, p. 310].

(iii) Of course the definition 10.2.1 of biextension works in other contexts, for instance
sheaves of commutative groups for the fppf site for a general scheme S. For our purpose
the case when X, Y and Z are all p-divisible groups will be sufficient. For the main result
on orbital rigidity for p-divisible groups, S will be the spectrum of a field k of characteristic
p>0and X, Y, Z are p-divisible formal groups over k.

10.2.1.1. The following properties are easily verified.

(i) For any formal scheme T over S, any T-valued points yi, y2 of Y and any T-valued
points x1, x2 of X, we have

e1(y1) +2 e1(y2) = ex(y1 +12), e(x1) +1 e2(x2) = e2(x1 + 22).
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(ii) For any formal scheme T over S, any T-valued points z of Z and any T-valued
point w of E, we have

(z +1 e2(m1(w))) +2 w = (2 +2 €1(m2(w))) +1 w.

This equality means that the Z-actions on F induced by the relative group laws
+1 and +9 are equal, given m : E — X XgY a natural structure as a Z-torsor.
Let

x: ZxgE=(Zx5(XxgY))X(xxy)E—>E

be the morphism defining this Z-torsor structure on F.

(iii) The restriction of +1 to ZxgZ C E Xy E is equal to the group law of Z. Similarly
for the restriction of +9 to Z xg Z C E xx E.

(iv) The S-isomorphism (z,y) +— z +2 €1(y) in (3a) is a group isomorphism from the
product group Z xgY to the group law on £ X (xy) (0x xY) induced by +2. In
other words the restriction to {Ox} € X of the extension of Y by Z over X, given
by the relative group law 4o, splits canonically. Similarly for the S-isomorphism
(z,x) = z+1 €2(x) in (3b) is a group isomorphism from the product group Z xg X
to the group law on E x(xy) (X x Oy) induced by +.

(v) The restriction of €; to Oy is equal to the restriction of €3 to Ox. Over the scheme-
theoretic union A of the images of X xg0y and Ox xg Y, i.e. the smallest closed
subscheme of X Xxg Y containing both, we have an S-morphism ¢ : A — FE such
that m o A = ida which is equal to €3 on X xg 0y and equal to ¢; on Ox xXg Y.
Because 7w : E — X xgY is formally smooth, there exists a section s : X xgY — F
of m which extends e.

10.2.1.2. The trivial biextension of X xgY by Z is by definition the natural biextension
structure on X xgY x Z, where the two relative group laws are given by

(r1,y,21) +1 (T2, 9, 22) = (1 + 22,9y, 21+ 22), (z,y1,21) +2 (2,42, 22) = (z,y1 +y2, 21+ 22).

A biextension E — X xXgY by Z is trivial if there is an biextension isomorphism )
from the trivial biextension to E which induces idx,idy,idz on X, Y, Z respectively; 9 to
X xgY xg 0z is called the a splitting of a trivial biextension of X xgY by Z. We will
see in 10.2.3.6 that when X and Y are both p-divisible, such an isomorphism ' is unique
if one exists.

10.2.2. Cocycle description of biextensions.

10.2.2.1. Definition. Let X,Y,Z be smooth formal groups over S, let 7: F — X xXgY
be a biextension of X xgY by Z as in 10.2.1, and let s : X xgY — FE be a section of 7
which extends both €; and €3 as in 10.2.1.1 (v). Define S-morphisms

T: (X xgX)xgY - Z and o0: X xg5(Y xgY)—2Z
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associated to the section s by the following formulas expressed in terms of T-valued points
T, T1,22,Y,Y1,y2 in X and Y for formal schemes 1" over S:

(a) s(x1,y) +1 8(22,y) = T(z1, 221 ) * 8(¥1 + 22, Y)

(b) s(w,y1) +2 8(7,92) = o591, 92) * s(z, 91 + y2)

10.2.2.2. Cocycle identities. The S-morphisms 7 and o satisfy properties (1)—(5) be-
low, for all formal schemes T over S, all T-valued points x, x1, x2, x3 of X and all points
Y,Y1,Y2,y3 of Y. Identities (1) and (2) are consequences of the fact that the section s of
7 extends €; and €. Identities (3) and (4) hold because the two relative group laws +1
and +9 are commutative and associative. The identity (5) follows from the compatibility
of the two relative group laws.

(1) o(2:0,32) = 0 = o (w5 1,0), 7(0,2239) = 0 = 7(21,0;).
(2) 0(0;91,92) = 0, 7(w1,22;0) = 0.
(3) (symmetry)
o(z3y1,y2) = o(x3y2,y1), T(x1,2259) = 7(22, 215 Y)
(4) (associativity)
o(z;y1,y2) Fo(xyr +y2,y3) = o(xiyi,y2 +y3) + o(z592,3)
T(r1,22;y) + (21 + w2, 235y) = T(T1, 72 + 235Yy) + 7(22, T3;Y)
(5) (compatibility)
o(x1 + x2;91,92) — o(x1391,Y2) — 0223 Y1, Y2)
= 7(x1, 22591 + y2) — T(21, 223 y1) — T(21, T23 Y2)

10.2.2.3. Coboundary. Suppose that we replace s(z,y) by a another section

(10.2.2.3.1) s'(z,y) = fz,y) * s(z,y),

where f(z,y) : X xgY — Z is an S-morphism such that f(z,0) =0 = f(0,y). Then the
maps 7 : (X xg X)xy = Z and 0/ : X xg (Y xgY) — Z associated to the section s’ are
related to the maps ¢ and 7 by

(10.2.2.3.2) T (z1, 23 y) — T(@1, w25 y) = fl21,y) + f(22,y) — f@1 + 22, ¥),
(10.2.2.3.3) o' (ziy1,y2) — o(ziyn,y2) = fle,yn) + fz,y2) — f(z,y1 + y2).

10.2.2.4. Conversely given a pair («, ) of S-morphisms satisfying equations (1)—(5)
in 10.2.2.2, there exists a biextension of X xXgY by Z naturally attached to the cocycle
(a, B). Moreover the biextensions attached to two cocycles (a, ), (o, 8') are isomorphic as
biextensions of X xgY by Z in the sense of 10.2.3.1 (c) below if and only if the two cocycles
differ by a coboundary in the sense that there exists an S-morphism f : X xgY — Z such
that 10.2.2.3.2 and 10.2.2.3.3 hold.
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Homomorphisms between biextensions.

10.2.3.1. Definition. Let XY, Z X' )Y’ Z' be commutative smooth formal groups (re-
spectively p-divisible groups) over S = Spf(R) as in 10.2.1. Let 7 : E — X xgY be a
biextension of X xgY by Z, and 7’ : E/ — X’ xg Y’ be a biextension of X’ xg Y’ by Z'.

(a)

An S-homomorphism of biextensions, or an S-bihomomorphism for short, from
the biextension E to the biextension E’ is a quadruple of S-morphisms

(W:E—=F,a: X=X 3:Y =Y ~:7Z—27)

where «, 3,7 are S-homomorphisms of commutative formal groups (respectively
p-divisible groups), and ) is compatible with the biextension structure of E and
E’, in the sense that the following properties are satisfied.

() 70w =(axB)om,

(i) po+1 =+ 0¥ xy ¢), Yo+a=+450 (1 xx¢),
(i) Yoe; =€ 0B, poe =¢€,0a.
IEX=X,Y=Y,2Z=27,FE=FE and m = 7/, such an S-bihomomorphism
from E to E’ is said to be an S-endomorphism of the biextension E.
An S-bihomomorphism (¢, a, B,7) is an isomorphism of biextensions, if ¥, a, 3
and ~y are all isomorphism of formal schemes (respectively p-divisible groups), in
which case the quadruple (¢ ~!,a~!, 371, 471) “s” an S-bihomomorphism from
E' to E.
Suppose that X’ = X, Y/ =Y and Z/ = Z. We say that the £ and E’
are isomorphic as biextensions of X xg Y by Z if there exists an isomorphism
(¢,idx,idy,idz) from E to E'.
An S-bihomomorphism (v, «, 5,7) between biextensions of p-divisible groups (re-
spectively commutative smooth formal groups) is an isogeny if the homomor-
phisms «, 8 and v between formal groups (respectively p-divisible groups) are all
isogenies.

Note that an isomorphism (¢, o, 3,7) from F to E’ as in 10.2.3.1 (b) above induces an
isomorphism (¢, idx,idy,idyz) from v.E to (ax 8)*E’, so that the two biextensions v, FE
and (a x B)*E’ of X x Y by Z' are isomorphic in the sense of 10.2.3.1 (c).

When the biextensions E and E’ are specified by cocycles (7,0) and (7, o) respectively,
an S-homomorphism of biextensions from E to E’ is given by a map p: X xgY — 7’
satifying (10.2.3.3.2) and (10.2.3.3.3) below.

10.2.3.2. Remark. (i) Let F, E’ be biextensions as in 10.2.3.1. The set Homp;ext (E, E')
of all biextension homomorphisms from F to E’ does not have a natural group structure.
Instead there are two relative group laws

Hompiext (B, E') X om(y,y7) Hompiexi (E, E') — Homyiex (E, E')
Hompiext (E, E') X fom(x,x7) Hompiext (E, E') — Homypext (E, E')
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However the natural map
Homypext (E, E') — Hom (X, X’) x Hom(Y,Y")

may not be surjective. So in general the set Hompiexin(E, E') does not have a natural
structure as a biextension of Hom(X, X’) x Hom(Y,Y") by Hom(Z, Z').

1) In 10.2.3.1 we did not consider quadruples
ii) In 10.2.3.1 we did id drupl
V:E—FE, a:Y>X,B:X>Y , ~:Z>27Z

of S-morphisms such that the diagram

ASNl

FE £
A |-
X <YV (dopr2)X(Bopr1) X <YV

commutes,
Yot1 =450 xx1), Po+ta=4]0 (¥ xy),
Yoei=cyod, and oey =€ of.
Had we done so, we would have introduced a “parity” in the definition of homomorphisms,
endomorphisms and automorphisms of biextensions, so that the composition of two ho-

momorphisms with the same parity is even, while the composition of two homomorphisms
with different parities is odd.

10.2.3.3. Cocycle description of homorphisms of biextensions.

Let X,Y,Z, X' Y' Z' be smooth formal groups over S. Let E, E' be biextensions over
S asin 10.2.3.1. Let ¢ : E — E’ be a homomorphism of bi-extensions over S as in 10.2.3.1,
which induces S-homomorphisms o : X — X', 8:Y - Y and v: Z — Z'. Let s(x,y)
be a section of 7 : F — X xgY extending €; and €3, and let 7 : (X xg X) xgY — Z,
0:X xg (Y xgY) — Z be the maps associated to the section s(x,y) as defined in 10.2.2.
Similarly let s'(2’,y") be a section of 7 : B/ — X’ xg Y’ extending €] and €, and define
T (X' xg X)) xgY' = Z'and 0/ : X' xg (Y xgY') — Z' in the same way. Define an
S-morphism

u:u¢:XXSY—>Z’

by

(10.2.3.3.1) U(s(z,y)) = p(z,y) * s'(a(z), By))

for all points  of X and all points y of Y with values in the same formal scheme over S.
It is easy to verify that

(10.2.3.3.2) y(7(21,22;9)) — 7' (a(21), al(22); B(y)) = p(z1,y) + plx2,y) — pl@1 + 22, 9)
(10.2.3.3.3)  (o(z;3y1,92)) — o' (e@); B(y1), By2)) = plz, y1) + p(x, y2) — plx, y1 + y2)
for all formal schemes T over S, all T-points z, z1,x2 of X and all T-points y,y1,y2 of Y.
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Conversely it is easy to verify that every S-morphism u: X xgY — Z’ which the two
displayed equations (10.2.3.3.2) (10.2.3.3.3) indeed defines a homomorphism of biextensions
from E to FE'.

10.2.3.4. Let E — X xgY be a biextension of formal groups X xgY by Z.

(a) For any formal group Z’ over S and any S-homomorphism & : Z — Z’; the standard
push-forward construction yields a biextension &(E — X XgY) of X xgY by Z’, plus
a homomorphism 91 from F — X Xg VY to &(F — X XgY), which induces idy,idy, &
on XY, Z respectively. In addition &(E — X xgY') satisfies the universal property that
every biextension homomorphisms (¢, «, 8, ) from E to a biextension E’ of X' x Y’ by Z’
factors through ;.

(b) Similarly for any formal groups Xi, Y7 over S and any homomorphisms ¢ : X; —
X,n : Y1 = Y, the standard pull-back construction yields a biextension ((,n)*(E —
X xgY) of X1 xgY] by Z, which satisfies an obvious universal property among biextension
homomorphisms (91, a1, 51,71) from biextensions £} — X; xg Y] to E with a1 = a and

pr=p.

10.2.3.5. Lemma. Let X andY be p-divisible groups over S. FEvery bi-additive morphism
g: X xXgY — Z from X xgY to a sheaf of groups Z over S is identically zero.

PRroOOF. The proof is completely formal.

(a) The bi-additivity of g implies that g([p"]x (z1), [p"]y (y1)) =
for all S-scheme T4, all z; € X[p**)(T}) and all y; € Y [p** (T}
(b) Recall that the morphisms

[p "z(g(x1,91)) =0

\_/

P xpen—xpe) X107 = X[P" and [P lypessxpe  YIPP] — YD
induced by “multiplication by p"” are both faithfully flat. So for every S-scheme
T, every x € X[p"|(T), and every y € Y[p"|(T), there exists a faithfully flat
morphism f : Ty — T, an element 21 € X [p?"](T1) and an element y; € Y [p*"](T})

such that

zo f=[p"xpemxpryorr and  yo f = [p"lypensypm oy

The desired conclusion that g : X xgY — Z is equal to the zero map follows immediately
from (a) and (b). [

10.2.3.6. Corollary. Let X,Y,Z, X', Y', Z' be smooth formal groups over S. Letw : E —
X xgY be a biextension of X xgY by Z and let 7' : ' — X' x5 Y’ be a biextension of
X' xgY" by Z'. Let (¢, a, 8,7) be an S-homomorphism of biextensions.
(a) The maps o, B and v are uniquely determined by the morphism 1.
(b) Suppose that X andY are both p-divisible. The morphism ¢ : E — E' is uniquely
determined by the homomorphisms a: X — X', 8:Y Y ' and~:Z — Z'.

PROOF. The statement (a) is obvious. It remains to prove (b). Suppose that (¢1, a, 8,7)
and (¢, a, B,7) are two S-homomorphisms of biextensions from E to E’. We need to show
that 1,[)1 = 1,[)2.
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Let g: X xgY — Z' be the S-morphsm such that
Yo = (gom') * .
It is easy to see that the map g: X xgY — Z' is a bi-additive in the sense that
9(@1 + x2,y) = g(x1,9) + 9(22,9), 9(x, 91 +y2) = g(z,y1) + 9(z,12)

for all formal scheme T over S, all T-valued points z,z1,zs of X and all T-valued points
Y,y1,y2 of Y. Such a bi-additive map ¢g : X xgY — Z’ is necessarily equal to the zero
map by lemma 10.2.3.5. Therefore the natural map

Hompiext (E, E') — Hom(X, X’) x Hom(Y,Y’) x Hom(Z, Z')
(V,a,8,7) = (a,8,7)

is injective when X and Y are both p-divisible groups over S. [

10.2.3.7. Corollary. Let X,Y,Z be p-divisible groups over a scheme S, and let m: E —
X xXg Y be a biextension. Let T — S be a faithfully flat morphism. If the base change
nr : Er — X7 X7 Yp to T of the biextension E is split, then E is a split biextension.
Proor. Let (r : X7 xXp Yr — Ep be a splitting of Ep. By 10.2.3.5 and 10.2.3.6 the
pull-backs of {7 via the two projections prq,pry : 1" Xg 1T — T are canonically isomorphic,
and the canonical isomorphism satisfies the cocycle condition. So (7 descends to a splitting
(: X xgY > Fof E. [

10.2.4. The Weil pairings of a biextension of p-divisible groups.

Let R be a Noetherian complete local ring whose residue field R/m has characteristic
p. Let X,Y, Z be p-divisible groups over S = Spf(R) as in 10.2.1.

10.2.4.1. For every biextension F of X xgY by Z, there is an associated family
O = (0r)

nENZ1
of bilinear pairings
0, =0 : X[p"] xs Yp"| = Z[p"], neN

called the Weil pairing, attached to this biextension £ — X xXgY. A definition of the Weil
pairing and its basic properties will be reviewed in 10.2.5.

A biextension F of p-divisible groups is determined by its Weil pairing up to unique
isomorphism; this is a consequence of 10.2.5.8. In particular a biextension F is trivial if
and only if 8, = 0 for every n > 1.

Remark. As we will see in 10.2.5.2, there are actually two families of Weil pairings associ-
ated to a given biextensions of p-divisible groups. The first family (6,,),, denoted by (5,)n
in [76], is normalized by the relative group law 4. The other family (wy), is normalized
by the relative group law +5. The two Weil parings differ by a sign: 6,, +z w, = 0 for all
n.
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10.2.4.2. These bilinear pairings 6,, are compatible in the sense that

(10.2.4.2.1) On([plx (znt1), [ply (Ynt1)) = [Plz (Ons1(Zns1, Yni1)

for all 2,11 € X[p"*1], all y,11 € Y[p"*!] and all n € N; or equivalently,

(10.2.4.2.2) On+1(@n, Ynt1) = On(@n, [ply (Yn+1))

(10.2.4.2.3) On+1(Tnt1,Yn) = On([P)x (Znt1), Yn)

for all z,, € X[p"], xns1 € X[p"], yn € Y[P"], yns1 € Y[p"*!] and all n € N. See [76,
Prop. 4] and also Exp. VIII of [18] more information.

Exercise. Suppose that a,r are natural numbers with a < r such that

am 9

p : rm(frrmvy’rm) =0.

for all m > 1 and all functorial points (Zym, Yrm) of X[p"™] x Y [p"™]. Show that 6, = 0
for all n > 1.

10.2.4.3. Functoriality of Weil pairings. Let X,Y, Z, X', Y’, Z' be p-divisible groups
over S, let E be a biextension of X xgY by Z, and let £’ be a biextension of X’ xg Y’
by Z'. Let (0%),en and (0F),en be the Weil pairings attached to E and E’ respectively.
Suppose that (¢, «, 8,7) is a homomorphism of biextensions from F to E’. Then

YO8 @y yn)) = 05 (@(xn), B(yn))
for all z,, € X[p"] and all y,, € Y[p"].

The following statements follow easily from the functoriality of Weil pairings.
(a) For any isogeny & : Z — Z', the push-forward biextension &(E — X xgY) is
trivial if and only if £ — X xgY is.
(b) For any pair of isogenies ¢ : X7 — X, n : Y7 — Y, the pull-back biextension
((xn)*(E — X xgY)is trivial if and only if £ — X xgY is.

10.2.4.4. Lemma. Let X,Y,Z be p-divisible groups over a field k of characteristic p. Let
m: FE — X XY be a biextension of X XY by Z, and let (Hn)n>1 be the associated Weil
pairings. Suppose that for every slope X of X and every slope v of Y, X + v is not a slope
of Z. Then 0, =0 for all n. In other words, the biextension £ — X XY is trivial.
PrROOF. One can use the Dieudonné theory for biextensions stated in 10.2.7.2 to prove
10.2.4.4. Here is a direct proof.

It suffices to prove the statement after extending the base field to an algebraic closure
of k and modifying X, Y, Z by isogenies. Using the bilinearity of the Weil pairings, we are
reduced to the following special case.

The p-divisible groups X, Y, Z are isoclinic, and there exist natural
numbers a,b,c,r, r > 0, a,b,c < r, a+b # ¢, and isomorphisms « :
XS5 X0 5.y SyY0®) 422 207 such that

FI‘TX/H =ao [pa]X’ Frgf/m =ao [pb]y’ Frg/m =ao [pC]Z'
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Functoriality with respect to the sk-bihomomorphism (Fr’”E /K,FrTX I Frry/K,FrTZ /K) from F
to E®") tells us that

®")
05 ’ (FrTX/nxn’ Frgf/l{yn) = Fr%/ngf(xn’ yn)

for all functorial points (zn,yn) of X[p"] x Y[p"] and all n > 1, i.e.

(%) 0 2(057 (). Blyn))) = 12 ((OF (20, ym)) Wi > 1.
Suppose that a +b > c¢. We claim that
(+) o (0 (@), B(ya)) = V(0 (0, )

for every commutative k-algebra R, every R-valued points (z,,y,) € X[p"](R) x Y [p"](R),
and every n > 1. There exists a finite locally free commutative R-algebra R’ and an
R-point (Tn+c, Yn+e) € (X[p"T¢] x Y[p"T])(R'), such that

Px (Tnte) =20 and [Py (Yn+c) = Yn-

Since

") o (BF (00 (@nse), Byn)))
= [pa—i_b} VACS) (en—l-c(a(xn-w) ) 5(yn+0)))

™ yor (B2 (aln), Byn)))

and similarly
95 (l‘n, yn> = [pC]Z (05+c(xn+67 yn-l—c))a
the claim follows from (x). Iterating (xx), we get

AN (OF (@, ) = VO] e, (05 (0 (w0), BY (9n)))

for all N € N, where oV = a® Do 0alP) oq is the N-th iterate of «, and similarly for

BN and 4NV, With N > aTi—c+ We see that 0F =0 for all n > 1 when a + b > ¢. The case

when a + b — ¢ < 0 is proved by a similar argument. [

10.2.5. The Weil pairing as descent data over torsion subgroup schemes.

Let X,Y,Z be p-divisible groups over a base scheme S. Let 7 : F — X XgVY be a
biextension of X XgY by Z over S. We review in 10.2.5.1

(a) the definition of the Weil pairing attached to a biextension £ — X xg Y, and
(b) how to construct a biextension E,, of X[p"] x Y [p"]| by Z by descending the split
biextension

Z x X[p"] xs Y[p*"] = X[p"] x5 Y [p*"]
along the faithfully flat morphism
L) %8 [P"]ypeny : X[p"] x5 Y[p*"] = X[p"] x5 Y [p"]
using the descent datum given by a bihomomorphism 6,, : X[p"] xgY [p"] — Z[p"].
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The descent construction reviewed in 10.2.5.1 (iii), (iv) has many applications. For
instance it implies that if the Weil pairings 6y, g, 0, p attached biextensions E, E’ of
p-divisible groups X xgY by Z at a fixed level [p™!] coincide, then there exists a canonical
isomorphism between the restrictions of the biextensions FE and E’ to X [p™] x g Y [p™]; see
10.2.5.8 and its Dieudonné theory version 10.2.7.2, 10.2.7.3. More importantly it allows
us to compute the leading term of the Taylor expansion of actions of p-adic Lie groups on
biextensions; see 10.4.1.2.

10.2.5.1. We recall the explicit construction of Weil pairings
O =0y - X[p"] xs Y[p"] = Z[p"], n>1
in [76, pp. 320-321].
(i) The first ingredient is a canonical trivialization &, of the biextension
) (X" xsY ™)),

the pull-back of E, = 7~ 1(X[p"] x5 Y[p"]) via the finite locally free bi-additive
homomorphism 1x(,n X [p"]y[p2n) : X[P"] X5 Y [p?"] — X[p"] x5 Y[p"]. In other
words we will construct a natural bi-additive map

En =68 X[p"] x5 Y [p*] — Ep

(1X[pn] X [pn]Y[p2n])*En = E’nX(X[p"]><5Y[p”},1X[pn]><s[p"]y[p2n

such that the diagram

N . £n
X[p"] x5 Y[p*] E,

_i l

1x[p"]
X[p"] x5 Y[p*"] —= X[p"] x5 Y [p"]
commutes.

Given any S-scheme T, any z,, € X [p"|(T), any y2, € Y[p*](T), there exist
(a) a scheme T} faithfully flat and locally of finite presentation over T', and (b)
an element e; € E(T7) which lies above (x,,y2,), such that when one multiplies
e1 by p™ with respect to the first relative group law +1, we have

[P"] 4+, (e1) = e1(y2n)-

Such an element e; is not unique, but any two choices differ by an element of
Z[p"]. Define &, (zy, yon) as p™ times e; with respect to the second group law +a:

én(l‘na y2n) = [pn]Jrz (61)'

Clearly the right hand side of the above equality is independent of the choice of the
element e1, where we have used the first group law +; to produce a Z[p"]-torsor
lying above the T-point (2, y2,) of X[p"] x5 Y [p?"]. By descent we conclude that
En(Tn, yan) € En(T).



556

(iii)

10. ORBITAL RIGIDITY FOR BIEXTENSIONS

We have defined a morphism &, : X[p"] xg Y[p?*"] — E,. This morphism
corresponds to a section of the biextension

(Ixppn) X [P"]yip2n) " En — X[p"] x5 Y [p?"],
denoted again by &,, abusing the notation. It is easy to see that &, is a bihomo-
morphism which splits the biextension (1x(,» x [p"]yp2n])" En
Define a morphism oy, : Z x5 X[p"] xg Y[p*"] — E,, = 7 1(X[p"] x5 Y[p"]) by
an(z, Tn, y2n) =Lk 5n($na y2n)

for all S-scheme T, all z € Z(T), all x,, € X[p"|(T) and all y2,, € Y[p**](T). It is
easy to see that the following commutative diagram

Qn

ZxsX[p" xsY [p>"] }1
Pr23l 7T|En
X[p") xs Y [p?"] — 2> X[p"] x5 Y [p"]

is cartesian. So the biextension 7, : E, — X[p"] xg Y[p"] is descended from the
trivial biextension pryg : Z xg X[p"] x5 Y[p?"] — X[p"] x5 Y[p*"] along the
faithfully flat morphism 1y yn) X [p"]ypen) @ X[p"] X5 Y [p*"] — X[p"] x5 Y[p"].
Construct a bihomomorphism
O, = 0F : X[p"] x5 Y[p"] — Z[p"]

using the descent datum for «,.

The effect of translation by elements of Y[p"] on the isomorphism «;, is
recorded by a map 6, : X[p"] x5 Y[p?"] xs Y[p"] — Z, defined by

n (N Ty Y2n) = (A + 9;(%, Y2ns bn), T, Yan + bn)

for all S-scheme T, all A € Z(T), all z,, € X[p"|(T), all ya, € Y[p**|(T) and all
b, € Y[p"|(T). An easy calculation shows that 6/ ( n,an, by,) is independent of
Yon. In other words there exists an S-morphism 6,, : X[p"]| xgs Y[p"] — Z such
that the last displayed equation simplifies to

Ozn()\, o an) = an(/\ + en(wm bn); T,y Yon + bn)-

An easy calculation shows that 6, is a bihomomorphism, hence it factors through
the closed subgroup scheme Z[p"| — Z.

