Selected Papers, Volume II






David Mumford

Selected Papers, Volume 11

On Algebraic Geometry, including
Correspondence with Grothendieck

Ching-Li Chai
Amnon Neeman
Takahiro Shiota

Editors

@ Springer



David Mumford

Division of Applied Mathematics
Brown University

182 George Street

Providence, R1 02912

USA

david_mumford @brown.edu

Editors
Ching-Li Chai Amnon Neeman Takahiro Shiota
Department of Mathematics School of Mathematical Sciences Department of Mathematics
University of Pennsylvania Australian National University Kyoto University
209 S. 33rd street Canberra, ACT 0200 Kitashirakawa-Oiwake-cho
Philadelphia, PA 19104-6395 Australia Sakyo-ku 606-8502, Kyoto
USA amnon.neeman @anu.edu.au Japan
chai @math.upenn.edu shiota@math.kyoto-u.ac.jp

ISBN 978-0-387-72491-1
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009931334

(© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

It is a tremendous pleasure to thank the editors Ching-Li Chai, Amnon Neeman
and Takahiro Shiota for putting this second volume of my algebro-geometric work
together. The first volume contained my papers on classification of varieties and
moduli spaces. At the time this was put together, it was not anticipated to go fur-
ther, but Chai, Neeman and Shiota, together with Springer have proposed to com-
plete this by publishing all my other papers in algebraic geometry plus the surviving
correspondence between me and Alexander Grothendieck. The editors have assem-
bled permissions, edited and typeset several unpublished manuscripts and edited and
commented Grothendieck’s letters to me (and a few of mine to him). This involved a
great deal of new typesetting and proofreading and, in addition to the editors, I want
to thank the large team of graduate students, of Yogananda, Chai and Neeman who
carried this out. The editors have also worked hard disambiguating the references in
Grothendieck’s letters—with little help from me because of my terrible memory. I
will always be in their debt because their work has made a readable and hopefully
useful tool out of a jumble of material in my files.

I also want to thank Jean Malgoire who has given permission on behalf of
Grothendieck for the publication of his letters. For me, personally, Grothendieck’s
letters were priceless and enabled me to understand many of his ideas in their raw
form before they were generalized too far and embedded in the daunting machin-
ery of his “Eléments”. It was an unequaled pleasure to have known him. He started
the movement which has added a vast and highly productive level of abstraction to
algebraic geometry (and many related fields), an approach which is still growing
and deepening today. I consider him the greatest genius with whom I have had the
opportunity to interact and I extend my heartfelt best wishes to him on this, the year
of his 80™ birthday.

Although I am not active in algebraic geometry, I have been watching some of
the spectacular developments in recent years. It is wonderful to see how the long at-
tack on birational geometry and the canonical ring in higher dimensions has paid off.
When I was in the field, it seemed as if there might be layer after layer of complexity
here, counter-examples galore. But no: a wonderful order has now appeared. Like-
wise, the structure and topology of the moduli spaces of curves is being tamed (at



Preface

least asymptotically). Perhaps resolution of singularities in characteristic p is near
solution. The Hodge conjecture still remains a mystery, though both positive and
negative hints have been found. As I said in my preface to volume I, this beautiful
story is not finished!

David Mumford

Tenants Harbor
August 2008
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Editors’ notes

The volume contains (1) reproductions of Mumford’s published papers, (2) four
unpublished papers, and (3) mathematical correspondence between Grothendieck
and Mumford, plus several letters from Grothendieck to other mathematicians.

We tried to provide the documents with a minimum of intrusion. In the case of
published articles the originals were reproduced; the Notes at the end of this volume
list misprints, a few mathematical errors, and a smattering of hints concerning rel-
evant later developments. Article [63b] is a special case: the published version was
a Japanese translation of Mumford’s manuscript, and here we included the typeset
original. The unpublished papers and letters were newly typeset; we corrected obvi-
ous errors silently, and used footnotes for comments and additional information.

As for the correspondence, we had to decide which letters to include and how
faithful to the original we wished to be. Adopting the view that this is primarily
a mathematical document, we reproduced the letters that contain interesting mathe-
matics, and tried to make the mathematics as accessible to the reader as possible. We
modernized the notation, adopting what has become standard in the last decades. In
the case of letters from Grothendieck, we asked ourselves how much we may, and
should, alter his English. In the end we decided to correct the spelling, add the occa-
sional missing pronoun or article, adjust minor grammatical errors, and improve the
punctuation, but to refrain from changing the wording, or correcting whole phrases.
The changes are made silently, without comments.

We would like to thank W. Messing, F. Oort and S.S. Shatz for always being
willing to offer us counsel on difficult decisions and marginal cases. Since we did
not always follow their advice, we alone are responsible for our mistakes; but it was
always good to have someone to turn to when we were uncertain what to do.

We would like to thank M. Kiinzer for his help in reading Grothendieck’s
manuscripts. To illustrate Kiinzer’s talent we reproduced an original page of the
letter of 18 October, 1962; the reader is invited to try to untangle what it says on
line —6 of the page. We asked quite a few people before we turned to Kiinzer, and
no one else was even close.

Many people helped us by contributing illuminating suggestions for footnotes to
the correspondence, and to a lesser extent, by pointing out mistakes in the pub-
lished papers and checking the errata against the originals. We are indebted to
them all. We especially wish to express our gratitude to M. Artin, J.-L. Colliot-
Thélene, P. Deligne, O. Gabber, P.A. Griffiths, R.M. Hain, L. Illusie, N.M. Katz,
S.L. Kleiman, FF. Knudsen, W.E. Lang, C. Liedtke, R.K. Lazarsfeld, A. Mayer,
W. Messing, T. Oda, M. Raynaud, J.-P. Serre, J. Stix and Y.-S. Tai.

The bulk of the typesetting was looked after by C.S. Yogananda at S.J. College
of Engineering, Mysore, and by team Sriranga at Sriranga Digital Software Tech-
nologies, Srirangapatna. Our thanks for their monumental effort. Yogananda also
gave us valuable LaTeX tips. We are also grateful to A. Auel, D. Fithian, S. Gupta,
A. Holschbach, A. Obus and P. Pandit, who typeset a few handwritten letters each.
G.S.D. Stevenson was the first to proofread the entire document and standardize the
mathematical notation; his help was invaluable.

August 2008 C.-L. Chai, A. Neeman and T. Shiota
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THE TOPOLOGY OF NORMAL SINGULARITIES
OF AN ALGEBRAIC SURFACE
AND A CRITERION FOR SIMPLICITY

By Davipo MUMFORD

Let a variety V" be embedded in complex projective space of dimension m.
Let PeV. About P, choose a ball U of small radius ¢, in some affine metric
ds® = 2dx; +Zdy;, z;=x;+iy; affine coordinates. Let B be its boundary and M=BnV.
Then M is a real complex of dimension 2rn—1, and a manifold if P is an isolated
singularity. The topology of M together with its embedding in B (=a 2 m— 1-sphere)
reflects the nature of the point P in V. The simplest case and the only one to be
studied so far, to the author’s knowledge, is where n=1, m=2, i.e. a plane curve
(see [3], [14]). Then M is a disjoint union of a finite number of circles, knotted and
linked in a 3-sphere. There is one circle for each branch of V at P, the intersection
number of each pair of branches is the linking number of the corresponding circles,
and the knots formed by each circle are compound toroidal, their canonical decomposition
reflecting exactly the decomposition of each branch via infinitely near points.

The next interesting case is n=2, m=3. One would hope to find knots of a
3-sphere in a 5-sphere in this case; this would come about if P were an isolated singularity
whose normalization was non-singular. Unfortunately, isolated non-normal points
do not occur on hyper-surfaces in any Cohen-MacCaulay varieties. What happens,
however, if the normalization of P is non-singular, is that M is the image of a 3-sphere
mapped into a 5-sphere by a map which (i) identifies several circles, and (ii) annihilates
a ray of tangent vectors at every point of another set of circles. In many cases the
second does not occur, and we have an immersion of the g-sphere in the 5-sphere. It
would be quite interesting to know Smale’s invariant in m,(V,5) in this case (see [10]).

From the standpoint of the theory of algebraic surfaces, the really interesting
case is that of a singular point on a normal algebraic surface, and m arbitrary. M is
then by no means generally S* and consequently its own topology reflects the singu-
larity P! In this paper, we shall consider this case, first giving a partial construction
of 7,(M) in terms of a resolution of the singular point P; secondly we shall sketch the
connexion between H,(M) and the algebraic nature of P. Finally and principally,
we shall demonstrate the following theorem, conjectured by Abhyankar:

Theorem. — w,(M) = (¢) if and only if P is a simple point of F (a locally normal
surface); and F topologically a manifold at P implies =,(M) = (e).
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6 DAVID MUMFORD

1. — ANALYSIS OF M AND PARTIAL CALCULATION OF r,(M)

A normal point P in F is given. A finite sequence of quadratic transformations
plus normalizations leads to a non-singular surface F’ dominating F [15]. The inverse

image of P on F’ is the union of a finite set of curves E;, E,, .. ., E By further quadratic

transformations if necessary we may assume that all E; are non-singular, and, if 74,
and E;nE;+¢, then that E; and E, intersect normally in exactly one point, which
does not lie on any other E,. This will be a great technical convenience.

We note at this point the following fundamental fact about E, : the intersection
matrix S=((E;.E;)) is negative definite. (This could also be proven by Hodge’s
Index Theorem.)

Progf. — Let H, and H, be two hyperplane sections of F, H, through P, and H,
not (and also not through any other singular points of F). Let (f)=H,—H,.
Let H; be the proper transform of H, on F’, and Hj the total transform of H,.
Then H;=H{+XImE,;, where m>o, all ¢ (here m; is positive since m;=ordy(f),
f a function that is regular and zero at P on F, and moreover P is the center of the
valuation of E; on F).

Let S"= ((m;E;.m;E;)) =M.S.M, where M is the diagonal matrix with M;;=m;.
To prove S’ is negative definite is equivalent with the desired assertion. Now
note (a) S;>o, if i%j, (b)) 2S;=2%(mE; mE,)=—(H{.mE;)<o, all j. For any

symmetric matrix S’, these two facts imply negative indefiniteness. To get definiteness,
look closer: we know also (¢) 2S5;<o, for some j (since H{ passes through some E,),
i

and (d) we cannot split (1,2, ..., 7) = (¢, %y, -« -5 %) U (J1s Jos « - -5Jny) disjointly so
that S{aibzo, any a, b (since UE, is connected by Zariski’s main theorem [16]). Now
these together give definiteness: Say

o=YaaS,=2u?S.+2 Y «uS;
i i<j

%) i Vi %524
— ’ 2 ! —x.)2
B (F)e =3 il
where «; are real. Then by (c), some o;=o0, and by (d), «;,=«;, all i, .

Our first step is a close analysis of the structure of M.  'We have defined it informally
in the introduction in terms of an affine metric (depending apparently on the choice
of this metric). Here we shall give a more general definition, and show that all these
manifolds coincide, by virtue of having identical constructions by patching maps.

In the introduction, M is a level manifold of the positive C* fen.

P=2,P+ ... +|Z,PB
(Z,; affine coordinates near PeF). Now notice that M may also be defined as the level
manifolds of p? on the non-singular I’ (p? being canonically identified to a fcn. on F’). It

is as a “tubular neighborhood” of UE;cF’ thatwe wish to discuss M. Now the general
problem, given a complex K cE”, Euclidean n-space, to define a tubular neighborhood,
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THE TOPOLOGY OF NORMAL SINGULARITIES OF AN ALGEBRAIC SURFACE 7

has been attacked by topologists in several ways although it does not appear to have
been treated definitively as yet. J. H. C. Whitehead [13], when K is a subcomplex
in a triangulation of E", has defined it as the boundary of the star of K in the second
barycentric subdivision of the given triangulation. I am informed that Thom [11]
has considered it more from our point of view: for a suitably restricted class of positive
C= fcns. f such that f(P)=o if and only if PeK, define the tubular neighborhood
of K to be the level manifolds f=e¢, small e. The catch is how to suitably restrict f;
here the archtype for f ~* may be thought of as the potential distribution due to a uniform
charge on K. In our case, as we have no wish to find the topological ultimate, we shall
merely formulate a convenient, and convincingly broad class of such f, which includes
the p? of the introduction.

Let us say that a positive C® real fcn. f on F’ such that f(P)=o iff PeE,, is
admissible if

1) VP eEi—jL*JiEj, if Z =0 is a local equation for E; near P, f=|Z|*.g, where g

is C* and neither o nor o near P.

2) If P;=E,nE;, and Z=0, W=o0 are local equations for E;, E; respectively
then f=|Z|*.|W|*.g, where gis C* and neither o nor co near P.

The following proposition is left to the reader.

Proposition: (i) If F'* dominates I’, and fis admissible for UE, on F’, and g : F""—F’
is the canonical map, then fog is admissible for g=*(UE,) on F".

(ii) For a suitable F”” dominating F’, p? is an admissible map for g *(UE,).

Let me say, however, that in (ii), the point is to take F’* high enough so that the
linear system of zeroes of the functions (X«;Z;) less its fixed components, has no base
points.

What we must now show is that there is a unique manifold M such that, if f is
any admissible fcn., M is homeomorphic to {P|f(P)=¢} for all sufficiently small e.
Fix a fcn. f to be considered. Notice that at each of the points P
coordinates X, Y,;, Uy, Vy;, such that

f= (K Y3 (U4 VE)riay,

Y

;j» there exist real C®

a;; a constant, valid in some neighborhood U given by

XE+Yi<1

Ui+ Vi<i.
Assume E;is X;;=Y;=o0, and E;is U;=V;=o.

Our first trick consists of choosing a C® metric (ds)? (depending on f), such
that within
Ure sX?j+Y§7-<I/2),
(U2 4 Vi<i/a)

ds* = d X3+ dY; 4+ d U+ d V3.
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Such a metric exists, e.g. by averaging a Hodge metric with these Euclidean
metrics by some partition of unity. Now let

be the normal 2-plane bundle to E; and normal S'-bundle to E; in F’ respectively.
Consider the map (exp);; N;—F’ obtained by mapping N, into F along geodesics
perpendicular to E;. Let f,= fo(exp),. Now for every point QeFE,—U,  E,, there
is a neighborhood W of Q) €E;, and an ¢, such that if ¢<g,, the locus f;(P)=¢, =,(P)eW
cuts once each ray in 77 *(W) (because f™ is a well-defined pos. C* fcn. vanishing on
the zero cross-section, with non-degenerate Hessian in normal directions; this is the
standard situation of Morse theory, see [9]). Consequently, for any WcE, open,
such that E;nW =g, j+1, there isan ¢ such that if e<¢,, the locus f{P)=¢ canonically
contains a homeomorphic image of ;" *(W) (recall (exp); is a local homeomorphism
near the zero-section of N;). Therefore, we see that the manifold M for which we are
seeking a definition independent of f; is to be put together out of pieces of S;; we need
only seek its structure near P;. Let us therefore look in U’. Let us fix neighborhoods
U;; of P;eE; and U of P; eE by (U;+4Vi)<i/4 and (Xj+Y})<1/4 respectively.
Let Ek_Ek il;JkU"j for all k. Now choose g<«, ;/8"*"i and so that if e<e,, f(P)=c¢

contains ¢;"*(E;) and {;*(E;) canonically. Then in the local coordinates in U’ about
P, 4 1(0E;) c{P| f(P) =<} equals

\(X Y. U. V IU2—1—V —I/ X?~+Y?-=<4Mj€>1lnil
? 4, 1] if

/R R i
if S

and {; '(9E;) c{P| f(P) =<} equals

n~ I/n
%(Xip Yl], Usz [Xz2;,+ _‘1/4') V2 < > ;
gl
(because of the Euclidean character of the metric ds® near P;;, exp; takes the simplest
4"¢
o5
are patched by a standard ‘“plumbing fixture™:

{0, 4, 0) [ (2 +07) <1/4, (@ +0°) < 1[4, (A°+07)". (@ +0°)" =<1 /87

1/"11
possible form!). Note < > <1/8. Therefore, we see that ¢;'(E;) and {;'(E;)

where n and m are integers.

One sees immediately that this is simply S* x S* X [o, 1], and if we set M; = {;!(E}),
then it simply attaches M; to dM;. Moreover, what is this attaching? There is a
coordinate system on both 8M; and dM; via
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X.. Y.. \\
!t ! =£eS! (in the usual embedding in E?)
\\/X2 + Y5 VXG+ Yw/

— | =7 €S (in the usual embedding in E?)

U77+ \/U izf//
and relative to these coordinates, the attaching is readily seen to be the identity. To
complete the invariant topological description of M, we need only to show that the
cycles {(, ny) |E€S!, », fixed} and {(&, 7) |&, fixed, n€S'} are invariantly determined
(since an identification of 2 tori is determined up to isotopy by an identification of a basis
of 1-cycles). But on M; for instance, the 1st one is just the fibre of S; over a point
of E;, and the 2nd is the loop 9E; lifted to S, so that it is contractible in ¢; (Uy); similarly
on M, but vice versa.

< U, Vi

This determines M uniquely. We have essentially found, moreover, not only M
but also for any fixed f, maps
¢ : M—UE;
$ :{P|o<f(P)<e}->M

where ¢ induces a homeomorphism of any {P|f(P) =¢'<ec} onto M. Namely, define ¢
on M; by {;: projection into E,, and in U’ near P define it as follows (fig. 1):

>
o((Xy, Yy, Uy, Vi) = (0, 0, Uy, V,)eE, if Ui+ VZi>1/4

( ijs i =

= (0, 0, pU;;, pV;,)eE, if X5+ Y5 <UL+ Vi<1/4
=(p' Xy, p'Yy, 0, 0) €E; 1fU2+Vf7<ij+ 17\1/4
= (

X, Y, 0,0)€E; if XE4 Y5> 1/4,

1]3 1,]9

where =1( @-;—I-Yf',,Uz‘l'Vz)
p (U12]+ 9 X2+Y2)
_pf—a
and where (o, B) = —

As for ¢, away from P, define ¢ by first (exp);’, then the projection of N;—
(o-section) to S;, and then the identification of S, into M ; near P;;, define it by identifying
those points whose £ and v coordinates are equal, and that have the same image in
E,uE; under the map ¢.

Note that ¢ induces a map o, : 7, (M)->= (UE,), which is onto as all the “fibres”
are connected (*). In order not to be lost in a morass of confusion, we shall now restrict
ourselves to computing only H, in general, and =, only if =,(UE,)=(¢). Note thats
this last is equivalent to (a) E, connected together as a tree (i.e. it never happens
EnE,+0, E;nEj+0, ..., E,_ nE #0, ENnE +6 and £>2 for some ordering of
the E/s), (b) all E, are rational curves.

First, to compute H, (M), start with H,(UE,). Let UE,, as a graph, be p-connected,

(!) M is, of course, not a fibre space in the usual sense. However, the map ¢, in question is onto for any
simplicial map such that the inverse image of every point is connected.
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10 DAVID MUMFORD

i.e. there exist some P,, ..., P, such that if these points are deleted from UE;, then UE:
becomes a tree, but this does not happen for fewer P,. Choose such P,, and to UE,—UP,,
for each P;, add two points P; and P;’, one to each E; to which P, belonged. The result,

T, is, up to homotopy type, simply the wedge of the (closed) surfaces E; (). UE, is
itself obtained from T by identifying the p pairs of points P;, P;"; therefore up to homotopy

v 2

A=x24+y2

1/4‘ -"-'--':,?l(%-.1/4)

A"B™=¢

B=u?+v?

+v

Fig. 1

type, it is the wedge of E, and p loops. Therefore H,(UE) =Z""2% where g; is the
genus of E,.

Now ¢, induces an onto map H,(M)—H,(UE;), by passing modulo the commu-
tators. Let K be its kernel. Let «; be the loop or cycle of M consisting of the fibre of
Moversome pointin E,—U,_;E; with thefollowing sense: if f; = o is a local equation for E;,

or equivalently «; as a loop about the origin of a fibre of the normal bundle N; to E,

should have positive sense in its canonical orientation. I claim «; generate K, and
their relations are exactly X(E;.E)a;=o0,i=1,...,n.

(*) For example, proceeding surface by surface in any order, we may deform the complex UE; so that all
the E; which meet some one E; meet it at the same point.
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Proof. — First introduce the auxiliary cycles @; on ¢~ '(E,)=M,, whenever
E,nE;=(P;) + 0. Namely, move the cycle «; along the fibres until it lieson ¢~'(P;) cM;,
and there call it ;. By my construction of the patching of M; and M;, we know
that B; is what I called », while o; is & Now compute the subgroup K; of H,(M,)
defined by

o—-K,—H,(M,) >-H,(E,) »o

L

o—-K—H,(M)—-H,(UE;) -o.
As above, let U, be a small disc on E; about P;, and E;/=E,—UU

R U
and M;=¢ '(E). Then M; is a deformation retract of M, Jand is, on the one hanyd
canonically the restriction of the bundle S; to E;, and on the other hand uncanonically
homeomorphic to S!'XE;. In this last description, «; is canonically identified to
St x (point), while §,; are identified to (point) x ¢(U,;) only up to adding a multiple of «,.
Therefore we see that K; is generated by «;, @;, with one relation ()

2{3” + Ndi — 0, some N.
j

To evaluate N, note that f; considered as cycles in S; are locally contractible (i.e. in
the neighborhood of ¢~!(P;) described by my plumbing fixture). It is well known
that when the oriented fundamental 2-cycle of E, is lifted to S;, its boundary is (E?)«,.
Therefore, this same lifting in M; will have boundary 38,4 (Ef)«;. Now by the
Mayer-Vietoris sequence, H,(M) is generated by H,(M,), h’ence K is by K;, and has
extra relations imposed by the identification of cycles on M;nM;. Since H,(M;nM,)
is generated by @; and Bj;, these relations are implicit in our choice of generators.

As a consequence of our result, since det(E;.E;)=u+o0, K is a finite group of
order p, and is the torsion subgroup of H,(M).