Reversing the construction, it is easy to see that 6,, encodes the descent datum from

the trivial biextension Z x g X[p"] x5 Y [p?"] down to E,,: the bihomomorphism 6,, gives an
X [p"]-action of the base change to X[p"] of the group scheme Y [p"], on the X[p"]|-scheme
Z x5 X[p"] x5 Y[p*]. So E, — X[p"] x5 Y[p"] can be reconstructed from 6,,, and the
biextension 7 : E — X xgY can be reconstructed from the family (6;,),>1 of Weil pairings.
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10.2.5.2. The two relative group laws play different roles in the definition the morphisms
&, and 6,,. We will say that &, and 6,, are normalized by the first group law +; (or by the
first factor X in the product X xgY), referring to the condition [p”]+,(21) = €1(y) above
on the element z; above (z,y).
If the roles played by the two relative laws are interchanged, then we get a canonical
splitting
o = F : X[ x5 Y[p"] = Ey
of ([p"]x[p2n] X lypn])* En normalized by the relative group law +2, and a bi-additive map
wp = wy : X[p") x5 Y[p"] = Z[p"]

such that
Wn(an7 yn) * wn(x?n + anp, yn) = @Z}n(l?na yn)
Ya, € X[p"], Va2, € X[p*"], Vyn € Y[p"]. Note that

O =& o (Uxpenxypr) and wl =04 o (txprxypn)
for each n > 1, where ¢ : X xgY — Y Xxg X is isomorphism (z,y) — (y,x) on functorial
points of X xgY, and «*E — Y x g X is the pull-back by ¢ of the biextension £ — X xgVY.

Claim. The bi-additive map w, : X[p"] xg Y [p"] — Z[p"] is equal to —0,,.

Before proving the claim, it is convenient to rephrase the definition of 6,, as follows.
(a) The fiber product

Ln = W_l(X[pn] XS Y[pn]) X([p“]+1,E,51) Y

has a natural structure as a biextension of X [p"]| xg Y [p"] by Z[p"], contained in
the biextension 7~ 1(X[p"] xg Y[p"]), of (X[p"] x5 Y[p"]) by Z.
(b) The bi-additive map 6,, : X[p"] x5 Y [p"] — Z[p"] is characterised by the property
that
" 42z, = (Bnomls,) * (€2 0pry)lg,
Interchanging the two relative group laws +; and +2 gives us a rephrased definition of
wn. We will prove the above claim using this rephrased definition of w, and descent.

PROOF OF CLAIM. Suppose that Spec(R) — S is an affine scheme over the base scheme S,
and we are given elements x, € X[p"|(R), y, € Y[p"](R), and an element e € E(R) with
m(e) = (n,yn) which satisfy the normalization condition [p"],(e) = €1(yy) with respect
to the group law +;. By definition 6, (x,, y,) is the unique element in Z[p"](R) such that
[p"]42(€) = On(@n, yn) * €2(an).

Pick a finite faithfully flat R-algebra S such that there exists an element z € Z[p?"](S)
with [p"]|z(2) = =0, (xn,yn). Then we have [p"],(z *x €) = e2(xy,), so the element £ x e in
E(S), which lies above (zy,ys), satisfies the normalization condition with respect to the
group law +5. Moreover we have
[P"] 4.1 (z % €) = [p"]2(2) * e1(xn).

So wn(Tn,yn) = [p"]z(2) = —On(zn, yn) according to the rephrased definition of w,. [
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Remark. See also 10.2.6.1, in the same setup as the above argument.

10.2.5.3. It is instructive to compare the splitting &, of (1x[n) X [p"]y{p2n))*En and the
splitting 1 of ([p"]x[p2n) X 1y [pr))* En, by pulling back both splittings to X[p?"] x5 Y [p*].
Define a splitting Z;, of (1x[n) X [p"]y(p2n))* En by

"]

B = gn o ([p X [p27] X ly[an]) : X[p2n] XS Y[an] — FE,.

Similarly let 1, = %2 : X[p?"] x5 Y[p"] — Z be the canonical splitting of the biextension
([P" x[p2n] X Lypn))*En of X[p*"] x5 Y [p"] by Z, by switching the role of the two relative
group laws: For any S-scheme T’ and T-points z2, € X[p?"](T) and y,, x5 Y [p"](T), pick a
finite locally free cover T1 : Ty — T and an element e; € E(T1) lying above (22, y,) such
that [p"]4,(e1) = e2(z2y), and ¥ (225, yn) is defined to be the element [p"]4, (e1) of E(T)
which lies above (p" oy, yn). Define

Wy, i= by 0 (Lxppang X [P" ]y ppen)) X[p*] x5 Y[p*"] = E,.
Both Z,, and V,, are splittings of the biextension
(D" xpn) X [P"]ypp2n)) En — X[p*"] x5 Y[p*"].
Define a bi-additive map Tay, : X[p?"] x5 Y [p*"] — Z by the requirement that
Lon(Ton, Yon) * Zn(Ton, Yon) = Wn(Ton, yon) Yo, € X[p?], Vy € Y[p*"].
We see from the defining properties of =, &,, ¥,, and v, that
Don(an, y2n) * €1(p"y2n) = Vnlan, Y2n) = —wn(an, p"y2n) * €1(p"y2n)
and
(Ton(z2n, bn) —z On(P"Tan, by)) * €2(p"x2n) = Ton(x2n, bn) * Ep(Tan, by) = e2(p"z2p)
for all a,, € X[p"], all b, € Y[p"], all z2, € X[p?"], and all ya, € Y [p*"]. It follows that
On (D" 20, P"Y2n) = P"To2n(Ton, Y2n) = —wn (" T2n, p"Y2n)
for all o, € X[p?*] and all 32, € Y [p?"]. Note that we have shown again that 0, +zw, = 0.
10.2.5.4. Exercise. Prove the following the compatibility properties of the trivializations
(§n)n>1 and (¥n)n>1:
&n(PTns1, PPy2nt2) = [Pl [Pl abnit (@ng 1, y2nt2) Vangr € X[, Vyanio € Yp
.

n(0* 2042, DYnt1) = [P [Pl +2Vnt1(T2n41, Yns1) Vonto € X[p*"F2), Vynya € Y
Equivalently,

2n+2]

En(P*Tont2, P2 Yont2) = [Pl4y [Pl1oZn+1(Tont2, Yont2)
U, (P*ont2, P*Yon+2) = [Pl+1 [Pl4s Unt1(T2n42, Yont2)

for all wg,12 € X[p?"*?] and all ya, 12 € Y [p?"+2].

10.2.5.5. Exercise. Prove the following properties of the bi-additive map I'gy,.



10.2. BIEXTENSION BASICS 559

(a) The bi-additive map I's,, : X [p*"] x5 Y [p*"] — Z factors through Z[p*"] — Z.
(b) For all x9,,+2 € X[p?™2] and all Yo, 42 € Y[p?" 2], we have

P Toni2(T2n42, Yont2) = Don(P*T2nt2, D*Y2ni2)-

(c) Top = 02, = —way, for all n > 1.

10.2.5.6. Remark. We saw in 10.2.5.2 that the two Weil pairings normalized by the two
group laws differ by a sign. In the case of the Poincaré biextension

Plp™] — A[p™] x5 A'[p™]

associated to an abelian scheme A over a base scheme S, it is natural to ask which one of
the two Weil pairings is equal to the standard Weil pairing ez : A[p"] xg A [p"] — ppn.

A careful comparison with the definition of e,, in the first three pages of §20 of Mum-
ford’s book [77] reveals that e is equal to the pairing w, normalized by the “second”
relative group law -+ of the biextension P[p™] — A[p™] x g A'[p™]. Recall that +2 makes
P[p>] a p-divisible group over the base scheme A[p™], which is an extension of A![p™]
(base changed to A[p™]) by jupe (also base changed to A[p™]).

10.2.5.7. Lemma. Let 7w : E — X XY be a biextension of p-divisible groups X xgY
by a p-divisible group Z over a base scheme Y. For each positive integer n, let 0, :
X[p"| xs Y[p"| = Z[p"] be the Weil pairing as described in 10.2.5.1.

(1) Suppose that ny is a positive integer and 0, is equal to the trivial bi-additive map
from X[p™] xg Y[p™] to Z[p™]. Then the biextension 7~ (X[p™] x5 Y[p™]) of
X[p™] xg Y[p™] by Z splits canonically. In other words there exists a canonical
isomorphism

Coy : ™ N X [pM] x5 Y[P™]) = Z x5 X[p™] x5 Y [p™].

(2) Suppose that ng is a positive integer, ny > ny and 6, is equal to the trivial bi-
additive map. Then 0,, is also equal to the trivial bi-additive map. Moreover
the canonical trivializations (3" and (35" are compatible, i.e. (5" is equal to the
restriction to m (X [p™] xg Y [p™]) of (5.

PROOF. We saw in 10.2.5.1 that the pull-back of 771 (X [p™] x s Y [p™]) to X [p™]x 5 Y [p>™]
by the faithfully flat morphism 1ypm X [p"]y p2n) + X[p™] x5 Y[p?™] — X[p™] x5 Y [p™]
is canonically trivial, and the bihomomorphism 6,,, corresponds to the descent data from
the trivial biextension Z x X[p™] xg Y [p*™] down to m,, along the morphism 1 x p™ :
X[p™] xg Y[p*™] — X[p™] xg Y[p™]. So if 6,, is the trivial homomorphism, then this
descent datum defines a canonical isomorphism between the 7~ 1(X[p™] x5 Y [p™]) and
the trivial biextension Z x X [p"!] x Y[p™]). We have proved statement (1).

The first part of (2) follows from the compatibility of Weil pairings (10.2.4.1.2) and
(10.2.4.1.3). The compatibility statement (2) follows from the same descent argument used
in the proof of (1). 0O
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Proposition 10.2.5.8 and Corollary 10.2.5.9 below are applications of 10.2.5.1. It enables
us to determine the restriction of a homomorphism between two biextensions to torsion
subgroups schemes X [p"] x Y[p"].

10.2.5.8. Lemma. Letm: E — X XgY and 7' : ' — X xgY be two biertensions of
p-divisible groups X xXgY by a p-divisible group Z over S. Let
(enveé : X[pn] Xg Y[pn] — Z[pn])neN
be the Weil parings attached normalized by the first relative group laws +1 g, +1 5 associ-
ated to the biextensions E, E' respectively.
(1) If ny is a positive integer and 0,, = 6, ,
Go o HX [P xs Yp™]) = () THX [P ] x5 Y ™))
determined by 0,, and 0),.

(2) Suppose that ng > ny and 0, = 0,,,. Then 6, = 60, and the canonical isomor-
phism

then there exists a canonical isomorphism

Gy =7 (X [PM] s YP™M]) = () THX ™) x5 Y [p™))
is compatible with the canonical isomorphism
Gng = T H(X[P"] x5 Y[p™]) = (7)) THX "] x5 Y [p"2)).
(3) Suppose that 0,, = 0!, for alln € N. Then the collection of canonical isomorphisms
G (X" xs Y[p"]) = (o) (X" xs Y[p"]),  neN

defines an isomorphism from the biextension E to the biextension E' which induces
idx,idy and idz on the p-divisible groups X, Y and Z.

(4) Suppose that ¢ : E — E' is an isomorphism of biextensions which induces idx,idy
and idy on the p-divisible groups X, Y and Z. Then 6,, = 0, for all n € N, and
the restriction of ¢ to 7~ (X [p"] x5 Y[p"]) is equal to the canonical isomorphism

o (X [PM] s Yp™M]) = () THX ™) x5 Y [p™])
attached to 0,, and 0),, for all n € N.

PROOF. The biextension structures on E and E’ endow the Z-torsor E AZ ([~1]z)+E"’
over X X Y a structure of a biextension of X xgY by Z. The statements (1), (2) follow
from 10.2.5.7 applied to E A? ([~1]7)«E’. The statement (3) follows from (2).

To prove the statement (4), we observe first that the functoriality of the Weil pairings
tell us that 6,, = ), for all n. By (3), the canonical isomorphisms ¢, are compatible and
defines an isomorphism of biextensions ¢’ : E — E’ over X xg Y. There exists a unique
morphism

b: X xgY = Z

such that
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for all S-scheme T" and all e € E(T'). Clearly b : X xgY — Z is bi-additive in the sense
that
b(z1 + x2,y) = b(z1,y) and  b(z,y1 +y2) = b(z,y1) + b(z, y2)

for all S-schemes T', all x,z1,22 € X(T) and all y,y1,y2 € Y(T). We know from 10.2.3.5
that such a bi-additive map is necessarily zero. We have shown that ' = (. [

10.2.5.9. Corollary. Let X,Y,Z, X' Y' Z' be p-divisible groups over S. Let E be a
biextension of X xgY by Z, and let E' be a biextension of X' xgY' by Z'. There is a
natural bijection from the set Hompiext (E, E') of all S-bihomomorphisms from E to E’, to
the set of all triples (a, 3,7) € Homg (X, X') x Homg(Y,Y”) x Homg(Z, Z") such that

V(Hn,E(mna yn)) = en,E’ (a(xn)a 5(%))
for alln € N, all schemes T over S, all x, € X[p"|(T), and all y, € Y[p"|(T).

Remark. (i) Denote by Biext!(X,Y;Z) the set of all biextensions of X xg Y by Z up
to isomorphisms which induce idx,idy,idz on X,Y and Z; c.f. 10.2.3.1(¢). By 10.2.5.8
and 10.2.5.9, the map E + g establishes a functorial bijection from Biext!(X,Y; Z) to
the set of all compatible families of bilinear pairings (6,, : X[p"] x Y[p"] = Z[p"]),,cn- See
also [76, Prop. 4, p.319], Exp. VIII of [18] and 10.2.7.2.

(ii) One knows from [18, VII3.6.5] that for sheaves of abelian groups P, @), G over a topos,
the set Biext! (P, Q;G) of isomorphism classes of biextensions of P x Q by G is naturally
isomorphic to Ext!(P @ @, G). On the other hand, for p-divisible groups X, Y we have
isomorphisms %r%p(X [p"], Y [p"]) = X[p"] ®z,Y[p"] of fppf-sheaves. The construction of
the Weil pairing attached to a biextension reflects these two facts.

10.2.5.10. Lemma. Let X,Y, Z be p-divisible formal groups over a field k of characteristic
p,let E— X XY be a biextension of X XY by Z. Suppose that X,Y factor as products
X =X1 X X9, Y =Y xXYs, where X1, Xo,Y1,Ys are p-divisible groups over k, such that
all slopes of X1 X Y1 are > 1. Suppose moreover that the Weil pairings

(05 X[p") x Y] = Z[p") 5,

attached to the biextension (E, ) vanish on X;[p"] x Y[p"] and also on X[p"] x Y[p"], for
everyn > 1. Then E has a natural structure

(7' ' E— Xox Yo, +| :Exy, E 5 E,+|:Exx, E— E € :Ys = E e: Xo — E)
as a biextension of Xo x Yo by Z' = X1 x Y1 X Z, such that the following properties hold.
(1) e+1e = (—pry,(e)) ¥ (e +1 €') = (—pry, (€) # (e +] €)
for all functorial points e, €’ of E such that pry (e) = pry(¢'),
(2) e+2e’ = (—pry,(e)) ¥ (e +5 €) = (—prx, (¢') ¥ (e +5 ¢)
for all functorial points e, e’ of E such that pry(e) = prx(e’),

(3) e+ € = (pry, (€) +1 Pry, () # ((—pry, (€) ¥/ €) +1 (~pry, (&) ' ¢))
for all functorial points e, e’ of E such that pry,(e) = pry,(¢’),
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(4) e +h e = (pry,(€) +1prx, (¢)) ¥ (—pry, (€) ' €) +1 (—pry, (¢/) #' )
for all functorial points e, €’ of E such that pry,(e) = prx,(€'),

(5) e1(y1,y2) = 11 % €, (y2) for all functorial points (y1,y2) of Y = Y1 x Ya, and

(6) €a(x1,x2) = 21 *" €(x2) for all functorial points (x1,x2) of X = X1 x Xs.

(7) zxe=z+"e for all functorial points (z,e) € Z x E.

(8) Ewery automorphism of the biextension (E, ) is an automorphism of the biexten-
sion (E,7'), and vice versa.

Here

o «' : 7' X E — E is the Z'-torsor structure associated with the structure on E as a
biextension of Xo X Yo by Z'.

o' E — Xy x Y5 is the composition of m : E — X x Y with the projection
XXY:(XlXYl)X(XQXYQ)—>X2XYé.

e pry : B — X is the composition of m : E — X XY with the projection X XY — X.

e pry : B =Y is the composition of m : E — X XY with the projection X XY — Y.

o pry, : B — X; is the composition of prx with the projection X = X1 x Xy — X;,

i=1,2.
e pry. : E — Y; is the composition of pry with the projection Y = Y1 x Yo — Y,
i=1,2.

PrOOF. The assumption on the Weil pairings means that 05™ factors through the projec-
tion X [p"] x Y [p"] — Xa[p"] x Y2[p"] and induces a compatible family of bilinear pairings
(0, : Xa[p"] x Ya[p"] = Z[p"]), -, Define
95/’”/ : Xo[p"] x Ya[p"] — Z'[p"] = (X1 x Y1 x Z)[p"]

to be the composition

On,

Xo[p"] x Ya[p"] —= Z[p"|—— Xa[p"] x V1[p"] x Z[p"] = Z'[p"] -

The bilinear pairings (GE/’”/)H>1 define a biextension 7’ : B/ — X5 x Y5 of X5 x Y5 by Z'.
Moreover we have a natural isomorphism of formal schemes E = E’, which sends

Zn * gf((l'l,n’ x2,n)a (yl,an y272n))
to

($1,n, [Pn](yl,zn), Zn) *’ fE, (1"2,717 y2,2n)

for all functorial points 1 ,, € X1[p"], T2.n € Xa[p"], y1.2n € Y1[p*], Y220 € Y2[p*"], 20 € Z
with values in the same k-scheme S, in the notation of 10.2.5.1. We identify E’ with F via
this isomorphism. Properties (1)—(8) follow immediately. [

10.2.6. Let m : F — X xXgY be a biextension of p-divisible groups X,Y, 7. We will
construct a family (9,,)n>1 of morphisms 7, : E,, - Z and a similar family of morphisms



10.2. BIEXTENSION BASICS 563

pon : En — Z, such that
nn‘z ="z = pn‘g
[p]Z O TNn = Nn+1 © (En — En+1)
[p]Z O Pn = Pn+10° (En — En+1)
for all n > 1, where E,, := 7~ (X [p"] x5 Y[p"]). See 10.2.6.1 for their definitions, and

10.2.6.3 for a basic congruence estimate of 7, and p,,.

10.2.6.1. Definition. Let 7 : E — X xgY be a biextension of p-divisible groups X,Y, Z
over a scheme S.

For any positive integer n, we have a canonical map &, : X[p"] xg Y[p**] — E, such
that mo &, = 1X[p"] XS [pn]yp% and gn(xnay%z) = ‘9n($n7bn) * gn(l‘naZJQn + bn) for all
T, € X[p", all 2, € Y[p?"] and all b, € Y[p"]. The map ay, : X[p"] xsY [p*"] xsZ — E,
which sends functorial points (zy,, yon, 2) t0 2%, (2, Y2, ) is a faithfully flat homomorphisms
of biextensions.

(1) DEFINITION OF 7. Let 7, : X[p"] xg Y [p*"] X5 Z — Z be the map given by
Tn(Tn, Yan, 2) = p"z

for all functorial points (1, yon, 2) of 7, : X[p"] x5 Y[p?"] x5 Z.
Define the map 7, : E,, — Z by descending 7,, along a,, i.e. 1, is the unique morphism
from FE,, to Z such that

Tin © Qip, :ﬁn

The map 7, is induced by the relative group law +; on E, in the sense that
[P"] 41 (en) = nlen) * €1(yn)

for every e, € E, above (z,,y,) € X[p"] xg Y[p"]. This relation can be regarded as an
alternative definition of 7.

(2) DEFINITION OF p,,. Consider the map
0 0 [p"] 4y 1= © (Lxppn) X [Py 2] X [P"]2) : X[p"] X5 YV[p™"] X5 Z — Z,
which sends every functorial point (2, yon, 2) of X[p"] xg Y [p*"] x5 Z to
(an 0 [P"]45) (Tn, Yon, 2) = (T, P"Yon, 0" 2) = —0n(@n, p"Yon) * an(@n, 0, p"2)
= (=On(@n, p"y2n) +2 P"2) * e2(an).

Let pn : X[p"] x5 Y[p*"] x5 Z — Z be the map which sends functorial points (z,,, Y2n, 2)
of X[p"] xs Y[p*"] x5 Z to

ﬁn($m Yon, 2) = _en(xnapnyZn) +z pnz‘
Clearly pn(n,Y2n + b, 2) = pn(Tn, Yon + bn, 2) for every functorial point b, of Y [p"].
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Define p,, : E, — Z to be the morphism such that

Pn = Pn © Qn.

In other words, 5, descends from the finite locally free cover v, : X[p"|xsY [p?"|xsZ — E,
to the morphism p, : £, — Z.

The map p,, is related to the relative group law +2 through the equality

[P"]42(en) = pnlen) * e2(wy)

for every functorial point e, € E, above (z,,yn) € X[p"] xg Y[p"], which provides an
alternative definition of p,.

10.2.6.2. Exercise. (i) Show that

[Plz © M = Mot 0 (Ep — Entr)
[P]z © pn = pnt1 0 (B — Epi1)
n = (en o ﬂ-’En> +2Z Pn
for all n > 1.

(ii) Show that both 7, and p,, are bi-additive maps from E,, to Z.

10.2.6.3. Proposition. Let m: E — X XY be a biextension of p-divisible formal groups
over a field k of characteristic p. Let

(o : 7 HX "] x Y[P]) = Z) (pn: 7 H(X[P"] x Y[p"]) — Z)

neN’ neN

be the two compatible families of morphisms defined in 10.2.6.1. Let pu = pizmax be the
mazximum among the slopes of Z. There exist positive integers na, co such that

nn‘EnmE[FLn/qucz} =0 and pTZ‘ETLﬁE[FL"/MJ*CQ} =0

for alln > ny. Here E[F"/rl=¢2] denotes the inverse image of the base point of E®"/"1 ™)
under the iterated relative Frobenius morphism Fr]LEn/I_fJ_C2 L E — BT,
ProoOr. We only need to show the existence of no, cy such that nn|EnmE[FL”/#J*cz] = 0.

The other half, i.e. pn|EnmE[FLn/w762] = 0, follows by symmetry.
For every positive integer n, we have a finite locally free cover
Qp - X[pn] X Y[pZn] X Z — B, an(«rnaana Z') =Zx* ff(xmywz)

defined in 10.2.5.1. Write = 7, where a,r are positive integers.
Suppose we are given an element e € E,(R) N E[F'](R), where R is a commuta-
tive k-algebra and i € N. Let T be a finite locally free R-algebra such that there exist
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zn € X[p"|(T), yan € Y[p*"|(T), and z € Z[T] such that z % &, (2, y2,) = €. The as-
sumption that Fri, /x(€) is the base point of E®) implies that Fr’ Ji(@n) = 0, therefore

E(pi)
n

(Frg(/ﬁ(a:n), Fré//ﬂ(yzn)) is equal to the base point of E*"). From

i i ®") (i ;
FrZ/n(e) = Frz/n(z) * 55 i (FrX/H(:cn), Fry/n(ygn)),
we see that Frjg/ﬂ(e) € E[F'] if and only if z € Z[F]. Recall also that 7, (z * £Z (2, yon) =

[p"]z(2).
The assumption that ¢ is the largest slope of Z implies the existence of positive integers

ns, c3 such that Z[F?] C Z[pl*e/71+¢3] for all i > ng. For a point

e = 2% &n(Tn, yon) € B, N E[F']
as in the previous paragraph, if i > n3 and [ia/r] 4+ c3 < n, then z € Z[F?] C Z[p"] and
nn(z) = p"z = 0. Let c2 := [c3r/a] and ny := [%(n3 + c2)]. A simple calculation shows
that the restriction of 1, to E, N E[F"/#] is identically 0. [

The following proposition 10.2.6.4 is a more precise version of 10.2.6.3 in two special
situations.

10.2.6.4. Proposition. Let X,Y, Z be isoclinic p-divisible groups over a field k of char-
acteristic p, and let m : B — X XY be a biextension of X XY by Z.

(1) If for every slope A of X and ever slope v of Y, A+ v is not a slope of Z, then
N, =0 and p,=0
for every n € N.
(2) Let a,aq,az,m > 0 be positive integers such that a1 + a2 = a, a < r. Suppose that
X[p"] = X[F"], Y[p*™] =Y[F'], Z[p'] = Z[F"].
Then E[Fmr] - Ema; ngza‘E[FmT] = 0, an.La‘E[Fmr] = 0, and QEIE[FWLT] =0 fOT
every positive integer m.

PrOOF. The assumption in (1) implies that the Weil pairings 6% attached to E vanish
identically, and the biextension FE splits canonically; see 10.2.4.4. So the maps 7, and p,
are equal to 0 for all n.

Under the assumptions of (2), we have

[ mag} ma
X[F™] = X[p ] = T X [pme] "% X [pme] ),
mr ma [P ]y [pma)
YIF™) = Y[pe] = Tm( Y [pme] ——> Y [p™] ).
The assertion that 67| g[pmr) = 0 follows, because 0F is bi-additive. The assertion that

nk | glpm) =0 = oL | g[Fmr) follows from the relation of the two relative group laws with
1 and p,, and the above displayed formulas. Alternatively, the argument in the proof of
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10.2.6.3 using the descent data of F,, also shows that n,%a|E[Fmr] and p£a|E[Fmr] are both
equal to 0. [

Remark. One can also deduce 10.2.6.3 from 10.2.6.4, using lemma 10.2.6.5 below to
reduce to the case when the base field k is algebraically closed and X, Y, Z are all product
of isoclinic p-divisible groups, then to the case when X,Y,Z are all isoclinic. Another
application of 10.2.6.5 allows us to modify X, Y, Z by isogenies so that 10.2.6.4 is applicable.
Details are left as an exercise.

10.2.6.5. Lemma. Let Ry, Ro,S1,59 be Noetherian local Tings, and let my, mo,ny,no be
their mazimal ideals. Let hy : Ry — S1 and ho : Ry — S be injective local homomorphisms
such that S; is a finitely generated R;-module via h; fori = 1,2. There exist positive integers
C, d with the following property:

Let f,g : Ry — Ry and f',g' : S1 — Sy be local homomorphisms such

that hao f = f'ohy and hgog=g' ohy. Ifn € N and f'(y) — ¢'(y) =0

(mod n§™ ) for all y € Sy, then f(z) — g(z) = 0 (mod n}) for all

T € Ry.
PrROOF. There exists a positive integer a > 0 such that ng C n1S5. By the Artin—Rees
lemma, there exists a natural number e such that

SlﬁnT+eSg Cnf" Vn e N.
Lemma 10.2.6.5 holds for C =aq and d = ae. [

10.2.7. Dieudonné theory for biextensions. Suppose that k is a perfect field of char-
acteristic p > 0. We recall the covariant Dieudonné theory for biextensions of p-divisible
groups over x the associated Weil pairings.
We use the same notation scheme for covariant Dieudonné theory as in previous chap-
ters.
e Let A = A(k) be the ring of all p-adic Witt vectors with entries in k.
e Let 0 = o[y, : A(k) = A(k) be the ring endomorphism
z = (20,21, T2,...) — %o = (af, 2], 2P,...),
and let V.=V, () : A(k) = A(x) be the additive endomorphism
\')
)

x = (zg, x1, T2, . . x = (0,z0,21,22,...)

of A(k). Recall that VA(k) © OA(k) = OA(k) © VA(k) = [p]A(H)

e The classical covariant Dieudonné theory attaches to every p-divisible formal
group X over k a free A(k)-module D,(X) whose rank is equal to height(X),
together with additive endomorphisms

F, V:D,(X) — D,(X)
of D, (X) such that
Flax) =%F(x), V(°az)=aV(z) and F(V(z))=pz=V(F(z))
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for all a € A(k) and all z € D, (X).

e The main theorem of the classical covariant Dieudonné theory asserts that the
assignment
X — D, (X)
establishes an equivalence of categories from the additive category of p-divisible

groups over x to the additive category of Dieudonné modules for the perfect base
field k.

10.2.7.1. Let X,Y,Z X' Y' Z' be p-divisible groups over k. We have seen in 10.2.5.8
and 10.2.5.9 that the map which to every biextension E of X x Y associates the compatible
family of Weil pairing (6., ), cn establishes an equivalence of categories, from the category
of biextensions of X x Y by Z, to the category of compatible families of bilinear pairings

(bn: X[p"] < Y [p"] = Z[p"

Moreover the set of all bihomomorphisms 1) : E — E’ from a biextension F of X x Y by
Z to a biextension E’ of X’ x Y/ by Z' is in natural bijection with the set of all triples

(a, B,7) € Homy (X, X') x Homy(Y,Y") x Homy(Z, Z")

])HEN'

such that

’7(971,51(33717 yn)) = an,E/(a(xn)a B(yn))
for all k-schemes T, all z, € X[p"|(T) and all y, € Y[p"|(T). We will explain how to
express these statements in terms of Dieudonné modules.

Proposition 10.2.7.2 below is a longer version of 5.3.5.4.

10.2.7.2. Proposition. Notation as above.
(i) To every biextension E of X XY by Z, there is an associated A(k)-bilinear map

05 : Dy(X) x Do(Y) —> Du(2)
such that
Op(Fp,x)(z),y)
Or(z,Fp,v)(v))
e (Vp, ()2, Vp, (v) y) V]DJ* @E(l‘,y))
(

for allx € D(X) and all y € D.(Y).
(ii) For every A(k)-bilinear map

O : Dy(X) x Dy(Y) — D, (2)
which satisfies the conditions that
O(Fp. (x)(z),y) = Fp.(Z) (0(z,Vp, v (%)) »
O(z,Fp,(vy(¥)) = Fn,(2) (©(Vp, (x),9))
© (Vp, (x)%, Vp, (v)¥) = Vn,(2) (O(z,y))

= (@E (xv VD*(Y)y))

||
—~
&
o
<
S
*
>
K
<
N~—
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for all x € D (X) and all y € D.(Y), there exists a biextension E of X xY
by Z, unique up to unique isomorphism, such that © = Op. In particular the
biextension E is split if and only if ©p = 0.
(i) Given a biextension E of X XY by Z and a biextension E' of X' x Y’ by Z', the
natural map from the set of all homomorphisms of biextensions
(W:E—-FE,a: X=X B3:Y =Y ~:Z— 7" e Hompex(E, E)
to the set of all triples (f,g,h) satisfying the conditions
- f € HOmA(n),F,V(D*(X)’D*(X/))7
—9€ HomA(n),F,V(D*(Y)7D*(Y/))f
—he HomA(n),F7V(]D*(Z)’ ]D*(Z/));
— hMOg(z,y)) =Op(f(x),9(y))  VeDi(X), VyeDiy)
s a bijection.
Remark. A bilinear pairing © : D, (X) x D, (Y) — D,(Z) satisfying the properties in
10.2.7.2 (i) corresponds to a family of bi-additive maps
On : X[p"] xY[p"] = Z[p"], n=1
according to general Dieudonné theory. Our choice of the sign of the correspondence E
between O in 10.2.7.2 is that ©p corresponds to the Weil pairing g = (9E,n)n21-

10.2.7.3. Corollary. Notation as in 10.2.7.2. In particular E — X XY 1s a biextension
of X XY by Z and O is the A(k)-bilinear map from D, (X) x D.(Y) to D.(Z) attached
to the biextension Z.

(1) The group Autpiext(E) of all automorphisms of the biextension E has a natural
structure as a compact p-adic Lie group. It is naturally isomorphic to the closed
subgroup of

Auty Fy (D« (X)) x Auty g y(Ds(Y)) x Auta (Dy(2))
consisting of all triples
(o, B,7) € Auty Fy(Da(X)) x Auty g y(Di(Y)) x Auty 7 y(Di(2))
such that

1(@r(r,y)) = Op(a(z),B(y)  VreD.(X), Vyec DY)

(2) The Lie algebra of the compact p-adic Lie group Autpiext(F) is naturally isomor-
phic to the Lie subalgebra of

Endy  Fv(D:(X)@) ® Endy Fy(D«(Y)q) ® Endy 7 y(Di(Z)g)
consisting of all triples (A, B,C) in the above direct sum such that
C(©g(z,y)) = Op(Az,y) + ©p(z, By)

for all x € D (X) and all y € D (Y'). Here
— Ag = A(r)g = A(r)®2Q,
— Dy (X)g :=Du(X)®2Q, and similarly for D.(Y)g and D.(Z2)q,
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— Endy, Fy(D. (X)q) denotes the set of all endomorphisms of the Ag-module
D, (X)q which commute with F and V; it is naturally isomorphic to the Lie al-
gebra of the compact p-adic Lie group Auty g y(D«(X)) = Aut(X). Similarly
Jor Endy py(D.(Y)q) and Endy, g y(D.(Z)q).

10.2.7.4. Definition. Let G be a compact p-adic Lie group, which is a closed subgroup
of the group of all Q,-points of a linear algebraic group over Q,. Let X,Y, Z be p-divisible
groups over a field x of characteristic p. Let £ — X Xgpec(s) Y be a biextension of
X Xgpee(r) Y by Z. Let p 1 G — Autpiext(£) be a continuous action of G on E which
respects the biextension structure of F.

We say that the action of G on FE is strongly non-trivial if the actions of G on X, Y,
Z induced by the action of G on E are all strongly nontrivial in the sense of 7.3.1.

10.3. Equivariant sections and special formal subvarieties

Given a biextension of p-divisible formal groups m# : E — X X Y over a field s of
characteristic p and an strongly nontrivial action of a p-adic Lie group G on E, we will
first show that the existence of a G-equivariant section of 7 implies that the biextension
E splits; see 10.3.1. Then we will consider the case X =Y and show that the existence of
a G-equivariant section of the restriction of 7 the diagonal Ax C X x X implies that the
Weil pairings g, of E are symmetric; see 10.3.2. This train of thought lead to the notion
of special formal subvarieties in a biextension; see 10.3.4.3.

10.3.1. Proposition. Let k be a field of characteristic p. Let X,Y, Z be p-divisible formal
groups over K. Let m: B — X Xgpec(n) Y be a biextension of X Xgpec(n) Y by Z. Let G be a
compact p-adic Lie group, and let p : G — Autpiext(E) be an action of G on the biextension
E— XxY. Let px : G = Aut(X), py : G — Aut(Y), pz : G — Aut(Z) be the induced
actions of G on X,Y, Z respectively. Let s : X Xgpec(r) Y — E be a G-equivariant section
of ™, i.e. Tos = idXXspec(k>Y and p(g)-s = so(px(g),py(g)). Suppose that the action of G
on E is strongly nontrivial. Then the biextension m: E — X Xgpee(r) Y 18 trivial, and the
section s s its canonical splitting.

PrOOF. Following the notation in 10.2.2.1, let
T: XXXXY—>Z7 and 0: X XY XY —>Z7
be the maps associated to the section s defined by the formulas
s(x1,y) +1 8(22,y) = T(z1, 221 Y) * 8(¥1 + 22, Y)
s(z,y1) +2 5(x,y2) = o(z;y1,y2) * s(z, y1 + y2)

for functorial points z, 1, z2,y,y1,y2 of X and Y respectively. We will show that orbital
rigidity for p-divisible formal groups 7.1.1 implies that the maps 7 and ¢ are both 0.

By theorem 7.1.1, the graph of 7 is a p-divisible subgroup of X x X xY x Z. In other
words 7 is a group homomorphism from the product group X x X x Y to Z. So

T(x1,22;y) = 7(21,22;0) + 7(0,0; 1)
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for all 1,22 € X and all y € Y.

Clearly 7(0,0;y) = 0 for all y € Y. Since (7~ '(X x {0}), +1‘7r71()(><{0})) is a p-
divisible group, theorem 7.1.1 implies that the graph of s|x o} is a p-divisible subgroup
of (m™1(X x {0}),41lr—1(xx{0}))- SO

T(x1,29;0) =0 for all x1,29 € X.
Therefore 7(z1,z2;y) = 0 for all 1,22 € X and all y € Y. Similarly o(z;y1,y2) = 0 for
all x € X and all y1,y2 € Y. We have shown that s is a splitting of the biextension E. [

10.3.1.1. Lemma. Let X, Z be p-divisible groups over a scheme S. Let m: E — X x X
be a biextension of X xg X by Z. Let (Hf)nzl be the family of Weil pairings of E.
(i) For alln >1 and all x,, 2}, € X[p"], we have

0" E(xn, 2)) = =08 (z,, 2)).
(ii) The biextensions L*E and E are isomorphic if and only if
Gf(xn, '/L‘;l) = _Hf(x;w xn)

for allm > 1 and all x,,x,, € X[p"].
(iii) The biextension *E is isomorphic to ([—1]z)«E if and only if
Gf(xn, 1) = Hf(x;“ Tn)
for alln > 1 and all z,,x], € X[p"].
ProOF. We know from 10.2.5.2 that 6, F o (tUxpryxxppr]) = wkl = —0F for all n > 1,

where ¢ : X Xxg X — X xg X be the isomorphism (z,2') — (2/,z) on functorial points of
X xg X. The statement (i) follows. The statements (ii), (iii) are corollaries of (i). [

10.3.1.2. Definition. Let X, Z be p-divisible formal groups over a field k of characteristic
p. Let m : E — X x X be a biextension. Let ¢ : X x X — XX be isomorphism
(z,2") — (2/,x) on functorial points of X x X.

Suppose that the Weil pairings 2 are symmetric in the sense that

Gf(xn, xiz) - 95(‘%;17 xn)
for all n > 1 and all z,,, x}, € X[p"]. Let ¢ be the unique isomorphism of biextensions from
([~1]2)«FE to *E, whose existence is guaranteed by 10.3.1.1 (iii).

Define the involution T of such a biextension F with symmetric Weil pairings to be
the composition
T:=codo(
of the top horizontal arrows in the following commutative diagram

E *E < E

T

XxX—XxX—=XxX——XxX,
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where the commutative square at the left is the push-out diagram for the biextension
([-1]2)«E, and the commutative square at the right is the pull-back diagram for the
biextension (*E. Clearly 7 o7 =idg and 77 = [-1]z.

10.3.1.3. Remark. Suppose that the Weil pairings 82 are skew symmetric in the sense
that
Qf(l'n, le) = _Hf(xnv x;z)

for all n > 1. There is an involution ¢ on E in this situation as well, defined below. We
won’t use it in the rest of this chapter.

Let ¢’ be the unique isomorphism of biextensions from F to «*F, whose existence is
guaranteed by 10.3.1.1(ii). Define the involution ¢ of such a biextension F with skew
symmetric Weil pairings to be the composition

¢:=cod

of the top horizontal maps of the following commutative diagram

E—% g ° . E

TN

XxX—>XxX—">XxX,

where the commutative square at the right is the pull-back diagram for :*E as before.

10.3.1.4. Corollary. Let w : E — X x X be a biextension of p-divisible formal groups
X x X by Z with symmetric Weil pairings as in 10.3.1.2. Let E™=! be the fized-point
subscheme of the involution T of E with 7|z = [—1]z. Let Ax C X x X be the diagonal
subscheme of X x X.

(i) If p # 2, then T induces an isomorphism from E™=! to Ax.
(ii) Suppose that p =2. Then E™=' has a natural structure as a Z[2]-torsor over Ay,
and m induces an isomorphism from the reduced formal scheme (E™=1),0q to Ax.

10.3.2. Proposition. Let X, Z be p-divisible formal groups over a field k of characteristic
p. Let m: E — X X X be a biextension of X x X by Z. Let G be a p-adic Lie group, and
let p: G — Autpiext(E) be a strongly non-trivial action of G on E such that the actions
of G on the two factors of X x X are the same. Suppose that there exists a G-equivariant
section ¢ of T 'Ax — Ax owver the diagonal Ax C X x X. Then the Weil pairings 0% of
E are symmetric for alln > 1.

10.3.3. Corollary. We keep the notation and assumptions in 10.3.2. In particular mw :
E — X x X is a biextension of p-divisible formal group X x X by Z over k O F,, G
1s a p-adic Lie group acting strongly nontrivially on E and induces the same action on
both factors of X x X, and ( is a G-equivariant section ( of m over the diagonal formal
subscheme Ax of X x X. If the Weil pairings 0% of E are skew-symmetric, then 0F =0
for alln > 1. In other words the biextension E splits.
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10.3.3.1. Remark. The statements 10.3.2 and 10.3.3 are equivalent. Clearly 10.3.2 =
10.3.3. Assume that 10.3.3 holds. By 10.2.5.2, we know that 0, ¥ (z,,z!) = —0F(z,, z!)
for all functorial points z,, z,, of X[p"].

Consider the biextension Eg := E X (xxx)t*E of X x X by the product group Z x Z,
and the biextension ' = h,FEy of X x X by Z otained from E; by the push-forward
construction via the homomorphism h = +z from Z x Z to Z, h(z1,22) = 21 + 2 for all
21,22 € Z. The construction of E’ tells us that

01?/($7L7x;z) = 95(%,%) - ef(l‘;l,xn),

for all z,,z!, € X[p"], so 8F is skew-symmetric. The section ¢ of E over Ay induces a
section t*¢ of +*E over Ax, and the section (4 = ((,¢*() of Egx(xxx)Ax gives section ¢’
of B/ X(xxx)Ax. It is clear that the sections t*(, (4 and ¢’ are all G-equivariant. Corollary

10.3.3 applied to the biextension E’ tells us that 05/ = 0 for all n > 1. Therefore 6, is
symmetric. We have shown that 10.3.3 = 10.3.2. [

10.3.3.2. PRroOOF or 10.3.3.

Step 1. Reduction to the case when the slopes of X and Z are disjoint.

Clearly we may assume that  is algebraically closed. Let o : Z — Z’ be an isogeny
such that there exist isoclinic p-divisible groups Zi,...,Z,;, over k and an isomorphism
7' 2 71 X -+ X Zpy. It suffices to prove the assertion of 10.3.3 for each of the biextension
(proa).F of X x X by Z;,i=1,...,m. So we may and do assume that Z is an isoclinic
p-divisible formal group over x.

Suppose that the slope of Z appears in X. Choose a isogeny 5 : X1 x Xo — X
such that Xy is isoclinic with the same slope as Z, and all slopes of X; are different
from the slope of Z. Clearly it suffice to prove the assertion of 10.3.3 for the biextension
B*E — X1 x X5. But HE*E(xQ’n,yn) =0= GE*E(yn,:cg,n) for all functorial points ¥, €
(X1 x X2)[p"] and all x2, € X2[p"]. So it suffices to prove the assertion of 10.3.3 for the
biextension 8*E X (x x) (X1 x X1) of X1 x X7 by Z.

In the rest of 10.3.3.2 we assume that the p-divisible formal groups X and Z have no
slope in common.

Step 2. Represent the G-equivariant section ¢ of E X (x.x) Ax in terms a family of
Z-valued functions (f,),>1 on X[p*"] x X[p*"], using the canonical splitting =,, of the
biextension

(16" % 07130 B g yong s x o) — XI02") 5 X[p?"
defined in 10.2.5.3.
Recall that the bi-additive map ®,, satisfies the functional equation
(103321) Hf(pnl?ny bn) * En(l'Qn + an, Yo + bn) = En(l'Qna y2n)

for all 2o, yon, € X[p*"] and all a,, b, € X[p"], and the compatibility relations in 10.2.5.4:
(10.3.3.2.2)

Zn (P ront0, P*Yant2) = [Py [P)+2Znt1(T2n42, Yoni2) = Pui1(PT2nt2, PYoni2)
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2n+2] " Define morphisms

fn:X[an]—>Z, n>1

for all zp,49, Yonto € X|[p

by
([pn]}g) ‘X[p2n] = fn* (En|AX[p2n])
ie.
(10.3.3.2.3) C(p"xan) = frn(an) * Pp(T2n, Top)
for all 29, € X[p*"], and of course f,(0) = 0. From (10.3.3.2.3) we get
Fa(P*x2n42) * P (p*Tonso, P*oonta) = (0" 220 42)

= fn—l—l(men—‘r?) * q)n+1(px2n+27px2n+2)
So we deduce from (10.3.3.2) that

(10.3.3.2.4) fn(Py2n+1) = frr1(yY2n+1)
for all ya,,+1 € Y[p** ). The functional equation (10.3.3.1) implies that
(10.3.3.2.5) Fa(@an +bn) = 05 (P" w2, bn) + fn(w2n)

for all 29, € X[p?"] and all b, € X [p"].
Step 3. Show that the functions f, satisfy the theorem of the cube, using orbital rigidity
for p-divisible formal groups.
Define maps 7, : X[p?"] x X[p*"] x X[p*"] = Z,n > 1, by
(10.3.3.2.6)
Yn(T2ns Yans 22n) 1= fn(Tan + Yon + 22n) = fol@n + Yn) — fr(yon + 220) — fa(T2n + 220)
+ fa(@2n) + fa(y2n) + fn(z2n)
for all way,, Yon, 200 € X [p?"]. An easy calculation using the functional equations (10.3.3.2.5)
shows that
(10.3.3.2.7) Yo (Z2n + any Yon + b, 22n + €n) = Yu(T2n, Y2n, 22n)

for all oy, Yon, 22n € X[p?"] and all ay, by, c, € X[p"]. Therefore there exist uniquely
defined morphisms
It X[P" ] x X[P"| x X[p"] = Z, n>1
such that
Yn(T2n, Y2ns 22n) = Yn(P"T2n, D" Y2n, P"22n) ¥V Ton, Yan, 22n € X[P2n]-
It is easy to deduce from the compatibility relation (10.3.3.2.4) between the f,’s that

V1 g x sy = Tn Y= 1

Thus 7 := hg Yn is a G-equivariant morphism from the X x X x X to Z. By orbital
n

rigidity for p-divisible formal groups, the graph of 7 is a p-divisible formal subgroup of

X x X x X x Z,i.e. 7 is a homomorphism from X x X x X to Z. Since the slopes of X

and Z are disjoint, 7 is 0. Therefore ~, = 0 for all n > 1.
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Step 4. Define morphisms g, : X[p?"] x X[p*"] — Z by

gn(xan y2n) = fn(332n + an) - fn(x2n) - fn(y2n)

for all zon,y2, € X[p?"]. The fact that f, = 0 for all n implies that the map g, :
X[p*"] x X[p*"] — Z is bi-additive for every n > 1.

From (10.3.3.2.5) we get
(10.3.3.2.8) In(Ton, an) = Hf(p”a:%, an)

for all o, € X[p?"] and all a,, € X[p"]. Since 6F is assumed to be skew symmetric for all
n, OF (p"zopn, p"xa,) = 0 for all 29, € X[p?"] and all n > 1. So

(10.3.3.2.9) 0 = gn(22n, p"w20) = D" gn(T2n, T2n)

for all o, € X[p?"] and all n > 1.
From (10.3.3.2.4) we get

n+1(Y2n+1s 22n+1) = gn(DY2n+1, DZ2n+1)

for all yon i1, 22041 € X[p?"H1]. Tterating, we get

(103-3-2'10) In+m (y2n+ma Z2n+m) = 9n (pm92n+mapmz2n+m)

2n+m]

for all Yo4+m, 22n+m € X|[p and all m,n > 1.

Given any n > 1, any m > n, a commutative k-algebra R and any element yo, €
X[p™](R), there exists a finite locally free commutative R-algebra R’ and elements ya,42m €
X [p?*27m] such that p*™yaniom = Yon and p*™2oni0m = 20,. Apply (10.3.3.2.10) with

Yontm = D" Y2n+2ms 2ntm = P Y2n+2m, We get

9n (ana an) = Gn+m (pmy2n+2mppmy2n+2m) = p2mgn+m (y2n+2ma y2n+2m)‘
the last equality follows from (10.3.3.2.9) because 2m > n + m. We have shown that
n(Yon, yon) = 0 for all y,, € X[p"] and all n > 1.

The map g, : X[p*"] x X[p**] — Z is obviously symmetric by definition, therefore

2971(«7727“ yZn) = gn($2n + Yon, Ton + an) - gn(xQny $Zn) - gn(anu an) =0

for all o, y2n, € X[p?"]. This immediately implies that g, = 0 if p # 2. In the case p = 2,
an argular similar to but simpler than the argument used in the last two paragraphs again
shows that g, = 0. We conclude from (10.3.3.2.8) that 6F = 0 for all n > 1. We have
proved corollary 10.3.3 and proposition 10.3.2. [

10.3.4. Special formal subvarieties of a biextension.
Let X,Y,Z be p-divisible formal group over a field x of characteristic p, and let 7 :
E — X XY be a biextension of X x Y by Z. We will define a class of reduced irreducible

closed formal subschemes of F, called special formal subvarieties, guided by the proposition
10.3.4.1 below, which is a reformulation of 10.3.2.
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10.3.4.1. Proposition. Let X,Y, Z be p-divisible groups over a field x of characteristic
p. Let m: E — X XY be a biextension of X xY by Z with Weil pairings (0§)n>1. Let

G be a p-adic Lie group, and let p : G — Autpiext(E) be a strongly nontrivial action of G
on E. Let U C X x Y be a p-divisible subgroup of X XY stable under the action of G.

Let g, : U — X be the composition U XxY 2 X and let gy : U =Y be the

composition U——= X xY Py, Suppose that there exists a reduced irreducible closed

formal subscheme U of E which is stable under the action of G such that 7 induces a purely
iseparable dominant morphism U — U. Then

05(‘]}( (un)’ qy (un)) = 95(@[}/ (un)v ax (un))

for all functorial points u, of U[p"™] and allm > 1.

PROOF. There exists a positive integer ng and a morphism ¢ : U — U, necessarily
G-equivariant, such that

(7] r-1) 0 ¢ = [p"]v.
Consider the biextension

E' = ([p]x 0 q) x ([p™y 0 4,)) E—"=U x U

of U x U by Z, with the induced strongly nontrivial action by G. The G-equivariant map
¢ : U — E defines a G-equivariant section ¢’ of E’ over the diagonal subgroup Ay C U xU.
Proposition 10.3.2 tells us that

pno ’ (eg(qx (un)7 dy (un)) - 97§<qy (un)v dx (’U,n)>) =0
for all n > 1 and all functorial points wu,, of U[p"]. Therefore

QE(QX (un)7 qy (UH)) - HE(QY (un)> 4 (un)) =0
for all u, € U[p"] and alln > 1. [

10.3.4.2. Proposition. Let X,Y, Z be p-divisible formal groups over a field x of charac-

teristic p, and let m : E — X XY be a biextension of X XY by Z. Let U be a p-divisible

subgroup of X x Y. Assume that the Weil pairings 0F of E satisfy the symmetry condition
05 (qx (un); @y (un)) = 077(qy (un), 4y (un)) ¥ >1, Vuy, € Ulp"]

with respect to U. Then we have a natural commutative diagram

E" = (pnly x [plu)*E' > B := (4, x q,)"E E

= T

U——=UxU UxU XxY
(1v,1y) plu x[plu IxXdy

with the following the following properties.

(i) Both squares are Cartesian.
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o) [e=0md s =ids ifp2,
e=1 if p=2.

<E”

(iii) If p # 2, then the schematic image (g (U) of the map U —— E" s
CE”(U) _ (E//)T"Zl — (E/)T’=17

where (E")™'=1 is the fized-point subscheme of the involution 7" of the biextension
E" with symmetric Weil pairings as in 10.3.1.4.
1§51

(iv) If p = 2, then the schematic image (gn(U) of the map U —— E" s
CE”(U) = ((E”)TNZI)red )

0eoC g
and the schematic image (d¢ o (g )(U) of U eory E' s

(b0 Q)(U) = ((E/)T,:1)red ’

where ((E’)lel)red is the fized-point subscheme of E' under the involution 7', with
the reduced structure.
PROOF. The assumption that 0% (g, (un), ¢y (un)) = 02 (q, (un), ¢y (uyn)) for all u,, € U[p"]
and all n > 1 means that the Weil pairings 62" of E” are symmetric. The statement (i)
and (ii) are part of the definiton of the commutative diagram. The existence of the map
(g with the asserted properties (iii) and (iv) follows from 10.3.1.4. [

10.3.4.3. Definition. We keep the notation and assumptions in 10.3.4.2.

(a) For every natural number m > 0, define a morphism

[pm}*UCE”

u ("o > [p™]o)* E”

to be the unique map which makes the following diagram with a Cartesian square
at the lower right corner

U Cgrolp™u
rw\
Im

("] x ™))" E” E”

(1U71U)

™o x[p™u U >l< U

commutative.
(b) For every homomorphism h : U — Z of p-divisible groups, denote by

hx[p™ 5 Cpn

("o < [P v )" E”
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the map given by
(]’L * [pm];}CEu)(u) = h(u) * [pm]*UCE//(u) YueU.

10.3.4.4. Proposition. We keep the notation and assumptions in 10.3.4.2. In particular
m: E— X XY s a biextension of X XY by Z, and U is a p-divisible subgroup of X XY
satisfying the symmetry condition with respect to U. Suppose that G is a p-adic. Lie group
acting strongly nontrivially on the biextension E, and U 1is stable under G.

(1) The map (gr : U — E" is G-equivariant. The schematic image (yod.0Cpn)(U) of

" deoCpn . . .
the composition U Y0 | B is a reduced irreducible closed formal subscheme

of E stable under G, and the morphism (v o 6. o (gr)(U) — U induced by 7 is
dominant and purely inseparable.