Now consider the case E; rational, and UE, tree-like. We shall compute (M),
using w,;(M,) as building blocks. In order to keep these various groups, with their
respective base points, under control, it is necessary to define a skeleton of basic paths
leading throughout E;. Let QieEiM,giEi be chosen as base point in E,. On E,;,
choose a path /; as illustrated in Diagram II touching on each P, eE,. Lift all the [
together into M by a map s, so that ¢(s(};)) =1, and so that at ¢ ~'(P;), s(/;) ns(l;) + 0.
Choose, e.g. s(Q,) as base point for all of M. Let G=U/,. Now the lifting s enables
us to give the following recipe for paths «;:

1. Go along 5(G) from s(Q,) to a point P in M;.

2. Gooncearound the fibre of M, through P in the canonical direction explained above.

3. Go back to s(Q,) along s(G).

(*) In the map HI(E:)—>H1(Ei), the kernel is generated by {a(UH)} with the single relation X;_;2(U;;) =

2 (fundamental 2-cycle of E:) ~o.



12 DAVID MUMFORD

This is clearly independent of the choice of P.

Our result can now be stated: firstly, the «; generate m; secondly, their only
relations are (a) «; and o; commute if E,nE;+0, (b) if k= (E}), and Eil’ E,..E
are those E; intersecting E;, written in the order in which they intersect /;, then

ki
= o Ol . R
¢ 0(710..7’, ey rx]m:xl

To prove this, we use the following theorem of Van Kampen (see [8], p. 30):
if X and Y are subcomplexes of a complex Z, and Z=XuY, while XnY is connected,
then =,(Z) is the free product of =,(X) and =,(Y) modulo amalgamation of the sub-

Fig. 2

groups w,(XnY). Now since E; is tree-like, M can be gotten from the M, by successively
joining on a new M; with connected intersection with the part so far built up. Let =,(M;)
be mapped into =,(M) by mapping a loop in M, with base point 5(Q,) to one in M with
base point s(Q ) by simply tagging on to both ends of it the section of s(G) joining these
two points. Then 7, (M) is simply the free product of the =,(M,) with amalgamation
of the loops in M;nM,. Now recalling the structure of M;, we have an exact sequence
that splits:
0 = 74 (81) > 7 (M) = 7, () 0

(St the fibre of M;, a 1-sphere). The path «; is clearly a generator of =,(S') here, and
hence in the center of =, (M;).

Now the important thing to notice is that if E; meets E,, then «; in =,(M;) can
be moved by modifying the point P on s(G) where «; detours around the fibre St; in
particular, it may do this at s(})ns(}). In that position the loop «; may be regarded
canonically as in w,;(M;). Under the identification of =,(M,) to =, (M;) and the
projection 7 of this group onto =,(E;), what happens to the loop «;? Recalling the
patching map on the boundaries of M; and M; which was examined above, we see that

this path proceeds along G from Q to near P, then circles around the boundary of Uj;

236
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in a positively oriented direction, then returns along G to Q;. Referring again to our
diagram, we see the relation e:'rc(ocjl) .ﬁ(ocjz). -...m(oy ). Now it is well-known that
these loops m(x;) generate the fundamental group of the m-times punctured sphere,
and that this is the unique relation. Consequently, looking at the above exact sequence,
it is clear that o, % 5 s % (when distorted into M; as indicated above) generate =, (M,).
Moreover, the only relations among these generators are, therefore, that o; and o

commute, and «; . . ... ew,(St),i.e.=a«). But,using ourresultson H (M), N=—(E2?).
1, Tm 1 1 S 1 > i

It follows that «; generate w,(M) with relations (2) and (), and that the only
additional relations are those coming from the amalgamation of w,(M;nM;)=Z 4 Z.
But «; and «; are generators here, and as loops in M; and M;, these have already been
identified. Hence we are through, Q.E.D.

II. — ALGEBRO-GEOMETRIC SIGNIFICANCE OF H,(M)

(a) Local Analytic Picard Varieties and Unique Factorization.

We shall study in this section two questions of algebro-geometric interest in the
solution of which the topological structure of M, in particular its homological structure,
is reflected. The first of these is the problem of the local Picard Variety at PeF.
Generally speaking, this, as a group, should be the group of local divisors at P modulo
local linear equivalence to zero. (We shall be more precise below.) However, if by
divisor one refers to an algebraic divisor and by local one means in the sense of the
Zariski topology, one sees by example that the resulting group has little significance:
it is not local enough. Ideally, one should mean by an irreducible local divisor a
minimal prime ideal in the formal completion of the local ring of the point in question.
However, I have been unable to establish the structure of the resulting Picard group.
A compromise between these two groups is possible over the complex numbers. Take
as divisors analytic divisors, and the usual complex topology to interpret local. There
results a local analytic Picard variety that is quite accessible. In this section, we shall
first analyze the group of local analytic divisors near UE; modulo local linear equivalence
and then consider the singular point P. Here by local analytic divisors we mean formal
sums of irreducible analytic divisors defined in a neighborhood of UE,; (including the
divisors E,; themselves). Such a sum, X#,D,, is said to be locally linearly equivalent
to zero if there exists a neighborhood U of UE; where all D, are defined and a meromorphic
function fon U such that (f)=2%n(D;nU). This quotient we shall call the local analytic
Picard Variety at UE;, or Pic (UE,)).

Denote by Q the sheaf of germs of holomorphic functions on F’; by Q'cQ the

sheaf of germs of non-zero holomorphic functions. One has the usual exact sequence:
27T *
0-Z—0 2 o Lo

where Z is the constant sheaf of integers. Let w: F’—F be the regular projection
from the non-singular surface F’ to the singular F.

237
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14 DAVID MUMFORD
Proposition. — Pic(UE,) ~(R'x)(Q"5p.

Proof. — Define Pic(VE,)—(R'n)(Q")p, by associating to ZmD,, defined
in UbUE,;, the following 1-cocycle: assume PeV,n (V)cU, assume f is a
local equation for EnD; in V;, {V,} a covering of V, then {f/f,}eH'({V,}, Q)
induces an aeH'(x7!(V), Q"), hence an «'e(R'w)(Q")y, hence an «' e(R'n)(Q")p.
It is well known that aecH'(x"!(V), Q") is uniquely determined by ZnD,, hence

(B ]
"

so is a'’.

To see that Zn,D,—~a«’" is1—1,say «’’=o0. Therefore IV'cV say, Resya’ =o,
i.e. Res . y)(x) =0. Therefore the covering {V;nr~"(V')}={V/} has a refinement{V;'}
such that there exist non-zero functions g, on V' such that g, /g, =f., [/, (for some

map 7 from the indices of {V;'} to those of {V;} such that V;’cV,). Therefore f S
defines a function throughout == !(V’) such that (f)=2%nD,. &

To see that XnD,—a” is onto (R'm)(Q")p, let B"e(R'n)(Q")p be represented
by BeH'(n"'(V), Q") and let this define the line bundle L over =~ *(V) in the usual
way. Let # be the sheaf of germs of cross-sections of L: a coherent sheaf. Now by
a result of Grauert and Remmert (cf. Borel-Serre [2], p. 104), (R%z)(_#) is coherent
on F. But (R°%)(#) is not the zero sheaf on F (at all points Q +P, #,~(R’x)(7),),
hence there exists some element Se(R°%)(#)p, S&0. S corresponds to a section
in ¢, .y, for some open V’'sP, V'cV. Therefore, the line bundle L |x~*(V) has a
section S. But if B is represented by a cocycle f;; with respect to a covering {V,} of V,
then S is given by a set of holomorphic functions f; on V; such that f=f(f;). It

K

follows that f;=o define a divisor which is represented by B.

A. Grothendieck has posed the problem, for any proper map f:V,—V, (onto),
to define a relative Picard Variety of the map f. It seems clear, in the classical case,
that if Q" is the sheaf of holomorphic units on V,, (R!f)(Q") is the logical choice
although no nice properties have been established in general so far as the writer knows.
In our case, (R'f)(Q")y, for Q+ P, issimply (1), but at P, we have seen it to be Pic(UE,).
We now wish to show that in our case, (R'f)(Q"); is an analytic group variety. This
is seen by the exact sequence for derived functors:

0 (R'x)(Z) - (R%7)(Q) > (R')(Q") -

—(R'm)(Z) 5 (R'm) (Q) - (Riz) (Q) >
—(R?r) (Z) >

(i) Note first that if xe(R°x)(Q")p, then x is a non-zero function on = '(V),
PeV, and necessarily constant on UE; which is connected and compact, therefore,
at least on some = '(V’),PeV’'cV,x=exp (271y), y a holomorphic function on =~ 1(V’),
hence x=10(y), ye(R)(Q);.

(ii) Note secondly that (R'x)(Z),~H'(UE,, Z), since for PeV, V small, ==(V)
is contractible to UE,.

238
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(iii) Note thirdly that if i>o, (R'x)(Q)q=(0) for Q+P, and being a coherent
sheaf, for Q =P must be a finite dimensional vector space over C.

(iv) Note fourthly that if yeH*(UE,, Z)~(R?r)(Z)p, there exists ae(R'x)(Q"),
such that Ya=7y. To show this, note that H*(UE,, Z) ~Z", (n=number of irreducible
curves in UE,) with generators y; whose value on the 2-cycle E, is §;; it is enough to
verify it for the generators y;. But let D, be an irreducible analytic curve through

QeE,— UE,, with a simple point at Q, and tangent transversal to that of E; at Q. If
71¥1
D,—a,e(R'7)(Q"), I claim Yo;=v; This is left to the reader. Therefore, we obtain

0—HY(UE,, Z) % (R'x)(Q),— Pic (UE,) - H}(UE,, Z) >0
U

C¥, some N.

(v) Note lastly that y maps HY(UE,, Z) into a closed subgroup of (R!rw)(Q)p,
hence the connected component of Pic(UE,) is an analytic group. If this were false,
there would be a real sum of elements of HY(UE,, Z) that was zero without having to
be, i.e. {a;}eH(="'(V), R) (with respect to some covering {U,;}) such that {a;}~o0
in the sheaf Q (in some =~'(V’), V'cV). In other words, «;=f,—f;, f; holomorphic
in U;. Butlet p, be a real, C* function on U, such that «;=p,—p; (Poincaré’s lemma).
Then f;—p;=F,df;=w and dp,=m, are defined all over =~ }(V'), o—n=dF. 1
claim actually all the periods of v are zero (which implies n=df, and {e;}~o0 in
HY(UE,, R) and we are through). First of all, the periods of n equal those of ». Look
at its periods on the 1-cycles of any E;: since 7 is real, all the periods of the holomorphic
differential « are also real. But it is wellknown that then all the periods of « must
be identically zero, and therefore « reduces to zero on paths in E,. Since this is true
for all 7, » has no periods along any path in UE,, and since =~ *(V’) is contractible to UE;,
o has no periods at all. Therefore neither does n and we are through.

There is another way of looking at Pic(UE,). Namely, let o be the local ring
of (convergent) holomorphic functions at P, i.e. (R%x)(Q)p (by the theorem of Riemann,
cf. the report of Behnke and Grauert ([1], p. 18)). Now every divisor D’ in =~ '(V’),
except for the E/’s, defines a divisor D in V', hence a minimal prime ideal p in 0. Let us
set Pic(P) equal to the group of ideal classes in 0: i.e. to the semi-group of pure rank 1
ideals a of o, modulo the principal ideals (1). Then the association of D to p defines a
map from Pic(UE,;) -Pic(P), (if we define the image of each E; to be (1), the identity).
This is quite clear once one sees that every meromorphic function fin =~ *(V) is a quotient

(1) The composition law is the “Kronecker” product treated so elegantly by Hermann Weyl [12], cf. chapter 2,
namely:

(a, b)) —>rank 1 component of a.b

=U (a.p) : m®
n=1

where m = maximal ideal of ©
(:) = residual quotient operation.
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16 DAVID MUMFORD

of two holomorphic functions in some 7~ '(V’), V'cV: but given f, consider the coherent
sheaf # given by {g|(fg) is a positive divisor}. (R’z)(#) is coherent, hence there
exists g,€(R°7)(#)p, and if fg,=g,, then f=g,/g, is the desired decomposition. Now
the map Pic(UE,)—Pic(P) is onto as every minimal prime ideal pco defines some
divisor through P. Its kernel is immediately seen to be generated by the E, themselves.

Hence we see

Pic(UE,
Proposition: L’) =~ Pic(P)
{Zn,E;}

Corollary. — We have
0 - H(UE,, Z) > (R1%)(Q), > Pic(P) 5 H,(M),—o

where H,(M), = torsion subgroup of H,;(M) and ¢ associates to the divisor D through P,
the 1-cycle DnM.

Proof of Corollary: Note that XmE, is never in the image of (R!n)(Q), since that
would require (ZnE;, E)=o0 for all j. To see the exactness at ¢, note that the
co-kernel of ¢ is obtained by associating to a divisor Zz,D; (where we may assume
E,nE,n (LlJSupp D)) =g, all is%j) the formal sum

> (EniDi.Ek)Yk modulo {3(E;. E)v.!,
K\ (i J

the v, as in (iv) above. But ¢ is given by associating to Zn;D,, the element

%(ZniDi . Ek) %pes
in terms of our basis for H,(M), in (I); but by our enumeration of the relations on the «,
we see vy, can be interchanged with «.

Do these results have purely algebraic counterparts? First, note that it is hopeless
to expect that the ideal structure of o, (= algebraic local ring of P on F) will reflect the
homology of the singularity so well. This is seen in the following example: Take a
non-singular cubic curve E in the projective plane, and let P, ..., P;; be points on E
in general position except that on E the divisor X#*P,=75 x (plane section). Blow up
every point P; to a divisor E,, and call F’ the resulting surface. On F’, the proper
transform E’ of E is exceptional: it is shrunk by the linear system of quintics through
the P;,. 'Then E,—E, as a divisor in Pic(E’) is in the component of the identity, but
as an algebraic divisor is not algebraically locally equivalent to zero: in fact F’ is regular,
hence algebraic and linear equivalence are the same, butsince Try (E;—E,;) # o, E,—E;
is not locally linearly equivalent to zero.

However, I conjecture that the ideal class group of 0* (= completion of o, and )
is identical to that of o, and that sums of formal branches through UE, modulo holomorphic
linear equivalence (in the sense of Zariski [17]) gives Pic(UE,). If this is so, it should
give Pic(UE,) an algebraic structure, which would be a decided improvement on our
results. At present, I am unable to prove these statements.
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(b) Intersection Theory on Normal Surfaces.

We consider here the problem of defining, for divisors A, B through P on F, (a)
total transforms A’, B’ on F’, and (b) intersection multiplicities ¢(A.B; P). This
problem has been posed by Samuel (see [7]) and considered by J. E. Reeve [19]. In
this case, I suggest the following as a canonical solution:

a) To define A'=A[+2r,E;, where Ajis the proper transform of A, require

(A" E)=o0,i=1,2,...,n
or

(AJ.E) +37(E.E)=o0,i=1,2, ...,
7

Since det(E;.E;) =p+0, this has a unique solution.
b) To define i(A.B; P), set it equal to

(A".B’) over P
= S [i(A}.By; P) + Sri(E,. By; P)]

P'over P
= S [i(A]Bis P') + si(Ap. B )]
P’overP
where

A’ =A,+3rE; B =B+ 35K,

[

We note the following properties:
(i) A=(f)p, then A’=(f)p; hence A=B implies A’=B
Proof. — For ((f)p.E,) =o0.

(i1) A effective, then all 7; are positive.

Proof. — Say some 7,<o. Say also r,/m;<r/m,;, all j, where the m; are the same
as in the proof of negative definiteness. Then we see:

OZZT;‘(E;"EJ =er/mj (m;E;. E,),
i i
>r1;[m2 (m;E;. E;) > o.
7

Therefore, if E,nE;+0, r,/m;=r,/m; and r,<o. As UL, is connected, this gives
ultimately 7,/m;=R, independent of i. But then also (EZmE;.E;)=o, all i, which
contradicts property (¢) in the proof just referred to.

(iii) ¢(A.B; P) is symmetric and distributive.

(iv) A and B effective, then ¢(A.B; P) is greater than o.

(v) ¢(A.B; P) independent of the choice of F’.

Proof. — To show this, it suffices, since any two non-singular models are dominated
by a third, see Zariski [15], to compare F’ with F”’ gotten by blowing up some point P’
over P. But let A’, B’ be the total transforms of A, B on F’, and A’’, B"" those on F”,
and let T be the map from F” to F’. Then with respect to T, A"’ is the total transform
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of A’on F”’, and B” that of B’. In that case it is well-known that, for any point set S in F’
(including all the points of any common components of A’, B’), (A".B")g=(A".B")p-..
(vi) A’ is integral if and only if X(Aj.E)e;=o0 in H,(M).
Proof. — X(Aj.E,)a;=o0 if and only if there are integers £; such that
(Ag-E;) =2k (E, . Ey),

i.e. if the relation X(A,.E;)o;=o0 is an integral sum of the relations defining H,(M).
But this is equivalent to (Aj+ 2k E;.E) =0 for all 7,i.e. A'=Aj+ZLE
Q.E.D.

The element Z(A;.E,;)«; has this simple interpretation: if M is chosen near enough
to P, it represents the 1-cycle AnM. We see that this is again the fundamental map:
(Group of Local Divisors at P)—~H,;(M) considered in the final corollary of part (a).
By the results of part (a), moreover, we can interpret (vi) as saying: A’ is integral if and
only if A is locally analytically equivalent to zero (i.e. A is in the connected component
of Pic(P)). Essentially, our definition of intersection multiplicity on a normal surface
is the unique linear theory that has the correct limiting properties for divisors that can
be analytically deformed off the singular points.

;> k; integral.

III. — THE CASE =, (M) = (e)

We shall prove the following theorem, stronger than that announced above:

Theorem. — Let F be a non-singular surface, and E;, i=1, 2, ..., n, a connected
collection of non-singular curves on F, such that E,nE; is empty, or consists of one
point on a transversal intersection, and E,nE;nE, is always empty. Let M be a tubular
neighborhood of UE,, as defined in section I. If (a) =,(M)=(e¢), and (b) ((E;.E;))
is negative definite, then UE, is exceptional of first kind, i.e. is the total transform of
some simple point on a surface dominated by F and birational to it.

Proof. — As above, w;(M)=(¢) implies that all E; are rational, and connected
together as a tree. Now suppose that UE, is not exceptional of first kind. Assume
that among all collections of E, with all the properties of the theorem, there is no collection
not exceptional with fewer curves E,. As a consequence, no E; of our collection has
the two properties (a) (E})=—1, () E, intersects at most two other E;. For if it did,
one could shrink E, by Castelnuovo’s criterion, preserving all the properties required
(that the negative definiteness is preserved is clear as follows: the self-intersection of a
cycle of the E’s on the blown down surface equals the self-intersection of its total transform
on F which must be negative). We allow the case where there is only one E;,. Now
the central fact on which this proof is based is the following group-theoretic proposition:

Proposition. — Let G;, i=1,2,3, be non-trivial groups, and 4, an element
of G;,. Then denoting the free product of A and B by AxB, it follows
G, #G,#Gy/modulo (a,a,a,=¢) is non-trivial.
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Proof. — First of all, if co>n,ny, n>1, then 7, xZ, x7Z, [(a,a,a;=¢) isnon-trivial,
where Z, denotes the integers modulo £, and each g; is a generator. For, as a matter
of fact, these are well-known groups easily constructed as follows: choose a triangle with
angles w/n,, w/n,, and =/n, (modular if some n,=o0), in one of the three standard
planes. Reflections in the three sides of the triangle generate a group of motions of
the plane, and the group we seek is the subgroup, of index 2, of the orientation preserving
motions in this group. Secondly, reduce the general statement to this case by means of:

(#) If n=order of a, in G,, and g, is identified to a generator of Z,CG,, then
G *GyxG,/(a,a,a,=¢) trivial = Z, % G,xG,/(a,a,a, =¢) trivial.

To show this, let H=G,%G;/((aya;)"=¢), and note that H is isomorphic to
Z,%G,xGy/(a,asa,=¢). Let n’ be the order of g, in H. Then G;%G,%G,/(a,a,a,=¢)
is the free product of G,/(a} =¢) and H with amalgamation of the subgroups generated
by a,a; and a;'. But by O. Schreier’s construction of amalgamated free products
(see [5], p- 29) this is trivial only if H is, hence (#). Now the proposition is trivial if
any q;=e¢; hence let n,=order (g)>1. By (#) iterated, G,*G,*G;/(a,a,a;=¢) trivial
implies Z, *Z, xZ, [(a,a,a;=¢) trivial, which is absurd. Q.E.D.

Returning to the theorem, we wish to show the absurdity of =,(M)= (¢), while
no E,; is such that (a) (E})=-—1, and (b) E; meets at most two other E,. There are
two cases to consider: either some E; meets three or more other E;; or every E; meets
at most two other E; (this includes the case of only one E,).