(2) Suppose that T is a reduced irreducible closed formal subscheme of E which is
stable under the action of G and the map m induces a purely inseparable dominant
map T — U. Then there exist a G-quivariant homomorphism h : U — Z of
p-divisible groups and a natural number m, such that the schematic image

(7 o 56 o 5m o (h * [pmrl(]CE”)) (U)
of the compositon of the following maps

hx[p™ 5 ¢

U——"——=(lp"lv x [p"]v)"E"

5”“ E// 66 E/ v E

hx[p™]5 Can
is equal to T, where the map UM> ([p™u % [P™u)*E" is defined in

10.3.4.3 and the maps dpm, b and v are as in 10.3.4.2.

In particular if U and Z do not have any slope in common, then (yod.olg»)(U)
18 the only G-invariant reduced irreducibel closed formal subscheme T' C E lying
above U such that the morphism T — U induced by 7 is dominant and purely
inseparable.

PROOF. The assertions in (1) and the first paragraph of (2) are consequences of 10.3.1.4
and 10.3.4.2. The uniqueness of T' in the last paragraph of (2) is a corollary of the main
assertion of (2) and the orbital rigidity of p-divisible formal groups. [

Remark. Definition 10.3.4.5 is formulated so that the schematic image 7 o d. o (g (U)
in 10.3.4.4 (1) and reduced irreducible closed formal subschemes T' of E satisfying the
assumption in 10.3.4.4 (2) are special formal subvarietis of the biextension E.

10.3.4.5. Definition. Let X,Y,Z be p-divisible groups over a field x of characteristic
p. Let m : E — X XY be a biextension of X x Y by Z. Let T C E be a reduced
irreducible closed formal subscheme of E. We say that T is a spectal formal subvariety of
F if the following there exist a p-divisible formal subgroup Z; of Z and a p-divisible formal
subgroup U of X x Y such that the following statements hold

(i) The formal subscheme T of F is stable under the translation action of the subgroup
Z1 of Z.
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Let E := E/Z1, so that the induced morphism 7 : £ — X x Y is a biextension
of X xY by Z := Z/Zy, and T := T/Z; is a reduced irreducible closed formal
subscheme of E.

(ii) The p-divisible subgroup U C X x Y is the schematic image of T under m. Equiv-
alently U is the schematic image of T under 7.

(iii) The morphism 7' — U induced by 7 is dominant and purely inseparable.

(iv) For every n > 1 and every functorial point w,, of U[p"], we have

Hf(qx (un)? dy (un)) = ef(qy (un)7 x (un)),
where ¢, : U — X and ¢, : U — Y are the projections of U to X and Y
respectively, and (05 )n>1 is the Weil pairing of the biextension E.
According to 10.3.4.2 condition (iv) implies that we have the following com-

mutative diagram

_ _ Se _ s
E" = ([p xlp]) B — E' = (qyx ) E —

E
% lﬂ_” lﬂ_, lﬂ'
XY,

U UxU UxU X

1y, 1v) [p¢lu x[plu AxXqy

where
— both squares are Cartesian,

e=0,E"=FE"and §. =idg if p # 2,
e=1 if p=2,

— the schematic image (¢ o (zn)(U) of dc o (g is

(EN™=! if p # 2,

((E/)‘F/:1)red ifp =2

Here (E")"=1 is the fixed-point subscheme of the involution 7 of the biextension
E' with symmetric Weil pairings as in 10.3.1.4.

(v) There exist a homomorphism h : U — Z of p-divisible groups and a natural
number m € N such that the schematic image of the map

7 00 0 O 0 (h* [P CEn)

from the lower-left corner to the upper-right corner of the commutative diagram

(0c © Cn)(U) = {

([pm]U % [pm]U)*E// ﬂ) ([pm]U « [pm]U)*E// e Jod

U X

UxU UxU

(1v,1v) P™ux[P"u lyx1ly qyx Xqy

is

(700 0 dm o (hx [p"]i:¢pn))(U) =T,
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where hx [p"]5;¢gn 1 U — E" is the map in definition 10.3.4.3 applied to the
biextension E” — U x U.

The statements 10.3.4.6 and 10.3.4.7 below follow quickly from definition 10.3.4.5.

10.3.4.6. Corollary. Let X,Y,Z be p-divisible groups over a field k of characteristic p.
Let m: E — X XY be a biextension of X XY by Z. Let T C E be a reduced irreducible
formal subscheme of E. Suppose that there exists a p-divisible subgroup Zo C Z of Z which
satisfies the following properties.

(i) T is stable under the translation action by Zs.
(ii) The quotient T'/Zy is a special formal subvariety of the biextension

E/Zy=(Z - Z|Zs),F — X XY
of X XY by Z/Zs.
Then T is a special formal subvariety of E.

10.3.4.7. Corollary. Let X,Y, Z be p-divisible formal groups over a field k of characteris-
ticp. Letm: E — X XY be a biextension of X XY by Z. LetT be a special formal subvariety
of E. If the sets of slopes of X,Y, Z are pairwise disjoint,then T is a sub-biextension of E.
In other words T' has a structure as a biextension of X' xY' by Z', where X' C X,Y' CY
and Z' C Z are p-divisible subgroups, such that (T — E, X' — X, Y' <Y, Z' — Z) is a
homomorphism of biextensions.

10.4. Action of a one-parameter subgroup on a biextension

In this section k is a perfect field of characteristic p , X,Y, Z are p-divisible formal
groups over k, and 7 : EF — X X Y is a biextension of X x Y by Z.

10.4.1. Suppose we have a one-dimensional p-adic Lie group I' acting on a biextension
FE of X xY by Z. We will extract from such an action a collection of congruence relations;
see proposition 10.7.3.3. This collection of congruence relations comes from the “leading
term” of the action of a sequence (v,,) in ' with lim,, o m = 1, and can be regarded as
a substitute for the “derivative” of the action of I' on E."

Recall from 10.2.7.3 that the Lie algebra of the p-adic Lie group Autpiext(F) consists
of all triples (A, B, C') which kill the bilinear form O, i.e.

COp(r,y)) —Op(Az,y) — Op(z,By) =0 Vz e D,(X), Vy €D (Y).

10.4.1.1. Lemma. Let v = (A, B,C) be an element of the Lie algebra of Autpiext(E).
Suppose that A € End(X), B € End(Y) and C € End(Z). Then exp(p*t A) € Aut(X),
exp(p*t B) € Aut(Y), exp(p?t C) € Aut(Z) and exp(p*tv) € Autpiext(E) for all t € Z,.

IThe challenge of finding a good notion of “derivative” can be seen in a simple example: the standard
action of Z,* on the formal completion G, = Spf(F,[[t]]) of G, over F,. The action of an element a € Z,*
on G, sends the coordinate ¢ to (1 +¢)* — 1.
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PROOF. The Taylor series for exp(p*t A) € Aut(X) converges p-adically and defines
an element of Aut(X). Similarly exp(p*t B) € Aut(Y) and exp(p*tC) € Aut(Z). That
exp(p*tv) € Autpiexs (F) follows from 10.2.7.3. [

10.4.1.2. Proposition. Letv = (A, B,C) be an element of the Lie algebra of Autpiext(E)
such that A € End(X), B € End(Y) and C € End(Z). Let n be a positive intger.
(i) For every integer n > 2, The infinite series

p -1 i

7>2
converges to an element of End(Z) if n > 2.

(ii) Suppose that n > 3. The restriction to E, = 7~ (X [p"] x Y[p"]) of the automorphism
exp(p"v) of E is equal to

n(j—1)
(—Gno(lxxB) (7|E, )+CO77n+Z

j>2

LS onn) xidg,

n(J 1)

= (= Buo(1x xB)o(x|s,) + Cobo(nls,) + Copn + > ©
7>2

C’Jopn) *idp,

n(j—1)

= <0nO(AX1y)O(7TEn) + Copy, + Zp

Jj=2

cY opn> *idg,,

where the maps Nn, pn : En — Z are defined in 10.2.6.1.
PROOF. The statement (i) follows from the easy estimate

. J .
ord,(j!) < —— <y,
rd, (1) p—l_j

which implies that
ordp(f,) >m-1)(G—1)—1.
4!

Clearly (n —1)(j—1)—1>0forall j >2and (n—1)(j —1) —1 — 0 as j — oo. The
statement (i) follows.

p(J)

For (ii), note first that ord ( > (n—1)(j—1)—1 > 0forall j > 2 because n > 3.

The automorphism exp(p™A) x exp( "B) x exp(p"C) of X[p"] x Y[p*] x Z descents, via
the finite locally free morphism oy, : X[p"] x Y [p*"] x Z — E,, in 10.2.5.1, to the restriction
to E, of the automorphism exp(p™v) of E,. The statement (ii) follows from an easy
calculation, the definition of 7, p, in 10.2.6.1 and the Taylor expansion of exp(p"C), as
follows.
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For each functorial point (,, y2n, z) of X[p"] x Y [p*"] x Z, we have
exp(p"v) (o (Tn, Yon, 2)) = o (exp(p™A)(zy), exp(p™ B)(y2n), exp(p"C)(z))
(79 (xnv Yon + pnBan, Z+ ZjZI p%C]z)

n (@, Yons 2 = On(n, BY"yon) + | B C72).

Since 1, (o (Tn, Yon, 2)) = p"z and (x,, Bp™y2n) = (1x X B)(7m(an(n, Y2n, 2))), we have
proved that exp(p™v)|g, is given by the first line of the formula in (ii). The first two
oG

expressions in the displayed formula are equal because 7, = (0, o 7|g, ) + pn and i

kills 6, for all 7 > 2. The second and third expression are equal because

en(AJ:nv yn) + Hn(xna Byn) = an(l‘n7 yn)
for all functorial points (z,,y,) of X[p"] x Y[p"]. O

Remark. The equality of the first and the third expression in 10.4.1.2 (ii) exhibits a clear
symmetry if we take into account the fact that 6, = —w,, and the relation of 7, to +;
(respectively py, to +2) in 10.2.6.1.

10.4.1.3. Definition. Let v = (A4,B,C) € Lie(Autpiext(E)) N (End(X) ® End(Y) &
End(Z)) be an element of the Lie algebra of Autpiex(F) as in 10.4.1.2. Define a map
vl B — Z
by
dn[v] 1= Opo(lx x(=B))o(r|g,) + Cony
= —0n0(1x xB)o(r|g,) + Cobyo(n|g,) + Copy
=0,0(Ax1ly)o(ng,)+ Copy, .

It is the “linear part”, in v, of the terms before “xidg,” in the formula in 10.4.1.2 (ii).

10.4.1.4. Lemma. For every element v = (A, B,C) € End(X) @ End(Y) & End(Z) of
the Lie algebra of Autpiext(F), the maps (f)n [v])n satisfy the compatibility relations

[plz 0 dn[v] = dpt1 0 (Ey = Eny1)

for allmn > 1.

PROOF. This assertion is immediate from the definition 10.4.1.3 of 3,[v] and the similar
compatibility relations

[p]Z OMn = MNn+1 © (En — En+1); [p]Z O Pn = Pn+1© (En — En+1)

and
[Pz © 00 = Ony1 0 (X[P"] XY [p"] = X[p"H]xY[p"*1]). D
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10.4.2. The following assumptions and notation for a biextension m : £ — X x Y of
X xY by Z will be used in a number of situations below, where X,Y, Z are p-divisible
formal group over a perfect field k of characteristic p.
(i) Let v = (4,B,C) € Lie(Autpiext(F)) N (End(X) ® End(Y) @ End(Z)) be an
element of the Lie algebra of Autpiext(E) with components A € End(X), B €
End(Y) and C € End(Z2).
(ii) Assume that a,s,r are three positive integers such that
— 0 <7 <s,and 7 is the largest slope of Z
— ¢ is strictly bigger than every slope of X and every slope of Y.
From general properties of slopes of p-divisible groups we know that there exist
natural numbers ng, co € N with ng > min(2, ¢g/r) such that

X[p"] D Ker(Fry) and Y[p"] D Ker(Fry’)
and
Z[p™] O Ker(Frly ™)
for all n > ng, where Fr'¥ : X — X®") (respectively Fr}¥¥) is the (ns)-th iterate
of the relative Frobenius for X (respectively Y). Similarly for Fr) .

(iii) Let R = Rg be the affine coordinate ring of the smooth formal scheme E, so that
E = Spf(R) and R is non-canonically isomorphic to a formal power series ring
in d variables, where d = dim(F). Let m = mpg be the maximal ideal of R. Let
¢ = ¢g be the absolute Frobenius endomorphism of R, which sends every element
r € R to zP.

For every natural number j, define an ideal of R by
m®) = ¢ (m)R.

Note that ' v _
ma?’ C m®) - m? .

Denote by E modm) the Artinian scheme
E modm®) = Spec(R/m(pj))
10.4.3. Proposition. We use the notation and assumption in 10.4.2 and 10.4.1.2. In

particular v = (A, B,C) is an element of the Lie algebra of Autpiext(E), A € End(X),
B € End(Y), and C € End(Z). There exist positive integers ns, cs such that the congruence

(exp(p™®v)) = dpalv]  (mod m®
= (= Onao(1x xB)o(7|E,,) + Comnna) *idg,, (mod m®

min(ns,Zn'rfcg)) )

min(ns,Qnr—C3)) )

for the action (exp(p™®v)) of the element exp(p"®v) € G on E holds for all integers
n > ns. In other words, the restrictions to the Artinian scheme Spec(R/m(pminms’znTic‘?’)))
of the two automorphisms 1p(exp(p"®v)) and dpalv]*idg,, of the formal scheme E coincide.
Here E,q = 7 1(X[p™] x Y [p"]) as before, and >, is the map from E,, to Z defined in

10.4.1.3.
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PRrROOF. This proposition is a straight-forward consequence of 10.2.6.3 and 10.4.1.2.

1. The assumption 10.4.2 (ii) tells us that E,q D Spec(R/m ) for all n > nop.
2. We know from 10.4.1.2 that the restriction of 1 (exp(p™®v)) to E,, is equal to

na] 1)

(= bnao(1x X B)o(nl5,) + Compa + 3 2
j>2

I onna> xidg,,.

3. We know from 10.2.6.3 that there exist positive integers ng, co such that
Mna = 0 (mod m(pmﬂ))

for all n > 2.
4. An elementary calculation shows that

na(] i)

ord,—— >na(]—1)——>na—2 Vi > 2
Let n3 := Min(no, [ng/a]). Combining 3 and 4 above we get an estimate of the typical
“error term” pmu "7 g 0 Mna:
pna(]_l)

Y o, =0 <m0d m@%“m)
4!
where c3 :=2cg+ co, for all n > ng and all j > 2. [

10.4.4. Corollary 10.4.5 below is a variant of 10.4.3 and will be convenient for our pur-
pose.

The setup for 10.4.5 is as follows. We will use the general notation scheme in 10.4.2
and 10.4.3: XY, Z are p-divisible groups over a perfect field k D F,, 7: £ — X xY is a
biextension of X x Y by Z. Let (R,m) = (Rg,mg) be the coordinate ring of E.

(i) Assume that X,Y,Z are p-divisible formal groups, i.e. every slope of X,Y, 7 is
strictly positive.

(ii) Let v = (A, B,C) be an element of the Lie algebra of Autpiext(E — X X Y),
A € End(X), Be€End(Y) and C € End(Z).

(iii) Assume that Z is a product of isoclinic p-divisible groups; write Z as a product
of isoclinic p-divisible subgroups with distinct slopes: Z = [] Z;, where each Z;
is isoclinic, the slopes of the Z; are mutually distinct, and the slope of Z; is the
biggest among slopes of Z.

(iv) Assume that the slope of Z; is strictly bigger than every slope of X x Y.

(v) Choose positive integers a,r, s,ng with » < s such that the following conditions
hold.

— slope(Z1) = ¢
- X[p™ D Ker(Fr”S) and Y [p"¢] D Ker(Fry?) for all n > ns.
— Zi[p™*] D Ker(Fr%)) for all [ # 1 and all n > ng.
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(vi) For every n > ns, let

dnalv] :=pry, 0dnalv] @ Bpna — Z1

‘))"a . . . pr
be the composition of E,, ii Z with the projection Z A Z1 from Z to

its first factor.

10.4.5. Corollary. Notation and assumptions as in 10.4.4. In particular a,r,s are pos-
itive integers, 0 < a < r < s, T is the largest slope of Z, Z1 is the maximal p-divisible
subgroup of Z with slope %, % is strictly bigger than any slope of X xY x (Z/Z1), and
Z1[p*] = Z1[F"] = Ker(Fry, ). There exist positive integers ng,cy such that

)

min(ns,Qnr—C4))

exp(p"™v) = dpav] *idp,, (mod m®
for alln > ny.
Corollary 10.4.5 is an easy consequence of 10.4.3.

10.5. Hypocotyl elongation in tempered perfections

The main results in section 10.5 are proposition 10.5.3 and theorem 10.5.6. The are
generalizations of 10.5.3 and theorem 7.2.1, to tempered perfections of formal power series
rings and augmented complete Noetherian local domains respectively. See 10.7 for the
definitions and basic properties of tempered perfections.

The base field x in this section is a perfect field of characteristic p, unless stated
otherwise.

10.5.1. We reproduce some notations related to tempered perfections for the convenience
of the readers.

1. Let E,C' > 0, d > 0 be real numbers. The support subset
supp(m:b: E;C,d) C N[%}m

with parameters (E; C,d) defined in 10.7.3.6, and abbreviated to supp(m: E;C,d) in this
subsection, is

supp(m: E;C,d) = supp(m:b: E;C,d) = {I € N[%]m: 1, <C-(|s +d)E}

2. Let x = (x1,...,2y,) be a tuple of variables,
(i) The total degree of monomials in z gives rise to a decreasing filtration

1>e
Fﬂt_.deg
on k{{xy,..., xm>>g,’z, indexed by real numbers:
FﬂE;‘eg(M(xl,...,xm>>§;2) = Z ay -z’ ‘ aj€r VI, ar =0 if |I|, <wu

Iesupp(m:E;C,d)
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for every u € R.

(ii) For every real number u, define Fil7 deg PY

Fil g (b{(@1, - ) E20) = { S rcvupptmiicay a1+ 2' | @y €5 VI, ar =0 if |1, < u}.

The following lemma deals with the perfection

ﬁ[m’fiw, 2P 7] = Upen n[z{n, 2P
of the polynomial ring k[z1,...,2,] over the perfect base field k. Notice that one can
evaluate any element of /@[:cffioo, ...,2b, 7] at any m-tuple (c1, . .., cm) € ™. Lemma 10.5.2
provides a dichotomy when an element F'(xy,...,2,) € /i[xﬁfoo, ..., xb, 7] is evaluated at
all Frg-powers
{(,...,c%): neN

of a gien m-tuple (¢y,...,¢n), where ¢ = p” is a power of p, r € Ny:

- either F (c?n, e c?:) = 0 for infinitely many natural numbers,

—or F(27,...,¢%) =0 for all n € Z.

10.5.2. Lemma. Let r be a positive integer, and let ¢ = p". Let F(x1,...,2,) be an
element of n[xﬁfoo, ... ,xpioo]. Suppose that (ci,...,cm) € K™ is an element of K™ and ng
18 a natural number such that

F(,...,cd") =0

for all integers n > ng. Then F(C‘{n, . ,c?ln) =0 for alln € Z. In particular
F(eiy...yen) =0.

Proor. When F(xi,...,2,) € Kl21,...,2Ty], this statement was proved in 7.2.3.1; see

also [9, 2.2]. The general case follows because there exists a positive integer i such that

F(x1,...,2m)P €K[T1,...,Tpm). O

10.5.3. Proposition. Let z = (z1,...,%m), ¥ = W1, Ym), w = (u1,...,a) and v =

(v1,...,vp) be four tuples of variables. Let (E1;Ch,dy) and (E2;Ca,ds) be two triples of
real parameters with E1,Ey > 0 and C1,Cs,dq,dy > 1. Let

o - —o\\Ey,b
flu,v) € w{(ud kol T o) Tl

be an element of k((ul ... ub WL, v§7m>>gi.’zl such that the support supp(f)

of [ is contained in the product supp(a : E1; C1,dy) x supp(b: E1;Cq,dy):
(10.5.3.1) supp(f) C supp(a : E1;Cy,dy) X supp(b: Eq1;Ch,dy).

— 00

In other words f lies in the closure in w{(u} ... ubh o} ... 0f >>gilzl1 of the
subring

—oo\\Eq,b
’%<<u1 7"-7ug >>Ci;d1 (o H<<U%’f yee s Uy
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Let
-1>0 —oo —oo\\ B, b
(gl (§)7 cee 79(1(&)) € (]‘-—“lliideg"d<x117 ) 71’7@1 >>C§;d2)a
be an a-tuple of elements in ﬂ((m{m, e ,x’,;;OO))g;Z; whose constant terms are 0. Let
. —o0 —0o\\Ea,b \b
(hl(y)v e 7hb(y)) = (Fllt>.c(1)egk<<y11) yeoe ’yfn >>C§;d2)
be a b-tuple of elements in k ypioo, el y%ﬁoo E25 ihose constant terms are 0. Let q=17p"
1 Co;do

be a power of p, where r > 0 is a positive integer. Let ng be a natural number. Suppose
that there exists a sequence (dp)n>n, of natural numbers such that

n
(10.5.3.2) lim L =0

n—oo n

and
(10.5.3.3)  flgi(@)-..,ga(@), b1 ()", ... hp(x)T) =0 (mod Fil¥ )  Vn > n.

t.deg
Then

(10.5.3.4) flo1(z),. .., 94(z), h1(y), ..., he(y)) = 0.
In the above the congruence relation 10.5.3.3 takes place in /f((lefoo, . ,xzﬁ:w»g;?zy and
the equation 10.5.3.4 holds in the ring ﬁ((xzfioo, . ,mﬁgw,y{m, . ,y%ﬁoo»gifzy where

e F3=F1 + Ey + E1Eo,
° C3 — C%‘i‘EQ . 021+E1+E1E2 . (1 + d)ElEQ(l-i-Eg)’ and
e ds is a sufficiently large constant depending on (E1;C1,dy) and (E2;Ca,da).

See 10.7.6.5 and the trivial lower bound for ey there.

10.5.4. PROOF OF PROPOSITION 10.5.3. Let

t= (timj)(?:,j)e{l,...,b})( (supp(m:E2;C2,d2)~\0)

be an infinite array of variables indexed by {1,...,b} X (supp(m : E9; Oy, da) {Q}), where
0 is the zero element of the support subset supp(m : Ea;Ca,d2) C N[1/p|™ defined in
10.5.1. For each ¢ =1,...,b,

hi(y) = > cix y’
0#Kesupp(m:E2;Ca,d2)
with ¢; g € k for all J € S(m : Ez; Cy,d) ~\ {0}. Let
H;(t; g) = Z Lk QK
0#K € supp(m:E2;C2,d2)

The assumption 10.5.3.1 implies that the composition

fa1(@), ..., ga(z), Hi(t;y), ..., Hi(t;y))
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is a well-defined formal series n((a:’lroo, . ,xf,:oo,y{w, . ,yﬁ;m»g;’fzg whose support is
contained in the product supp(m : E3; Cs,d3) x supp(m : E3; Cs,ds3):
(10.5.4.1) fg(z),H(t;y)) = > Arg(t) z'y’

(I,J)€esupp(m:E3;C3,d3) xsupp(m:E3;C3,d3)

Moreover each coefficient Ay j(¢) is an element in the perfection

oo, p—OO
AT = R[6 k Tiequ,.. ), Ke supp(miBaiCa.da) {0}

of the polynomial ring

K[tpioo] = ’%[ti,K}iE{l,...,b}, K e supp(m:E2;C2,d2)~{0}

in infinitely many variables t; . Clearly For every n € N, we have

(10.5.4.2) Fg,(@), g, (@), (@) By (0)) = D Arg(e”) 2"+
1,J

In particular

(10.5.43) Flgy (@) g, (@) (@), ole) = 3 Arg() '+
1,J

By assumption 10.5.3.2, we get

(10.5.4.4) > Ay (™) 2T =0 Yn>ng.
(I,J) s.t. [I4+q"J|oc<dn

We want to show that Ay j(c) = 0 for all (1,J) € supp(m : Es3;C3,d3) x supp(m :
E3;Cs,d3). Suppose to the contrary that Ay, j,(c) # 0 for some (lo,Jy) € supp(m :
Es;C3,d3) x supp(m : Es3;Cs,d3). By lemma 10.5.2, there exist infinitely many natural
numbers n such that Ay, s, (c?") # 0. Define a subset

T C supp(m : E3;C3,ds) x supp(m : E3;Cs,d3)

by
T := {(I, J) : I,J €supp(m : E3;Cs,d3), A[’J(gqn) % (0 for infinitely many n € N} )
This set 7" is non-empty because it contains (I, Jy). Again by lemma 10.5.2 we know that
Arg(c™)=0 VneZ if (I,J)&T,

and equation 10.5.4.5 becomes
(10.5.4.5) > Apg(e®) 2 =0 W >ng.

(I,J)ET s.t. |I+q"J|oc<dn
Let

My :=min{|J|,: (I,J) € T}

and let

My :=min{|l|,: (I,J) €T and |J|, = Ma}.



588 10. ORBITAL RIGIDITY FOR BIEXTENSIONS

The minimum which definesM, (respectively M) exists because every subset supp(m :
Es; Cs,ds) whose archimedean norm is bounded above is a finite set. This finiteness prop-
erty for supp(m : E3;Cs,ds) also implies that there exists a positive number ez > 0 such
that

(10.5.4.6) J € supp(m : E3;C3,d3) and |J|, > My = |J|, > My + ea.

The subset
T = {(I,J) etT : |J’U = Moy, |I’o- :Ml}
is a non-empty finite set. There exists a natural number n; > ng such that properties

10.5.4.7-10.5.4.9 below hold.

(10.5.4.7) My +q¢"My<d,—2 VYn>n;, neN
(10.5.4.8) q"-ea>M; VYn>ny, neN
(10.5.4.9)
(I, 1), ({2, J2) €T, Ih+¢"Ji=1+q"Jo and n>n1 = (I1,J1) = (I2,J2)

Consider the set
Spi={(I,J)ET : [I+q"J|y = M +q"M,} .

The property 10.5.4.8 and the inequality 10.5.4.6 imply that S, = Tj for all n > nq.
Because S, = T1, when we examine terms of total degree M; + ¢"*M> in equation 10.5.4.5,
we find that

(10.5.4.10) S Apg() 2T =0 Yn>
(I7J)€Tl
By property 10.5.4.9 and equation 10.5.4.9, we see that
Arg(c”)=0

for all (I,J) € Ty and all n > ny, therefore T7 is the empty set. This is a contradiction.
We have proved proposition 10.5.3. [J

Remark. (a) The assumption 10.5.3.1 on the support of f(u,v) implies the uniform
bound 10.5.4.1 on the support of the composition f(91 (),...,94(x), Hi(t;y), ..., Hy(t; y))
This observation allows us to take advantage of the finiteness property of the support set
supp(m; E3; C3,d3). The rest of the argument in the proof of 10.5.3 is identical with the
proof of [9, 3.1].

(b) For application to orbital rigidity of biextensions of p-divisible formal groups, we will
need only the special case of 10.5.3 when f(u,v) € k[[u1,...,uq,v1,...,0)], L.e. f(u,v) is
a usual power series.

(¢) Our proof is not strong enough to show that 10.5.3 holds for every element f in
k((gpiw,ypfw»gi;’zl. But we don’t have a counter-example either. It will be interest-

ing if one can find a larger class of formal series f(u,v) in k((gpim,ypfoo»gile for which
the statement 10.5.3 holds.
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10.5.5. The setup of theorem 10.5.6.

1. Let (R,m) be an augmented complete Noetherian local domain over a perfect field x

of characteristic p. Let (R,m)ielrf’db be a tempered perfection of R, where A, b, d are real

numbers, A,b > 0, and d > b. See 10.7.4.2 for the definition of (R, m)ieff’db.

2. The tempered perfection (R, m)ieg&b of (R, m) carries a filtration

Fil* )
( (Rvm)i7bf;;1b7deg L] ’

which is induced by the filtration Fil}, on the perfection RP®f of R. See 10.7.4.2 for

pcrf7deg
details.
3. Let m,m’ > 0 be a positive integers, and let
—oo oo\ \ELb —o0 oo p=oo —o0\\BLb

I€<<Ep ’Qp >>O7d:K',<<up 7...,u£}n ,/Ullj ,-..,/U,)I,)n/ >>C,d
be a tempered perfection of k[[u,v]] = K[[u1,...,Um,v1,...,vy]], where E C,d are real
numbers, £, C > 0, and d > 0.
4. Let g1,...,Gm, N1, -, by be elements of the maximal ideal of (R, m)%g’db.

5. Let A >0, > 0,d > b be real numbers such that the following conditions hold.

e The continuous ring homomorphism

eVgel1eh * KU1, .. U, U1, U] — (R®.R, mR@nR)iej:;zb
which sends a typical formal power series
Fur, .oy Uy V1, Uy ) € K[[Uty ooy U,y U1, -+ oy U]
to
perf, b

flar®l. . gm®1,1@h1,...,1@hyy) € (ROxR,Mpg p)', ")

extends to a continuous ring homomorphism

oo

_ —oo A f,b
evgelien | AW 0P >>5;'; — (R&R, mR@,iR)per

ALY d
The existence of such a triple (A’,V/,d’) is straight-forward from the definitions.
See 10.7.6.5 for case when (R, m) is a formal power series ring.

e The continuous ring homomorphism

f, b
evghn Kl[ut, oy Um, 01, - O] — (R,m)i‘fz;;i ,

which sends a typical formal power series
Fut, oo Um, U1,y U ) € K[[ULy ooy Uy V14 ooy U]

to
rf, b
f(gh ey Om, hi,..., hm/) S (R,m)zejb;;i y
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extends to a continuous ring homomorphism

evgan (P u NG — (Rm)BTY,

e The diagram

€Vg®1,19h perf, b

ALY

oo —co\\E,b ~
(P 0P )l (R&xR, mpg p)

- -

—oo p=oo\\E,b Voh f,b
H<<ﬂp 9 Up >>C; d (Ra m)zell:b/;d/

commutes, where the vertical arrow A* is induced by the multiplication map
A*: R® R — R for the k-algebra R.

6. For every element f € ﬂ((uzfioo, NRT v‘fﬁoo, e v%,oo»gfz, define elements
£ . £
flg:h) € (R,m)5"7, and f(g®@1,1®h) € (ROLR, mR@nR)i?fb/;d’
by

f(gvh) = f(glv <5 9m, h17 SRR hm’) = evg,ﬁ(f)7
f(ﬂ®171®ﬁ) :f(gl®177gm®171®h1771®hm’) ::evg®171®ﬁ(f)'
10.5.6. Theorem (Hypocoptyl elongation for tempered virtual functions). We

use the notation in 10.5.5. Let (R, m) be an augmented complete Noetherian local domain
over a perfect field k of characteristic p.

e Let g1,y...yGm,hi, ... hyy be elements of the mazimal ideal of (R, m)ieg’db.
o Let f(ul,...,Um,V1,...,0p) be an element of
— o0 — 0 —oo —oo E,b
r((uf b, o ) cla

which lies in the closure of the image of

—oo\\ B,b —o\\E,b —o =00\ E,b
(U ) ela @ (7 Nelg — s 0" )l

o Let ¢ = p" be a power of p for some positive integer r. Let (dn)neN, n>n, b€ a
sequence of positive integers such that lim, % = 0.
Suppose that
n nyo 1dn
(T) f(glv"'vgmvh({ 7"'7h'(r]n’) =0 (IHOd Fil perf, b deg)

(R’m)A’,b’;d”
in (R,m)iefri’/.bd, for alln > ng. Then

flar®l,....gm®1,1®h1,...,1Q@hp) =0

perf, b

in the completed tempered perfection (R®HRva®KR)A/ b of Ry R.
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Proor. Extending the base field k if necessary, we may and do assume that k is
algebraically closed. By 7.2.2.1, there exists a k-linear injective local homomorphism
t: R < K[[t1,...,tm]]. By 10.7.6.4, the homomorphism

b rf, b of,b
v (R, m)‘ifb;d — (s[[t]], (Q)Zﬁ@d
induced by ¢ is also an injection. So it suffices to show that
f(Lb(gl) ® 17 ceey Lb(gm) @ 17 1 & Lb(h’l)7 ceey 1 & Lb(hm’)) =0.

Moreover the congruence relations (1) implies that

b b b q" b N = -1dn
() S@@) M) PO L)) =0 (mod Filly s )

for all n > ng. We know from 10.7.5 that there exist real numbers FE5, Cy, do such that

— o0

(R[] D) C Rt e

So we can apply proposition 10.5.3 and conclude that f (.’ (9,1 P(h)=0. O

10.6. Orbital rigidity for bi-extensions of p-divisible formal groups

10.6.1. Notation and basic setup. In this section k is a perfect field of characteristic
p > 0. The proofs of the main theorems 10.6.2 and other consequences of the argument
are immediately reduced to the case when k is algebraically closed.

(i) Let X,Y, Z be p-divisible formal groups, and 7 : E — X x Y is a biextension of
X xY by Z.

(ii) Let G be a compact p-adic Lie group. Let (p,«, 3,7) be an action of G on the
biextension E — X x Y, where p : G — Autpiext(E — X x Y) is a continuous
injective homomorphism, and a : G — Aut(X) (respectively 5 : G — Aut(Y),
v : G — Aut(Z)) is the action of G on X (respectively Y, Z) underlying p. We
know from 10.2.7.3 that the group homomorphism

(o, B,7): G — Aut(X) x Aut(Y) x Aut(2)
is a closed embedding of compact p-adic Lie groups, and the induced map
(da, df,dy) : Lie(G) — End(X)g @ End(Y)g @ End(2)g

is an injective homomorphism of finite dimensional Lie algebras over Q,. We often
use the map («, 3,7) to identify G with a subgroup of Aut(X) x Aut(Y') x Aut(Z),
and regard Lie(G) as a Qp-vector subspace of Lie(G)End(X)g & End(Y)g &
End(Z)q.

(iii) Let W C E be a formal subvariety of E, in the sense that there exists a prime
ideal Iy of the coordinate ring Rg of E such that W = Spf(Rg/Iw). Assume
that W is stable under the action of G.

(iv) The formal subscheme V = Spf (RXXspec(k)Y/(IW N RXXy)) C X Xgpec(k) Y will
be called the image of W in X Xgpecr) Y-
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10.6.2. Theorem. Let W be a formal subvariety of E stable under the action of G. Let
w1 be the mazimum of the slopes of Z. Assume that uy is strictly bigger than every slope of
X and every slope of Y. Let Z1 be the maximal p-divisible subgroup of Z which is isoclinic
of slope py. Let Z] be a p-divisible subgroups of Zy which is contained in W and stable
under the action of G. Let TZ{ : Zy x E — E be the morphism

Y:ZixE—E (21,€) — 21 * e,

corresponding to the restriction to Z| of the action of Z on E. For every element v =
(A,B,C) € End(X) @ End(Y) ® End(Z) of the Lie algebra of G, we have

(TO(C|Z£ X ldw))(Zi X W) cw.

In other words the formal subvariety W C E is stable under translation by the p-divisible
subgroup C(Z}) of Z.
Theorem 10.6.2 will be proved in 10.6.3.

10.6.2.1. Corollary. In the situation of 10.6.2, assume in addition that the action of G
on Z is strongly nontrivial. Then
Y(Zy xW)CW.

PROOF. The assumption that the action of G on Z] is strongly non-trivial implies that
there exists elements v;; = (A;j, Bij, Csj) € Lie(G), indexed by a finite subset

{(i,j)EN2: 1e{l,...,m}, jE{l,...,ni}},

where n; € N>q for each ¢ = 1,...,m, such that
> Cilzggo o Cinlz € Bnd(Z])g,
1<i<m

Here C;; € End(Z])g stands for the restriction to Z] of the element C;; € End(Z)g =
End(Z) ®z Q. See [9, 4.1.1] for this lemma on representation theory. The statement (2)
follows from statement (1) and the above linear algebra consequence of the assumption
that G operates strongly non-trivially on Zj.

10.6.2.2. Corollary. Let W be a formal subvariety of E stable under the action of G as
in 10.6.2. Suppose that the largest slope uy of Z is strictly bigger than every slope of X XY,
and the action of G on Z is strongly nontrivial. Then the intersection W N Z1 with reduced
structure is a p-divisible subgroup of Z1, and W is stable under the translation action by
Z1 wvia the Z-torsor structure of E. Here Zy is the largest isoclinic p-divisible subgroup of
Z of slope p1 as in 10.6.2.

PrROOF. We know from orbital rigidity of p-divisible groups 7.1.1 that (W N Z1)peq =
Uy U--- Uy, where each U; is a p-divisible subgroup of Z;. Corollary 10.6.2.1 implies that
W N Z; is stable under the translation action of U; for i = 1,...,m. So (W N Z1)eq i8
equal to the p-divisible subgroup Uy + ---+ U, of Z1. 0O
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10.6.3. PROOF OF THEOREM 10.6.2.

Step 1. Preliminary reduction steps.

(a) It suffices to verify the statement of 10.6.2 after extending the base field k£ to an
algebraic closure of k. So we may and do assume that k is algebraically closed.

(b) If E — E' is an isogeny of biextensions, the statement of 10.6.2 holds for FE if and
only if it holds for E’.

Modifying E by suitable isogenies, we may and do assume that X, Y, Z are
product of isoclinic p-divisible groups. Moreover we may assume that for each
isotypic factor U of X, Y, or Z, there exist positive integers a’,r’ such that
Up®] =U[F"] := Ker(FrrU/ /i)~ In particular there exist positive integers a,r such
that py = & and Z1[p?] = Z1[F"] := Ker(Fry, ).

(c) Choose a suitable regular system of parameters (u1, ..., up) for the coordinate ring
Zy such that Z; = Spf(k[[u,...,up]]) and

P () = o
fori=1,...,b.

(d) The largest slope p; of Z is assumed to be strictly bigger than every slope ap-
pearing in X x Y. Multiplying a,r by a suitable positive integer, we may and do
assume that there exists positive intergers s,ng such that s > r and ¢ is strictly
bigger than every slope of X x Y, and

X[p"] o Ker(Fr'y),) and Y[p™] > Ker(Fry,)

for all n > ny.

Step 2. By 10.4.1.4, after suitably adjusting the positive integers s,r,a with s > r > a > 0,
H1 = %, there exist positive integers ny4 > ng and ¢4 such that

min(ns,2nr—C4))

(10.6.3.1) exp(p"v) = dnafv] * idpmodm  (mod m®

)

for all n > ny4, where
Sna[v] = (prZz © z)”a) 7~ (Ker(Friy® xKer(Fry®)) : W_I(Ker(Frg(S) x Ker(Fr%s)) — 4

is the restriction to 7! (Ker(Fr'y’) x Ker(Fry?)) of the composition of 3,4[v] with the
projection
pry, 4 — 2.
For each j = 1,...,b, defined a ¢"-compatible sequence (a;)n>n, With respect to ¢° in
the sense of 10.7.2.3, by
A = dnalv]* (uy) modm%) ) ¢ RE/mg )
for all n > ny. Let i1 := max(s —r, [”—4]) For each j =1,...,b, let

p
perf, #
s:97;3[i1]

be the formal series corresponding to the ¢"-compatible sequence (a;n)n>n,-

dj S (RE,mE)
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Although (Rg, mE)ieéitl] is more tightly related to ¢"-compatible sequences through

the construction in 10.7.3.2, we will pass to the larger ring (RE,mE)perf’b

somilin]? and consider

perf, b

the a;’s as elements of (Rg, mg) s [in] in the rest of the proof.

Step 3. The elements ay,...,a; € (Rg, mE)F;i;fr’?;] define a ring homomorphism
Sol*: Ry, = kl[wr, ..., w]] — (Rg,mp)Po® .
Let
perf, b perf, b

Wi (REymE) — (RZ1va1)

s:¢7;[i1] s:¢7;[i1]

be the ring homomorphism induced by the inclusion Z; < E. Because the restriction to
Z of the morphism 3,[v] : 7= H(X[p"] x Y [p"]) — Z is equal to [p"]z0C|z for every n € N,
We see that

(10.6.3.2) wy 03v] = jry,, ©(Clz)*

, b
where JRz, Rz, — (RZNle)F;?;ST;[il]

perf, b
s:p73[i1]”

is the natural injection from Rz, to its completed

tempered perfection (Rz,,mz,)

Step 4. We also have the following ring homomorphisms.

(a) The canonical homomorphism 7 : Rg — Rg/Iw = Rw gives rise to a homomor-

phism
Tb . (RE mE)perf,b N (R m )perf,b
. ) s:¢73[i1] W W s:¢73[i1]
(b) The injective local homomorphism ¢ : Ry — k[[t1,...,tn]] induces a injective
continuous homomorphism
~ f,b i —%\\b
(2 (RW7mW)2e;T’[“} — k<<t€) P ,t%,)n >>SC¢T;[7L1} .

(c) Continuous ring homomorphisms
Ay :Rp— Rz ®Rp and A} :Rp— Ryu®Rp

corresponding to the actions Z; x E — E and Z]{ x E — E of Z; and Z on E.
(d) The ring homomorphism
wll . (RW mw)perf,b. N (R m /)perf,b '
’ si¢7ili] 0T sgrifin)
induced by the surjective ring homomorphism Ry —» RZ{ which corresponds to
the inclusion Z] — W.
(e) The ring endomorphisms C|7 : Rz — Rz and C |Ei : Rz, — Ry corre-
sponding to the endomorphisms C|z, (respectively C| 7 ) of the p-divisible group
7 (respectively Z7).
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(f) The ring homomorphism
f,b
b . perf, b ( , ,>per’
¢ (RmeZ1)s;¢r;[iﬂ — RZl’mzl s:97;[i1]
induced by the canonical surjection ¢q: Rz, — RZ{
Clearly we have
(10.6.3.3) wWior’ =¢ ow and Cly 0cqa=q0Cl3,
The following diagram
3[o]* f, b T f,b
(10.6.3.4) Ry —— (RE’mE)z?;T;[il] —_— (RW’mW)I;:e;T;[n]
Cly, w1 i wi l
R R perf, b R perf, b
Sy o)y = (R ),
commutes by 10.6.3.2. It follows that the diagram
(10.6.3.5)
R Cl*Z/ T .
Rz ®RE - Rz &Ry
A lle, T =
! C‘*Z’ ®1RW
i 1 X
RE RZ1®RW RZ{®RW
Ay q®1 jRZ1®jRW
' perf,b perf, b
RZI ®RE . * bos (Rzi’ mZi) o ® (RW7 mW) S:qy‘;[il]
(JRZ OC|21)®(T O]RE) s:p ’[’Ll]
f)[v]*®jRE qb®1
erf,b 2 erf, b w1 T’ erf,b 2 erf, b
(R, mp) g © (Re,mE) Cor : (Rzysmz,) i) © (B, mw )55 )
Fh@rh ¢ ®1
rf, b & rf, b w2®1 perf,b perf, b
(B, ) g © (B o) S (Rzi’mzi) sioriin) (B, mw) s g

also commutes.

Step 5. Recall that Iy is the prime ideal of the coordinate ring of E consisting of all

functions on F which vanishes on the G-invariant formal subvariety W C E. We
show that

() (Cly ® 7)o M(f) =0 Vx € T

want to
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We know from diagram (10.6.3.5) that
((Clyy @) o A () = (¢ @ 1) 0 ((jry,0 Cliy) © (77 0 i,y )) © A1) (X)-

Because jr,, and jg, are both injective, our goal (A) is to equivalent to
1

(B) (¢ ®1) 0 (G, 0 Clzy) @ (7" 0 g, )) 0 A1) (x) =0 ¥x € Ty
The commutative diagram (10.6.3.5) tells us that
(@’ @ 1) 0 (G, 0 Cliy) @ (T"05,)) 0 A = (W1 @ 7) 0 B]* @ iy, ) © Ay

= (w2 ®1) o (1®7) 0 A]* ®jy ) o Ar.
We will show the stronger statement
©) (r&7) 0 ()" @ i) 0 A1) () =0 ¥ x € Ty

In other words, the composition of the three vertical arrows at the left edge of the diagram
(10.6.3.5) kills every element of the prime ideal Iy . Since

(C) = (B) <= (A),
it suffices to prove (C).

Step 6. Suppose that x is an element of Iyy. Define an element

f,0 2 f,b
fX S (RE,mE)I;:e;r;[il] ® (RE7mE)2?;’“;[i1]

by i
Fr = (OP]" ® jr,,) 0 A1) (X),

where 3[v]* ® Jr,, © A1 is the composition

Su]*®j
[v] ®]RE perf, b perf, b

~ A ~ 5
RZ1 ®RE *l> RE®RE $:07;3[i1] ® (RE’ mE) s:¢75[i]

(Rp,mp)

We want to show the image of f, under the map

f,b A fb  TRT b o f,b
(R, mp) g © (Be,me) ol — (Bw,mw) Sors ) © B, mw ) Col
is 0.
Step 7. Let ¢ be the Frobenius endomorphism z +— P on (RW,mW)I:;fT’,bW, Let
perf, b perf, b perf, b

vw s (R maw )55, © (R mw ) Eor s — (Rws mw) 550

be map which defines multiplication for the ring (RW7mW)2?;fT’~b[il]' Geometrically vy

perf, b

corresponds to the diagonal morphism from Spec((Rw, mw )", ¢T'[i1}) to its self-product.
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Because the formal subvariety W C FE is assumed to be stable under G, therefore stable
under exp(p"®v) for all n > ny. Hence the congruence relations (10.6.3.1) implies that

(10.6.3.6) " @D)((" @) (fx)) =0 (mod Fil'* ™) Vn > ny,
where ¢™" ® 1 is the ring homomorphism

k perf, b A perf, b perf, b A perf, b
O @ L (Bwmw ) s © (Rwsmw Vogrs) — (Rwsmw gy © (Rw, mw) s, -
Applying theorem 10.5.6 on hypocoptyl elongation for tempered virtual functions, we
conclude that

(T ®7")(fx) =0

perf, b b[il]’ for every element x € Iy, which is the statement

in (RW7 mW) s:67;[i1] ® (RW7 mW)pe

S:

(C) in step 5. As we have seen, this implies that

rf,
T .
;

(Clyy ® DG () =0
in RZ{®RW for every element x of the ideal Iy,. We have proved theorem 10.6.2. [

10.6.3.1. Remark. In the situation of 10.6.2.2, the conclusion of 10.6.2.2 implies that
the natural formal morphism

Tlwyzn » (W/ZY) — E|Zy = (Z - Z]Z1).E

is finite, because the closed fiber of 7_7|W/Z§’ is finite. However we will need the stronger
statement 10.6.4.4 that the formal morphism from W/Z; to the schematic image of 7|y, 7y
induced by fr|W/Z{’ is finite and purely inseparable.

This stronger statement will follow from the method used in the proof of theorem
10.6.2. More precisely, we will further exploit the Zj-equivariant “virtual morphisms”

3)[?}] B — 7,
which correspond to continuous ring homomorphisms

3ol

£,
Rz, —— (Rg,mp)>";

s:pTs[in]

See 10.6.4.1 for the terminology “virtual morphism”. The precise meaning that the virtual
morphisms 3[v]| : E — Z; are Zj-equivariant is spelled out in lemma 10.6.3.2 below.

10.6.3.2. Lemma. We continue with the notation 10.6.2 and 10.6.3. For every element
v = (A, B,C) in the Lie algebra of G with components A € End(X), B € End(Y) and
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C € End(C), the diagram

Ay, (g, 0Pty °Cl%, )@3[e]”

~ erf, b A erf, b
Rz, Rz, ®Rz, (RZ)F;:qu;[iﬂ ® (RE)F;:qu;[il]
3[v]* lj
perf,b Ab ~ perﬂb
(RE) g i (Rz®RE) (i
jRE T]}{Z®RE
REg A R;z&RE

b . . . .
commutes. The arrows pry , Az, A, A 1Iry Irg Jnen,J 0T¢ 05 follows.

e The homomorphism priy : Rz — Rz corresponds to the projection pry, from
Z =7y x (U x U,) to Zy, where Uy,...,U. are isoclinic p-divisible groups with
slopes strictly smaller than uy,

o Ay corresponds to the group law of the p-divisible group Z,

e A: Rp — Rz®Rg corresponds to the Z-torsor structure Z x EE — E on E, which
. . . b . perf7 b ~ perf,l)
induces a ring homomorphism A’ : (Rpg) sorilin] T (RZ®RE) sim[in] between
tempered perfections

and ij® are the inclusions maps from Rz, Rg and R;QRE to their

jRZ’jRE Rp
respective tempered perfections, and
e the downward vertical arrow j on the right is the natural ring homomorphism,

from the tensor product (Rz)i?;fr’ﬁil] ® (RE)Z?(I;E’;&J[il] of tempered perfections of Ry

and Rg, to the tempered perfection (Rz@RE)I:;ELI] of RzQRg,

The proof of 10.6.3.2 is left as an exercise.

10.6.4. Further consequences of the proof of 10.6.2.

The proof of theorem 10.6.2 shows more than the statement of 10.6.2. We will review the
assumptions and make some definitions before stating other consequences of the argument.

10.6.4.1. We will use the notation in step 2 of 10.6.3. In particular X,Y, Z are p-divisible
groups over a perfect field k of characteristic p. Let m : E — X X Y be a biextension of
X XY by Z. Let G be a closed subgroup of Autpiext(E). Let W be a reduced irreducible
closed formal subscheme of F stable under the action of G. Let v = (A, B, C) be an element
of the Lie algebra of G with components A € End(X), B € End(Y) and C' € End(Z). We
make the following assumptions.
e The largest slope u of Z is strictly bigger than every slope of X x Y.
e The maximal isoclinic p-divisible subgroup Z; with slope pu; is a direct factor of
Z, so that Z = Z1 x Zy where Zj is a p-divisible subgroup of Z all of whose slopes
are strictly smaller than p;.
e There exist positive integers a,r, s, ng, nq4 such that
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—0<a<r<s,

—m =%, L' = Z[F],

— condition (d) in step 1 of 10.6.3 holds, and

— the congruence relation (10.6.3.1) in step 2 of 10.6.3 holds.

In step 3 of 10.6.3 we picked a regular system of parameters ui, ..., up of the complete
local ring Rz, with [p*]% (u;) = uf for all i =1,...,b, and constructed a continuous ring
homomorphism

Py perf, #

5)[11]*: RZ1 — (RE,mE) sigmilin]
We will say that 3[v]* corresponds to a “virtual morphism with tempered coefficient” 3[v]
from F to Z;. There are obvious benefits from this geometric view. However we do not have
a fully developed theory of virtual morphisms with tempered coefficients at this moment,
and allusions to virtual morphisms are completely formal.

¢

Define the schematic image Im(g[v] ‘W) of the restriction to W of 3[v] by
Im(g)[v]‘w) := Spf(Rz, /Ker(Tl’ o 3[v]*))

3] er b er
- Spf<RZI /Ker(RZl 7 (RE’mE)2:¢E;?;1} *> (Rw,mw)iz(bf;f;] )>
10.6.4.2. Proposition. We use the notations and make the assumptions in 10.6.4.1.

(a) The formal subvariety W of E is stable under the translation action by t~he smallest
p-divisible subgroup of Zi which contains the schematic image Im((b[v]){w) of
the restriction to W of the virtual morphism S[U] : B — Zq, for every element
v € Lie(G) N (End(X) ® End(Y) ® End(Z2)).

(b) Let Z, 5 be the smallest p-divisible subgroup of Z1 which contains the schematic
image Im((g[v])‘w) for every v € Lie(G) N (End(X) @ End(Y') @ End(Z)). Then
W is stable under the translation action by Z, 5.

Proor. We will show W is stable under the translation action of Im((g[v})‘w) The
statement (a) follows easily from this apparently weaker statement.

Let Iy := Ker (7‘ :Rg — RW) be the ideal of Rp consisting of all formal functions on
FE which vanish on W. Let
. ¢
Jv] := Ker(7” 0 3[v]* : Rz, — (Rw,mw)g?;rﬁﬂ .

We need to show that the kernel of the composition
Ay %) ©7
R —— R21®RE — (Rzl/J[v])@)RW

contains Iy, where ¢, : Rz, — J [v] is the quotient map. Let

perf7 #

I Bz fT] — (Bw, mw )60
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be the injective ring homomorphism such that
o dv]* = Tty © Gy

We have a commutative diagram

Ay ) T
RE Rz ®@RE (Rz,/J[v])® Rw
?)[’UV@]RE \L ij[u] ®]RW
of, # A of, 4 T RT of, # A of, #
(RE, mE)Tw;[n] ® (Rg, mE)Tw;[il] — (Bw, mW)i?w;[z’l] @ (B, mW)};:eW%[iﬂ '

In step 6 of 10.6.3 we proved that
Iy C Ker((Tb ® 7°) 0 3[v]* ® Jg,, © Ay).
Therefore
Iy C Ker((q[v] ® 7)o A)

because Jp ® JRy 1s an injective ring homomorphism. We have proved the statement (a).
The statement (b) follows from (a). 0O

10.6.4.3. Corollary. In 10.6.4.2, assume in addition that G operates strongly nontrivially

on Z1. Then the intersection W N Z with reduced structure is equal to Z, 5, the smallest

p-divisible subgroup of Z which contains all schematic images Im((b[v])’w), where v Tuns

through all elements of Lie(G) N (End(X) @ End(Y') & End(Z)).