Case 1. — Let E, meet E,, ..., E,,, where m is at least 4. For i=2,3,...,m,
let T; be the set of E’s (besides E,) such that E; is connected to E; by a series of E;
other than E,. The T;s are disjoint. Let M; be the manifold bounding a
neighborhood of T; as above. Let G;==,(M,), and G ==,(M)/modulo «, =e, where «;
represents, as in (I), the loop about E;. Then by the results of (I),

G=G,*G,, ..., %G, [(y05.. ... a,,=¢),

if the G, are ordered suitably, and «; in G, represents a loop about E,. Now m>4,
and 7,(M)=(¢), hence G= (¢), hence by the above theorem, there exists an ¢ (say
i=2) such that G,=m,(M,)=(¢). By the induction assumption, the tree of curves T,
is exceptional of first kind. Therefore, by Zariski’s theorem on the factorization of
anti-regular transformations on non-singular surfaces (see [18]), some E; in T, enjoys
the properties (a) and (b) with respect to T,. Then E; would also enjoy them in UE;
(which is impossible) unless E;=E,, in which case E; could meet only two other E,
(say E, ., E,.,) in T,, but would meet three other E, in UE,. Pursuing this further,
apply the same reasoning to the curve E, which meets exactly three other E,. Again,
either some curve shrinks, or else either E, E,, ., or E, , , hasin any case property (a),
i.e. self-intersection — 1. But then compute ((E,+ E;)?) (¢=1, m+ 1, or m+ 2 according
as which E, has property (a)), and we get o, contradicting negative definiteness of the
intersection matrix.
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Case 2. — It remains to consider the case where no E, intersects more than two
others. Then the E; are arranged as follows:

Fig. 3

In this case, it is immediate that 7, is commutative, hence=H,. It is given (in
additive notation) by the equations:

R T =0
—oy kot — g ... =

— gty ... =0

'—a’n—l_}_knan =0,

where k;=—(E?). Assume all k,>2, and prove

kk —1 o 0 it 0

—1 ky, —1 0 ........ 0
w=det o —1 ki —1........ o |>1,

0. . . . ... .. 0 —I k

hence the equations have a solution mod u. To show this, use induction on 7, using
the stronger induction hypothesis £,>1, k,, ..., k,>> 2, allowing £, to be rational. Then
note the identity:

k, —1 0 ...0 (ky—1/k,) —1...0

— k —1I ... — ky ...
det| —1 % P % g det ! 3o @

o —1 k 0 ..:... —1 k

This completes the proof of our theorem.

Corollary. — P a normal point of an algebraic surface F. If F has a neighborhood U
homeomorphic to a 4-cell, P is a simple point of F.

Proof. — Let W be the intersection of an affine ball about P with F, as considered
in the introduction, and so small that its boundary M lifted to a non-singular model F’
dominating F qualifies as a tubular neighborhood of the total transform of P. It suffices
to show that =, (M)=(¢), in view of the theorem just proven. Let U’ be a 4-cell-
neighborhood of P contained in W, and let W’ be an affine ball about P contained
in U’.  We have constructed in section I a continuous map ¢ from U’— (P) to M that
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induces the canonical identification of M as the boundary of W’ to M (as the boundary
of W). Therefore if v is any path in M, regard y as a path in the boundary of W’; as
a path in U’— (P) (which is homotopic to a g-sphere) it can be contracted to a point;
but then ¢ maps this homotopy to contraction of y as a path in M. Q_.E.D.

IV. — AN EXAMPLE

It is instructive to note that there exist singular points P, for which H,(M) = (o),
while, of course, =;(M) = (¢). Take P to be the origin of the equation 0= x? 4 y?+4 7",
where p, ¢, and n are pairwise relatively prime. Look at the equation as — (z)" = x” -+ *;
this shows that M is an n-fold cyclic covering of the g-sphere |x|*+ | y[?=1,x,» complex,
branched along the points x” +3)?=o0, i.e. along a torus knot, K, in S%. Therefore M
is a manifold of the type considered by M. Seifert [20], p. 222; he shows H,(M) = (o).

The singular point 0=2"+)"+2° is of particular interest as illustrating the
possibility of a singular point on a surface whose local analytic Picard Variety is trivial
contrary to a conjecture of Auslander. To show Pic(P) (P=(o,0,0)), is trivial
amounts to showing (R'7)(Q),=(0), where =:F'—F is the map from a non-singular
model to o=x*+)*+2* (since we know H,(M)= (o) already). Let us choose a
slightly better global surface F (our statement being local, we are free to choose a
different model of £(F) outside a neighborhood of P): namely take F, to be the double
plane with sextic branch locus B :u(u?)® +2°), whereu, y, z are homogeneous coordinates.
F, has two singularities: one is over y=z=o0 and this is P; the otheris over u=z=o0
—callit Q. Let F, be the result of resolving Q) alone, and F, be the non-singular surface
obtained by resolving P and Q. Let =:F,—F,. We must show (R'w)(Qg),~(0).
But since (R'7)(Qy,) is (0) outside of P, it is equivalent to show H°(F,, (Rlx)(Qg)) = (0).
First of all, note that F, is birational to P?: indeed o=x"+5°+2° is uniformized by the
substitution:

x=1/*P(u+0)", y=—1/u’(u+0)°, 2=—1/ur*(u+0)%

Therefore o=H!(F,, Qp ) =H?(F,, Qp). Now consider the Spectral Sequence of
Composite Functors:

H' (F,, (R'7)(Qp,)) 5 HY(F,, Q).

Noting that (R’%)(Qp)=Qy, it follows:

a) Ht (Fy, Q) = (0)
b) dy': H'(Fy, (R'%)(Qg,)) ~H2(F,, Qp)

1s 1—1, onto.

Therefore, it suffices to show H*(F,, Q)= (0), or 0>,(F,) (=dim H2—dim HY).
Now unfortunately p,(F;) =1, since, in general, if G is a double plane with branch
locus of order 2 m, p,(G) = (m—1)(m—2)/2 (none of the singularities of G being resolved,
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of course) (). To compute p,(F,), embed F, in a family of double planes F, ,, where
the branch locus B, for F,, is
u(uy*+2° + au'z).

Now F, , have singularities over u=z=o0 of identical type for all «, hence one may
resolve these, and obtain a family of surfaces F, , containing F,. But since B,, for
general a, has no singularity except u=z=o0, the general F, , is non-singular. Now by
the invariance of p, [21], p,(F,) =p,(F,,) <dim H¥F, ,, Q) =dim H’(F, ,, Q(K)), K
the canonical class on F, ,. But if « is the double guadratic differential (i.e. of type
A(dx . dy)? locally) on P2 with poles exactly at B,, one can readily compute (f, w), where
Jat Fi ,—P?%; it turns out strictly negative, and as it represents 2 K, it follows

b,(Fy ,) =dim H'(F, ., Q(K)) =o.

For details on the behaviour of p, of double planes, which include our result as a particular
case, see the works of Enriques and Campedelli cited in [4], p. 203-4, and the doctoral
thesis of M. Artin [Harvard, 1960].
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APPENDIX

THE CANONICAL RING OF AN ALGEBRAIC SURFACE
By DAVID MUMFORD

In this appendix we wish to examine how the general theory developed
by O. Zariski applies to the canonical divisor class. To be precise, suppose
F'is a non-singular algebraic surface over an algebraically closed field £,
which

(a) is not birationally equivalent to a ruled surface, and

(b) is minimal [11].

Moreover let K be the canonical divisor class. We set
R = @®;_ H'(0,(nK)) ,

and we call R the canonical ring of the surface (R = R*[K] in Zariski’s
notation). There are three essentially different cases to consider accor-
ding as (K?) is negative, zero, or positive. We assert:

9 The assumption that dim|hD| > 0 for some & is necessary. Thus, it is possible to have
a prime cycle E such that (E'2) = 0 (and which is therefore arithmetically effective, whence
&£=0) and such that dim|nE| =0 or all n (whence B, =nFE, and B, is not bounded).
To obtain such a cycle E, we use the construction of §2, with the following modifications:
we take for E’ a generic plane section of F’, we take for 2 the divisor class determined
on E’ by |E'| (i.e., we take for h the integer 0) and we determine P, P}, ---, P, (where
m = (E'?)) by the condition (4). Then it is immediate that the proper transform E of E’
satisfies the desired conditions.

D. Mumford, Selected Papers, Vol. 11,
© Springer Science+Business Media, LLC 2010
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THEOREM. (i) Under the above hypotheses, (K?) < 0 s impossible.

(ii) If (K*) =0, then for some n either nK = 0, or | nK | is a linear
system without base points, composite with a pencil. Therefore R is a
Sinitely generated ring of dimension 1 or 2.

(iii) If (K?) >0, then for sufficiently large n, | nK | is a linear system
without base points. Therefore R is a finitely generated ring of di-
mension 3. Moreover s(nK) = dim H(0,(nK))=0 for sufficiently large n.

Only the proof of (iii) will be given in this Appendix, since the proof of
(i) and (ii) is rather long and will be published elsewhere. If the charac-
teristic is 0, the latter proof depends chiefly upon Enriques’ theorem: if
I is a relatively minimal non-singular algebraic surface, and |nK| is
empty for all n, then F is ruled. The first complete proof of this in charac-
teristic 0 (and of its refinement: if | 12K | is empty, then F'is ruled) was
obtained several years ago by K. Kodaira (unpublished). In characteristic
p, new difficulties arise, but Enriques’ result and parts (i) and (ii) of the
theorem can still be proved.

We shall now establish (iii). Notice first that by the Riemann-Roch
theorem, either | nK | or | —nK | is non-empty for large n. The latter case
is impossible. For suppose ¢ is the irregularity of F' (= dimension of the
Picard variety), and p is the base number (= rank of the Neron-Severi
group). Then by Noether’s formula for p,(F) and by Igusa’s inequality,*
we see that

12(p.(F) + 1) = (K*) — deg(c,) >2—4q + p .
But since p,(F") = 0, it follows that p,(F') = —q."* Therefore:
l—-—qg=p—-1.

But if ¢ = 0, then F' is rational, by Castelnuovo’s criterion® which we
have excluded; and if ¢ = 1, then the Albanese map is a regular map onto
a curve, and p = 2. Therefore this last inequality cannot be fulfilled.

Therefore | nK | is at least non-empty for sufficiently large n. Let D
be any irreducible curve on F. Suppose (D-K) < 0. Then by Hodge’s
index theorem, since (K?) > 0, it follows that (D?) < 0. But also —2 <
2p. (D) —2=(D*+(D- K). Therefore p,(D) = 0;1i.e., Dis a non-singular
rational curve, and (D?) equals —1 or —2. In the first case, D would be
m Betti and Picard numbers of abstract algebraic surfaces, Proc. Nat.
Acad. Sci. U.S.A., 46 (1960), p. 724

11 See Y. Nakai, On the characteristic linear systems of algebraic families, I11. J. Math.,
1 (1957), p. 552.

12 See O. Zariski, On Castelnuovo’s criterion of rationality pa = p:=0 of an algebraic
surface, Ill. J. of Math., 2 (1958), p. 303.
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exceptional of the first kind and F would not be minimal [11]. Therefore,
we conclude:

(x) If D is an irreducible curve, and (D- K) <0, then D is a non-
singular rational curve, (D*) = —2, and (D- K) = 0.

Notice that there can be at most a finite number of such irreducible
curves D. In fact, by the Riemann-Roch theorem, there is an m such that
dim |[mK | = 2. Then every curve D such that (D- K) =0 is either a fixed
component of the linear system | mK | or else is disjoint from every divisor
of |/mK]|. In either case, there is only a finite set of such irreducible curves.

Let E, E, ---, E, be the set of all irreducible curves D such that
(D« K) = 0. Then by a very beautiful theorem of M. Artin,*” which is the
central point of this proof, there is a normal surface F'*, and a regular
birational map f: F'— F'*, with the following five properties:

(i) f1is biregular on F — JE,,

(ii) f maps each E; to one point,

(iii) the canonical divisor K* on F'* is a Cartier divisor,

(iv) f(K*) =K,

(V) Du(F) = p(F™) .

By (iv), the linear systems | #nK | (on F'), and | nK* | (on F'*) are canonically
isomorphic. The proof that for sufficiently large n, |nK*| has no base
points proceeds in three steps:

Step 1. For all sufficiently large n, [nK| (and hence |#nK *|) is non-empty.
This is a corollary of the Riemann-Roch theorem.

Step II. For all sufficiently large %, | #K™* | has no fixed components.
For let k& and [ be relatively prime integers such that | kK| and |lK | are
non-empty. Then by Theorem 9.1 above, for all sufficiently large n, the
only fixed components of | nkK | and | nlK | are the irreducible curves E;.
But since all sufficiently large integers are of the form nk + »'l, for “suf-
ficiently” large n and #/, it follows that the only fixed components of [nK|
for sufficiently large » are the curves E;. Hence by (ii) and (iv), the cor-
responding linear system | K * | has no fixed components.

Step I1I. For sufficiently large n, | nK | has no base points at all. The
proof of this depends on a slight extension of Theorem 6.2 above. Namely,
notice that this theorem, together with the proof of that theorem (§6),
are equally valid whenever (in the notation of that theorem) V is a normal
surface, and D is a Cartier divisor. Now let k and ! be relatively prime
integers such that | kK *| and |IK* | have no fixed components. By (iii),

13 See M. Artin, Some numerical criteria for contractability of curves on an algebraic
surface, Amer. J. Math., forthcoming, Th. (2.7).
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and this extension of Theorem 6.2, for all sufficiently large n, the linear
systems |nkK™ | and | nlK* | have no base points. Hence just as before,
for all sufficiently large n, | K™ | (and hence | nK |) has no base points.

The result on the superabundance follows from (v) and Theorem 6.5
above, once one observes that for sufficiently large n, the linear system
|n K| must define a regular map of F'into projective space, with image F'*.

Finally, one sees that R is finitely generated as follows: Let k and [ be
relatively prime integers such that | kK| and |IK | have no base points.
Then by Theorem 6.5, the rings R*[kK ], and R*[I K] are finitely generated.
But these two rings together generate a 'subring of R that contains all
but a finite number of its homogeneous components. As each component
of R is a finite dimensional vector space, R itself is therefore finitely
generated. q.e.d.

HARVARD UNIVERSITY

REFERENCES

1. A. GROTHENDIECK, Sur une note de Mattuck-Tate, J. fiir reine und angew. Math., 20
(1958), 208-215.

2. W. V. D. HODGE, Note on the theory of the base for curves on an algebraic surface,
J. London Math. Soc., 12 (1937), 58-63.

3. Y. NAKAI, Non-degenerate divisors on an algebraic surface, J. Science Hiroshima Univ.,
24 (1960).

4. D. REES, On a problem of Zariski, 1. J. of Math., 2 (1958), 145-149.

4’. M. ROSENLICHT, Equivalence relations on algebraic curves, Ann. of Math., 56 (1952),
169-191.

5. P. SAMUEL, Sur les anneaux gradués, C. R. Acad. Cien. Brasil (1958).

6. O. ZARISKI and P. SAMUEL, Commutative Algebra, volumes 1 and 2 (1958 and 1960), D.
van Nostrand Company, Princeton.

7. O. ZARISKI, Algebraic Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3

(1935), n. 5.

8. ———, Proof of a theorem of Bertini, Trans. Amer. Math. Soc., 50 (1941), 48-70.

9. ———, Complete linear systems on normal varieties and a generalization of a lemma
of Enriques-Severi, Ann. of Math., 55 (1952), 552-592.

10. ————, Interprétations algébro-géometriques du quatorziéme probléme de Hilbert,
Bull. Soc. Math., 78 (1954), 155-168.

11. —— Introduction to the problem of minimal models in the theory of algebraic

surfaces, Publications of the Mathematical Society of Japan 4 (1958).

24



Article [63b]
Some Aspects of the Problem of Moduli

David Mumford

Abstract of the Lecture given at the Annual Meeting of
the Mathematical Society of Japan
on May 24, 1963

Stigaku 15, 1963/1964, 155—157.

I.  The first aspect which I wish to discuss is the question of how to make precise
the heuristic concept of moduli. For example, suppose one is concerned with curves
of genus g: then, for every algebraically closed field Q, let M, (£2) be the set of
curves of genus g, defined over £2, up to isomorphism. Since the moduli scheme M,
is to classify curves, one asks at least that there be given an isomorphism between
the set of Q-rational points of M, and 9, (£2). This obviously does not determine
M,, however. A stronger demand is to ask for a collection of isomorphisms between
the set of R-valued points of M,, and the set of curves of genus g over R, for ev-
ery commutative ring R; here a curve over R means a scheme, simple and proper
over Spec(R), whose geometric fibres are curves of genus g. Moreover, these iso-
morphisms should be functorial in R. Then, in fact, this determines M,, if it exists.
An essentially equivalent demand is to ask that there exists a “Universal Family” of
curves over M, itself. Such an M, I call a fine moduli scheme; unfortunately, it does
not exist unless the classificational problem is slightly modified (via a “higher level
structure”). For higher dimensions, to find suitable modifications to “eliminate the
automorphisms” is an interesting problem.

In any case, one can compromise for a coarse moduli scheme: here one merely
asks for some collection of maps, from the sets of curves over R to the sets of R-
valued points of Mg, which are (i) functorial in R, (ii) isomorphisms when R is an
algebraically closed field. Finally, to determine M, completely, one should ask that
it satisfy a universal mapping property with respect to all other solutions of the first
two demands.

II. The next aspect we consider is that of the qualitative properties of the sought-
for moduli scheme: especially, whether it is a true scheme, or only a pre-scheme; and
whether it is of finite type over the integers. But, in fact, examples due to Kodaira,
Nagata, Nishi, and others indicate the absence of both of these properties in the gen-
eral case of classifying higher dimensional varieties. To remedy this difficulty, the
simplest solution seems to be to modify the problem: instead of classifying varieties,
one seeks to classify polarized varieties. By a polarized variety, we mean a variety V

D. Mumford, Selected Papers, Vol. 11,
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together with a Cartier divisor class D, determined up to algebraic equivalence and
torsion, such that nD is induced by a projective embedding of V, if n > 0.

For this classificational problem, Matsusaka and the writer have shown that the
moduli scheme should be a true scheme, if the varieties are assumed nonsingu-
lar, and not birationally ruled. Moreover, note that a Hilbert polynomial P(n) =
x(Oy(nD)) can be attached to any polarized variety, and that it remains constant in
flat families of such polarized varieties. Then we have also shown that, for nonsingu-
lar surfaces, the moduli scheme of polarized surfaces with fixed Hilbert Polynomial
should be of finite type. Whether the same is true in dimension 3 is a very intriguing
question. Another difficult problem is to ascertain how essential is the role of the
nonsingularity assumption in these matters. In the complex analytic case, nonsingu-
lar families recommend themselves as being differentiably trivial, so that they can
be visualized as families of complex structures on a fixed manifold. In the algebraic
case, however, there seems to be no compelling reason for thinking that this is a
reasonable assumption.

III. Beyond the qualitative problems already discussed, there looms the big ques-
tion of whether, although possessing all good local and global properties, the mod-
uli scheme may fail to exist for more subtle reasons. One may put the problem this
way: the “moduli scheme” may be formally described as the quotient of a scheme by
some topologically beautiful equivalence relation but it may be impossible to give
a scheme realizing this quotient. For instance, it is sometimes impossible to “blow
down” certain subvarieties, or to “divide” some variety by the action of some group.
In this case, there would be only an open subset U of stable polarized varieties
which could be realized as a scheme.

This problem appears to be closely connected with the local projective differen-
tial geometry of embedded varieties V C PP,. To illustrate, suppose V is a nonsin-
gular curve, and that the embedding is determined by a complete linear system on
V of high degree. Then the Weierstrass gap theorem, and the Frenet—Serret equa-
tions give a very explicit picture of this embedded curve. This enables us to do two
things: In the first place, you can look at the set of x € V where the Frenet—Serret
equations break down. I call these points of Hyper-Osculation, and with convenient
multiplicities, they can be added together to give a divisor on V. This possesses two
key properties: (i) as V and the embedding vary continuously, this divisor varies
continuously, (ii) the maximum multiplicity with which any x occurs in this divisor
is bounded by g (g = the genus of V). This being so, projective invariants of V can
be constructed in a highly explicit fashion out of determinants in the coordinates of
these points. This is tantamount to constructing the moduli scheme for curves. In
the second place, the very explicit expression of V gives directly information on the
Chow form of V: especially on the monomials which occur in the Chow form with
nonzero coefficient and are extremal in the convex hull of all monomials of fixed
degree with this property. This, too, leads to projective invariants of space curves,
hence to moduli. In this connexion, the difficulty in the surface case appears to be
lack of very much information on the local projective differential geometry of sur-
faces in IP,,.
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IV. Riemann originally asked for 3g —3 complex numbers, called moduli, to be
attached to each curve over the complex numbers. One interpretation of this as-
sertion is to ask, not only for a construction of M, but for a projective embedding
M, C Py. This leads to the fourth aspect: to study the Picard group of M,. One inter-
esting point in this connexion is that it is possible to define the Picard group of the
moduli problem itself without reference to the moduli scheme.! Namely, by a line
bundle on the moduli problem we shall mean a collection of line bundles, one on
each scheme S for each family of curves over S; plus, for each morphism between
families, a corresponding morphism between line bundles. Heuristically, such line
bundles arise from attaching canonically one dimensional vector spaces over £2 to
each curve over Q.

I can prove that the group of line bundles on the moduli problem, i.e., the Picard
group, is finitely generated; and that, up to torsion, there is exactly a subgroup iso-
morphic to Z of line bundles which extend to line bundles on the whole moduli
problem of principally polarized abelian varieties (via the Jacobian). I conjecture
that the group itself is Z,” but in this connexion I can give only some curious
relations.® For example, to any curve C, we can attach two 1-dimensional vec-
tor spaces: a) ASH(C,Qc¢), where Qc is the sheaf of differentials on C, and
b) A¥HO(C,(Q¢)?), where (Q¢)? is the sheaf of quadratic differentials. These
extend naturally to line bundles .#] and %5 on the whole moduli problem. Then, up
to torsion:

L= (L4 1)13 .

1 See [65b].

2 This conjecture, that the image of the natural map Pic() — Pic(.#) is isomorphic to Z for
g > 3, where 7, is the moduli problem for g-dimensional principally polarized abelian varieties
over the same base field as ./, is true when the base field is C, or any algebraically closed field
of characteristic 0. In fact Pic((///g) itself is isomorphic to Z in characteristic 0 when g > 3; see the
notes for [67d] in this volume.

3 The displayed relation between the Hodge line bundle .Z; and the canonical bundle %5 on the
moduli problem was proved using the Grothendieck—Riemann—Roch theorem. This is the first
time Mumford applied the Grothendieck—Riemann—Roch theorem to obtain a relation between
two tautological classes on the moduli problem ..
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TWO FUNDAMENTAL THEOREMS ON DEFORMATIONS OF
POLARIZED VARIETIES.

By T. Marsvsaxka and D. Mumrorp.?