10.6.4.4. Proposition. Let m: E — X XY be a biextension of X XY by Z over k. Let
w1 be the largest slope of Z, and let Zy be the largest isoclinic p-divisible subgroup of Z
with slope py1. Let G be a closed subgroup of Autyiext(E) such that the action of G on Z is
strongly nontrivial. Let W be a reduce irreducible subscheme of E stable under G. Assume
that uy is strictly bigger than every slope of X x Y.

(a) The closed formal subscheme ZY := (W N Z1)yeq i a p-divisible subgroup of Z,
and W is stable under the translation action by Z7 .
Let Wy := W/Z{, a reduced irreducible closed formal subscheme of the biex-
tension E/Z) = (Z — Z/Z])«E of X XY by Z/Z}.
(b) The natural map

: W2 — E/Zl = (Z — Z/Zl)*E

Qu,
s a finite purely inseparable formal morphism. In other words the affine coor-
dinate ring Ry, of Wy is a finite module over the subring le(q%)’ the affine
coordinate ring of the schematic image of 4y, and there exists a natural number
m such that 2P" € le(q%) for every x € Ryy,.

PROOF. The statement (a) is 10.6.2.2. We only need to prove (b).
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Extending the perfect base field k if necessary, we may and do assume that the base
field k is algebraically closed. Replacing E by E/ZY = (Z — Z/Z]).E and W by W/Z{,
we may and do assume also that Z7 = 0.

Let E := E/Zy = (Z — Z/Z1)+E. Corollary 10.6.2.2 tells us that the closed fiber of
the formal morphism 7|y : W — E is finite over k, therefore 7|y is finite. Denote by W
be schematic image of 7|y, a reduced irreducible formal subscheme of F stable under the

action of G. We need to show that W is purely inseparable over W.

Let Ry and Ry be the coordinate rings of W and W respectively, and let 7 : Ry, — Ry
be the continuous injective ring homomorphism induced by 7|y. We know that Ry is
finite over Ry;, and must show that there exists N € N such that 2" € Ry for all
x € Ry,. Suppose no such natural number N exists. Then there exist continuous ring
homomorphisms hj, hy : Ry — k[[u]] from Ry to the power series ring k[[u]] in one
variable u, such that hy o7 = hg oy but hy # he. Since the projection E — E/Z; is a
Z1-torsor, there exists a continuous k-linear ring homomorphism § : Rz, — k[[u]] such that

Py © (0 ® h1) 0 Ay = ho,
where

e Ay :Rp— RZ1®RE corresponds to the action of Z; on F,

® [l k[[u]]®@k[[u]] — K[[u]] is the multiplication map on k[[u]], and

e Ker(0) & mgz,, or equivalently k[[u]] is a finite module over the subring Im(d),
because hy # ha.

We know from 10.6.4.3 that for every element (A, B, C) of the Lie algebra of G with
components A € End(X), B € End(Y) and C € End(Z), the kernel of the composition

7 0 3[v]* of continuous ring homomorphism

SM* erf, b b erf,b
RZ1 I (RE7mE)p ) p )

s:¢75[i1] (RW’mW) $:07;[41]

contains the maximal ideal mz, of Rz,. In other words 7° o 3[v]

composition Rz, - k — (Rw, mW)I;?;f;,b[il], the trivial k-linear ring homomorphism.

is the equal to the

Consider the following diagram, an expansion of the top half of the diagram in 10.6.3.2.

Ay R Ur,, oC|3,)®3[v]* b A et b
Rz, : Rz®Rz, 1 (Rzl)z:&;[il]@(RE)iW,;[il]
3] J

erf, b A’i S erf,b

(RE)I;:QST;[iﬂ (RZ1 ®RE>25¢T§[7;1]

(hgor)? (1er)
p b

erf, b E[[u]] - rf, b (6®h1) - rf, b

(Rl [] 20 (Kl &kl < (Rze®@Rw) i
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The commutativity of the top half of the diagram follows from 10.6.3.2, while the bottom
half commutes because Fouy) © (0 ® hy) o Ay = hy. The homomorphism

(hoor)?o3[u}* R erf, b
RZ124> &k‘[[u]]@k[[uﬂ)ZW",[lﬂ

is the trial k-linear ring homomorphism because 7° o 5[1}]* is. On the other hand, we have
(haor) o3ul" =, 0 (0@ M) 0 (6@ h) 001 @T) 00 (0 Clz,) ®30]) 0 Agy.
The right hand side of the above equality is equal to the following composition

Clz, Trfu)

Ry, —% Rz, — > k)] "% (R[5

Therefore the non-trivial k[[u]]-point §* of Z; lies in the kernel of the endomorphism C|z,
for every element v = (A, B,C) € (End(X) @ End(Y)®End(Z)) NLie(G). Since the action
of G on Zj is strongly non-trivial, the point §* € Z;(k[[u]]) is 0. This is a contradiction.
We have proved that W is purely inseparable over W. [

10.6.5. Proposition. Let 7 : E — X XY be a biextension of X x Y over k. Let G be a
closed subgroup of Autpiext(F). Let po be a slope of Z, and let Zs be the largest p-divisible
subgroup of Z will all slopes > po. Let W be a reduced irreducible closed formal subscheme
of E stable under the action of G. Suppose that the action of G on Zs is strongly nontrivial,
and pa is strictly bigger than every slope of X X Y.

(a) The reduced formal subscheme ZY := (W N Z3)red s a p-divisible subgroup of Z,
and W is stable under the translation action by Z7.
Let W3 := W/ZY, a reduced irreducible closed formal subschem of the biexten-
sion E/Z) =(Z — Z)).E of X XY by Z/ZY.
(b) The natural map

Wy —> E/Zy = (Z — Z/Z2),E

Gy,
s a finite purely inseparable formal morphism.

PROOF. The case when Zs is isoclinic is proposition 10.6.4.4.

Consider next the case when Zs has exactly two slopes, p1,pe with pu; > po. The
largest isoclinic p-divisible subgroup of Z with slope 7 is contained in Zs.

Let Z] := (W N Z1)red, a p-divisible subgroup of Z;. We know that W is stable under
translation by Z7, and the natural map Wy := W/Z{ — E/Z; is finite and purely insep-
arable. Let Wy = Im(qy,,) be the schematic image of ¢, : Wo — E/Z;. The intersection
W N Zy with reduced structure has a finite number of irreducible components, and each
irreducible component is a p-divisible subgroup of Zs, by orbital rigidity for p-divisible
groups. Since W N Zj is stable under translation by Z7, each irreducible components of
(W N Z3)req is stable under translation by Z{'. Let U be one of the irreducible components
of (W N Z2)red~
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Claim. The formal subscheme W C FE is stable under the translation action of the p-
divisible group U C W N Zs.

PROOF OF cLAIM. We may and do assume that ¢ = 1. Changing Z by an isogeny, we may
and do assume that U = ZI x U, where Us is an isoclinic p-divisible subgroup of Z, of
slope us. Replacing W by W/Z{, we may and do assume that Z; = 0.

In our simplified situation, (W N Z1)req = 0, the p-divisible subgroup U is an irreducible
component of (W N Z3)eq, U is isoclinic of slope pz. We need to show that W is stable
under the translation action of U.

Let q,, : W — E/Z; be the composition W < E — E/Z;. Let W be the schematic
image of ¢,,. Since g, is finite dominant and purely inseparable, there exist a natural

number N and a morphism ¢ : W — W®") such that the relative Frobenius Friv, . W —
w®™) is equal to the composition ¢ o g,,. On the other hand 10.6.4.4 tells us that the

reduced irreducible formal subscheme W C E /Z; is stable under the translation action of
U on E/Z;. Consider the two morphisms

a,B:Ux W —s E®Y),
defined by
a(u, W) = C(uxw), Blu,w) = Fry(u) = ().

for all functorial points (u,w) of U x W. For every functorial point w of W, we have

a(u, gy (w)) = (g (uxw)) = Friy  (uxw) = Friy (u) * By, (w)
and
Bu, gy () = Frf) . (u) % ((gy, (w)) = Fry) . (u) * Fry . (w),

ie. ao(lyxgqy, )= pFo(ly xXq,, ). Soa = [ because 1y x g,, is faithfully flat. The equality
« = [ implies that the schematic image of ( is stable under translation by the schematic
image of Fr[]\][ Ik U — U®Y). Tt follows that W is stable under translation by U. We have

proved the claim.

We go back to the situation in the paragraph before the claim. Since W is stable under
translation by every irreducible component of (W N Z3),eq, W is stable under the smallest
p-divisible subgroup containing (W N Za)eq. It follows that (W N Za)eq is a p-divisible
group. We have proved statement (a) in the case when Z5 has two slopes.

We turn to the statement (b). We may and do assume that Zo = Z; x U’, where U’ is
isoclinic with slope po. Let Wo = W/(W N Z1)yed, let Wa be the schematic image of Wo in
E/Z. Proposition 10.6.4.4 tells us that the map Wa — W5 is purely inseparable, and also
that the map from W = Wy /(W3 N Us)req to E/Zy is purely inseparable. The statement
(b) follows. We have proved proposition 10.6.5 when Z5 has two slopes.

An easy induction on the number of slopes of Zs, using the argument for the two slope
case above, proves the general case. []
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10.6.6. Proposition. Let X,Y,Z be p-divisible formal groups over k, let E — X XY
be a biextension of X XY by Z, and let G be a closed subgroup of Autpiext(E) operating
strongly nontrivially on E. Let W be a reduced irreducible formal subscheme of E stable
under the action of G. Let p1 be the mazimum among the slopes of Z, and let Z1 be the
largest isoclinic p-divisible subgroup of Z with slope .

(a) The reduced formal subscheme (W N Z1)yeq is a p-divisible subgroup Z{ of Zy.

(b) The formal subscheme W of E is stable under the translation action by Z1.

(¢) The composition By W/Zi — E/Z{ — E/Z; is a finite purely inseparable
1

formal morphism from W/Z' to E|Zy = (Z — Z]/Z1).E.

PROOF. If py is strictly bigger than every slope of X x Y, the statements (a)—(c) follow
from 10.6.2.2 and 10.6.4.4.

Suppose that some slopes of X x Y are bigger than or equal to ;. Modifying X, Y
by suitable isogenies, we may and do assume that X and Y are products of the form
X = X1 x X9, Y = Y] XY, such that all slopes of X; x Y; are bigger than or equal to
w1, and all slopes of Xo X Ys are strictly smaller than p;. We know from 10.2.4.4 that the
Weil pairings 02 : X[p"] x Y [p"] — Z[p"] vanishes on X;[p"] x Y[p"] and X[p"] x Y1 [p"]
for all n. Apply lemma 10.2.5.10, we get a new biextension structure

(7 E—XoxYy, +) ' Exy, E—-E, +1:Exx, E—>E, €| :Ys > E, ¢: Xy — FE)

on E, of Xo x Yy by Z' := X7 X Y3 x Z, which satisfies properties (1)—(8) in 10.2.5.10.
In particular the Z-torsor structure on E associated to the old biextension structure is
compatible with the Z’-torsor structure associated to the new biextension structure, i.e.
z %, e = z%*_, e for all functorial points (z,e) of Z x E. So it suffices to prove statement
(a)—(c) for the new biextension structure on E.

Apply proposition 10.6.5 with the biextension structure 7’ : E — X5 X Y3 and Zy =
X1 x Y1 x Zy, we see that (W N Z3).eq is a p-divisible subgroup of Z’, W is stable under
translation (W N Z3)eq with respect to the Z'-torsor structure attached to the biextension
7' 1 E — X5 x Y, and the natural formal morphism

W/(W N Z2)red — E/ZQ

is finite and purely inseparable. Since (W N Z1)reqa € (W N Z3)1eq), and the Z-torsor
structure for the biextension 7 : E — X x Y is compatible with the (X; x Y7 x Z)-torsor
structuer for the biextension 7’ : E — X5 X Y5, W is stable under translation by (WNZ1)eq,
(W N Z1)req is stable under the group law of Z;. It follows that (W N Zp) is a p-divisible

subgroup of Z;. We have proved statements (a) and (b).
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Consider the commutative diagram

TW/(WNZ1)req

W/(W A Z1)ream B/ (W A Z1)rea & B/Z

R .

W/ (W O Zs)red L E/(W N Zo)red — E/(Z1 + (W N Za)red)

q(WmZQ)rcd

E/Z,,

where the vertical arrows are the obvious ones. The square [J on the left is Cartesian. The
square [ on the right is not Cartesian, but it induces a finite purely inseparable morphism

E/(W N Zi)rea — E/(W N Z2) Xpj(2,+(WnZa)rea) £/ 21

from E/(W N Z1)yeq to the fiber product, over E/(Z1 + (W N Z2)yeq), of E/(W N Zs) and
E/Z,. Therefore g, o ji is finite and purely inseparable if and only if ¢, o j2 is. Since
AWNnZa)rea = s © (g, o j2) is finite purely inseparable, ¢, o jo is also finite and purely
inseparable. It follows that ¢, oj; is finite and purely inseparable as well. We have proved
the statement (c). [

10.6.7. Theorem. Let X,Y,Z be p-divisible formal groups over k, let E — X XY be a
biextension of X XY by Z, and let G be a closed subgroup of Autyiext(E) acting strongly
nontrivially on E. Let W be a reduced irreducible formal subscheme of E stable under the
action of G.

(1) The formal subscheme W of E is a special formal subvariety.

(2) If the slopes of X,Y,Z are pairwise disjoint, then W is a sub-biextension of E.
PrROOF. The statement (1) follows, by induction on the height of Z, from 10.6.6, and
10.3.4.6. The statement (2) is a corollary of (a); see 10.3.4.7. [

10.7. Appendix: Tempered perfections of complete local domains

In this appendix we define a class a complete augmented commutative local domains
over a perfect field x of characteristic p > 0, completed tempered perfections of complete
augmented Noetherian local domains (R, m) over x, and document some of their basic
properties used in 10.5-10.6. These rings are completions of suitable subrings sandwiched
between R and the perfection RP®™ of R. We will often shorten “completed tempered
perfection” to “tempered perfection”.

The method of hypocotyl prolongation, first established in 7.2.1 and 7.2.2 for augmented
Noetherian completed local domains, also holds for their tempered perfections; see 10.5.3
and 10.5.6. This method, enhanced by the adoption of tempered perfections, provides the
critical ingredient in the proof of orbital rigidity for p-divisible formal groups. It should
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also be useful in studying the orbital rigidity phenomenon for sustained deformation spaces
of p-divisible groups.

Since the main body of this appendix is pretty dry and technical, we provide a long
introductory subsection 10.7.1 with examples and motivations. The examples 10.7.1.3
and 10.7.1.4 both involve the Poincaré biextension of a supersingular elliptic curve. The
generalization of 10.7.1.3-10.7.1.4 to biextensions of p-divisible formal groups, which is the
genesis of the notion of tempered perfections, is explained in 10.7.2-10.7.3.2.

Only the easy properties of tempered perfections, explained in 10.7.5, are used in the
proof of orbital rigidity for biextensions of p-divisible formal groups. We include an analog
of Weierstrass preparation theorem in 10.7.7, as an example among a host of questions one
may ask about these rings. These questions and their potential applications are left to the
interested readers.

10.7.1. What are completed tempered perfections?

10.7.1.1. An impressionistic sketch.

Throughout 10.7.1 the base field « is a perfect of characteristic p. A completed tem-
pered perfection R’ of a complete augmented Noetherian local domain R over s is sand-
wiched between R and the completion (RP®H)" of the perfection of R. In general R’ is
not Noetherian, except for trivial cases such as the field x itself. But R’ is not as big as
(Rperf)/\, and it retains some weak versions of the finiteness properties valid for complete
Noetherian local domains. These properties are illustrated in the example in 10.7.1.2.

Elements of a tempered perfections R’ of R can be viewed as limits of functions on a
suitable projective system 7 of purely inseparable covers of the formal spectrum Spf(R)
of R. Such a tower T is substantially smaller than the projective family of all purely
inseparable covers of Spf(R), except in the trivial case when R = k. This point is partly
reflected in the weak finiteness properties of R'.

Inspired by the analogy with tempered distributions as generalized functions, we pro-
pose to call elements of a tempered perfection R’ of R tempered virtual functions on Spf(R),
and elements of RP°™ virtual functions on Spf(R).

10.7.1.2. Tempered perfections of x[[t]].

A simple example of tempered perfections is the following family (/ﬂ<<tp_°°>)g; d) Cd.E of
tempered perfections of the power series ring [[t]], parametrized by triples (C, d, F) of real
numbers with C > 0,d > b, E > 0. By definition /<c<<tp_°o)>g;d is the completed semigroup
algebra attached to the semigroup

N[EIEq = {i € Z[E)z0] lily < max(C (il + 7 1) } € (@220 +),

—ordp(") ig the normalized p-adic absolute value on Q. In other words

—_ E _ y Z
K7 )0 = {ZieN[l/p}g-d bt

where |- [, =p

(oo}

b; € ﬁVi},
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consisting of all formal power series of the form ZieN[l JplE., b; t* with coefficients in x.

Note that the product of any two elements of x((t? ™ ))E , is well-defined because
Card({i € N[%]g;d i< M}) < oo

for every M € R>g.

Tempered perfections of the power series ring kl[[t1, ..., t;]] are defined similarly, but
there are at least two versions, corresponding to two archimedian norms

|1, -« s im)]oo := max(|i1], ..., |im]) and  |(i1,...,0m)|o := |i1] + - + |im]
on Q™. As the parameters (C,d, E) vary, these two versions of tempered perfections of
K[[t1,...,tm]] give rise to two filtered inductive systems of subrings of the completion of
the perfection of k[[t1,...,tm]], which are cofinal to each other in the obvious sense.
10.7.1.3. The Weil pairings on a supersingular elliptic curve as a toy model.
Let k be an algebraically closed field of characteristic p as before and let A be a supersin-
gular elliptic curve over k. For each positive integer n > 1, let
wn + A[p"] x A[p"] — ppr = Gm[p"],
be the p-adic Weil pairing on E[p"]|. The family (wn)n21 satisfies the compatibility condi-
tion
Wn+1($n+1apyn+1) = Wn(pxn—i—lapyn—&-l) = Wn—i—l(pxn—i-l; yn—i-l)

for all functorial points @, 1, yni1 of A[p"H1].

Let A be the formal completion of A. We pose the following question.
Question. Is there a “formula”, in terms of a single function on A x A, which gives all
wy's?

On the face of it, this is a stupid and unmotivated question. The obvious answer is
“no”, because the w,’s do not glue to a map from A x A to the formal completion of Gy,.
The restriction of wy,+1 to A[p"] x A[p"] is not equal to w,; instead

Wnt1]apr)xapr) = [Plpn © wn
But let’s continue this foolhardy pursuit undeterred. Let x[z,2~!] be the coordinate ring
of G, let t =z — 1 € K[z, 271], so Gy, = Spf(k[[t]]) and [plg, t = tP. Pick a uniformizer u

of the coordinate ring of A such that [p]* (u) = u”’. So A[p"] = Spec(/ﬁ[u]/(up%)) for each
n > 1, and w, is encoded by an element

Wy = w(t) € n[u,v]/(up%,vp%).

The equality wpt1|ppr)xapr] = [Pl © wn means that
(10.7.1.3.a) Wp+1 mod (up2n,vp2n) =wh in klu,v]/ (v’
for all n > 1. An easy induction shows that

(10.7.1.3.b) w, = 0mod (uszn/zj ’ P2 )
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This estimate of w,, also follows from the fact that

wi o ([P apny x [P ppny) = 0.
Consider the element

n

fni=wbk € ﬁ[upfn,vpin]/(upn,vpn) rluP™ " oP "]
The congruence (10.7.1.3.a) implies that
(10.7.1.3.¢) frnmod (upnil,upnil) = fn+1 mod (upnil,upnil)

. . —n—1 —n—1 n—1 n—1 —n—1 —n—1
in the ring k[uP , vP ]/(up ,oP ) R[uP , vP |. Asn — oo, the f,,’s converges
to a formal power series
i
fo= D bijui’,

i,jEN[1/p
and the estimate (10.7.1.3.c) implies that f01£ (Q\jery pair (i, j) with b; ; # 0 we have
max ([ilp, [jl) < p* - max([il, |)-
So feo € H((upfoo,vpioo»g;d with C = p?, d =0, E = 1, for either of the two archimedian
norms on Q2.
The whole family of Weil pairings (wn)n is encoded in the power series fo: for each n >

1, wy, is the unique element of n[u,v]/(up%, vP”" such that w, = fg’o" modulo (up2n,vp2n).
This gives a positive answer to the question at the beginning of 10.7.1.3 if the power series
foo, a “generalized function” on the formal scheme A x A is deemed admissible.

10.7.1.4. Splitting a Poincaré biextension with tempered virtual functions.

Let A be a supersingular elliptic curve over k as in 10.7.1.3. Let m: P — A x A be the

Poincaré biextension of A x A by Gy,. There are two relative group laws

+1: P X (pryom,A,pryom) P—P +4+9:P X (pryom,A,pr,om) P—P
on P, with zero sections €1, €5 respectively. The group law +; comes from the theorem of
the square, while the group law +5 corresponds to the group structure of the Jacobian of
A, i.e. tensor product of invertible sheaves which are algebraically equivalent to 0.

For each integer n > 0, multiplication by p™ for the relative group law +; defines a
morphism [p"];, : P — P over [p"]a x 14 : Ax A — A x A. The restriction of [p"]4, to
P, = m1(A[p"] x A[p"]) defines a morphism

M P — Gy
such that
[P"]+4 ’Pn = Tn * (el‘A[p”])’
where * : Gy, X P — P denotes the structural map of the Gy,-torsor P — A x A. The n,’s
satisfy the compatibility condition

(10.7.1.4.a) Mti|p = [Plew © M,
which is hardly a surprise given that n,|g,, = [P"]G,,-
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As before the map 7, corresponds to a function 7 (t) on P,. For each m > 1, let
Fr? : P — P®™) be the m-th iterate of the relative Frobenius map for P. Denote by P[F™]
the inverse image of the 0-point 0p of P abover (04,04) € A x A. Let P = U,, P[F™] be
the formal completion of P.

Let h,, be the restriction of n* () to P[F?"]. The same argument in 10.7.1.3 shows that

. converges to an element g5 of a tempered perfection of the coordinate ring of the
formal completion P with parameters (C,d, F) = (p?,0,1).

It is helpful to regard g%, as the coordinate function of a map goo from a tower 7(c g )
of inseparable covers of P to G, so that g is a “virtual tempered map” from P to Gp.
The tower T(cqpE) is substantially smaller then the projective family of all inseparable

covers of P. This accounts for the weak finiteness properties of tempered perfections,
which make “virtual tempered retractions” such as g, useful in proving orbital rigidity for
biextensions.

10.7.1.5. Remarks on different families of tempered perfections. There are sev-
eral families of completed tempered perfections of a complete augmented Noetherian local
domain (R, m) over a perfect field x of characteristic p. Each of the families listed below
has a b-version and a f-version, depending on whether one uses the filtration defined by the
ideals (mN ) or the ideals (m(pn)), where m®") denotes the ideal generated by {y?" | y € m}.

(a) In 10.7.2-10.7.3.2 we define a family of tempered perfections of R = k|[t1, ..., tn]]
as rings of limits of ¢,-compatible sequences. The case when R is the coordinate
ring of the completion of a biextension of p-divisible formal groups is what led to
the notion of tempered perfections.

(b) The family (r((t} w,...,t’r’rzw»gj)adﬂ and (r((t} oow--vtgnw»g;lzi)c,d,E of
tempered perfections of k[[t1,...,ty]] are defined in 10.7.3.6 as completed semi-
group algebras of suitable sub-semigroups S of (N[1/p]™, +) containing N™. Such
a sub-semigroup S of “allowed exponents” consist of all elements I = (i1,...,0y,) €
N[1/p]™ satisfying an inequality involving parameters C,d, E which bounds the
p-adic norm of I in terms of the archimedean norms of I. This family include
those in (a) defined through ¢,-compatible sequences.

(c) For a general augmented complete Noetherian local domain R over k, we have

perf, # )
s:¢7;[i0] /18,10

defined in 10.7.4.1 is close in spirit to (a), while the family

two families of tempered perfections of R. The family ((R,m) and

( (R, m)perf,b

$:¢7;i0] )r,s,io

((Rm)e)) Apq 20d ((Rm)P5n) apg defined in 10.7.4.2-10.7.4.3 is close to

. . rf, b erf,
(b) above and include the family ( (R, m)i?qsi;[io] )r,s,io and ((R’m)zﬁi;ﬁo] )T,s,io
defined in 10.7.4.1

Each of the above families of tempered perfections of R forms a filtered inductive system
as the parameters vary. For a general complete augmented Noetherian local domain R, the
two families of tempered perfections defined in 10.7.4.1 and 10.7.4.2 are mutually cofinal.
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Similarly for R = k[[t1,...,tn]], the filtered inductive systems of tempered perfections of
R described in (a)—(c) above are mutually confinal to each other.

We sketch the definition of the tempered perfection (R, m)zelf’db of an augmented com-

plete Noetherian local domain (R, m) over a perfect field x of characteristic p, where A, b, d
are real numbers, A,b > 0, and d > b; see 10.7.4.2 for details. First we define a decreasing
filtration Fil® of the perfection RP*"f of R with Fil° = RPef by

Fil* = {:c c Rret

3Jj € N s.t. 2? € mlv?’] }

for any u > 0. Note that restriction to R of this filtration is essentially the m-adic filtration
of R.
Next we define a subring ((R, m)ie;; )ﬁn of RPerf by

(B3 g = D (" RAFIPPT ),
neN

consisting of the linear span of the set of all elements y € RP*™f such that there exists an
n An
n € N with 4*" € R and y € Fil®?" "¢, Note that in the case R = &[[t1,...,tn]], such an
element y has the form
y= Z res €1 t!

with ¢; € k for all I € S, where S is the subset of N[1/p]™ consisting of all elements
(i1y...,im) € p~"N™ such that b pA —d < i1+ ...+ ip. In particular

1], == max(|itlp, - -, [imlp) < p" < O YA(i1 4 4 i) + VA
for every element I € S.
The completed tempered perfection (R, m)i‘fg’db of R is by definition the completion of
((R, m)i‘?g’db ), With respect to the filtration of ( (R, m)ifg’db ) g, induced by the filtration
Fil* of RPet.

10.7.2. ¢,-compatible sequences.

In 10.2.6.1 we defined a compatible sequence of morphisms {nn B = E, - Z}neN
for any biextension of F of p-divisible groups X,Y by another p-divisible group Z, over
an arbitrary base scheme S. In this section we will consider the special case when S is
the spectrum of a perfect field £ D [F,. An interesting phenomenon reveals itself in the
special case described in 10.7.2.1, and the compatible sequence of morphisms (7,) lead us
to families commutative rings, whose elements consists of formal series of the form

> iy, i 18R -
(i17~-~7im)€Z[1/p}gL0
with coefficients a;, .. ;,, € k, subject to the condition roughly of the following form

[y < C- 113

00, max
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for every I such that ay # 0, where C, E > 0 are parameters which define the ring. Here

for any multi-index I = (i1, ...,%m) € Z[1/p|Zy, |I|p is the p-adic norm of I and |I|sc max
is the archimedean norm of I, defined by
], == max(p_ordp(il), e ,p_ord”(il)), and  |1]oo max = max(i1,2,...,n).

These rings do not seem to have appeared in the literature, but they hold the key to the
orbital rigidity for biextensions of p-divisible groups. In this section we give the motivation
and definition of these new rings.

10.7.2.1. Definition. Let k be a perfect field of characteristic p. Let R be an augmented
complete Noetherian local domain over k, and let Q@ = Spf(R). Let Z be a p-divisible
formal group over k. Let a, s > 0 be positive integers. A sequence of morphisms

T QF™ = Z, neN,n>ng
is said to be [p?]-compatible with respect to ¢° if

T?’L-f—l‘Q[Fns] = [pa]Z O Tp Vn > no.
Here for every positive integer j, Q[F/] = Spf (R/m(pj)) is the inverse image of Spf(k)
under the relative Frobenius morphism FrJQ I Qo — Q(pj), and m®) is the ideal of R
generated by {xpj’x € m}. If the integer s is clear from the context, we will shorten
“[p*]-compatible with respect to ¢*” to “[p®]-compatible”.

Clearly if ( Q[F"™] Lz ) is [p%]z-compatible sequence and h : Z — Z' is a homo-

hoty,

morphism of p-divisible groups, then the sequence ( Q[F"™] — Z' ) is [p®] z-compatible.

Similarly if @’ is a reduced irreducible formal subscheme of Q, Q' ¢ nc Q is the in-

T

clusion map, and ( Q[F™] —= Z ) is [p"]z-compatible, then ( Q'[F"]
[p?] z-compatible.

Tpoinc
—_—

Z ) is also

T

Remark. Given a [p?]-compatible sequence of morphisms ( Q[F™| —= Z one

)n>n ’
might wish to encode such a compatible sequence in a formal morphism from Qito0 Z by
a suitable limit process. A moment’s reflection shows that this is wishful thinking, and
counter-examples abound. So if this wish is to have any chance of being partially realized,
some sort of “generalized morphism” from Q to Z, whose coordinates are “generalized

functions” on Q, must be allowed. This is indeed the case, as we will see soon.

10.7.2.2. [p?]-compatible sequences of maps in applications to biextensions
In applications to orbital rigidity of biextensions, the [p®]z-compatible sequences

Tn

we encounter satisfy the conditions (1)—(3) below after some preliminary maneuver.

Z)

n>ng
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(1) The formal scheme Q = Spf(R) is a reduced irreducible formal subscheme of a
biextension 7 : F — X x Y of p-divisible formal groups of X x Y over k by Z.
(2) All slopes of X,Y are strictly smaller than the biggest slope p; of Z.
A

(3) There exist maps ( Ep, := 7 (X [p™] x Y[p™]) =~ Z )le such that

5\m+1’Em = [p]Z © Xm Vm > 1
and
T = )‘na‘Q[FnS] Vn > ng.

Here s is chosen as in R2, and ng = [™2] is chosen/defined also in R2 below.
Note that Q[F"™*] C E,, for all n > ng according to the estimate (2a) in R2.

Reduction steps and consequences of the above assumptions.

R1. After modifying Z be a suitable isogeny, one may assume Z = Z1 X -+ X Z. is a
product of isoclinic p-divisible groups Z1, ..., Z., with distinct slopes p1 > -+ > ..

R2. Choose and fix a positive rational number pg < p; such that pg is strictly bigger than
every slope of Zy x -+ x Z, x X x Y. Write g, p41 in the form
a a
:ul:;’ Mozga 5>, a,b,s,rEN>0.
From general properties of slopes we know that there exists a mg € N such that

(2a) X[p™] > Ker(FrE?}é“oJ) and Y[p™] D Ker(Fr}Lf%“OJ)

for all m > mgy. Therefore
(2b) X[p"] > Ker(Fr'y),) and Y[p"] D Ker(Fry,)

for all n > ng := [72].

R3. After extending the base field k we may assume that s is algebraically closed. Modi-
fying the isoclinic p-divisible group Z; by an isogeny if necessary, we may assume that

Ker([p"]z,) = Fr'y, .

where Frg1 Ji Z1 — pr ") is the r-th iterate of the relative Frobenius morphism for Z;/x.

Equivalently, there exist local parameters uq, ..., u; of the formal scheme Z such that

Z1 = Spt(k[[ut, ..., wp)]) and [p?y, (w;) =uf Vi=1,...,b.

i
RA4. Passing to the isoclinic component Z; of Z, and consider the [p®]z,-compatible se-
quence

( Q[Fns] g Zﬂ) Zl )n2n1

with coordinates

ns)

(pry o M) u; =: fin € R/mp< , i=1,...,b, n>mng.
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For each i = 1,...,b, the sequence (ﬁ’”)nZno satisfy
(4a) fzp; = fint1 (mod m®"™)) Vn >n.
We may assume that s —r > 2. Choose an integer s; such that » < s; < s. Let f;,, be
the image of f;, in R/m®"") for all i =1,...,b and all n > max(ng,r) := ni. Then
(4b) fi’?; = fint1 (mod m(pnsﬁr)) Vn>ny,i=1,...,b.

Remark. (i) In practice we will choose 1y to be “just a tiny bit bigger than the maximum
of the slopes of X and Y.

(ii) If we choose pp to be the maximum of the slopes of X and Y, then the estimate (2b)
needs to be changed to: there exists a constant e (depending on X and Y') such that

(10.7.2.2.3) X[p™] > Ker(Fr?/;‘f), and  Y[p"] > Ker(Fr@;e)

for all n > ny := [72].
(iii) The congruences relations (4b) means that for each i = 1,...,b, the sequence

(fim € R/m(p“l))nzn1

is ¢"-f-compatible in the sense of definition 10.7.2.3 (a).
As one sees in R4 above, the difference in the compatibility conditions (4a) and (4b)
is essentially one of appearance rather than substance.

10.7.2.3. Definition. Let (R, m) be an augmented complete Noetherian local ring over
a field k of characteristic p. Let r,s > 0 be positive integers with r < s.

(al) A sequence of elements (fy)n>n, With f, € R/m®") for all n is ¢"-f-compatible
with respect to ¢° if

2" = for1 (mod m(anJrr)) Yn > ng

(a2) A sequence of elements (fy)n>n, with f, € R/m®™) for all n is weakly ¢"-f-
compatible with respect to ¢° if

fP" = forr (mod mP™)) v >ng

(b1) A sequence of elements (gn)n>n, With g, € R/mP"" for all n is ¢"-b-compatible
with respect to ¢° if

ggr = gn+1 (mod manM) Vn > ng
(b2) A sequence of elements (gn)n>n, With g, € R/mP" for all n is weakly ¢"-b-
compatible with respect to ¢° if
@ =g (mod wP") Vn >ng

If the context makes confusion unlikely, we will shorten both “¢”"-f-compatible with respect
to ¢° 7 and “¢"-b-compatible” to “¢"-compatible with respect to ¢* 7. Similarly, if the
integer s is clear in the context, we will omit the part “with respect to ¢°.
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Remark. (i) We have used the fact that the r-th power of Frobenius induces well-defined
maps

ns+r) ns+r

R/m®") - R/m(
in the statements (al) and (bl) above.

(ii) The b-version (bl), (b2) is different from the f-version (al), (a2) in that the element
gn is in the congruence class modulo the ideal mP"*, which is bigger than the ideal m®"*).

and R/mP" — R/mP

(iii) Suppose that ( f“)n>n0 with f, € R/m(pns) is a ¢"-f-compatible (respectively weakly
@"-t-compatible) sequence. Let g, be the image of f, in R/mP"". Then (gn)n>n0 is a
¢"-b-compatible (respectively weakly ¢"-f-compatible) sequence. B

The following lemma 10.7.2.4 is obvious.

10.7.2.4. Lemma. Let r,s,5 > 0 are positive integers with < s < s'. Let (fn)n>no
be a sequence of elements with fn € R/m(pm/) for each n, and let (Gn)n>n, be a sequence
of elements with g, € R/mle for each n. Let f, be the image of f, in R/m(an/), and
let g, be the image of g, in R/mpm/. Let n1 be a natural number such that ny > ng and
ni(s' —s) >r.

(a) If (fn)nzm) is weakly ¢"-§-compatible then (fn)n>n, is ¢"-f-compatible.
(b) If (gn)n>no s weakly ¢"-b-compatible then (gn)n>n, 5 ¢"-b-compatible.

The following lemma 10.7.2.5, which relates the notion of [p?]-compatible sequences to
the notion of ¢"-compatible sequences, follows easily from the definitions.

10.7.2.5. Lemma. Let R be an augmented complete Noetherian local domain over a field
k of characteristic p, and let Q = Spf(R). Let Z,Z; be p-divisible groups over k. Let
h:Z — Zy be a k-homomorphism. Suppose that Z; = Spf(k[[u1,...,up]]) and

7y, (w) =u? for i=1,...,b,

where a, > 0 are positive integers. Let 1, : Q[F™t)] = Z, n > ng be maps from Q[F"™]
to Z, where s > r is a positive integer. If the sequence (Tn> is [p*]z-compatible, then
for eachi=1,...,b, the sequence

(fin 1= (o m)* (W] ggran)

n>ng

n>ngo

of elements of R/m(pns) is weakly ¢"-§-compatible.

10.7.3. Tempered perfections of formal power series rings.

In this subsection x is a perfect field of characteristic p, and m is a positive integer.
We will define several families of completed tempered perfections of the power series ring
I{[[tl, - ,tm]].
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10.7.3.1. Notations.
(i) Let [[t]] := k[[t1,.-.,tm]], let t be the m-tuple with entries t1,...,t,, and let
(t) := t1k[[t]] + - - - + tmr[[t]], the maximal ideal of k[[t]].
(ii) Denote by ¢ the Frobenius map on x[[t]] which sends every element of x[[t]] to its
p-th power.
(iii) For each element I = (i1,...,4y,) € N™, let

=1ty
be the corresponding monomial in the variables 1, ..., t.

(iv) For every natural number j, let (t)?" be the p’-th power of the maximal ideal (¢)
as usual. Note that (¢)?" is the ideal generated by all monomials tho=t1 .. tim
such that I = (i1,...,4,) € N™ satisfies i1 + - -+ 4 i, > p’.

Let ' ' , _
@) =% =, ... th)
be the ideal of x[[t] generated by ¢ (ty[[t] + - - - + tmr[[t]); i.e. (&) = ()P is

the completion of the s-linear span of all monomials ¢/ with I = 0 (modp’).
(v) We will use the following two archimedean norms on Q™

oo i= max(Uily o liml)s 1o o= Lt + -+ + i
for every element J = (j1,...,jm) € Q™. Obviously
oo € 1lw Sm-Jloo  VJ € Q"
(vi) There is also the following p-adic norm on Q™

| lp := max (|jilp, - s [Jmlp)

where |- |, is multiplicative p-adic absolute value on Q, defined by |z|, = pordp (@)

for all z € Q, so that |p| = }D and |z|, = 1 if both the numerator and denominator
of x are prime to p. Define

ord,(J) := Min (ord,(j1), . .. ordp(jm))
hence
‘J‘p _ p—ordp(J).

We will use the restriction of these norms to N[1/p|™ := Z[1/p]Z,, the additive
semigroup of exponents with p-power denominators.

10.7.3.2. Limits of ¢,-compatible sequences. Let 7 < s be positive integers. Let
(an)n>n, be a sequence with a,, € s[[t]]/(t?"") for all n > ng. Suppose that this sequence
is ¢"-f-compatible in the sense of 10.7.2.3 (a), i.e.

T ns+r

(1) a5, = ajnpr (mod mfy )

for all n > ng. We will construct a “limit” of such a ¢"-f-compatible sequence in a lowbrow
fashion.
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For each n > ng, write the element a,, € x[[t]]/(t"") as

ns
an = E amJt] mod (¥ ).
JEN™ | J| oo <p™s

Clearly the coefficients a, ; € k with |J]| < p™® are uniquely determined by a,. The

compatibility relation af, = any1 (mod (##"")) means that Ang1,J = Gy p-ry for all
J € N™ with |J|e < ™1 and all n > ng. More precisely,

o if s < P, pTJ @ N
(1) Gnt1,J = aZp*TJ if |J]oo < p™t", p"J €N

for all n > ng. Thus the among the coefficients a,, ; for a fixed natural number n > ng+1,
those with |J|s < p(™~1¥7 arises from coefficients a, y with n’ < n. More precisely
suppose that n > ng + 1, then the following statements hold.

- If | J|eo < p(=Dst+ and J is not divisible by p”, then a,, ; = 0.
- Suppose that |J]|s < p D5+ and J = p(=")" ]’ where n' < n and J’ is not

(n—n)r

divisible by p". Then a, s = a,,

(n—1)

There is no constraint for those a, ;’s with |J| > p ST these coefficients will be

propagated to coefficients of a,» ;’s with n” > n.

Construction of the limit. For each element I € N[1/p]™, define by € k by

—rn
—_— s nTr 3
¢ " (anprr)

where n € N is sufficiently large such that p™'I € N™ and [p™I|s < p*", so that ap pnrr
makes sense. The compatibility relation for the a,, ;’s immediately implies that the above
definition does not depend on the choice of n, as long as
—ord,(J) log,(|J
nZMax( p( ), gp(‘ |OO)>

r s§—7rT

—rn

br := (anprry)?

The formal series

Z by éI _ Z biy .. i till .. -tf{{l

TeN[1/p]™ (11,-,im ) EN[1/p]™

attached to a given ¢"-compatible sequence of elements (a,, € s[[t]]/(t?™")) according

n>ng
to the above construction will be called the limit of the ¢"-compatible sequence (an)n>n,-

10.7.3.3. Proposition. (a) The construction described in 10.7.3.2 establishes a bijection,
from the set of all ¢"-f-compatible sequences of elements (an € k[[t]]/(t"™")) to the

n>ng’
set of all formal series
S

TeN[1/p]™
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such that by € k for all I € N[1/p]™, and

() ~ord (1) < Max { o, 7 QWJ 1)}

s—r
for every I € N[1/p|™ with by # 0.

(b) A similar construction, with the archimedean norm | - | replaced by | - |5, gives a
bijection from set of all ¢"-b-compatible sequences of elements (a, € ﬁ[[j]]/(j)pm)n>n0, to

the set of all formal series
Z by t!

IeN[1/p]™
such that by € k for all I € N[1/p]™, and

(s4) ~ord, (1) < Max {7 ng(””J 1)}

sS—7T

for every I € N[1/p]™ with by # 0.
PrOOF. We will prove the statement (a) only. After replacing | - |« by | - |5, the
construction of the limits of ¢"-b-compatible sequences works verbatim. So does the proof

of (b).

Although the estimate in the statement (a) of 10.7.3.3 looks complicated, its proof is
completely straight-forward from the construction explained in 10.7.3.2.

Suppose that ZIeN[l/p}m by t! is attached to a ¢"-f-compatible sequence (@n)n>no>
an € K[[t]]/(t*"") for all n > ng. Let I € N[1/p]™ be an index in the support of the above
formal series, i.e. by # 0. We need to show that the inequality (*) holds. Let n; be the
smallest natural number such that p™"I € N™. There is nothing to prove if n; < ng, so
we may assume that n; > ng + 1. In particular ord, (/) < 0, and n; = (M}

From the definition of n; we know that p™"I is not divisible by p". If [p""[|s <
pM =D+ we get from 10.7.3.2 (1) that by = 0, a contradiction. We have shown that

‘pn1rl|oo > p(n1—1)s+r‘
The last inequality is equivalent to

- 1 log, |1
{ . )w g ey
T s—r
which is easily seen to be equivalent to the inequality (x).

It remains to show that every formal series ) TEN[1/pm br t! whose support satisfies
the inequality () arises from a ¢"-compatible sequence (ap)n>n,. One verifies using the
inequality () that for every natural number n > ng, the truncated series

e 1= > T € w[lt]

TEN[1/p]™, [p"I]oo <p™*
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Let a, :=c, mod (*""). It is easily verified that (a,)n>n, is a ¢"-f-compatible sequence,
whose limit is the given formal series ) TEN[1/p™ by tl. O

10.7.3.4. Definition. Let x be a perfect field of characteristic p, and let t¢1,...,t,, be
m variables, m > 1. Let r,s € Z~g be two positive integers with » < s, and let ng be a
natural number.

(a) m((t’l’_w, o thy w))f & >no 18 the commutative k-algebra consisting of all formal series
>, brt!
IeN[1/p]™

such that by € & for all I € N[1/p]™, and

=) ~ordy(1) < Max { o, 7 ng('”w)J 1)}

S—rT

for every I € N[1/p]™ such that by # 0.

Denote by supp(m((tllfoo, e ,tlgw»ﬁw >n0) the subset of N[1/p]™ consisting of all
multi-indices I € N[1/p]™ such that the inequality (*) holds.
(b) ﬁ((ﬂlo_oo, e ,tfn_oo»z:w ~no 18 the commutative k-algebra consisting of all formal series
> e
IeN[1/p]™

such that by € & for all I € N[1/p]™, and

() —ord,(I) < Max {ng, r ng”(m”)J + 1>}

s—r
for every I € N[1/p]™ such that by # 0.
Denote by supp(m((tlfioo, U A ) the subset of N[1/p]™ consisting of all

s:97, Zno

multi-indices I € N[1/p]™ such that the inequality (**) holds.

Remark. (i) The two support sets

— 00 — 00 —0o0o — 00 b
supp(r{(t] ..., th, >>ﬁ¢T,>n0) and  supp(K((t] ..., 0 ) s sno)

are sub-semigroups of (N[1/p]™,+) containing the 0-element. Moreover for every M > 0,
there are only a finite number elements [ in either sub-semigroup such that [I]|oc < M.
The last property implies that for each I, there are only a finite number of pairs (I3, I3)
of elements in either sub-semigroup such that I; + I = I. Therefore multiplication is

well-defined on both n((tﬁ’_m, TN and n((tf_oo, BT , via the

s:¢", =ng s:0", =2ng
standard formula for multiplication of formal series.
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(ii) It is easy to see that the rings x((t1,... ’tm>>ﬁ¢r7>no and m((t’fim, . ,tﬁ;m»zw,?no
are non-Neotherian local domains. It is easy to see that neither of the two local domains
is normal. Moreover the integral closure of

r((t] ,..,ﬂf"))ffw,}no (vespectively w((t} ,...,t%w>>i:¢r7>no)

#

B et N s

in its own fraction field is not a finitely generated module over x((t}

(respectively /{((25119_00, e ,tfn_oo»z:w ~no)» because the normalizations of both rings contain
t{ forall j e N[1/p]and alli=1,...,m

Below is a slightly different version of the rings defined in 10.7.3.4.

10.7.3.5. Definition. Let k be a perfect field of characteristic p. Let r < s be two positive
integers, and let i9 € N be a natural number. The perfection of the formal power series
K[[t1,...,tm]] is naturally isomorphic to

Ul ..
neN
Denote by ¢ the Frobenius automorphism of this perfect ring.
(a) Consider the following subring
(K,<<t€_ ,...,t%w>>s¢r [ZO Z¢ m" prST zo))
neN

of the perfection of the formal power series ring s[[t1, . .., tm]], where our convention is that
)™ = R if ns —ip < 0.

(al) Define a decreasing filtration (Fllffr Mﬂ)er on (k((t) ,....th >)ﬁ¢r;[i0})#7 & DY
ideals
Flljédff o] - {J; € (/i((tll”m7 . ”t%m»ﬁw[io] In € Nyg s.t. n+j>0and 2" € (;)(pmj)} 7

of (n((t{m, . ’t%w»ﬁw;[ig])#,ﬁn’ where (£) is the maximal ideal of k[[t1, ..., tm]].

(a2) Define /{<<t11’_oo, . ,tﬁ;m»ﬁw,[io} to be the completion of the ring

(H<<t1177007 te ’t’fp;;oo»j:é(;ﬁ";[io])ﬁn

with respect to the filtration Fil#’p; -
s:¢ 7[7’0]

(b) Consider the following subring

(5t N i) g = D (P

neN

of the perfection of the formal power series ring [[t1, ..., ?n]]. In the above our convention
is that ()P = R if ns —ig < 0.
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— o0

(b1) Define a decreasing filtration (Filb” on (m((tzlfoo, oy thy >>z:¢r;[i0])ﬁn

s:¢>T7[iO]>.eZ[1/p]>0
by

bu L e b
F115:¢T)[i0] = {.’E € (m((tf Lo th >>s:¢7‘;[i0]

(b2) Define &((tll’_oo, . ,tﬁ;m))?w,[ | to be the completion of the ring

%0

IneNs such that p"u € N and 2P" € (g)W”} )

(Ut ) i) i
b,e

with respect to the filtration Fil o7 lio]"

We will introduce in 10.7.3.6 two other families,

—o0 —oo\\ E, -0 -\ E,b
R el and w(E T )
of completed tempered perfections of the power series ring kl[[t1,...,tn]], related to the

rings defined in 10.7.3.4 and 10.7.3.5. We will also see in 10.7.4.1 and 10.7.4.2 that the
notion of completed tempered perfection in 10.7.3.4 and 10.7.3.5 can be extended to general
complete Noetherian local domains of equi-characteristic p > 0 with perfect residue fields.

10.7.3.6. Definition. Let x be a perfect field of characteristic p, and let t¢1,...,%,, be
variables. Let C > 0,d > 0, F > 0 be real numbers.

(a) Define a commutative k-algebra

0 —o\\ E,
K<<t€ 7'--’tfn >>C;jé

whose underlying abelian group is the set of all formal series ), by t! with by € & for all
I, where I runs through all elements in N[1/p]™ such that

(®) ], < Max(C - ([]os + )", 1).
The ring structure is given by the standard formula for product of power series.
The inequality (f) defines a subset supp(m:§: E;C,d) of N[1/p]™:
supp(m:§: E;C,d) := {I € N[1/p]™| ||, < Max(C - (I + d)*, 1)}

(b) Define a commutative xk-algebra

oo —oo\\E,b
H<<t11) 7-"at$n >>C;d

whose underlying abelian group is the set of all formal series ), b; t! with by € & for all
I, where I runs through all elements in N[1/p]™ such that

(b) 1], < Max(C - (|I]5 +d)",1).

The above condition on the support (of elements of this subset) shows that the standard

formula for multiplication makes sense and gives {(t] Lt m>>gz a natural structure

as an augmented commutative algebra over k.
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The inequality (b) defines a subset supp(m:b:FE;C,d) C N[1/p]™
supp(m:b: B; C, d) := {1 e NIJ™ | |1, < Max(C - (||, + d)7, 1)}

10.7.3.7. Lemma. Denote by Filf 4., the decreasing filtration on m((tf_oo, e ,t’fn_oo»gfz
such that
FilY gog (R((E ot i) = 3 bit! | byen VI

Iesupp(m:E;C,d), |I|o>u
for every u € R. Let

—oo —oo —oo\\ E,b
Filld (R, UFﬂgggg vt TN
e>0

-0 —\WE,b u - —°\WE,b
(i) Both Fil{ deg( <<t110 oot >>C; d) and Fil}! geg( <<tp Lot >>C;d) are
ideals of the ring f@<<tp_oo, tp_oo

(ii) Let gr® (/@((#f_oo, e ,tp Do ’Z) be the graded ring attached to the filtration Filg 4.,

>>C 50 Jor every u € R.

of the ring r((t}

graded subring

>>g This graded ring is naturally isomorphic to the

P

of the perfection

IeN[1/p]™
of the polynomial ring k[t1,...,ty], where the latter is graded by the total degree
Iy of monomials t!.

The proof is easy, therefore omitted. [

10.7.4. Tempered perfections of general augmented Noetherian local domains.

10.7.4.1. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field  of characteristic p. Let RP®'f be the perfection of R, and let ¢ be the
Frobenius automorphism on R. Let r, s,ng be natural numbers, 0 < r < s, 79 > 0.

(a) Consider the following subset
perf, # pnsTio)
(BT ) an =D 67" ( )
n>0
of the perfect domain RP®f. In the above m®P 70 = R by convention if ns —ig < —1.
It is easy to see that this subset is a subring of RP®f. Define a decreasing filtration
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2 erf, # .
(Fﬂs:fr;[io})oez on ((R7m)2:¢r;ﬁo} )ﬁn by ideals
Fﬂﬁﬁ'[io] = {x € ((R,m)‘;‘fﬁ.ﬁ] ) | In € Nsit. 2" € mpﬁj} .

perf, #
5:97;3lio
L . £, . S p®
(R, m)i?;ﬁﬁo] := the completion of ((R, m)i‘?;rﬁo] )g, With respect to (Fllﬁfr;[io}). .
(b) Consider the following subset

(R g 2= D 67 ()

Define a complete augmented local domain (R, m) | over by

n>0
of the perfect domain RP®f. Here mP" T = R if ns —ip < —1. It is easy to see
that this subset is a subring of RP°™. Define a decreasing filtration (Fili’:’;r_[io])j ez OD

((R, m)};e;ib[m] )g, by ideals

1 bvp]
Fil > 670

J={we ((RmpP)

n n+j
s:07;3[i0] )ﬁn dn € Ns.t. 2P emP } .

perf, b

Define a complete augmented local domain (R, m)" 7o

| over & by

£b . fb . b.p®
(R, m)z‘zr;[io] := the completion of ( (R, m)i?;r;[io] )g, With respect to (Fllszﬁr;[io])o )
10.7.4.2. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field k of characteristic p. Let RP®™ be the perfection of R, and let ¢ be the
Frobenius automorphism on R. Let A,b,d be real numbers, A,b > 0, and d > b.

Rpert deg). cr, O RPef indexed by real numbers

(i) Define a decreasing filtrations (Fil
u by

{a; € Rrrerf ‘ Jj € N s.t. 2P’ € mlup’] } ifu>0
Filq]%perf7deg =
Rpert if u<0
u
Rperf7deg
(ii) Define a subring ( (R, m)i’fi{j)

is an ideal of RP'! for every u € R.
of RPe™f by
n

It is easy to see that Fil

fi

f,b o - bpAT—d
( (R’ m)ie;;d )ﬁn T Z (d) "RN FllRf’erf,deg)
neN

It is not difficult to see that ( (R, m)ze;f’db )g, is a subring of RPeT.
(iii) Define

£, b
(R,m)5 5
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to be the completion of ( (R, m)ieff’d# ) a, With respect to the filtration induced by

the filtration (Filfper deg) of Rrerf.

f,b . f,b : f,b
(R = Tim (R ), / (Pl g 0 ((Rm)55 ) g, )-

(iv) Define a filtration <Fil' ). on (R,m)if;f’db by

(R
S T S perf, b v perf, b
Fﬂ(R7m)3e2f'&b T Uli)rgo (FﬂRPerf,deg n ( (R’ m)A,b;d )ﬁn) / (FllRperf,deg N ( (R’ In)A,b;d )ﬁn)

10.7.4.3. Definition. Let (R,m) be an augmented complete Noetherian local domain
over a perfect field x of characteristic p. Let RP"f be the perfection of R, and let ¢ be the
Frobenius automorphism on R. Let A, b, d be real numbers, A,b > 0, and d > max(b—1,0).

on RP°™ by ideals of RP°™, indexed

(i) Define a decreasing filtrations (Fil Rperfﬁ). Ro

by real numbers u as follows.