Introduction. In contrast to the theory of moduli of curves, the global
theory of moduli of higher dimensional varieties—with the exception of
Abelian varieties—is largely unexplored. The work of the authors and of
others ? has begun at least to clarify the problem, and to pose some plausible
conjectures. One thing that is clear, however, is that there is a complexity
here of a higher order of magnitude from that encountered for curves. The
purpose of the present article is to present two results of a qualitative nature
that limit the degree of possible complexity of various sought for varieties or
scheme of moduli. The first result of ours asserts that two non-singular
projective varieties with polarizations, which are isomorphic as polarized
varieties, remain isomorphic after specializations over a discrete valuation-

g, whenever they remain non-singular polarized varieties and at least ome
of them is non-ruled (cf. Th. 2). The second asserts that a set of non-
singular polarized surfaces, which are deformations of each other, can be
realized as an algebraic family (i.e. a finite union of an irreducible algebraic
family) of non-singular projective surfaces in a projective space, if their
ranks are bounded; and, in fact, the set of non-singular surfaces with non-
degenerate divisors with a given Hilbert polynomial and of any characteristic

ring

can be realized as an algebraic family over the ring of integers. From this,
it can be shown that the variety of moduli of such surfaces, which are not
ruled, is a finite union of @-varieties, which will be discussed in a near future.

In Chapter I, we shall settle the first result we mentioned. In Chapter 1T,
we give an estimation for /(.\") when .\ is a non-degenerate divisor on a pro-
jective variety. Our second main theorem will be settled in Chapter I1I, as
well as in Chapter IV, under slightly different technique. In the first three
Chapters, essentially the terminonolgy and conventions of Weil’s book [18]
are followed. In Chapter IV, because of the nature of the technique which

Received October 25, 1963.

* This work was done while the first named author was supported by the N.S. F.
and the second named author was supported by the Sloan Foundation, and the Army
Research Office (Durham).

*Cf. [5], [6], [81, [9], [10], [11].
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THEOREMS ON DEFORMATIONS OF POLARIZED VARIETIES. 669

are followed, essentially Grothendieck’s terminology and conventions in [2]
are followed. However, in order to keep the uniformity, the word “ample”
(resp. “mnon-degenerate”) is used for “wvery ample” (resp. “ample”) in the
sense of Grothendieck.

By a specialization of a variety or a cycle, we understand a reduction of
such over a discrete valuation-ring (ef. [17]). For the theorem of Riemann-
Roch in general, we follow quite often the sheaf-theoretic terminology which
can be found in [15] and [22]. Let V be a normal variety and M a finitely
generated module of functions on V. When Y =infsen(div(g)), the set
A(M) of V-divisors div(g) — Y, g€ M, is called the reduced linear system
determined by }. When F is any positive V-divisor, A (M) - F is called a
linear system. Assume that V is complete. When X is a V-divisor, the set
L(X) of functions g on V such that div(g) + X >0 forms a finite dimen-
sional vector space ([18], App. 1, Th. 3). We denote by A(X) the set of
positive V-divisors which are linearly equivalent to .Y, and call it the complete
linear system determined by X. We denote by | X | the support of X. We
have A(X) =A(L(X)) 4 F, where F =X -+ inf,crx) (div(g) ). We denote
by (X)) the dimension of L(.X'). When V is a projective variety, we denote
by oy the sheaf of local rings on V, the defining sheaf of functions on a scheme
V. If X is a Cartier divisor on V, we denote by 2(X) the corresponding
invertible sheaf. With this sheaf theoretic notations, H°(V,Q(X)) = L(X)
when V is normal. Moreover, when V is a non-singular projective surface,
H*(V,2(X)) is isomorphic to the dual of H°(V,Q(K(V)—2X)) and
dim H*(V,Q(X)) =s(X) is the superabundance of X. When there is no
danger of confusion, we write Hi(Q(X)) for Hi(V,(X)).

Chapter I.

Trrorem 1.2 Let V be a complete abstract variety, W an abstract
variety and T a birational correspondence belween V and W. Let o be a
discrete valuation-ring with the quotient field k, such that V, W and T are
defined over k. Let (V/,W’,T") be a specialization of (V,W,T) over v and
assume that V', W are abstract varieties and that V’ 1s complete. When W’
s not a ruled variety, there is a component T” of T’ with the coefficient 1
wmn T such that T” is a birational correspondence between V' and W’ and
that pri(7"—1T") =0 for i=1,2.

Proof. From the compatibility of specializations with the operation of
algebraic projection (cf. [17]), we see that 7” has a component 7 with the

*This theorem was pionted out to us by M. Avtin.
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670 T. MATSUSAKA AND D. MUMFORD.

following properties: (a) pr, 7”7 = W’; (b) the coefficient of 7" in 7" is 1;
(e) pro(177—1T") =0. Let p be the maximal ideal of o and « the residue
field of o with respect to p. Let (2’) be a generic point of a representative
of W’ over . Then, there is a representative () of a generic point of W
over k such that (2”) is a specialization of () over o, over

0
(V,W,T) —— (V/, W, 1)

(ef. [17], Th. 7). Let R, be the specialization-ring of the specialization

() —0> () in k(x). Then R, is a discrete valuation ring of k() (cf.

[17], Prop. 5 and Th. 15). Hence, it determines a valuation v of k(z).

Let @ X (2) be a generic point of 7" over k. Since V and V’ are complete,

there is at least one representative (y) of @ such that the coordinates y; of

(y) are in R, that (y”) is a representative of @7 if (@ X (@), (y))
0

— (@" X (2’),y’)) and that @’ X (2’) is contained in |7”|. When
that is so, Q" X (2’) is contained in 7" in fact, it is a generic point of 7"
since pry: T — W’ is birational and (a’) is a generic point of W’ over . It
follows that @’ is a generic point of the projection 4 of 7”7 on V’ over &. Let

R be the specialization ring of (y) —0> (y’). 'Then, the valuation v is a
prime divisor of R in the sense of Abhyankar, and W’ is a ruled variety over
A unless 4 =7V (cf. [1], Prop. 3). Therefore, A =7V’. When that is so,
T” is a birational correspondence between ¥’ and W’, which can be seen easily,
using the compatibility of specializations with the operation of intersection-
product (cf. [17]).

TurorEM 2. Let o be a discrete valuation-ring with the quotient field k
let V and W be non-singular projective varieties, defined over k, and T the
graph of an isomorphism, defined over k, between V and W. Let X (resp. Y)
be a non-degencrate divisor on V. (resp. W), both rational over k, such that

Y=T(X). Let (V,W,X,Y,T) ——O——> (V, W, X, Y, T") and assume that
V', W are non-singular and that X’ (resp. Y”) is also non-degenerate on V'
(resp. W’). Then T” is the graph of an isomorphism between V' and W’,
if one of the V’/, W’ is not ruled.

Proof. By Theorem 1, we have 77— T" 4+ T*, where 7" is a birational
correspondence between V7 and W”, and pr; 7% =0 for [ —1,2. Let ¥y, - -, F,
be the projections of the components of 7% on V’. Note that none of the F;
is O-dimensional : for if F; were 0-dimensional, the corresponding component
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of the n-dimensional cycle 7% would have to be of the form F; X W’, and this
contradicts pr, 7% = 0. If X7, is a divisor in A(mX"), then 7” and X", X W’
intersect properly if and only if | X7, | D F; for any i. Let U be the set
of such divisors X”,,. For every such X’,, 77(X’,) is defined. The Chow-
variety of U, i.e. the set of Chow-points of members of U, is an open subset
of that of A(7”(X’,)). When U is not empty, the mapping X’,,— 77 (X"\)
defines, as is well-known, an injection of U into A(T”(X’»)); and, as a
matter of fact, defines an injective linear rational map of the Chow variety of U
into that of A(7”(N")) cf. [18], Chap. IX, Th. 3 and [18], Chap. VIII,
Th. 4). Now assume that (a) 77(X",) ~mY” and (b) I(mX’) =1(mY”)
for large m.

Suppose that P’ is a point of V’ and let A(mX’)p be the linear sub-
system of divisors which pass through P’. For sufficiently large m, mX” is
ample, hence P’ is the only base point of A(mX”)p:, hence A(mX’)p N U is
not empty. Then the set 4 of divisors 77(Z’), Z’€ A(mX’)p- N U, consists
of divisors passing through every point @’ such that P’ X Q'€ |T1”|. If
there were more than one such ’, the closure of the Chow-variety of A is at
least of co-dimension 2 in that of A(mY”), since mY” is ample for sufficiently
large m. On the other hand, its co-dimension has to be 1 as the closure of
the image of the Chow-variety of A(mX’)p N U by the injective rational
map, since I(mX’) =1(mY”’). Hence T* =0 and 7" is single-valued on the
points of V”, hence everywhere regular by Zariski’s Main Theorem. Similarly
T"-* is everywhere regular.

To prove (a) and (b), note that p,(mX) = p,(mY) for all integers m.
Hence po(V’) = pa(V) = pa(W) = pa(W’) 5 and po(mX’) = po(mX) = pa(mY)
= pa(mY”) for all integers m (cf. [18]). It follows that I(mX) —1(mY)
=1(mX") =1(mY”) for large positive integer m by the theorem of Riemann-
Roch (cf. [R1]). Thus (b) is satisfied. Now let ¢ and D be the supports
of the Chow-varieties of A(mX), A(mY). Since the linear equivalence is
preserved under specializations (cf. [17]), €”, D’ will be the supports of the

Chow-varieties of A(mX”), A(mY”) for large m, if (C,D) —0—> (¢, D).
Then (a) follows from the compatibility of specializations with the operation
of intersection-product and from the invariance of linear equivalence under
specializations.

Let V and V” be two complete non-singular polarized varieties (cf. [20]),
k a field of definition of 7 and o a discrete valuation ring with the quotient
field k. Let X be a polar divisor of W and W, W’ the underlying varieties

0
of V, V2. It (W,X) —— (W, X’) and X’ is a polar divisor of V’, we
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shall say that V” is a specialization of V over 0. With this definition, de have
the following corollary.

CoroLLARY 1. Let V and W be two varieties over a discrete valuation
ring o (i.e. p-variety in the sense of Shimura; a scheme in the sense of
Grothendieck). Let generic fibres V, W of ¥V, W be non-singular projective
varieties, defined over the quotient field k of 0. Let the special fibres V’, W’
be non-singular projective varieties. Assume that V, W, V’, W’ are underlying

oo .- 0
varieties of polarized varieties V, W, V’, W and that (V, W) ——— (V’, W’)

can be extended to (f’,W)—D—> (f”, W’). Then, when there is an 1iso-
morphism F between V and W over k, F can be extended to an 1somorphism f
of V and W, if W’ is not ruled. Moreover, the graph of J specializes to ke
graph of an isomorphism ' between V' and W’ over o.

COROLLARY R. Let V be a projective, non-ruled, non-singular variety
with a structure of polarization and G the connected component, containing
the identity, of the group of automorphisms of V. Then G is an Abelian
vartety.

Proof. The group of automorphisms of V is an algebraic group (cf. [8]).
If @ is not complete, the graph of an automorphism, corresponding to a
suitable element of &, can be specialized, over some field of definition of V,
to a VX V-cycle which is not the graph of an automorphism. This is
impossible by Theorem 2. Hence G is complete and is an Abelian variety
by the theorem of Chevalley (cf. [19], Th. 5).

Chapter II.

Let V* be a normal projective variety and X a non-degenerate divisor
on V. L(mX) defines a projective embedding f,, of V for large m by the
definition. Let W be a simple subvariety of 7 and k a common field of
definition for W and V, over which X is rational. Then L(mX) has a
basis over k (cf. [18], Ch. IX, Cor. 1 of Th. 8). Let A,,- - .4, be inde-
pendent generic divisors of A(m.X) over k. Then every component of
Wnd,n-- N4, is simple on ¥V and on W (cf. [18], Ch. V, Th. 1).
We set [W-XO] = (1/m")deg(W-4,- - -4,) and X® —=[V-X®], Then
[W-X®] does not depend upon the choice of independent generic divisors
Ay, - -, A, Moreover, it does not depend upon the choice of m, as long
as it is sufliciently large, and is a positive integer (cf. Bezout’s theorem).
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TaEOREM 3. Let V» be a normal projective variety and X a non-
degenerate divisor on V. Then 1(X) =X® | n.

Proof. If 1(X) =1, there is nothing to prove. If n =1, our theorem
is an immediate consequence of the theorem of Riemann-Roch. Therefore,
we assume that [(X) > 1 and that n > 1. Let X, be a generic divisor of the

a
complete linear system A(X). Then X=X 7Y,;+4 F, where F is the fixed
1

component of A (X) and ¥Y;54Y; for ¢5£ j, since A(X) is complete (cf. [18],
Ch. IX, Cor. of Th. 15). If d>1, the ¥; are generic divisors of one and
the same pencil on V by the theorem of Bertini (cf. [18], Ch. IX, Th. 1%).
Hence dim A(X) =I(X) —1=4d. On the other hand, we get d=X®™ by

a
computing X = [ (2 Y;+ F) - X»V]. Therefore, our theorem is true in
1

this case also.

Assume now that d=1. Then X,=Z -+ F, where Z is an absolutely
irreducible subvariety of V. Let K be an algebraically closed field, containing
k, over which Z and F are rational, and (Z*, «) a normalization of Z over K.
Let m, be a positive integer such that mX is ample for m = m, and X, a
generic divisor of A(mX) over K for such m. We note that every com-
ponent of X,, N Z is simple both on 7 and Z and is proper on V. We contend
that: (a) When g€ L(Xpy—Xm), g—>g¥=goa? is a homomorphism of
L(Xpy— Xn) into L(X#), where X* = a(Z* (Xys—Xm)) ; (b) The kernel
of the above homomorphism is a vector space of dimension 1; (¢) X* is non-
degenerate on Z* and X*(0)=X®,  Our theorem will be an immediate
consequence of (a), (b), (¢). For, we have I(X*) =X*0D 4 (n—1)
by the induction hypothesis, hence I(X*) =X® 4 (n—1) by (c), and
(X)) =1(Xpo1— X)) =U(X*) +1 by (a) and (b).

To prove (a), we may assume that g% 54 0. We first remark the following
two facts: (i) If U is a subvariety of Z of co-dimension 1, which is simple
both on V and Z, and ¢’ is the function induced on Z by g, then the coefficient
of U in div(g) - Z, that of U in div(g’) and that of «(U) in div(g*) all
coincide; (ii) If W* is a component of div(g*),=g**(w), its geometric
image W by a* is a component of X,,.; N Z, and is simple both on V and Z.
In fact, U has the same coefficient @ in div(g) - Z as in div(g’) (cf. [18]-1X,
Th. 3). Since ¢g* can be written as ¢’ c @', and since « is biregular along U,
it follows that the coefficient of «(U) in div(g*) is also a. As for (ii), g*
is not finite along W* (i.e. at a generic point of W* over a field of definition
of W*, containing K'), and hence, ¢ is not also finite along W. Consequently,
WC|g*(w)|=]|Xma| and W is a component of Z N X1
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Now let U be a component of X,, 0 Z or of X,.; NZ. Since
div(g) Z 4+ Z - (Xpa—Xm) >0,

it follows that the coefficient of «(U) in div(g*) 4 X* is non-negative by (i).
Therefore, if div(g*) 4+ X* has a component W* of negative coeificient, it is
a component of div(g*),=g¢** (o), which is impossible by (ii).

To prove (b), let ¢ be a function in L (X, — X)) such that ¢*=0.
Then div(g) =W — (Xp1—Xn), where W is a positive V-divisor such
that Z is a component of it. Since W ~X,., — X, ~X, it follows that
W=Z-+4F and that g is uniquely determined up to a constant factor.
(b) is thereby proved.

To prove (c), choose a positive integer r = m, and identify A (+X") with
the linear system of hyperplane sections of V by means of the embedding f,.
Let s be another large positive integer. Then sX, ~ srXy., —srX,, and sX,,
81X, srX ., are sections of V by hypersurfaces of degrees s, sm, s(m -+ 1)
respectively, since the linear system of hypersurface sections of a normal pro-
jective variety is complete when the degree of hypersurfaces is large enough
(Zariski’s normalization theorem). Consequently, sX, -Z, srXp-Z, srXpm-Z
are also sections of Z by hypersurfaces of degrees s, sm, s(m +1). When s
is chosen large enough so that o is determined by homogeneous functions of
homogenity s, a(sX,-Z), a(srX,-Z), a(srXm.;) are hypersurface sections
of Z* by hypersurfaces of degrees 1, m, m -+ 1 respectively. Hence

a(sXyZ) ~sra(Z - (Xmr—Xm))-

Thus, X*=a(Z  (Xp1—Xn)) is non-degenerate. A(rX) is the linear
system of hyperplane sections of V. Hence

X0 — (1/rm)deg (X) = (1/r)deg(Z + F) = (1/r") deg(Z).
A(srX*) is the linear system of hyperplane sections of Z*. Hence X*(-1)
= (1/(sr)»*)deg(Z*). But deg(Z*) =s"deg(Z) as is well-known and
easy to see. (c) is thus proved.

Remark 1. TLet @ be a non-degenerate invertible sheaf (ample invertible
sheaf in the sense of Grothendieck) on a projctive variety V. Let d be the
leading coefficient of y(Q"). Then it is easy to deduce that dim H°(R)
=d-+ dim V from our theorem. In fact, when (V*,8) is a normalization of
V and X a Cartier divisor on V* determined by &, then X is non-degenerate
and d=X® if dim V* =n.

Remark 2. In our theorem, we assumed that X is non-degenerate.
Assume now that 7 is a non-singular projective surface and X a V-divisor
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such that X® >0 and [Y-X] > 0 for all positive V-divisors ¥. Then, we
can prove directly that I(X) =X® 2. In fact, we may assume, as in
the proof of our theorem, that a generic divisor X, of A(X) is of the form
Z + F, where Z is an irreducible curve. Let ¥ be a V-divisor such that
Y ~ X and that | ¥ | contains neither Z nor any singular point of Z. Then
[XZ]=[Y -Z] =X® and L(X) and L(Y) are isomorphic. As in the
proof of our theorem, L(Y) induces on Z a module M’ of functions on Z;
a*(M’) is then a submodule of M*=L(e*(Z-Y)) and the kernel of
the homomorphism L (Y) — M* is a vector space of dimension 1. Hence,
we have our inequality by the theorem of Riemann-Roch. Our divisor X is
in fact a non-degenerate divisor on ¥V according to [12], and our theorem
is available according to this. But using this remark and our Theorem 4,
we recover this result.

Chapter III.

Let V be a non-singular projective surface and X, ¥ two divisors. There
Is a V-divisor X” such that X”~X and that X’ and Y intersect properly
on V. We denote by XAY the intersection-product X”- ¥, and by [X Y]
the degree of YAY. When XY =Y, [X-X] is denoted by X®. We denote by
K (V) a canonical divisor on ¥ and set po(X) = (1/2)[X - (X 4+ K(V))] + 1.
When X is irreducible, (X 4 K(V))AX is a canonical divisor K (X) of .X
and deg(K (X)) =2p(X) —2 (cf. [16]). When X = X a;X;, we have

G PO =) + 3 AR
1 i i
+ 2 .(1/2)[li(tj[Afi7Xj]—2&,;*—*1.

65 074)
According to the theorem of Riemann-Roch on V, we have
HX) —=s(X) +UE (V) —X) =X — po (V) + pa(V) +-2.
1. Denote by X the set of pairs (V.) of a projective non-singular
surface V and a V-divisor .\ satisfying the following conditions.
(I) [X-Y] >0 whenever Y is a positive V-divisor;
(IT) 0<X® < ¢y
(I11) lpa(x)l < ¢z
(AV) | pa(V)| < e
In order to simplify further discussions, we assume that the constants c;

(+>3) which will be introduced arve positive integers, salisfying ¢;> iy
and depending only upon ¢y, ., cs.

14
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Lemuma 1. There are constants cy, ¢ such that |[X-K(V)]| <c, and
that po(mX) >0, I(K(V) —mX) =0, m*X® —p,(mX) + p. (V) +1>0
whenever (V,X) €3 and m > c;.

This is an easy consequence of (1), (II), (III), (IV), the theorem of
Riemann-Roch and of the formula (1).
t
Lemyma 2. Let (V,X) be a member of 3 and T = X a;Y; the reduced
1

expression for a member T of A(2¢;X). Then, there are constants cg, ¢, s
and ¢, with the following properties:

12

(1) X <o

(i) [[YeYi]| <er;

(1ii) {[K(V)'Yi]l<Cs§0§pa(yi)<Cs§

(iv)  The multiplicity of any point on Y is at most c,.
t t

Proof. (i) is a consequence of X a;=Da;[Y;- X|=[T X]=2c¢cs.
1 1

(i1) and (iii) follow from the three inequalities:

(A) @V O+ D[V V] = [V 26X] = SafVi-20,X] < dcy%c,.
%]

(B) —2=2pu(Yy) —2=[Ti: (Vi + K(V))].
(C) EGE[K(V) . Y,] é 20405.

In fact, (A) gives an upper bound for every ¥;®. Hence, (B) gives a lower
bound for every [K(V)-Y;]. Then (C) gives an upper bound for every
[K(V)-Y;] and (iii) is proved. Returning to (B), we obtain a lower
bound for every ¥'i®), and using this, (A) gives upper bounds for all [¥;- Y;].
This gives (ii), since [Y;-Y;] =0 if i5%j. Finally, the arithmetic genus
of ¥; is bounded by (ii) and (iii). If the r; are the multiplicities of the
singular points @;; of ¥, an inequality of Noether (cf. [4]) states

2ri(rii+ 1) /2 4+ pa(Yi¥) = pa(Y3),
7
where 17* is a non-singular model of V;. This gives (iv).

The following lemma is an easy consequence of the generalized Riemann-
Yoch theorem for curves.

Leyya 3. Let W be « non-singular swrface in « projective space and
Y a divisor on W. Let C be an irreducible curve on W such that [Y-C]
>2pa(C) —2. Then H*'(Q(Y)/Q(Y —()) =0.
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CoroLLARY. Using the same assumptions and notations of owr lemma,
s(Y—0C)=s(Y) if and only f
0—> (Y —C)) > H(L(Y)) = HO({(Y)/Q(Y—)) —0.