{werrot] 3 eNst a? e m® /0 iy >
Fﬂ,l]%pcrf,fr =

Rrert ifu<l1

(ii) Define a subring ( (R, m)i‘fz;fvd# )ﬁn of RPef by

(R ) = S (@ "ROFiZ
neN
(iii) Define
(B, m)55"
to be the completion of ( (R, m)i’fg’d# )g, With respect to the filtration induced by

the filtration (Fil;zperf fr) of Rpert;

rf, . f, . rf,
(R7m)§x(fb;d# = ulggo ((R? m)ie,b;d# )ﬁn/ (Fﬂq]flperﬂfr N ((Rvm)ie:b;d# )ﬁn)'

(iv) Define a fltration (Fil%, ) on (Rom)iif by

. . . rf, . rf,
L (Bt O (R ) )/ (il 0 (R ) ).

A,b;d vV—>00
10.7.5. How various tempered perfections compare.

In 10.7.3.2 we defined six families of rings. Each ring in these families consist of formal
series of the form TEN[1/p] by t!, where by € k VI, subject uniform constraint (depending
on parameters) on the support of such series. The six families are:

(1) w((& 7, th, >>jf¢r’>n0
(15) Bt o o
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(28) R((F . mZ»th
(20) Kt e
(38) w((5 .. »5?
(3) w(E ", e

We have defined four additional family of rings, attached to any given equi-characteristic-p
complete Noetherian local domain (R, m):

(42) (Rom)Ptt

() (Rm)Prt?

(5) (R.m)5h"
() (RmBs

Each rings in the families (1f)-(3b) is naturally embedded in the completion of the per-
fection of k[[t1,...,tn]]. We will explain how they compare. Similarly each ring in the
families (4f)—(5b) is naturally embedded in the completion of the perfection of R, and we
will compare them.

10.7.5.1. Remark. (i) The families (1f) and (1b) are motivated by the notion of [p]-
compatible sequence of maps; c.f. 10.7.2.1 and 10.7.2.2. The family (1) is directly tied with
[p?]-compatible families of maps; see 10.7.2.2 R4. With r, s fixed, the ring increases as the
second parameter ng increases. The b-version results from the # version when one replaces
congruences modulo (tzfn, . ,tlﬁ: ) by the coarser congruences modulo (¢, ... ,tm)pn.

(ii) The families (2f) and (2b) are slight variants of (1#) and (1b) and somewhat more
convenient than the family (1f) and (1b). It is straight forward to generalize them to
tempered perfections of augmented complete Noetherian local domains; see 10.7.4.2.

(iv) In (3t) and (3b) the parameters E,C > 0 and d > 0 are real numbers. The most
significant parameter is the “exponent” F; it is written as a superscript in the notation, to
indicate that it serves as an exponent in the estimate of p-adic absolute value in terms of
archimedean absolute value for elements in the support of formal series in family (3).

The “multiplicative constant” C' is secondary, while the parameter d is of least im-
portance among the three. When F is fixed while C' and d vary, the #-version and the
b-version are interlaced; see 10.7.5.4 (1). Rings in the family (2f) (respectively (2b)) with
primary parameters s>r > 0 are closely related to rings in the family (3f) (respectively
(3b) with F = - see 10.7.5.3 (3) and 10.7.5.4 (2).

(iv) Clearly the families (2f) and (2b) are special cases of the families (4f) and (4b). This

is reflected in the notation for (2) and (4).

(v) The families (5%) and (5b) with real parameters A > 0,b > 0,d > b generalize the
families (3f) and (3b). When R is the formal power series ring [[t1, .. ., ty]], the parameter
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triple (A1, b1, d;) corresponding to a given parameter triple (E,C,d) is

Ar=L, b =CcYE 4 =a
When the parameters are related as above, the rings
B —oo\\E,b rf, b
Rt Nelg and (R[] @) 5,

are “quite close”.

10.7.5.2. Below is a summary of the relation between this myriad of tempered perfec-

tions.

(i)

(i)

(iii)

With the primary parameters r < s fixed, the inductive family of rings in (1f) is
interlaces with the inductive family of rings in (1b) as their respective secondary
parameters ng and ig vary, i.e. the inductive family (1f) is co-final with the family
(1b). Similarly the inductive family of rings in (2f) interlaces with the inductive
family of rings in (2b). See 10.7.5.3 (1)—(2).

However, with 7, s fixed, the family of rings in (1f) is in general not co-final
with the family of rings in (24); c.f. 10.7.5.3 (3).
When all parameters r, s, ng,ig vary, the four families (1f), (1p), (2f) and (2b)
are mutually co-final; they are also co-final with the families (3f) and (3b). See
lemmas 10.7.5.4 and 10.7.5.5.
With parameters r, s fixed the inductive families (4f) and (4b) with varying ig
are co-final to each other. Similarly with parameters A fixed while b, d vary, the
inductive families (54) and (5b) are co-final to each other. See 10.7.5.6.

The main takeaway of the above comparison is: given an augmented noetherian local
domain (R, m), in any of the eligible family tempered perfections of R, the union of all
tempered perfections in the chosen family is independent of the family you happen to

choose.

We propose to call elements in such unions tempered virtual functions on the

formal scheme Spf(R).

10.7.5.3. Lemma. Lets > r > 0 be positive integers. and let ig > 0 be a natural number.
Let k O F, be a perfect field, and let ti1,...,t,, be variables.

(1)

(2)

Let ig > 0 be a natural number. We have inclusions

[e’s} — 00 —o0 — o0

KUt N i SR ) i

— oo — 0o —o0 —o0

b #
W 8 W io) € U N i gy )

as sets of formal series.
Let ng be a natural number. If i1 is a natural number such that

i1 > max(s R [%0]),
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then
Ut N e S RO ) g
and
— 00 — oo b - e b
I<,<<7511J 7-..7tlr)n >>51¢T,2n0 - ﬁ<<t€ 7"‘7tfn >>55¢T§[i1] )

(3) Let ig be a natural number. We have

—o0

- - o - 7#
AUt N i) SR NS
and
e - b e -0 - 7b
Rt Wogrio) S AU et N
PROOF. The first inclusion in (1) is obvious. The second inclusion in (1) holds because
i+ [log, m] j i
(et T )
for all j € N. The statements (2), (3) are easy exercises. [

10.7.5.4. Lemma. Let x O F, be a perfect field. Let E > 0,C > 0 be positive real
numbers. Let d > 0 be a non-negative real number as in 10.7.3.6.

(1) We have natural inclusions

—o0 —o\\ E, —o0 —o0\\E, b
“<<t]f N >>c;§é - H<<t110 N >>C;d
and
—oo —oo\\E,b - —o\\ E,
Rt Delg © R(ET Lt >>C.fE;d/m

(2) Let r < s be positive integers such that

E<—"

s—r
Suppose that io a sufficiently natural number such that

p(m/r]-(s—r)—iz < C—I/E _pm/E —d

];01;; every integer m > % Note that such an integer iz exists because -+ < %
en

oo — 00 (oo} — 00

— E, -
KU BNEE C R N

and

—oo —oo\\E,b -0 o0\ \h

Rt Dol © RKE ot D senijia) -
10.7.5.5. Lemma. Let 0 < r < s be positive integers, and let ig € N be a natural number.
For any pair of positive integers 0 < r' < s’ with w7 > =, there exists a natural number
ng, depending on r', s’ and igy, such that

—oo\\ # —o0o —o0

R W s R E



10.7. APPENDIX: TEMPERED PERFECTIONS OF COMPLETE LOCAL DOMAINS 627

and
—o0 —°\\b —o0 —o\\b
R ot Nagriig © BUE ot D >no -
The proofs of lemmas 10.7.5.4, 10.7.5.5, and 10.7.5.6-10.7.5.7 below are omitted.

10.7.5.6. Lemma. Let (R,m) be an augmented complete Noetherian local ring over a
perfect field k of characteristic p. Suppose that the mazimal ideal m can be generated by m
elements.

(1) Let s > r > 0 be positive integers. Let iy be a natural number. We have

perf, # perf, b
(Bom)Crfio) S (B ) G 1)

and

perf, b perf, #
(R m).cigrfio) S (B ™) il + tog, m1)

(2) Let A,b,d be real numbers, A,b >0, d > b. We have
(R, )i # C (R,m)r)
and f,b f
(R C (Rom)Ee
10.7.5.7. Lemma. Let (R,m) be an augmented complete Noetherian local ring over a
perfect field k of characteristic p.

(1) Let r,s,io be natural numbers with r < s. We have natural inclusions
perf, # perf, #
(R’ m> 5:97;io] < (R’ m>(sfr)/r,1;0
and

erf, b erf, b
(R, m)z:(ﬁr;[io] - (R7 m)l()s—r)/'r,l;o ’

(2) Let A,b,d be real numbers with A,b > 0 and d > b—1. Suppose that r, s are positive
integers with s > r > 0 such that =L < A. There exists a natural number ig,
depending only on the parameters A,b,d,r, s, such that we have natural inclusions

perf, # perf, #
(R’ m)A,b;d < (R’ m) 5:97;i0]
and £, b £, b
perf, perf,
(R7 m)A,b;d < (R’ I'll) EROUH I
10.7.6. Functoriality of tempered perfections. Every local homomorphism A be-
tween two equi-characteristic-p complete Noetherian local domains induces a ring homo-
morphism between their completed tempered perfections. It is clear that surjections induce
surjections between completed tempered perfections. We show that injective local homo-
morphisms induce injections on completed tempered perfections.

10.7.6.1. Lemma. Let (R1,my), (Ro, m2) equi-characteristic-p complete Noetherian local
domains with perfect residue fields k1 and ko. Let h : R1 — Ro be a ring homomorphism
such that h(my) C my.
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(a) Let A,b,d be real numbers, A;b > 0, d > b. Let ; : Ry — (Ri,mi)ieg’db be
the natural ring homomorphisms from R; to its completed tempered perfection

(Ri,mi)iez,fab for i =1,2. The ring homomorphism h induces a homomorphism

W s (Brm) 5 = (R o)y
such that hot = 30 h. Similarly h induces a continuous ring homomorphism
R (Ry,ma) iy — (Ra,ma) iy
(b) Let r,s,i9 € N, r,s > 0, 99 > 0 Let 11 : Ry — (Rl,ml)iféi;jéd] be the natural
perf, #

ring homomorphism from Ry to its completed tempered perfection (Ry, my) som o]

Similarly we have a ring homomorphism te : Ry — (Rg,ml)if’;&.ﬁ].

The ring homomorphism h induces a homomorphism

" rf, # of, 7
h7" (Rlaml)giﬂ;[io] — (RQ’m2)2?¢";[i0]

such that h¥* : oty = 190h. Similarly h extends naturally to a ring homomorphism

b, perf, b perf, b
W (B ma) g i) = (R ma) (g -

The proof is easy, therefore omitted. [0

10.7.6.2. Proposition. Let (R, m) be a Noetherian local domain. Assume that the integral
closure S of R in the field of fraction of R is a finite R-module. There exists a natural
number ng such that such that

{reR|z*em"} C mla=m) v e Nso, ¥Yn > a - ng.

PROOF. Let Bln(R) = Spec( @jen m?) be the blow-up of Spec(R/m) C Spec(R), and let
Y be the normalization of Bly(R). The Noetherian normal domain S is a semi-local finite
R-algebra. The natural morphism 7 : Y — Spec(R) factors through a unique morphism
f:Y — Spec(S): m = go f, where g : Spec(S) — Spec(R) corresponds to the inclusion
R — S. We know that I'(Y, Oy) = S because S is normal.

Let £ = m™m = m - Oy, be the pull-back to Y of the maximal ideal m C R; it is
an invertible sheaf of Oy-ideals on Y and is an ample invertible Oy-module. The closed
subset Spec, (Oy /mOy ) of Y is the union of irreducible Weil divisors Ey, ..., E,, where r
is a positive integer. There exist positive integers eq, ..., e, € Nyg such that

L=0y(—(e1B1+- +eE)).
Define for each n € N an ideal J,, C S by
Jp =T, L") CT(Y,0y)=S.

It is clear that m™S C J,, for all n € N.
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Claims.

1. There exist a positive natural number n; € N such that J,41 = mJ, for all integers
n > nq. In particular J, Cm"”»™ ™S for all n > n
2. There exists a natural number ny € N such that RN (m"7"25) C m™ foralln € N.
3. We have Jpi1n;4+n, N R Cm" for all n € N, with the constants n1,ny in claims 1
and 2 respectively.
4. Ifye S, a€Nso,n€Nand y* € Jp, then y € J /4
5. If £ € R, a € Nug, n € N, and 2% € m”, then z € ml»/e=m-72 for all n >
a(ny + n2).
Obviously proposition 10.7.6.2 follows from claim 5, with ng = ny +n9. J1 CmyN---Nmy
and S is Noetherian.

The general finiteness property for proper morphism [EGAIII, §5, Cor. 3.3.2], applied
to the proper morphism Y — Spec(R) and the coherent sheaf £ = mOy, implies that the
graded @;>0 m’-module

Di>o ['(Y,m'Oy) = ®i>0 J;
is a finitely generated as a graded module. The claim 1 follows.

Claim 2 is the Artin—Rees lemma applied to the finite R-module .S. Claim 3 is a formal

consequence of claims 1 and 2, while claim 5 is a formal consequence of claims 3 and 4.

It remains to prove claim 4. Given an element y € S such that y® € J,. For each
i=1,...,s, let S; be the localization of S at the generic point of the exceptional divisor
E;. Each E; is a discrete valuation ring; let ordg,(-) be associated normalized valuation
with value group Z. The assumption that y* € J,, implies that ordg,(y*) > n - e; for all 4,
therefore

ordg,(y) > "2 > [2]e;
for i = 1,...,s. Therefore there exists an open subset U C Y such that U contains
Y N (EyU--- U Ejy) and also the maximal points of Ey U ---U Eg, and y defines a section

n
Yy, of £lal over U. Because Y is normal and the codimension of U in Y is at least 2, Y,

n
extends uniquely to a section of £lal over Y. Therefore Y € Jinja)- We have proved claim
4 and proposition 10.7.6.2. 0O

10.7.6.3. Corollary. Let (R,m) be a complete Noetherian local domain of characteristic
p > 0, with perfect residue field k.

(i) Let A,b> 0, d > b be real numbers. The linear topology on the ring
erf, b
((R’ m)i,b;d )ﬁn
defined by the filtration on ( (R, m)i‘fg&b )g, induced by the filtration (Filqj%perf’ deg)

of RP s separated. Therefore the natural ring homomorphism
f,b f,b
((Rom)a g — (Rom)000

from ((R,m)iez,f;ib )g, to its completion (R, m)iezzb is an injection.
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(ii) Let r,s,ng be natural numbers, 0 < r < s. The natural ring homomorphism
perf, # perf, #
( (R7 m) EROURIT )ﬁn — (R’ m) $:07;[i0]
and

erf, b erf, b
((R’ m)r;:qbr;[io] )ﬁn — (R, m)zZW?[iO]

are injections.
PRrROOF. The statements (i) and (ii) are easy consequences of 10.7.6.2. We note that the
statements (i) and (ii) are in fact equivalent. [

10.7.6.4. Corollary. Notation as in 10.7.6.1. In particular h : (Ry,m;) — (Ra, m2)
s a Ting homomorphism between equi-characteristic-p complete Noetherian local domains.
Suppose that h is an injection. Then the induced homomorphisms h, h# and K’ in 10.7.6.1
are also injections.

PRrROOF. This statement is a corollary of 10.7.6.3. We explain the proof for h. The same
argument in general topology also proves the statement for h# and h’.
The injective ring homomorphism h : Ry — Ry induces a injective ring homomorphism

B - ( (Rla ml)iezf,db perf, b

)en — (<R27m2)A,b;d ) -

According to 10.7.6.3, we can identify ( (Ra, mQ)ZEZ_f; )g, s asubring of (Ry, mg)iezzb. The

injection A’ identifies ((Rl,ml)f'iflrf’db )g, also as a subring of (RQ,mg)zelrf’db. (It is actually

contained in ( (Rz,mo)y5 ), -) Let ((Raymo)i5) ) g, be the closure of ((Rz,mo)75 )y,

. . . f,b

in the topological ring (Rg,mg)fz;’d .

The topology on (( Rl,ml)i'“jg’db ) a, induced by the filtration (Fil;_f{ll,erfj deg)
perf, b perf, b

than the topology (Rg,ms)% /. The closure of ((R1,m1)A Yo )ﬁn with respect to this

is stronger

stronger topology is naturally identified with a subset of ((Rg,mg)ief’db)gn. We have

shown that h is an injection. [

Let x be a perfect field. Denote by o the Frobenius automorphism on «, which sends every

element x € k to 2P. Let u1,...,u, and tq,...,t,, be variables, and let fi[u’l’im, Y 2
be the perfection of the polynomial ring k[u1, ..., uy,). Elements of x[uf ... ,ub | are
finite sums of the form
Z byu’,
JeN[1/p]®
where by € k for all J € N[1/p]®, and all by = 0 for all J outside of a finite subset of
N[1/p]*.
We observe that for each element ¢ € N[1/p], the i-th power of an element
Z byu’ € wlud . ul )

JeN[1/p]e



10.7. APPENDIX: TEMPERED PERFECTIONS OF COMPLETE LOCAL DOMAINS 631

is well-defined: write ¢ = 1% with r € Z and s € N, and define

Z bJu‘]Y/ps ::( Z bf}is‘upfs‘])r.

JeN[1/p]e JeN[1/p]

Therefore if f € w[u? ,...,ul "] and g1,...,90 € &[t* ,...,t5 ], the composition
f(g1,-..,9q) is a well-defined element of /@[tzfioo, . ,t%w]. It is not difficult to show that

the operation “composition” extends to completed tempered perfections of power series
rings.

10.7.6.5. Lemma (Functoriality of composition). Let k O F, be a perfect field. Let

Ul,...,Ug and ti,...,t, be variables. Suppose that f € ﬁ((u[f_oo, .. ,ug_oo>>gi§zl, and

gi € /{((75119_00, . ,t%_oo}}gj,’ZQ fori=1,... a. Assume for simplicity that Cy,Cs,dy,dy > 1.

There exists a positive real number ds such that

—oo —oo 7|7
For(®). - ga(®) € (™, b N e,
where

o F3=F-Es+ Fy + Ea,
o O3=Cy-C1tE2 . (LYE1(+E2) | gpg

e
R Min{\J\g L J£0 and t7 e m(( .. ,ﬂg"")g;z;?}.
A trivial lower bound for ey is
e > Cy H(1+dg) ™ 2.

PrROOF. Let So C N[1/p]™ be the set of supports of all formal power series in the ring

n((tfﬁm, . ,t%w»ngl whose constant terms are 0. Similarly let S; C N[1/p]® be the
set of supports of all formal series in k{((uf ..., ug_oo>>gile whose constant terms are

0. By definition e = Min{|J|,: J € S2}. Every non-zero element K in the support of
f(g1(t),...,ga(t)) can be written in the following form

K:pfr(JLl'f'”"i‘Jl,il+"'+<]a7i+"'+<]a7ia),
where

o (i1,...,1q) € N* r = max(—ord,(i1),...,—ord,(i1),0),

o [:=p "(i1,...,i4) € S1, and

o Jyu€Syforallv=1,...,aand all p=1,...,1,.
Clearly the following inequalities hold.

(10.7.6.5.1) |Klo >ex-p(ire+---+ise) =ex-|I|o
(10.7.6.5.2) My :=Max{|Jyulo: 1< p<iy, 1<v<a} <p"-|K|,

(10.7.6.5.3) p " |K|p < Max{|Jyulp: 1 <p<iy,1<v<al =M,
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From the definitions of the rings r((tX ... 7t${°°>>g§§22 and k((ul ... ,ugioo»g;ill we
know that

(10.7.6.5.4) P < Ci({o 4+ d)™ < Cr- (L Ko + di)™

(10.7.6.5.5) M, < Cy(M, + do)*>

Combining the above inequalities, we see that
_ _ E
K]y < 97 -Cor(p" | K lotd2) 22 < Caleq K] p+di)-Co (Calez - Ko+ d) 2 K, + d) ™
The last term in the above displayed inequality is a polynomial in | K|, of degree
Es:=FE|+ Ey+ E; - Ey

whose leading term is

03 — 011+E2 . 02 . (é)E1(1+E2)'

Hence for a sufficiently large constant ds it is bounded above by C3(|K|, + d3)®* for all
|K|, > 0. We have proved the main assertion of lemma 10.7.6.5.

To see the trivial lower bound for ey, we only have to observe that if J € Sy and
|J|s <1 and J # N™, then

[Tlo > [T > (Ca(1 +d2)™2) 7", 0

Remark. Composition can be formulated for completed tempered perfections of general
equi-characteristic-p complete Noetherian local rings.

10.7.7. Weierstrass preparation theorem for tempered perfections. Let x D F,

be a perfect field. We will generalize the Weierstrass preparation theorem to completed

tempered perfections m((tﬁ’_m, el tﬁ;m»gfz of power series rings.

10.7.7.1. Definition. Let x D F, be a perfect field of characteristic p > 0.
(i) Let w((t? ~,...,t4 ")) be the set of all formal series of the form

) . 4i i
E Dit ooy 11 - Ly

i1, sim €N[1 /]

where by, €k for all (i1,...,im,) € N[1/p|™. Note that (£ ,...,t5, "))
has a natural structure as a module over the perfection /{[tﬁrm, .07 of the
polynomial ring &[t1, ..., ty].

(ii) Let e € Z[1/p]>0 be a positive rational number whose denominator is a powere of
p. An non-zero element F'(t1,...,t,) in m((tzl’_oo, . ,tfn_m» is reqular of order e
in the variable t,, if the formal series F'(0,...,0,t,,) in one variable t,, has order
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e. In other words when F'(t1,...,t,,) is expanded in powers of t,, with coefficients
in formal series of t1,...,tm_1,
Flty,...otm)= > Fi(ti,....tm—1)t,
JEN[1/p]
we have

F;(0,...,0) =0 Vj<e, and Fg(0,...,0)€r”™.
10.7.7.2. Proposition. Let F(ti,...,t,) be a non-zero element of the ring
—o0 —oo\\E,b
"€<<tzl7 7"-7t£1 >>C;d

which is regular of order e > 0 in the variable t,,.
(1) There exist constants C' > 0,d’ > 0 depending only on the parameters C,d, E;m

such that for every element G € /f((tzlfoo,...,t’fr;w)%?z, there exist elements
URer((t" ... ,t’,’,:oo»g;,bd, such that
G=U-F+R

and for every element I = (i1,...,imy) € N[1/p]™ € supp(R) in the support of R,
the inequalities

im<e i1+ 4inm_1>0
hold. Moreover the quotient U and the remainder R are uniquely determined by
G and F. The constants C' and d' can be taken to be

—1\E d
C'=C-(1+eh)? o=

where €y is defined in 10.7.7.6.
(2) Suppose that e = Min{|I|, : I € supp(F)}. Then
—oo o0\ \ B,b
URer{(ty . ..ith )l aroe

10.7.7.3. The uniqueness part 10.7.7.2 (1) is easy: suppose that

G=U-F+R

with U, R’ € /-i<<t71’_oo, e ,tf,;oo»g;.bd, and R’ satisfies the same condition as R. Then

(U —U)-F = R— R. Examine the degree in t,, of monomials appearing on both
sides, we see that R — R = 0. Therefore (U’ — U) - F = 0. Hence U’ — U = 0 because

- t’ﬁ;OO))g}.bd, is an integral domain.

Our proof of the existence part of 10.7.7.2 is a generalization of the constructive proof
of the Weierstrass preparation theorem in | , p.- 139]. The actual proof is in 10.7.7.5—~
10.7.7.8 below; the crucial estimates are in lemma 10.7.7.7. We will review the argument
in [134, p. 139] after recalling the definition of the linear operators used in [134, p. 139].



634

10. ORBITAL RIGIDITY FOR BIEXTENSIONS

10.7.7.4. Definition. Let s be a perfect field of characteristic p. Let t1,...,t, be

variables. Let ¢ > 0 be a positive rational number in N[1/p]. Let F € v((tf ... th, "))
be a formal series which is regular of order e in the variable ¢,,.

(i)

Define k-linear operators

mp s k(E Y s k(T
depending on e, by
f=1tm () +p(f)
for every element f € /{((tf_oo, Coth Oo)> . Clearly for every monomial till S i

with exponent (i1, ..., im) € N[1/p]™, n(ti---tim) and p(t' ---tim) are given by

n(t?--ij;g")_{ ézll...t;’;fll.t;‘g—e if iy >e

if i, <e
. , 0 if im>e
£ pimy — . : e
p(ty m) {tlll...t%n if i, <e
For a general element f = Eil,...,imeN[l/p} biy...im, til o timog /ﬁ((til”w, .. ,tﬁ;“»,

we have

()= D b 0t

i1,-nsim EN[1/p]

p(f) = Z biv..im P(E1 - T50).

i1,...,im €N[1/p]
Note that if f € ﬁ((tllfoo, o ,t’yi{w»g?z for some parameter ,C > 0 and d > 0,
— o0 —o W E b et T~ \WE,b
then p(f) € K((t] ,....tm )ecigand n(f) € K({ET ..t )l are:

Suppose that the formal series F is in s((t! ... ,t];,;w»gfz for some constants
E>0,C>0,d>0. Define a k-linear operator

oo —oo\\E,b oo oo
pe | R TN BT
C".d">0
depending on e and F', by

p(f) =n(=n(F)""-p(F)- f)

for all C”,d” > 0 and every clement f € w((t ... ,tﬁ;oo»g;,b,d,,. Note that n(F')
is a formal series whose contant term is in x>, therefore

- —oo —oo\\E,b
W(F) ! € "i<<t]1) 7"-7t£1 >>C;d+e

because n(F') € m((tf_oo, . ,tﬁ;m>>giz+e. The product n(F)~' - p(F) - f on the

right hand side of the above displayed formula makes sense because both formal
series p(F) is also an element of m((t’l’iw, e ,t];,;w»gZZJre.