Proof. This is an immediate consequence of our lemma and of an exact
sequence 0— (1 — (") - (Y) = Q(Y)/Q(Y — ) = 0.

Lemya 4. Lel T=T a;Y; be a posilive divisor on a non-singular pro-

B

jective variety W, A(A) a complete linear system on W and assume that
[(A—T")-Yi] > 2pa(Yi) —2 for all i and for all T such that 0 < T"<LT.
Then we have H* ((A)/{(A—T)) =0.

Proof. 1f Y a;=1, our lemma follows from Lemma 3. Assume that

B
our lemma has been proved for those positive 1W-divisors 7" = 3 a”;Y; with
i

Sai < Sa;. Set T7"=3dY; with a, —1 =40y, a;=da’; for 1=2. In the
i i B

exact cohomology sequence of an exact sequence

0—Q(4

Ty JQ(A —T)—> 2(4) /QA —T) — L(A4) /2(A —T") — 0.

we have H'(Q(A)/&(Ad—T")) =0 by the induction assumption, and
H*({(A—T")/«(4—T)) =0 by our assumption and Lemma 3. Hence
we get H*(RQ(4)/Q(A—T)) =0.

CoroLrarY 1. Lel (V.X) be a member of 3 and T =3 aY; the
reduced expression for « member of A(2¢;X). Set T"=> a1V, U= d"Y,

with 0 =d", /s =u;. Then, there s a constant c,, such that

H*(QRme; X —U) /QQRme, N — U —1T17)) =0
for m = cy,.

Proof. This follows at once from our lemma, (I) and from Lemma 2.
CoroLLARY 2. There 1s a constant ¢,y such thal
cr=s@me; X)) = s(R(m+ 1) A —B) =Zs(2(m+1)e:.X)
whenever (V,X) €3, [(2¢; X —B) =1 and m = ¢y,.

Proof. This is an easy consequence of Theorem 3. Corollary 1 above
and of Lemma 2. (cf. Remark 2.)

Cororrary 3. There is a constant c,, such that A (2me;X) is trreducible
(1. e. contains an irreductble curve) whenever (V,X) €3 and m > c¢q..
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Proof. Let T be a member of A(2¢,.X). 1If 1 is a fixed component
of A(mT). we have I(mT) =1l(mT—Y). Then m[T V] =s(mT—Y)
—s(mT) + pa (1) —1 by the theorem of Riemann-Roch, which leads to a
contradiction if m > max (¢, 2¢,; + ¢s—1) = ¢,,” by the above Corollary 1,
(I) and by (iii) of Lemma 2. If A(mT) is composed of a pencil for

¢
m > ¢y’ a generic divisor of A(mT) can be written as X Ty where the T}
1

belong to one and the same pencil by the theorem of Bertini. Clearly, we
have dimA(mT) =t and |7;-T;]=1 by (I). Hence (mT)® =1 and
2mes =t =dimA(mT). On the other hand,

dim A (m1') = (Rm*e;2e; —mesey) — ¢y
by (1), Lemma 1 and by the theorem of Riemann-Roch. Our corollary now
follows from this easily.

2. When A and A" are two linear systems on a complete normal variety,
the smallest linear system A” containing the divisors \'-- X7, XY € A, X" € A,
is called the minimum sum of A and A’. Then the following lemma is easy
to prove.

Leayia 5. Let A(C) be a non-emply complete linear syslem on a
complete normal variety W. Assume that A(C) has no base point and that
the minimum sum of A(C) and A(mC) is complete. Let h; be a non-
degenerate map of W into a projective space determined by A(iC') for
i=m, m 1. Then there is an isomorphism a between images W, Wi
of W by hpy hpey such that hy,, = @ hyp,.

In the following three lemmas, denote by C an irreducible curve on a
non-singular projective surface ¥V and ¢ the intersection of local rings of ¢
at the singular points of C. Using only those functions of ¢ which are in ¢,
we can define linear systems as in the case of normal varieties. Throughout
this chapter, linear systems on curves lying on V are understood in this sense.
By the degree of a linear system on (', we understand the degree of a generic
divisor of the linear system. The Riemann-Roch theorem on € then states
L(m) =deg(m) — po(C) +1 4 1(K (') —m) for a C-divisor m (cf. [13],
[16]). The following lemma is known as a lemma of (astelnuovo when ('
is non-singular, which can be proved in the same way as in the ordinary case.

LemMa 6. Let A" be a linear system on C withoul base point and A
a complete non-special linear system on C. Let n' be a generic divisor of A’
and assume that A—n’ is non-special and is of degree equal to deg(A)
—deg(n’). Then the minimum sum of \ and A’ is complete.
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Actually, it is enough to know a special case of this lemma, under an
additional assumption that deg(A) — deg(n’) = 2p,(C), which makes a proof
very easy.

Let A be a linear system A (M) —+ F, where M is a finitely generated
module of functions on V. Let C* be the largest non-singular open subset
of ¢ and denote by * the vestviction of a C-chain (i.e. a zero-cycle on V
whose support is contained in ') to O*. Assume that C and F intersect
properly on ¥V and that every g in ./ induces a function ¢’ in R¢ on C.
Denote by J/” the set of such functions ¢’ and by .\’ the set of C-divisors
(X-0)*4 (C-F)*, by taking for .\ all divisors from A (J/) such that X
and C intersect properly on 7. Then A’ is a linear system on C, whose
reduced part is determined by A’. We denote A’ by Tr¢ A and call it the
linear system on C induced by A. When A is a complete linear system A (X)
whose fixed component F satisfies our requirement, it always induces a linear
systemn on C, since there is a V-divisor Z such that X'~ 7 and that the
support of Z does not contain ' and the singular points of (.

Leaaa 7. Assume that C® >0 and that A(C) has no buse point. If
s(mC') is a constant for all positive integers m, the minimum sum of A(C)
and A(mC) is complete for m > [C-K (V)] + 4.

Proof. Let C’ be a V-divisor such that "~ (' and that | ¢”| contains
neither C' nor the singular points of C. We have [C- (mC)]—2p.(C) >0
when m satisfies our condition. Hence Tr¢ A(mC”) is complete by Corollary
of Lemma 3. By our assumption, Tre A(C”) has no base point. Hence the
minimum sum of Trg A(mC”) and TreA(C’) is complete for such m by
Lemma 6. Thus, the minimum sum of A(m(C’) and A(C”) induces on (' a
complete linear system. Let M be the module generated by f-g with
feL(mC), g€ L(C"). Then M induces on C the module L ((m +1)C"-C).
When / is a function in L((m + 1)C”), inducing 0 on ¢, we have div(h)
=C+H— (m-1)C" with H >0. Hence i is in 3 (cf. [18], Chap. IX,
Cor. 2 of Th. 8). Our lemma follows from this at once.

It is not true in general that a complete linear system A (mt) on C' con-
tains a divisor of the same degree as mi, unless m is positive. But we have
the following.

Leaava 8. When deg(m) =2p.(C), A(m) contains a divisor of the
came degree as m.

Proof. Let a be a positive C-divisor such that deg(m) = deg(a) =m.
Set po(C) =t and let & be a field of definition for C over which m and a
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are rational. Then, there are two generic divisors p and q of degrees { over
k and a unit f in Re such that div(f) = (m—a) + (b—q) (cf. [14],
Lemma 3). Since a is positive, a generic divisor of A(a) over k has the
degree m ; moreover, we have I(a) = {4 1. Therefore, there is a unit ¢ in
Re and a generic divisor a’=yp b of A(a) of degree m such that div(g)
=a-—a. Then div(f-g) =m-—qg—> and our lemma iz proved.

3. Turoreym 4. There is a constant ¢y such that mX s wmple for
all (V.X) €3 whenever m > cy..

Proof. In order to prove our theorem. it is enough to prove that m.\'
is ample for all (V..X) in =. where m, is a constant. depending only on ¢,.
sy €5 In fact, the sum of two ample divisors is also ample; moreover, if 1°
is an ample divisor on a non-singular projective variety W and B =B — B”,
B’ >0, B” >0, is a W-divisor. then, whenever

d=deg(B") - (deg(W)—2) 4 deg(V) + deg(B”).

dY 4 B is ample (cf. [18], Chap. IX, Cor.,, Th. 13). Our theorem follows
from these two facts and from Lemma 1 as an easy exercise.

Let T be a member of A(2¢;X) and 7 an irreducible member of A (¢;.7)
(ct. Cor. 3 of Lemma 4). Then we have

() [rZ- (AUZ4-1TY] > 2p,(rZ) for 0 <r=t and for all 1=0. In
fact, this follows from (II). Lemma 1 and from the formula 2p,(D) —?2

— (D (D4 E(V))].

oo Coo o such that
A(mdZ) has no base point for m = 1. TIn fact. there is an integer « such
that 3 =a = ¢,; + 3 and that s(«Z —7) ==s(aZ) (cf. Cor. 2 of Lemma 4).
Set r==¢=11in (a). Then we see that Tr; \(«Z) is complete by Corollary
of Lemma 3; moreover, it is of degree > 2p,(Z) since Q(aZ) /Q(aZ —7) iz
isomorphic to {((aZ)AZ). When that is so. A(aZ) has no base point by

(b) There is a constant d. depending only on ¢ ca.

Lemma 8.

Now let // be an irreducible member of A (dZ) (cf. Cor. 3 of Lemma 4).
By Corollary 2 of Lemma 4, there is an integer b such that 3=0=¢,, 4+ 3
and that s(bF) =s(bl/ —F). TrzA(F) has no base point by (b). By
(a) and Corollary of Lemma 3, TrpA(DE) is complete and is of degree
> 2pa(L). Moreover, Trp A(F) and Trp A(bE) satisfv the conditions of
Lemma 6 by (a) and (b). Therefore. the minimum sum of them is complete,
which implies that Tr:A(bF -+ ) is complete and s(bF 4+ ) =s(DE)
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{cf. Cor. of Lemma 3). Repeating this, we see that s(¢, f + 3L + mk&) is
a constant for all m =1. By (I) and (b), a non-degenerate map h,, of V
into a projective space, determined by A(m (¢ +3)L), is a morphism and
has no fundamental curve on V. Then it is a projective embedding for
large m, which is an easy consequence of the possibility of projective nor-
malization in an algebraic extension of the function field (cf. [7], Chap. 1V,
Prop. 8). Then &, is already a projective embedding if

m> [+ 3)E-K (V)] 41 =2 (e, 4+ 3)deyacacy + 4

by Lemma 5 and Lemma 7. Our theorem is thereby proved.

Chapter IV.

So far, we have restricted our technique to the use of irreducible curves
on the surface. Since the generalized Riemann-Roch theorem is available
for such curves, it was easy to see, for instance, whether some linear systems
on such curves are free from bhase points. etec. On the other hand, if we
generalize a criterion of ampleness to reducible curves by means of the theory
of schemes, we can simplify the latter part of Chapter I1Il to some extent.
Iet V be a projective variety. Denote by Oy the sheaf of local rings on V.
1t D is a Cartier divisor on V. we mean by the associated subscheme T the
subscheme of the scheme 7' (a) whose underlying space is the support of D
and (b) whose sheaf 4 is defined at a point @ of D to be D, v/(f) for any
local equation f of the divisor D, where O, v is the local ring of 7 at ». We
further denote by ni,, - the maximal ideal of £,1. In the following proposi-
tion, we discuss a criterion of ampleness on a positive 1-cvele on V. The
first half of the proposition has been settled essentially in Lemma 4. and we
give only a brief account of the proof for it in the sheaf theoretic terminology.

ProrosirioN.  Let T=éui)',~ be « positive divisor on a non-singular
projective surface W. Let ¢ ll)(! the subscheme of the scheme W, associated
lo T. and M an invertible sheaf on r. Let d; be the degree of the Cartier
divisor class on Yy defined by MO Oy, If dy> [(K (W) +17)- Y] for all
divisors T such that 0<LT"< 1. and for all © such that 1 =1=t, it follows
tat HY (M) = 0. Moreover. if di > [(K(W)+T7")- Y] + 2max, .y, (multi-
plicity of x on Y;), then M is ample on .

Proof. We have Oy /Q(—1") = Cr. Ow/Q(—T") = O from the defi-
nitions of £;, Or,, where " is the subscheme of 1, associated to 7”. More-
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over, we have Q(—1")/Q(—T) =2(—71") ® Oy, when we use the same
notations as in the proof of Lemma 4. Hence, we have the exact sequence:

0->(—T7") @Dy, —» OVr— Or— 0.
Tensoring the above with 2, we get
H(MAQ(—T") ®Dy,) > H' (M) > H(MADr) =0
instead of

TR —T") JA —T) ) > H ((A) /(A —T))—>
— H({(A) /(A —T")) >0

in the proof of Lemma 4. Computing the degree of the Cartier divisor class
on 1, determined by M @ L(— 1") ® Oy,, we get H* (M) =0 as in the proof
of Lemma 4.

For an invertible sheaf & on a complete algebraic scheme W to be ample,
it is necessary and suflicient that:

(i) the sections of & sepurale points,

(*) (i) for any point x on W, if we tdentify the stalk &, with O, w. the
sections of & which are zero at x span My, w/Myw.

For every point « in the support | 7'| of 7', let D, be a positive W-divisor
such that (D, Y;,«;V) gives the multiplicity of @ on V; for 1=1=t.
Moreover, for every pair of distinct points #, y in | 7|, define an invertible
sheaf Wi, , on r as follows:

MW,y =MOL(—D,) in [T|—y—(|T|N|D,|—2),
—MOL(—D,) in |T|—z—(|T|N|D,|—y).

=N elcewhere.
Similarly. for every « in | T'[. define M, , as follows:

M, =M@ L(—2D,) in |T|—(|T|0|D,|—z),

= W elsewhere.

The first half of the proposition implies H* (M, ,) = 0 for all the pairs (z,y),
because the degree of the restriction of M, to ¥; is at least d;— 2 max
(multiplicity of z on 17;). Therefore, we have the exact sequence

Z€EY;

0— HO(M,,) = ITO(M) = HO(M/M.y) = H (M) =0
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for all pairs (2,y). Now suppose & 5~y. Then I1°(0V/M, ,), whose support
is the union of two points a and y. contains a section which is 0 at z and a
unit at y. Hence H°(M) contains a section with the same property. Then
the sections of W separates points. T.et f=0 be a local equation of D,
at . f being an element of 2, w. Then f induces an element f in 9, -, and
we have (/M) =, +/f* But this maps surjectively to the ring
O,/ Hence, if we identify W, to O, . the sections of M which are
zero at @ span m, -/nt,, "

Using this proposition. we recover (‘orollary 1 and Corollary 2 of
Lemma 4. Moreover, Corollary 1 can he expressed as H*((mNX —U) @ O;)
=0 for m = ¢,,. where 7 is the subscheme of T, corresponding to a member
T of A(2¢;X7). Furthermore, we see that Q(mX) ® D, is ample on = for
m = ¢y, when ¢, is chosen suitably. Then. by Corollary 2 of Lemma 4,
one can find an integer » such that s(c¢y 7 4 1T) =s(cyoT +rT + T) and
that 0 = r=c¢;;. Set m=2¢;(cyp+ 1+ 1). Since H(L(mX) ®D:) = (0)
and s(mlX) =s(mX —1T), it follows that the restriction map H°(Q(mX))
— H°(Q(mX) ®D;) is surjective. Moreover, X(mX) ® O, is ample on 7.
To prove that Q(mX) is ample, we again use the criterion (*) cited above.
Let » and y be two given points on V. Let T, and 7', be members of A (¢;X)
such that T, goes through z and that 7', goes through y (c¢f. Lemma 1).
When we set "= T, 4 T',. « and y are in the support of 7. Since L(mX) @ O,
is ample, there is a section of this sheaf which is zero at @ and not zero at y
if #4y. Lifting this to a section of Q(mAX), the same is true of (mX).
If v =y, set T=2T,. The restriction of functions from 7 to r induces an
isomorphism between nt,,v/m,* and m,,-/m, % When we identify the stalk
of L(mX)®D, at = with O, -, the sections of {(mA) ® D, which vanish
at = span ut,,r/m,,.°. Lifting these sections. we see that the same is true of
&(mAX) and m,y/n,*. Hence Q(mY) is ample for m =2¢;(¢; 74 1),
where 1 is a certain integer such that 0 =<»=<r¢,;. Since the sum of two
ample divisors is ample, we see that Q(d.') is ample for a suitable d. which
depends only on ¢, ¢.. ;. Then we get our Theorem 4 again.
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ERRATA.

Correction to “ Two Fundamental Theorems on Deformations of Polarized
Varieties,” by T. Matsusaka and D. Mumford, 4m. J. Math., vol. 86
(1964), pp. 668-684.

The following one sentence is missing towards the end of the statement
of the Lemma 6:

“Assume further that A’ is contained in the complete linear system A(n’)
determined by 1’ and A= A(a) where a is a positive C-divisor.”

BRANDEIS UNIVERSITY AND HARVARD UNIVERSITY.

45



A REMARK ON MORDELL’S CONJECTURE.

By Davip MuMFoRD.*

It is somewhat surprising that the systematic evaluation of the heights
of rational points on a curve and on its jacobian variety and particularly of
their relation to each other should yield any new information. Nonetheless
this appears to be the case and the result is described in this article. Although
the main theorem is not even a special case of the very fascinating conjecture
of Mordell, still it is an estimate that already reveals that rational points
on curves of genus at least 2 are much harder to come by than on curves
of genus 0 or 1. It is a quantitative limitation on the heights of such points
which is well-known to be false in the case of genus 0 or 1. Incidentally,
there is a good explanation why an estimate of this type can be obtained so
cheaply, whereas Mordell’s conjecture itself could not : namely, results obtained
by our methods will more or less automatically apply to the analogous “func-
tion field” case [where the ground field is a function field in one variable
over a finite field, rather than an algebraic number field]. And in this case,
unless further restrictions are imposed, there are curves of any genus with
an infinite number of rational points whose heights increase cxactly at the
rate which we will find.

Let & be an algebraic number field of finite degree over Q. Let C be a
non-singular projective curve over & of genus g at least 2. Mordell’s con-
jecture asserts that the set of k-rational points on C is finite. Now suppose
that a projective embedding of C' is fixed, allowing us to talk of the heights,
ht(x), of k-rational points of . Then my result is this:

TreoreM. There are real constants a and b, @ >0, such that if the
countable set of k-rational points of C is ordered by increasing height—call
the points xy,x.,- - - —then

hi(2;) = evi*d,

Because of the well-known properties of heights, this result is not affected
by changing the projective embedding of . An example of the theorem is
given by Fermat’s curve:

Received February 25, 1965.
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CorOLTARY. Let (a;, Bi,y:) be an infinite set of distinct positive integral
solutions of the equation
Xn - Yn=17n

such that a;, Bi, y; have no common factors and such that {y:} is an increasing

sequence. Assume n=4. There are real constants a and b, a > 0, such that
y@z e(eat-yb).

A final word: that the proof of the theorem appears in as natural and

simple a form as it does is due to the collaboration of John Tate; that it
appears in print, needless to say, is not.

1. The theory of heights. We fix an algebraic number field %k, of finite
degree over Q0. The main result of the “classical ” Theory of Weil (cf. [1]
and [4]) is the construction of a set of functions as follows:

Given: a scheme X, projective over %, and an element & € Pic(X).
Constuct: a real-valued function on the set of k-rational points X, written

hs(x), x€ Vy

In fact, hs is not constructed precisely, but only the class of all functions,
differing from one member of this class by a bounded function is constructed.
This construction has the following properties (where O (z) denotes a bounded
function of z):

a) If f: X—7Y is a k-morphism of schemes X and Y as above, and if
3 € Pic(Y), then

hs(f(z)) =hse e (2) + O (2)
b) If &,,8.€ Pic(X), for X as above, then
hs.5,(2) = hs,(z) + ks, (2) 4 O (2)

c¢) If D is an effective Cartier divisor on the projective scheme X, and
if D defines the element 8 € Pic(.X'), then there is a real constant K such that

hs(¢) = K, all € X — Support (D).

d) If 3€ Pic(X) is ample, then for all constants K, the set of points
@ € X3, such that hs(2) = K is finite.

The lack of a really definite height function is one of the most awkward
aspects of this theory. In case X is assumed to be an abelian variety, this
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defest has been remedied by Néron and Tate (cf. [2], [3], [44]). The simplest
way to state their result is this:

TuarorREM. Let X be an abelian variety, and let § € Pic(X). Then the
class of functions hs on X contains a “quadratic” function on X, i.e., a
function f satisfying the identity:

fle+y+42)—fle+y) —f(e+2) —f(y+2)
+f(z) +f(y) +f(2) —f(0) =0.

One checks immediately that a real-valued bounded quadratic function is
constant. Therefore, if we put the two requirements on ks that (1) it is
quadratic, and (2) it is 0 at the identity point e, then we obtain a completely
well-defined height function. Moreover, we get the important Corollary:

CororLARY. 1) If X s an abelian variety, and 8,8, € Pic(X), then
Lhe normalized height functions on X satisfy:

hs,is, (%) = hs, (@) + hs,(2), all w€ X

2) If f: X—> Y 1is any morphism of abelian varieties, and 8 € Pic(Y),
then

hpss(2) = ha(f(2)) —ha(f(e)),

al v € Xy, In particular, +f f is a homomorphism (t.e., takes the identity
lo the identity), then

hyes(2) = Rs(f(2) ).

2. The set-up derived from a curve. We shall assume given a non-
singular projective curve C, over k, with genus g =1. The purpose of this
section is to give a thorough account of the auxiliary varieties associated to
C, the canonical divisor classes that they carry, and their universal properties.
For the sake of simplicity, we also assume that a base point z, € C has been
chosen once and for all; and that all other schemes X occurring in the dis-
cussion have base points py. (The base points on abelian varieties will he
assumed to be their identity points).- A general concept which is central to
the discussion is the following:

Definition. Let X and ¥ be connected algebraic schemes over k. A
dwisorial correspondence on X X ¥ is an element 8§ € Pic(X X ¥) which is 0
restricted to either of the subschemes X X {py} of {px} X Y.

First of all, let J be the connected component of the identity of the

48



1010 DAVID MUMFORD.

Picard scheme of C': i.e., the so-called “ Jacobian variety” of C. It is an
abelian variety of dimension g. Moreover, J is characterized by the existence
of a canonical divisorial correspondence

8, € Pic(C X J)
which has the universal mapping property (cf. [5] and [6]):

For all connected algebraic schemes X, and all
divisorial correspondences 5 on €' X X, there is
() a unique morphism f: X —J such that

(1o X f)*(8:) =1
Secondly, on the non-singular surface € X C the Weil divisor
A—C X {@o} —{=o} X C

defines an element A* € Pic(C X C) which is clearly a divisorial correspon-
dence. By the UMP (*), there is a unique morphism

¢: C—J
such that A* = (1¢ X ¢)*(8,).

Thirdly, let J be the connected component of the identity of the Picard
scheme of J: i.e., the dual abelian variety. J is characterized by the existence
of a canonical divisorial correspondence

8, € Pic(J X J)

which has the universal mapping property:

For all connected algebraic schemes X, and all
divisorial correspondences 5 on J X X, there is
(**) a unique morphism f: X —J such that

(17 X 1)*(82) =

Fourthly, the morphism ¢ dualizes to a morphism é: = Namely,
apply the Universal mapping property (*) with X =J, n= (¢ X 17)*(8,).
This means that we get a diagram:

. X1y .
CXJ——>JI XJ

) JMX%
CXdJ

such that §, and 3, induce the same correspondence on €' X J.
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Fifthly, recall the general construction by which divisor classes » on
abelian varieties X define homomorphisms from X to its dual X. There are
three maps from X X X to X—the group law x and the two projections p,
and p,. Then one checks that for any 7€ Pic(X), the divisor class

p* () — pi* () — p2* ()

is a divisorial correspondence on X X X. Therefore, by definition of X,
there is a unique morphism f: X — X such that

canonical class]
onX X X ’

We will denote f by A(y). Recall that A is itself a homomorphism:
A(nr=9s) =A(91) == A(n2). In terms of this definition, the central result
concerning jacobians is the following (due to Weil [7]).

i —pin—p*n = (1x X f)* [

THEOREM. 3 an ample divisor ® on J such that
$=—A(0)™

In fact, recall that ® is nothing but the sum of the subset ¢(C) in J with
itself (with respect to the group law in J) (g—1) times. For reference we
write the meaning of this Theorem out as follows:

y——
class of p*® — p,*@ — pz*@j= (17 X ¢)*(8,).
call this ¢

The net result of all this is the following: suppose we identify J with
J via the isomorphism ¢, or A(®). Then we have defined the canonical
divisor classes:
On C X (O: A%
On OXJ: 8,
On J X J: §=class of u*®@— p,*®@ — p,*®
=3,

via our
identifications

These are related by the equations
(a) A*=(1¢ X ¢)*(8)
() & =—(¢ X1))*(9).
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hence
(c) A¥*=— (¢ X )*(0).

Proof. (a) has been pointed out before, and (c) follows from (a) and
(b). As for (b), first use the fact that A(—®) =—A(®) =—y. There-
fore

— 0= (1, X (—y¢))*= (1, X $™) *8..

Hence
— (1J X 3’)*‘9:32
and finally:
(1o X $)*8; = (¢ X 15) %8, (This is (***))
=— (¢ X 1)*(1; X $)*0
=— (¢ X $)*0

=— (Lo X $)* (¢ X 17)*6.
Since 1¢ )X ¢ is an isomorphism, (b) follows. Q.E.D.

3. The basic estimates. Once again, we consider a curve C over a
number field %k, as above. Now we will use the maps obtained in §2 to
obtain properties of the height functions introduced in §1. The most
important height function is he(z,y) defined for 2,y € J;.

ProrositioN 1. he(z,y) ts a symmetric, bilinear form on Jy X J;.
Moreover it s positive definite on Ji/mod torsion.

Proof. Let fi: J—J X J be the homomorphism mapping z to z X e,
and let f, map = to e X @. Since 6 is a divisorial correspondence, f;*0 = f,*§
=0. Therefore

he(x, e) = he(fl(x) ) = ]lfl*e((v) = 0,

ho(e,2) = ho(f2(2)) = hyo(z) =0.
But this means that he is a quadratic function on the product of two groups
which is 0 on both factors alone. It is easy to check that this implies that
he is bilinear.

Let é: J X J—>J X J be the morphism mapping X v to y )X . Then
clearly £¥0 =10, hence

ho(z,y) = ho(£(y, ) ) = hgro(y, 2) = ho(y, ).

To evaluate he(w,z), let A: J—J X J be the diagonal morphism, and
let A»: J—J be multiplication by 2. Then
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ho(@, ) — ho(A ()
. hme(x)
= has (42092040 (2)
= hy0(2) —Rho ().

since A, =pnoA, 1;=p;oA. On the other hand, if D is any divisor on J,
let D’ be the divisor obtained by reflecting D in the origin. Then X.* (D)
is in the same divisor class as 3D -+ I’. Therefore,

ho(z,2) =he(x) 4+ he ()
=he(z) + he(—w)

I claim that if this is not positive, then = must be a torsion point on J.
Namely, assume hg(2,2) =0. Then for all integers n,

he (nz) 4+ he (— nx) = ho(nx, nw)
= n*he(z, )
=0,

hence either ho(nz) =0 or he(—nz) =0. This means that if 2 is not
a torsion point, there are an infinite number of distinct points a; such that
he(x;) =0. Since ® is ample, this contradicts property (d) of heights.
Q.E.D.
By the Mordell-Weil theorem, J; is a finitely generated abelian group.
In particular
X=J,®R

is a finite-dimensional real vector space. Moreover, hy makes it into a
Euclidean space: we will abbreviate the norm %e(z,y) to <z,y>. The inner
product <z,y> can be used to compute other heights too:

ProrositioN 2. Let € Pic(C) be a divisor class of degree 0. Then
there is a unique point 7€ Jy, such that 5 equals the restriction of 8, to
O X {7}, and

{pz, 7> =—hy(z) + O(z), all z€ .

Proof. The first assertion is part of the definition of the jacobian J
of C. The second is an immediate consequence of (b), §2:

{¢z, ﬁ>=h9(¢’x; "7)
= hxaineo(z,7) + 0 ()
=—hs(2,7) +0(z)
=—"y(z) + 0(z). Q.E.D.
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PRrOPOSITION 8. (o, py> =—"has(z,y) + O (z,9).
Proof. This follows from (c), §2. Q.E.D.

CoroLLARY 1. There is a constant K such that for z,y € Cy, 54y,

Proof. Recall that A¥=A— (2,) X C—C X (2,). Apply property
(c), § 1 of heights to 2a(z,y) ; note that the divisor (z,) X C' (resp. C X (2))
is of the form p,*(x ) (vesp. p,*(@,)); hence h(sxo(2,y) equals hg(x) to
within a bounded function and hox () (2, y) equals h,,(y) to within a bounded
function. Q.E.D.

COROLLARY 2. There is a divisor class x € Pic(C) of degree 0 such that
fO’/' A 07{,

P, $y = 2gha, () + I (2) + O ().

Proof. The self-intersection number (A?) of the diagonal on € X C is
well-known to be 2 —2g. Therefore the divisor class on A obtained by
restricting the class of A* has degree —2g. Let

fi0->0XC

be the diagonal map, Then there is a divisor class x € Pic(C) of degree 0
such that
7 (8%) —— (2g20 + x).
Therefore
<$2, 9y ——hae (f(2)) + 0 (2)
=—hyan) (2) + 0 (2)
=2gha (2) + he(2) + O(2). Q.E.D.

Putting Proposition 2 and Corollary 1 and 2 together, we obtain the
basic estimate :

There is a constant K, and an element x € J, such that if z,y€ %,
x4y, then

B, $y> = 1/29{<a, > + <ty &> + by, by + <Py K>} + K.

4, A packing argument. From here on, we have only to make some
elementary observations about Euclidean geometry. First of all, define a new
map:

Op—— X
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K

5g—3" One checks easily that y has the property:

via y(z) = ¢(2) +

There is a constant K, such that if =,y € O}, @54y, then
{ W, uy> =1/g [<¢w, Yz —;— <Yy, ¢y>] LK.

Let ||z ] = V<2 2>, let f(s) =1/2(s41/s), and let
cos (u,v) =<u, vp/[ u| [ v]

be the cosine of the angle between points w.v € X in the given norm. Then
we can rewrite the above formula as:

Ly(lvely Ko
cos (Yo, yy) = 7 f(”‘/,y ||> + [y |- lyyl

Now arrange the countable set of points 'y in a sequence so that
lya, | = g | = - -

Note that as || ya || ~ V 2¢ha, (2), (Cor. 2, §3), it follows that || yz; | - + o0
as i—>. The following “packing” lemma is well-known:

LemMma. There is an integer N such that if A+ - -, Ay are any non-
zero elements of X, {hen for some pair of integers 1=1,j =N,

cos (4, 4;) = 3.

CoroLtarY. If ¢g=2 and | yz. | > V12K, then | yzu.y | = § [l y2n ||

Proof. Tf not, whenever n =1=j=n -+ N then 1 = | ya; |/| ya: | < &.
Ience
1= (”_‘#i”) < 1/6,
Nivat) <V

and
oz < /gL K2 s
COS(‘/’%:‘!’%) < / g+ ” {Px " . " ¢$" < 3
i j
This contradicts the lemma. Q.H.D.

CoroLLARY. If g=2, then there are real constants a and b, a >0,
such that
I yn || = e
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It is now easy to argue backwards and show that || ¢z, ||, and ht,,(2,),
and finally hts(z,)—for any 8€ Pic(C) of positive degree—also increase
exponentially. This will be left to the reader.
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Picard Groups of Moduli
Problems

David Mumford

The purpose of this lecture is to describe a single specific calcula-
tion which gives a modern formulation of an old fact. However, 1
want to devote a large part of this lecture to the explanation of the
machinery which has been developed to give a new and, I think,
enlightening setting to a whole group of old questions.

Severi, for one, raised the question: look at maximal families of
(irreducible) space curves—is the parameter space of such families
rational [10]? A more intrinsic question is whether the moduli
variety for nonsingular curves of genus g is rational; in other words,
look at the parameter space of the universal family of nonsingular
curves of genus g and ask whether this is rational;{ this question

1 Actually, there is no such family. But if ¢ > 3, then almost all such curves

admit no automorphisms, and there is a universal family of the automorphism-
free nonsingular curves.
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may be very difficult. However, it can be approximated by any
number of weaker questions: is this space unirational, or is it regular
in the sense that its function field does not admit everywhere regular
differential forms (cf. [5], Chapter 7, §2)? Or, still weaker, is the
Picard variety of its function field trivial (cf. [6], Chapter 6, §1)?
One of the principal results of our theory is that the last statement is
true in characteristic 0. In the same line, can we determine various
cohomology groups of this moduli variety?

Now all these questions, especially the last two, suffer from a
certain vagueness because of our uncertainty about

1. Whether to look only at birational invariants of the function
field,

2. Or, if we want to look at invariants of a definite model, which
model to select (since there is no universal family of nonsingular
curves),

3. If we settle for the usual moduli variety (i. e., the coarse one, cf.
[7]), it has singularities (cf. [9]) and is not compact.

If we want an answer which has some pretense of being a basic fact,
or of being more than idle, we certainly need to start with the correct
variety, that is, the one which is most relevant to the set of all non-
singular curves with whatever structure is contained therein. Now
the real clue here, I contend, is that we must not ask for the coho-
mology or the Picard group simply of a variety; there is a much
better object, which is much more intrinsically related to the
moduli problem and which possesses equally (a) a function field,
(b) a Picard group, and (c) both étale and coherent cohomology
theories. The invariants of this object—call it X—are the basic
pieces of information.

In the first section, I want to describe the whole class of objects
of which our X is an example. These objects, “topologies,” were
discovered by Grothendieck, and are the basic concept on which his
theory of étale cohomology is constructed. In fact, it was chiefly in
order to better understand this important concept that I made the
calculations described in this paper. In the second section, I want to
describe the étale topology proper, and its relation to the Zariski
and the classical topology. In the third section, I want to introduce
the topologies relevant to the problem of moduli. All this is nothing
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but definitions, and I hope that they possess enough intrinsic sym-
metry and interest to make the reader bear with their mounting
abstractness. In the fourth section, I try to alleviate this abstractness
by giving the full gory details of the topology relevant to the com-
putations described later. In the fifth section, I describe precisely
in two different ways the Picard groups associated to the moduli
problem. In the last two sections, for g = 1, we give two separate
computations of this group.

§1. TOPOLOGIES

In the classical definition of a topology, we start with a basic set
X, the space, and we are given a collection 4 of subsets of X, called
the open subsets. Suppose we try to eliminate the set X from our
description and develop the theory from 4 alone: then we will have
to endow A4 with extra structure to compensate for the loss of X.
First of all, we make 4 into a category 4 by defining:

Hom(U, V) = set with one element fy,v, if U C V
= empty set, if UZ V
(@l U, VeA.

Notice that the operation of intersecting two open sets U, V can be
defined in terms of this category:

1.1.
U M Vis the product of U and V in 4, that is, it fits into a diagram

Unv
U |24
and has the universal mapping property: for all W € 4, and for all
maps f, g as below, there is a unique 4 making the diagram commute:
W--2->UNV
g
'

U vV
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Similarly, arbitrary unions of open sets can be defined as sums in the
category 4:

1.2.
If U = \U,q U, then with respect to the inclusions

U,

N
U2—>U

U is the categorical sum of the U,’s.

Moreover, the whole space X as an object of A—but not as a set—
can be recovered as the final object of 4; X is the unique element ¥
of A4 such that for all other U € 4, there is one and only one map
from Uto Y.

Now suppose that we want to define the concept of a sheaf § (of
sets) on X purely in terms of 4. This goes as follows: first of all we
must have a presheaf. This will be a collection of sets F(U), one for
each Ue€ 4; and a collection of restriction maps, that is, if U C V,
or if, equivalently, there is an element fy v € Hom(U, V), then we
must have a map

resy,v : F(V) — F(U).

This is nothing more than a contravariant functor § from A4 to the
category (Sets). In order to be a sheaf, it must have an additional
property:

1.3.
If U, is a covering of U, that is, each U, is contained in U and
UU, =T,
o
then an element x of F(U) is determined by its restrictions to the
subsets U,; and every set of elements x, € F(U,), such that x, and

xg always have the same restriction to U, (M Us, come from such an x.
To define sheaves, it is now clear that we may as well start with
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any category C, instead of A4, and call its objects the open sets,
provided that:

a. If U, I are open sets, Hom(U, V) contains at most one element.
b. Finite products and arbitrary sums of objects in € exist; € has
a final object X.
Also this turns out to be essential:
c. VMol = YU TN
iel iel
where M, \U denote products and sums.

Then sheaves are simply contravariant functors § from € to (Sets)
such that, whenever U = U, U, the following diagram of sets is
exact:
FU)— 11 5(U,) =3 11 35U, N Uj).
iel ijel

Moreover, the ‘“global sections” T'(F) of a sheaf § arc nothing but
the elements of the set F(X). If we look at sheaves of abelian groups
instead of sheaves of Sets, then we can define the higher cohomology
groups as well as T' (= H°). Namely, we verify in the standard way:

a. The category of abelian sheaves is an abelian category with lots
of injective objects.

b. T' is a left-exact functor from this category to the category
(abelian groups).

Hence, as usual, if § is an abelian sheaf, put H(F) (: > 0) equal to
the :th derived functor of I' (cf. [4], §3.2; [1], Ch. 2, §2).

So far, the theory is essentially trivial: it is nothing more than an
exercise in avoiding the explicit mention of points. Grothendieck’s
fantastic idea is to enlarge the set of possibilities by dropping the
assumption that Hom (U, 1) contains at most one element; for
example, open sets may even have nontrivial automorphisms.
Notice first of all that then it is no longer sufficient to say simply that
open sets U, cover the open set U: it will be necessary to specify
particular maps

pa:Ua— U

with respect to which U is covered by the U,’s. Moreover, it is
generally not enough to say that the U,’s cover U only when U is
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the categorical sum of the U,’s: usually there are other collections
of maps {p.} which we will want to call coverings. The concept
which emerges from these ideas is the following:

Definition. A “‘topology” T is a category C whose objects are
called open sets and a set of “coverings.” Each covering is a set of
morphisms in €, where all the morphisms have the same image; that
is, it is a set of the form:

(U 25 U},
The axioms are:
a. Fibred products{ U; Xy U; of objects in € exist.
b. {U’ 2 U} is a covering if p is an isomorphism; if {U, e U} isa
covering and if, for all «,

%,8

{Ua,ﬂ

aUa}

is a covering, then the whole collection

is a covering.

c. To generalize property (c) under 1.3, if {U, U } is a covering,
and V — U is any morphism, then

(V Xu Us = 1}

is a covering (g« being the projection of the fibre product on its
first factor).

TIn any category, given morphisms p: X — 2 and ¢: ¥ — Z, a fibre
product is a commutative diagram:

w
uy/  \?
X Y
PN e
z

such that for all objects W’ and morphisms v’ : W’ — X, v’ : W’ — Y such that
pou’ = god, there is a unique morphism ¢: W’ — W such that u’ = uo ¢
v’ = v o t. This object W is usually written

X Xz Y

and referred to alone as the fibre product of X and Y over Z.
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In general, we want to assume that € possesses a final object X,
but this is not necessary. We want to generalize the concept of a
sheaf to an arbitrary topology:

Definition. A sheaf (of sets) on T is a contravariant functor §

from @ to the category (Sets) such that, for all coverings U, BU
in T, the following diagram of sets is exact:

F(U) > II §(U.) 3 I $(Ua Xuv Up)
@ a,B

(the arrows being the usual maps given by the functor &, contra-
variant to p, and to the projections of U, Xv Upg to U, and to Up).
Exactly as before, each sheaf § of abelian groups has a group of

global sections:
I'(F) = 5(X)

(X the final object) and hence, by the method of derived functors,
higher cohomology groups Hi(T, ).

A topology in the classical sense gives a topology in an obvious
way. To give the theory some content, consider the following
example:

Let a group 7 act freely and discontinuously on a topological space
X; that is, for all x € X, there is an open neighborhood U of x such
that UM U’ = @ for all o €, ¢ # e. For every set S and action of
m on S, we can construct the topological space § = (X X §)/=
(endowing S with the discrete topology). With two 7 sets S and 7" and
a w-linear map f : § — 7, we obtain a local homeomorphism

X X 8)/r D> (X X T)/x
I I
$ 5

that makes § into a covering space of J. Let the category € consist
in the set of such spaces § and such maps f; let the coverings con-
sist of maps fa : S« — 3 such that, equivalently, 5 = \U.fa(8a) or
T = U.fa(Sa). The final object in this topology is the topological
space X/, since every other open set has a unique projection

§=AXXS8/r—X/r

in the category. In other words, what has happened is that the open
sets are no longer subsets of X/ they are covering spaces of X/m.
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If X is simply connected and connected, then X is just the universal
covering space of X/m, and the topology consists in fact in all cover-
ing spaces § of X/m, and all continuous maps § — J making the
following diagram commute:

f
§—9J
X/m
On the other hand, this topology is actually independent of X: we
may as well “call” the m-sets S themselves the open sets, and call the
w-linear maps f : § — 7 the morphisms. Then the space X corre-
sponds to the w-set 7, (say with left multiplication as the action of =
on itself), and the final object X /7 corresponds to the 7-set {0}, with
trivial action of 7. We shall call this topology 7.

In this form, it is easy to give an explicit description of a sheaf & on
the topology. Let 7, considered only as a set with the group = acting
on the left, be denoted (7). Then the right action of = on (r) makes «
into a group of automorphisms of the m-set (). But the group of
automorphisms of (r) obviously acts on the set §({r)) for every sheaf
F. Let M = F((r)). Then M itself becomes a w-set. I claim that & is
canonically determined by the w-set M.

a. Let § be a m-set on which 7 acts transitively. Then there is a
w-linear surjection

(r)y > 8

making () into a covering of S. By applying the sheaf axiom to this
covering, we check that §(S) is isomorphic to the subset M* of A of
elements, left fixed by 2 C =, where % is the stabilizer of p(e).

b. If § is any m-set, then S is the disjoint union of w-subsets S, on
which = acts transitively. If 7, is the inclusion of S, in §, apply the
sheaf axiom to the covering

{Sa—> S},
We check that, via F(za),

F(S) =TI 5(S.).

Conversely, given the m-set M, the isomorphisms in (a) and (b)
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define a sheaf §: hence to give a sheaf (of sets) F in this topology and
to give a m-set M are one and the same thing. In particular, a sheaf of
abelian groups 7 is the same thing as a m-module M. As the m-set {0}
is the final object in 77, we find by means of (a) that the global
sections I'(F) of the sheaf § are just the invariant elements M™ of M.
Now it is well known that the category of m-modules is an abelian

category, and that
M— M™

is a left-exact functor on this category. Its derived functors are
known as the cohomology groups of = with coefficients in A:

Hi(r, M)
(cf. [8], §10.6). Therefore, we find:
H(T,, §) = Hi(x, M).

One final set of concepts: if 77 and 7% arc two topologies with
final object, a continuous map I’ from 1y to 7'y consists in a functor
from the category of open sets of 7% to the category of open sets of
T’y such that:

a. It takes the final object to the final object.
b. It takes fibre products in 7' to fibre products in 7.
c. It takes coverings in 7'y to coverings in 7.

For the sake of tradition, if U is an open set in T, we let F~1(U)
denote the open set in 77 associated to U by this functor; in other
words, requirement (b) means:

FY U X Uy = (F-Y(U,) X FYU»).
U F-1(U)

If ¥ is a continuous map, then F induces a map £, from sheaves
on 77 to sheaves on 7%: let & be a sheaf on 77;. Define

F (3)(U) = 5(F1(U))

for all open sets U in 7. This is clearly a sheaf. By standard tech-
niques (cf. [4] and [1], Ch. 2, §4), we find that there is a canonical
homomorphism:

HZ(T% F*(g)) - Hi<T1) 3)
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Moreover, let U be an open set in a topology 7. Then “U with
its induced topology” is a topology 7'y defined as follows:

a. Its open sets are morphisms V' — Uin 7.
b. Its morphisms are commutative diagrams:

V1 E— V2
U
c. A set of morphisms
Vo —V
U
is a covering, if the set of morphisms {V, — V'} is a covering in 7.
Then there is a canonical continuous “inclusion” map:

12 Tu— T,

that is, to the open set Vin 7', associate the open set 7~!(V') which is
the projection:
/)2 vV X U— U.

§2. ETALE AND CLASSICAL TOPOLOGIES

From now on, we will be talking about schemes. For the sake of
simplicity, we will work over an algebraically closed field %, and all
schemes will be assumed separated and of finite type over £, without
further mention.

Definition. Let f : X — ¥ be a morphism. Then if, for all closed
points y € ¥, f~1(y) is a finite set and for all x € f~!(y), the induced
homomorphism

f*:10,— 0,

gives rise to an isomorphism of the completions of these rings

f* 10,3 0,
then f is étale.
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As an exercise, the reader might prove that this is equivalent to
assuming:

a. fis flat, that is, for all x € /~1(y), o, is a flat o,-module,
b. The scheme-theoretic fibre f/~1(y) is a reduced finite set, that is,
f7(y) is a finite set, and for all x € f~1(y), m, = f*(m,)  0..

Clearly, “étale” is the scheme-theoretic analog of “local homeo-
morphism” for topological spaces. Now let X be a scheme.
Definition. 'The étale topology X of X consists of

a. The category whose objects are étale morphisms p : U — X, and
whose morphisms are arbitrary X-morphisms; in other words,
given U Lx, v X, then Hom(p, ¢) is the set of commutative
diagrams

v—Lsv

p\X /

(For simplicity, we shall refer to the objects of this category as
schemes U, the étale morphism p to X being understood).
b. The coverings consist in arbitrary sets of morphisms {U, =3 U}
provided that
U =\J pa(Usd).

Let Xzar be the Zariski topology on X: its category consists in the
open subsets of X and the inclusion maps between them; and a set of
inclusion maps p, : U, C U is said to be a covering if

U=\ U,

These two topologies are related by a continuous map
o Xey — Xzar.

Namely, if U C X is an open subset, the inclusion morphism i of U
in X is obviously étale, so that 7 is an open set in X¢. The reader
should check to see that the map from U to 7 extends to a functor
from the category of Xz, to the category of X, which takes cover-
ings to coverings and fibre products to fibre products.

If £ = C, the field of complex numbers, we can compare X with
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the classical topology too. The set of closed points of X forms an
analytic set X¢, and has an underlying topology inherited from the
usual topology on C: call this Xcx. Unfortunately, there is no con-
tinuous map in either direction between X and X.x. However,
there is a third topology related to both: let open sets consist in
analytic sets U and holomorphic maps

f:U— X,

which are local homeomorphisms—as usual, coverings are just sets
of maps
/i
Us—U
Xe

such that U = \U,f,(U,). Call this topology X Then there are

continuous maps

since

a. An open set in X.x is an “open” subset U C X¢; and this defines
the inclusion map
1 U— X,
which is a holomorphic local homeomorphism.
b. An open set in X is an étale morphism f : U — X of a scheme
U to the scheme X; and this defines the holomorphic local

homeomorphism

fC . UC — XC
of the corresponding analytic sets.

On the other hand, although a is not an isomorphism of topologies,
it is very nearly one in the following sense:

Definition. Let f: T1— T; be a continuous map of topologies. f
is an equivalence of Ty and T if

a. The functor f~! from the category of open sets of T to that of 7'
is fully faithful,

67



PICARD GROUPS OF MODULI PROBLEMS 45

b. Every open set U in 77 admits a covering in 7" of the form
{1(Va) = U}, with suitable open sets V, in T,

. Ga o . . . .

c. A collection of maps {V,— V| in T, is a covering, if the collec-

. /71 (ga) oy . .

tion of maps {/~}(Va) ———— f~1()")} in T}y is a covering.
We leave it to the reader to check several simple points: @ is an
equivalence of topologies; if f: 77— T, is an equivalence of
topologies, fx defines an equivalence between the category of
sheaves on 7°; and the category of sheaves on 7%; hence if § is a
sheaf of akelian groups on 77, the canonical homomorphism:

HI(Th, 5) & H(Ts, [+5),

is an isomorphism. In fact, there is no significant difference between
equivalent topologies. For this reason, we often speak of “the con-
tinuous map” from X to X, although strictly speaking this does
not exist. Finally, there is a very nice result of M. Artin: let Z/n
denote the sheaf on X%

Z/n(U) = ) Z/n;

connected components of
U in complex topology
(this is the same as the sheaf associated to the presheaf which simply
assigns the group Z/n to every open set U.) We shall denote b« (Z/n)
simply by Z/n; since the connected components of a scheme U in its
complex and in its Zariski topologies are the same, we have:

bx(Z/n)(U) = D Z/n.

connected components

of U in Zariski topology
If X is nonsingular, M. Artin has proven that the canonical homo-
morphism

Hi(X e, Z/n) — Hi(X*

cX)

Z/n) & Hi(Xex, Z/n)

is an isomorphism. This result assures us that, at least for nonsingular
varieties, the étale topology, defined purely in terms of schemes,
captures much of the topological information contained in the
a priori finer complex topology.

To complete this comparison of the topologies associated to a
scheme X, we must mention three other topologies, defined over any
k, which are interesting. The idea behind these topologies is to
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enlarge the category as much as you want, but to keep the coverings
relatively limited. In all of them, an open set is an arbitrary morphism

[rU— &,
and a map between two open sets f; and f» is a commutative diagram:

U— U,

Az

The restriction on the coverings involves new classes of morphisms,
defined as follows:

Definition. A morphism f: X — Y is flat if for all x € X, the local
ring 0, is a flat module over o4(,). Moreover, f is smooth if it is flat and
if the scheme-theoretic fibres of f are nonsingular varieties (not
necessarily connected).

To understand smoothness better, the reader might check that it is
equivalent to requiring, for all x €.X, that the completion o, is
isomorphic, as o,-algebra, to

6/(2)[[/\713 IR Xn:l]
for some n.
For the purposes of §3, it is very important to know that smooth
morphisms are also characterized by the following property (cf. [3],
exposé 3, Theorem 3.1).

2.1.

Let 4 be a finite-dimensional commutative local k-algebra, and
let I C A4 be an ideal. Let a commutative diagram of solid arrows
be given:

Spec (4/I)

Then there exists a morphism denoted by the dotted arrow filling
in the commutative diagram.
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This should be understood as a kind of ‘“homotopy lifting prop-
erty,” so that smooth morphisms are somewhat analogous to fibre
spaces.

We can now define three topologies,

XK rk >k
A(’*t’ ‘Xsmootha and Aflat»

by defining a covering as a collection of morphisms { U, . U} such

that U = U, f(Us) and f, is étale; f, is smooth; f, is flat, respec-
tively. You can check to see that all our topologies are related by
continuous maps as follows:

3k * % > g
Aﬂat — Agmooth X(’xt — X — ‘XZM'

The important fact about these maps is that, in particular, they
set up isomorphisms between the cohomology of X7, X¥ and Xy.
Therefore, as far as cohomology is concerned, any one of these three
topologies is just as good as the others.

§£3. MODULI TOPOLOGIES

For this entire section, fix a nonnegative integer g. We first recall
the basis of the moduli problem for curves of genus g:

Definition. A ““curve” (over k, of genus g) is a connected, reduced,
one-dimensional scheme X, such that

dimH (X, ox) = g.

Definition. A “family of curves” over S (or, parametrized by §)
is a flat, projective morphism of schemes

T — S,

whose fibres over all closed points are curves.
Definition. A “morphism” F of one family m: %;— 81 to
another 7y : X, — S, is a diagram of morphisms of schemes:

X1 — A

Sl —>Sz
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making ; into the fibre product of Sy and X, over S,. F is smooth/

flat/étale if the morphism from S; to S is smooth /flat/étale.
Definition. Given a family of curves 7 : X — § and a morphism

g T — S, the “induced family of curves’ over 7 is the projection:

/)Q.foST—>T

The most natural problem is to seek a universal family of curves,
that is, one such that every other one is induced from it by a unique
morphism of the parameter spaces. As indicated in the introduction,
the usual compromises made in order that this existence problem
has a solution are exactly what we want to avoid now. Instead, we
want to define a topology: in the ideal case, if a universal family of
curves had existed, this would be one of the standard topologies on
the universal parameter space. Inasmuch as such a family does not
exist (unless stringent conditions on the curves in our families are
adopted), this topology is a new object.

Definition (Provisional Form). The moduli topologies 9%, N owm,
and N5, are as follows:

a. Their open sets are families of curves.
b. Morphisms between open sets are morphisms between families.
c. A collection of such morphisms

X, —— X
Wa\;’/ ¢7l’
]

Ja

is called a covering, if § = U,g.(S,) and if each g, is étale,
smooth, or flat, respectively.

The first thing to check is that this is a topology and, in particular,
that fibre products exist in our category. However. unlike the
examples considered in §2, there is not necessarily a final object in
our category. Such a final object would be a universal family of
curves. A second point is that, if 7 : € — §'is any family of curves,
the topology induced on the open set 7 is equivalent to the topology
Sy S ooths OF Sh . on S.

A less trivial fact is that absolute products exist in our category.
Let m; 1 ¢; — S; ( = 1, 2) be two families of curves: I shall sketch
the construction of the product family. First, over the scheme
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S1 X S, we have two induced families of curves,

x; X S, S1 X Xy

N

S1 X Se.

Now suppose Y — 7 is a third family of curves, and that the follow-
ing morphisms are morphisms of families:

Erl/‘}[\xz (a)

{ N
Sy AY)
To have such morphisms is obviously equivalent to having (1) a

morphism 7" — §; X s, and (2) isomorphisms over 7" of the three
families of curves:

(Y] [(1 X S2) X T [(S2 X &2) X T7] (b)
\(SI 1 67 (Sl * SZ)
T

But now we must digress for a minute; consider, & la Grothen-
dieck, the following class of universal mapping properties which can
be used to define auxiliary schemes. Let § be a scheme, and let

A/

be two morphisms. Look at all pairs (7, ®) consisting of schemes 7°
over § (i. e., with given morphism to §) and isomorphisms over 7':

X1 Xs TS Xy XsT.

\7/
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If there is one such pair (7, ®) such that for every other such pair
(T, ®'), there is a unique morphism (over \S)

f:T'—T
making the following diagram commute:
X1 Xs TM == X X|S T’
1y, X f Ix, X /

X1 X T—(b—’ Xy Xs T

then (7, ®) is uniquely determined up to canonical isomorphism by
this property. And 7" is denoted

Isomg(X;, Xo).
Now returning to our families of curves, suppose that the scheme
I = Isomg x5,(X1 X Sy, §1 X Ls)

exists. Then, in situation (a), we get not only a canonical morphism
from 7 to .S7 X .52 but even a canonical morphism from 7" to 7. Now
over I, the two lamilics of curves induced from %1/ and X/, are
canonically identified: call this family 9/7. Then the situation (a)
is obviously cquivalent with a morphism from the family Y/ 7 to the
family & /7. In other words, /7 is the only possible product of the
families 91/S1 and %»/S.. Fortunately, 7 does exist in our case. This
is a consequence of a general result of Grothendieck’s (cf. [2],
exposé 221), and we will pass over this point completely.

Definition. The product of the families m;: € — S (@ = 1, 2)
will be denoted:

T (X1, L) — Isom(my, 7).

Since products do exist in the common category of the topologies
N *, there is no reason not to add a final object M to this category
in a perfectly formal way. In order to enlarge the topology, though,
we have to define the coverings of the final object Af. The point is,
however, thatif m : € — Sis part of a covering of M, and if 7’ : X'—
S’ is any other family of curves whatsoever, then the morphism from
the product family

(%, x') — Isom(w, ')
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to the family 7’ must be part of a covering of 7’. In particular, the
projection from Isom(mw, 7') to §" must be étale, smooth, or flat
according to the case involved. This leads to:

Definition. A family of curves = : X — S is étale, smooth, or flat
over M if, for all other families 7’ : X’ — §’, the projection from
Isom(m, 7’) to S’ is étale, smooth, or flat.

If we use criterion 2.1 for smoothness given at the end of §2
(p. 46), the condition that 7 is smooth over A/ can be reformulated.
In fact, after unwinding all the definitions by various universal
mapping properties, this condition comes out as follows.

3.1.

Let 4 be a finite-dimensional commutative local £-algebra, and
let I C A be an ideal. Suppose we are given a diagram of solid
arrows:

Yo
Spec(4) - - —7 S
Spec(4/I)

where Y/Spec(4) and Yo/Spec(4/I) are families of curves, and
where the two solid squares are morphisms of families of curves.
Then there should be a morphism of families denoted by the dotted
arrows filling in the commutative diagram.

Such families have been considered already: compare, especially,
the thesis of M. Schlessinger. The important thing is that plenty of
such families exist. In particular, if C is any curve over &, we cer-
tainly want C to be part of such a family. This can be proven by the
method of “linear rigidifications” (cf. [7], §5.2 and §7.2). A fortiori,
plenty of families = flat over A exist too.

With families étale over M, it is another matter. In fact, unless we
stick to curves C without global vector fields (i. e., everywhere finite
derivations), such families do not exist. Let us analyze what it means
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for m : &€ — S to be étale over M. Let C be any curve over £, and let
p + C— Spec(k)

be the trivial family given by C. Then if 7 is étale over M, Isom(r, p)
must be étale over Spec(k); that is, Isom(m, p) must consist in a finite
set of reduced points. But the points of Isom(w, p) represent iso-
morphisms of C with the fibres 771(s) of the family «. Therefore, if 7
is étale over M, the following is satisfied.

3.2.

For all curves C over £, C occurs only a finite number of times in
the family = : & — §, that is C is only isomorphic to a finite number
of curves 77!(s). Moreover, if C occurs at all in 7, the group of
automorphisms of C is finite.

Now conversely, the smoothness of = and (3.2) (i.e., 3.1 and 3.2),
guarantee the étaleness of 7. To see this, let 7’ : &’ — " be any
other family of curves. Assume (3.1) and (3.2). Then we know that
Isom(m, 7’) is smooth over .§’; for it also to be étale over .S means
simply that Isom(m, 7') has only a finite number of closed points
over every closed point s” € §”. But let C be the curve 7/~1(s’). There
is an isomorphism between the set of closed points of Isom(mw, 7’)
over s and the set of isomorphisms of C with the curves 7~ 1(s) (s a
closed point of \5). Therefore, the finiteness of this set follows from
3.2.

Definition. A family 7 : € — § of curves satisfying (3.1) and (3.2)
will be called a “modular” family of curves.

Modular families have the following very nice property. Let
T A; —.S; be two modular families of curves, and suppose the
curve C occurs in m; over the point sy € S and in 73 over the point
s2 € 8y, that is,

77 (s1) =2 C =y l(sa).

I claim that 7 and §; are formally isomorphic at the points s, s2;
in other words, the complete local rings 6, and é,, are isomorphic.
To see this, fix an isomorphism 7 of #7*(s;) and w3 '(s»). Then 7
determines a point

¢t € Isom(mwy, m3)

lying over s; and s,. But since both 7y and 7, are modular, Isom (s, )
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is étale over both 1 and S,. Therefore, via the projections, we get
isomorphisms:

11
112

0s, =2 0, =2 0,

More precisely, two modular families containing the same curve are

related by an étale correspondence at the point where this curve

occurs. As a consequence, for example, either all or none of such

families are nonsingular, and they all have the same dimension.
Another very important property of modular families is that any

morphism between two such families is necessarily étale. Assume that
Yy—>X
o
Tr—8
is a morphism of modular families. This morphism defines an iso-
morphism of /7 and the family induced by /S over T°: so it defincs

a morphism of 7" to Isom(w, 7) by the universal mapping property
defining Isom. We get the diagram

Isom(w, )

7

T S

where p1eoo = 1p, and pooo = g. Since p; is étale, a section, such
as g, of p; defines an isomorphism of 7" with an open component

Iy C Isom(w, 7).

Since p. is étale, the restriction of p» to I is étale; hence g is étale.
We now return to our topologies.
Definition (Iinal Form). The moduli topologies N ,om, and
Mg, are as follows:

a. Their open sets are families of curves, and a final object M.

b. Their morphisms are morphisms of families of curves, and projec-
tions onto the final object M,

A collection of such morphisms with image a family = : X — .
is called a covering exactly as before; a collection of projections of
families 7, : %, — S, onto the final object M is called a covering

o
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of M if: (1) each family =, is smooth, or flat over M, and (2)
every curve (' occurs in one of the families 7.

It is clear that a topology 91, could be defined in the same way,
but then the final object A/ would have no coverings at all. This is
because some curves have an infinite group of automorphisms, and
hence do not occur in any modular families. One result is that
sheaves on this topology would not be sufficiently restricted; the
topology is too loosely tied together and would not be useful.

However, suppose that we happen to be interested only in non-
singular curves. This is perhaps short sighted, but never mind. By
considering only families of nonsingular curves, we can modify
M ootns fOr example, and get a smaller topology. Now if the genus g
is at least 2, it is well known that such nonsingular curves have only
a finite group of automorphisms. It is to be expected that they belong
to modular families, and indeed this is the case. Therefore, we can
define an étale moduli topology by looking only at nonsingular
curves and modular families. We make the definition in analogy to
the scheme topology X rather than X7 :

Definition.  'The moduli topology My is as follows:

a. Open sets are modular families of nonsingular curves, and a final
object M.

b. Morphisms are morphisms of families of curves, and projections
onto the final object M.

c. A collection of morphisms:

Xy —

|
!

Sa —
Ja

LLe——

is a covering if § = \U,g.(S.); a collection of projections of
families 7, : €x — S, onto the final object M is a covering if
every curve C occurs in one of the families 7.

In the rest of this paper, this is the topology we will be interested in; there-
fore, we will refer to it simply as M, rather than M.

It is, I think, a very important topology. At a future occasion, I
hope to give some deeper results about this topology and compute
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some of its cohomology groups. For the present, I just want to men-
tion a few nice facts about it:

a. The induced topology on an open set 7 : € — .S is equivalent to
the étale topology S on S.

b. If r : € — Sis an open set, S is a nonsingular 3g — 3-dimensional
variety.

c. The so-called ““higher level moduli schemes” form (for n > 3, n
prime to the characteristic of £) modular families

Ty - Ex:n - Sn

each of which is, by itself, a covering over M. Moreover, Isom(r,,
m,) is a finite Galois covering of §,.

§4. THE ELLIPTIC TOPOLOGY

The last topology that I want to define is the one which we shall
study closely in §§6 and 7. It is essentially the topology ¢ in the
case g = 1, except that certain modifications are necessary to
extend the definition given in §3 when g > 2. With this topology
everything can be made very explicit, and hopefully the abstractness
of all our definitions will be enlivened by this case. This topology is
the classical proving ground for all notions of moduli, and, as such, it
is found in various forms in hundreds of places.

The difficulty in using the definitions of §3 when ¢ = 1 is that a
nonsingular curve of genus 1 admits a structure of a group scheme,
and therefore it has an infinite group of automorphisms. But by a
minor modification, we can make everything go through. The key is
to consider not curves, but pointed curves, that is, curves with a
distinguished base point.

Definition. A nonsingular pointed curve of genus 1 is an “elliptic
curve.”

Definition. A “‘family of pointed curves” is a family of curves
. X — Swith a given sectiong : S — L (l.e.,moe = 1,). Ifg =1,
and the curves are nonsingular, this is called a “family of elliptic
curves”’.

We can define a modular family of elliptic curves just as before.
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Since modular families of elliptic curves do exist, it makes sense to
state the next definition.
Definition. The topology 9 is as follows:

a. Its open sets are modular families of elliptic curves, and a final
object M,
b. Its morphisms are (étale) morphisms of families of elliptic curves,
and projections of every open set to M.
c. Coverings of a family = : &€ — § are collections of morphisms of
families:
Xy —> X
T lﬂ'
fa
Sa —_— Sy

such that § = \U,f4(S«); coverings of M are collections of projec-
tions of families m, to M, provided that every elliptic curve occurs
in one of the families m,.

We want to describe this topology explicitly. First, we shall outline
the basic facts about elliptic curves, and then indicate step by step,
without complete proofs, how this leads to our final description. We
shall assume from now on that the characteristic of £ is not 2 or 3, so
as to simplify the situation.

The basic fact is that elliptic curves are exactly the curves obtained
as double coverings of the line ramified in four distinct points.
Therefore, they are the curves C described by equations

= (x — a1)(x — a2)(x — a3)(x — ay).

Since the group of automorphisms acts transitively on the curve C,
we can assume that the distinguished point ¢ on C'is the point x = ay,
y = 0. By a projective transformation in the coordinate x, we can
put a4 at %, and the equation becomes:

y:=(x— a)(x — ay)(x — as),

where ¢ is now the unique point of this curve over x = .

In the language of schemes, the conclusion is that every elliptic
curve is isomorphic as pointed curve to the subscheme of P, defined
by homogeneous ideal

Q@ = ()(gXo - (Xl — a;X())(Xl - a;XQ)(Xl - a;X0)>
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together with the distinguished point
A’() =0;X1 =O;X2#0.

It can be shown that this representation is essentially unique; in
fact, the triple (o, as, aj) is uniquely determined by the curve up to
permutations and to affine substitutions of the form

B, = Ao, + B.

It follows easily from this that elliptic curves are classified by the
number:

L Ja=2@a-n-a s
i = 64[ A= 1) ] M)
where A= aff‘zg:'

Why is this? First, A determines the triple (ah, ay, ty) up to affine
transformations. And, if we permute the s, \ is transformed into
one of six numbers:

1 A—1 1 A
>\71_>\5_7 ) ) :
A 1—XN A—1

Also, the values A = 0 and A = 1 are excluded, since the three
numbers a;, as, and ay are distinct. It can be checked that j is un-
changed by any of these substitutions in A, and, conversely, that
only N’s related by these substitutions give the same ;. The factor -64
arose historically, and turns out to be crucial if we specialize to char-
acteristic 2. In characteristics other than 2, it is obviously harmless!

How about automorphisms of elliptic curves as pointed curves?
Every elliptic curve C obviously possesses the automorphism

X —>x

y— =y
corresponding to its being a double covering of the x-line. We will
call this the inversion p of C. A very important fact is thatif w : & — .S,
e 1§ — X is any family of elliptic curves, then the inversions of all
the fibres piece together to an automorphism P : X — X, of the
family 7; we will also call this the inversion of . A related fact is that
p commutes with any other automorphism « of C. Since k(x) is the
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field of functions on C fixed by the inversion, such an « will take £(x)
into itself; that is, it will be given by a projective transformation in x.
Also since a leaves ¢ fixed, it leaves x = o fixed; and it must per-
mute the other three branch points a;, ay, aj. It is now an elemen-
tary result that such an « occurs only in two cases:

a.j =0;N =215, 0r —1; a;, ay, a; of the form B, 8 + v, B + 27.
b.j =123, A = —w or —w? (w a cube root of 1); a), ay, ajy of the
form B8 4+ v, B8 + wy, B + w?y.

Now normalizing the first case by choosing o) = —1, ay = 0,

ay = 1, we find that C possesses the automorphism o of order 4:

X’ = —x
=1y

such that ¢? is the inversion. Normalizing the second case by
. ’ ’ ’ 9

choosing a; = 1, @y = w, a3 = w? we find that C possesses the auto-

morphism 7 of order 6:

T =w X

o=y

such that 7% is the inversion. These are the only automorphisms.
Now, what about modular families. Since only one parameter j is
involved, it is natural to expect that modular families are always
parametrized by nonsingular curves S. This is true. The most
natural thing would be to look for a modular family parametrized
by j itself. The following is an example of such a family:
p2=xt+A4-(x+1)

where A=— """

We check that if j 2 0, 123, then A is finite and the roots of x* 4
A(x 4 1) are all distinct—so we have an elliptic curve. And we can
compute its j-invariant in an elementary way, and it is the j we had
at the start.

In the language of schemes, let

A; = Spec A[j]
S =A; — (0, 123),
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and let & be the closed subscheme of P, X § defined by the vanish-
ing of the section

27 128 —;
—‘4" 7. "‘(AQ\{,-FA(,)

Xg : zY() - /Y?

of the sheaf 0(3). Let € be the morphism
$=(0,0,1) X §C .

Then a rigorous analysis of the infinitesimal deformations of an
elliptic curve shows that this is a modular family.

Can we extend this family 7 to cover the pointsj = 0 and 12*? For
the value ;) = 0, 4 is infinite; and for j = 123 our equation degener-
ates. But even a priori it is clear that there has to be trouble. If 7
is a modular family, then Isom(w, 7) must be étale over .S. Now for
each closed point ¢ € S, the closed points of Isom(m, 7) over ¢ stand
for: (a) closed points ¢” € §such that #=!(¢) and #—!(¢') are isomorphic,
plus (b) isomorphisms of 7=1(¢) and #—!(¢'). If S is an open set in the
j-line, 7#='(¢) and 7~ !(#') can never be isomorphic unless ¢ = ¢,
Therefore, the number of points in Isom(mr, m) over ¢ equals the
order of the group of automorphisms of 7#=1(¢). For j 5 0, 123, this
is 2, so Isom(mr, 7) is a double covering of §; and Isom(r, 7) could not
have four or six points over ; = 0 orj = 12%. The real problem here
is that ; is not the “‘right” parameter at ;j = 0 and 12 At = 0,
\/j or something analytically equivalent is needed; at j = 122,
\/j — 12% is needed. This works out as follows. Let 7 : € — S be
any modular family. In particular, S is a nonsingular curve. Suppose
we define a function on the closed points of S by assigning to the
point s € S the j-invariant of the curve 7=!(s). It can be proven that
this function is 2 morphism:

S5 A,
We can then prove the following.

4.1.

Each component of .S dominates A; and the ramification index of j
at a closed point s€.5is 1, 2, or 3 according to whether j(s) # 0
and 123 j(s) = 0, or j(s) = 123,
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We now want to return to the problem of giving an explicit
description of the topology 9. The morphism ; is one invariant
which we can attach to the family = : & — §. Unfortunately, a
given j may correspond to more than one family 7. A second
invariant is needed. The key is to use more strongly the particular
modular family over A; — (0, 12%) which we have constructed.
With this as a reference point, so to speak, we will get the second
invariant. Let m: Xo— 89 denote this one family. We use the
diagram:

Isom(wr, 7o)

P
S So
A;

The first thing to notice is that this is commutative: let ¢ be a closed
point of Isom(m, mo). If s = p1(¢) and so = p»(¢), then ¢ represents an
isomorphism of 7=1(s) and my(so). Therefore, 7=2(s) and 5" (s0)
have the same j-invariant, that is, p1(¢) and po(f) have the same
image in A,;.

Now what is Isom(m, m()? Over a closed point s€.S, its points
represent isomorphisms of 7~1(s) with curves 75" (s0), 5o € So. In other
words, Isom(m, m) has no points over s if j(s) = 0 or 12?; two points
otherwise. Isom(m, m¢) is a double étale covering of the open set:

77H(So) C .

This covering extends uniquely to a covering 7 of all of § (not neces-
sarily étale!) T. The covering 7/S is the second invariant. I claim that
7 and 7/§ determine the modular family = uniquely.

Indication of Proof. The first step is to check that there is at most

1 By a double covering 77/S, I mean a second nonsingular curve 7, and a
finite, flat, surjective morphism f: 7" — S of degree 2, étale over an open dense
subset .§” C S. Now either Isom is the disjoint union of two copies of j771(8,); and
then I is the disjoint union of two copies of S; or Isom is the normalization of
771(S) in a quadratic extension of its function field, and then I is the normaliza-
tion of S in this field.
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one family &/ extending the restriction of this family to the open
subset j71(S,). After this, we may assume j(S) C S,. Let Y be
the given family of elliptic curves over I = Isom(m, mo). Then we
have a diagram of morphisms of families:

Y

/N

€ Lo

T / I ™o
N So

The family Y/I is determined by ; and 7/S, because it is just the
family induced over 7 by the base extension

I— 8§58,

from the standard family 9. On the other hand, Y is also induced
from & via the double étale covering 7/S. Therefore, Y is a double
étale covering of . We could recover & from ¢ if we knew the
involution ¢ of Y interchanging the two sheets of this covering. But
let Py be the inversion of the family my: this is an involution of X
over Sy Let ¢ be the involution of 7 corresponding to the covering
1/§: this is an automorphism of 7 over S too. Since the diagram sets
up an identification

(y = IXSOEI:OS

and P, induce an involution t X P, of Y. We check that ¢ =
X Py. Q.E.D.

e~ =1

The next question is whether there are any restrictions on j and
1/S for these to come from a modular family. Besides the restriction
(4.1) on j mentioned above, it turns out that the following is the
only further restriction.
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4.2.
I is ramified over all points s of § where j(s) = 0 or 123.

Turning all this around, we can make it into a second definition of
the topology O1t:
Definition. 'The topology I is as follows:

a. Its open sets are morphisms j of nonsingular curves .S to A; satisfy-
ing restriction (4.1), plus double coverings 7/ satisfying restric-
tion (4.2); and a final object M.

b. Its morphisms are commutative diagrams:

11——> 12

| |

Sl—’ Sg

A;

making 7; into the fibre product S; X, I;; and projections of
every open set onto M,
c. Coverings of (7, 1/S5) are collections of morphisms

I, —1

|,

Se — 8

such that §' = U,f(S«); coverings of M are collections of projec-
tions of open sets (Ja, [o/Sa) onto M such that A; = \U,7.(Sa).

Note that, because of restriction (4.1), given a morphism of open
sets:
Iy — I,

|, |

S1——)S2

the morphism f is necessarily étale.

Let us work out (absolute) products in these terms to see how it all
fits together. Say (71, 71/S1) and (Js, I2/S2) are two open sets. Suppose
we want to map a third open set (7, 7/S) to both:
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Then first we get a morphism f; from S to S; X 4 Se. But S is non-
singular, and f maps each component of . to an open subset of
1 X S2; therefore, f; factors through the normalization of Sy X 5 S..
Denote this normalization by 7, and let f, : .§ — 7" be the morphism
that factors f;. Let 1] and I, be the double coverings of 7" induced by
I,/S81 and I,/S,. Then pulling these double coverings all the way
back to .S, we get isomorphisms of both with 7/S, hence an iso-
morphisin between them. Exactly as in §3, we get a factorization of

fo via S KN Isomp(Zy, I,). But what is this Isom? At points where I;
and 7, are unramified, it is just the “quotient” double covering;
that is, if 7] is defined by extracting v/f, and I, by \/f,, then Isom
is the double covering given by A/f1/fs. Since ] and I, are ramified
over exactly the same points of 7 this “quotient” covering extends
to an étale double covering I; over all of 7. It turns out that I is a
closed subscheme of Isomg (15, I,) and f, factors via

5L I;.

This I; is the .S of the product open set. Over I, I; and I, can be
canonically identified to the 7 of the product open set.

§5. THE PICARD GROUPS

Now we come to the Picard groups, which are one of the interest-
ing invariants of our topologies. There are two quite different ways
to define these groups. One is a direct method going back to the
moduli problem itself; the other is a cohomological method using our
topologies. We will first explain the direct method:

Fix, as before, the genus g.
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Definition. An “invertible sheaf” L (on the moduli problem
itself) consists in two sets of data:

a. For all families of nonsingular curves (of genus g) 7 : £ — S, an
invertible sheaf L(r) on S.
b. For all morphisms F between such families:

X1 — X

S — 8,
an isomorphism L(F) of L(m1) and f*(L(m,)).}

The second set of data should satisfy a compatibility condition with

respect to composition of morphisms:
Let

X1— Xg— X3

1

S],’—-‘—>S2 ‘—"‘)Sg
I g

be a composition of the morphism F from ; to w2, and G from
to m3. Then the diagram:

f*(L(ws))
LW N@(G))

L(m) *(g*(L(ms)))

(g f)*(L(ms))

should commute.

This definition has an obvious translation into the language of
fibred categories, which is left to the reader who has a taste for that
approach. Loosely speaking, an invertible sheaf is simply a pro-

T Note that the morphism F is the whole diagram, while f is simply the
morphism from S to Sa. In the sequel, we will denote morphisms of families by

capital letters and the component morphism of base spaces by the same small
letters.
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cedure for attaching canonically a one-dimensional vector space to
every nonsingular curve of genus g: Start with L as above. If C/k is
such a curve, let

7 : C — Spec(k)

be the projection. Then L(w) is a one-dimensional vector space

(over k) attached to C. Conversely, if this procedure is ‘“‘canonical”

enough, then given a family = : & — S, the one-dimensional vector

spaces attached to the curves 7=1(s) (s € Sx) should form a line bundle

over §; and its sections then form an invertible sheaf L().
Example. Given any m : X — .5 as above, let

E(r) = Ry (0x).
This is known to be a locally free sheaf on .§ of rank g. Let
L(m) = A?{R'm (0x)}.

This is an invertible sheaf on .S. Moreover, for all morphisms of
families:
X1 — X»

Sl > S‘Q

there is a canonical identification of E(m) and f*(E(ws)), hence of
L(m1) and f*(L(wy)). This is, therefore, an invertible sheaf on the
moduli problem. It corresponds to attaching to each curve C the
one-dimensional vector space

AT{HY(C, oc)}.

It is clear what is meant by an isomorphism of two invertible
sheaves.

Definition. 'The set of isomorphism classes of such invertible
sheaves is called Pic(9M).

As usual, Pic(9) is an abelian group. Given L and M, two inver-
tible sheaves, define L @ M by

(L M)(m) = L(r) @ M(m)
(L ® M)(F) L(F) ® M(F).

This induces the product on the set of isomorphism classes Pic(91).
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Now we give the second definition of Pic(917). Recall that, by defini-
tion, a scheme X is a particular type of topological space, together
with a given sheaf of rings ox. Now that we have generalized the
concept of a topological space, it is clear that an important type of
object to look at will be a topology 7', together with a given sheaf of
rings 07. This combination is known as a “‘site.”” For example, if X is
a scheme it is not only the Zariski topology which comes with the
sheaf of rings ox. Recall the five topologies on .X" and the continuous
maps:

% 7% is. 3 - >
‘Xfl:\f - ‘/X.\-mm)th - A(’*t — X o T AZ:\r'

Let 7 : U — X be a morphism, that is, an open set in Xf},,. Then
definet a sheaf 0 on Xj,¢ by

o(U—X) =T(U, oy).

By taking direct images, this also defines a sheal 0 on X7 .., Y7,

X and Xzar; on X7z, this is just the original sheaf ox. Thus each of
these topologies is a site.

What is more important now is that the topologies O are also
sites. Let 7 : & — .5 be an open set in 9, that is, a modular family
of nonsingular curves. Let

o(X = 8) = T(S, o).
This defines a sheaf of rings 0 on 91, except for the ring o(M): this
is simply determined by the sheaf axiom. Fix a covering of M by
open sets {Xg = S«}. Let the product of 7, and 73 be the open set

7ra‘3

Xapg = Sa.8-
Then o(M) is the kernel of the usual homomorphism

IT 0(C, — S,) — I 0(Xas — Sas).

«,

In fact, if g > 3, it is known that o(M) is just £. In any case, this
defines 0, and it brings 9N into a familiar context: we can now
develop a theory of coherent sheaves, and their cohomology on I,

1 This is not obviously a sheafj it is so as a consequence of the theory of descent
(cf. [3], exposé 8).
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as well as a general theory of (étale) cohomology. Moreover, in
addition to o we get the two auxiliary sheaves:

a. 0% defined by 0*(X 5 S) = group of units in o(X 5 S).
b. K, defined as the sheaf associated to the presheaf K( 5 S) =
total quotient ring of o(X 5 S).

The ring of global sections of K is, so to speak, the function field of
the moduli problem. Now the second definition of Pic(M) is simply

the cohomology group:
H'(9, 0o*).

Sketch of Proof of Isomorphism. The first thing to do is to set up a
map between these groups. The map goes like this: let L be an
invertible sheaf on the moduli problem. Then we will associate to

L an element:
N\ e HY(I, o*).

First choose any collection of families 7, : &, — S, which is a cover-
ing of the final object M. Then L(m,) is an invertible sheaf on .S,.
By replacing S, with a suitable set of (Zariski) open subsets and
replacing 7, by the set of induced families over these subsets, we can
assume that for each « there is an isomorphism:

L(r.) = os,
ba
For each a, choose such an isomorphism. For all «, 8, let
Tap  (Xay Xg) — Isom(me, m3) = Lap

be the product of the families 7, and m. Let py and p, denote the
projections of Isom(m,, m3) onto S, and S3. By definition of an
invertible sheaf, we are given isomorphisms of pf(L(r,)) and
pa(L(mg)) with L(mas). Now look at the composite isomorphism:

0103 = /i (0s,)

= L) via ¢a
= L(mep)

= py (L(mg))

= pE (0s,) via ¢g
= OI4,8-
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This isomorphism is set up by multiplication by a unit:
008 € [(Ia3, 0, 5) = 0*(map).

I claim that, for the covering {m,} of M, {o.s} forms a 1-Czech
cocycle in the sheaf o*. This is checked using the compatibility
property for the invertible sheaf L (cf., last part of the definition of
an invertible sheaf). Then this cocycle induces an element \; in the
first Czech cohomology group for this covering, hence an element
Ao of HY(I, 0o¥).

Now suppose the isomorphisms ¢, are varied? The only possible
change is to replace ¢q by ¢, = 04 * ¢a, where o, means multiplica-
tion by the unit:

0o € I'(Sa, 05,) = 0%(ma)
But then 04,4 is replaced by the homologous cocycle:

Oap = P1(0a)  P3(05") Oap

Therefore even A; is unaltered. Now suppose the covering {m,} is
changed. Any two coverings are dominated by a finer covering, so
we can assume that the new covering is finer. It is immediate that
the new A; is just the element of the new Czech cohomology group
induced by the old A\; under restriction. Therefore, A\, is unaltered.

This defines a map from Picy(91) (the first group) to Pic.(91) (the
second group). To show that this is a surjective, we first use the fact
that (for any sheaf F),

HY(, F) = lim  HYW(Q F)
coverings A
where H'(A, —) denotes the first Czech cohomology group for the
covering . Now suppose X\, € H'(91, 0*) is given. Then A, is induced
by a Ny € H'(2, 0*) for some covering A. And \; is defined by some

cocycle {045} in 0¥, (if A is the covering 7, : Xy — ). Now suppose
7 : % — S is any modular family of nonsingular curves. Then

{1, = Isom(m, ma) — S}
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is an étale covering of S. Moreover, via the natural projection
I, X g Iz — Isom(ma, m5),

the cocycle {044} induces a cocycle {7,4} for the covering {I, — S}
of S and the sheaf 0§. We then require a theorem of Grothendicck:

Theorem 90 (Hilbert-Grothendieck). Let {l.f,,gX} be a flat
covering of X; for all «, let L, be an invertible sheaf on U,; and for
all @, B, let ¢4 be an isomorphism on U, X x U of the sheaves
pi(Le) and px¥(Lg). Assume an obvious compatibility of isomor-
phisms on U, Xx Uz Xx U, (for all «, B, v). Then there is an
invertible sheaf L on .Y, and for all «, isomorphisms ¢, on U, of L,
and ¢*(L) such that, on U, Xx Ug, the diagram:

pE(La) ——— pF(Ly)
p1*(Ya) (l jl p*(Ya)
pi(ga (L)) ==pi(g5 (L)

commutes. Moreover, L and ¢, are uniquely determined, up to
canonical isomorphisms. (cf. [3], exposé 8, Theorem 1.1).

There is a shorthand which is used in connection with this
theorem: given the L,, the isomorphisms {¢as} are called “descent
data” for {L,}. The L obtained is said to be gotten by “descending”
the sheaves L, to X (that is, reversing the process, the L, are gotten
by lifting L to U.).

Apply this theorem with U, = I,, X =S, L, = 0r,, and ¢ap
given by o4,6. The L constructed is to be our L(w). We leave it to the
reader to construct the isomorphisms L(F) required for an invertible
sheaf; and to check that this L does induce A» when the process is
reversed.

Finally, why is the map injective? If A, were 0, then for a suitable
covering A; would be 0, and for suitable choices of the ¢.’s, the
cocycle g, itself would come out 1. The question is then, if g = 1
for all a, B show that L = o (the trivial invertible sheaf). What we
need to do is to construct, for every family = : & — .S, an isomorphism

‘l/(ﬂ') : L("r) : Ogs,
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such that, for every morphism F of families:
Xy — X2

S1 — 5,
the diagram: L(F)
L(my) == f*(L(r))
S ¥(m) ﬂ 7 (g ()

on - f*(osz>

commutes. Exactly as before, we use the induced étale covering

{1, = Isom(m, 7,) s S}.

The family of curves Y, over I, induced via ¢, from %/S is canoni-
cally isomorphic to the family induced from X,/S,. But we are given
an isomorphism of L(m,) and 0s,. This induces an isomorphism of
L(Yo/I,) and or,; hence an isomorphism

q;k (L(T)) w:; O1q4-

The fact that o, g = 1 can be easily seen to imply that the diagram of
sheaves on 7, X s Ij:

P L) = o)

| |

p3 (g5 (L(m))=—— p3(ors)
pr(gg)

commutes. In order words, both L and og satisfy the conclusions of
Theorem 90 for the setup Uy = I, X = S, Lo = 014, and ¢as = 1.
Therefore, the uniqueness half of that theorem states that there is a
canonical isomorphism of L and os. This is to be /(7). We omit the
rest of the details.
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$6. COMPUTATIONS: DIRECT METHOD

We return to the case ¢ = 1, and its topology 9. In this section,
for char(k) ## 2, 3, we shall give a direct computation of Pic(91). In
the next section, for £ = C, we shall give a transcendental com-
putation of this same group.

Let L be an invertible sheaf on the moduli problem. First of all,
let us try to extract some numerical invariants directly from /.
Start with a family of curves 7 : & — 5. Any such family has onc
nontrivial automorphism: the inversion p of order 2. By definition
of an invertible sheaf, the morphism of families:

X
K
induces an automorphism L(p) of L(r). Since p has order 2, so docs

L(p). But L(p), as any automorphism of an invertible sheaf, is given
by multiplication by an element & € I'(S, 0%). Therefore, a* = 1:

P
—

o

U

>
1s

hence on each connected component S; of S, @ equals +1 or —1. In
particular, suppose S = Spec(k), and X = C is an elliptic curve.
Then we have defined a number:

a(C) = +1.

Moreover, if  : & — §is any family, then the fact that the inversion
p for 7 induces the inversion on each fibre 771(s) of the family
implies that the function « € I'(S, 0%) has value a(r7!(s)) at the
point s € S. This shows that « is a “continuous” function of C; that
is, if we have a family 7 : € — .5 with connected base S, then « is
constant on the set of curves 7~!(s) occuring as fibres in the family
7. Actually this shows that « is constant on all curves; either a(C) =
+1 for all C, or «(C) = —1. Namely, it is easy to exhibit a family =
with connected base S, such that every C occurs in 7. For examplec,
take the family of all nonsingular cubic curves; or take the modular
family of cubic curves

yE=x(x — D = N),
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where A # 0, 1, . Therefore, in fact, we have defined one number
a(L) equal to + 1. And, quite clearly, this gives a homomorphism
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