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Preface

It is a tremendous pleasure to thank the editors Ching-Li Chai, Amnon Neeman
and Takahiro Shiota for putting this second volume of my algebro-geometric work
together. The first volume contained my papers on classification of varieties and
moduli spaces. At the time this was put together, it was not anticipated to go fur-
ther, but Chai, Neeman and Shiota, together with Springer have proposed to com-
plete this by publishing all my other papers in algebraic geometry plus the surviving
correspondence between me and Alexander Grothendieck. The editors have assem-
bled permissions, edited and typeset several unpublished manuscripts and edited and
commented Grothendieck’s letters to me (and a few of mine to him). This involved a
great deal of new typesetting and proofreading and, in addition to the editors, I want
to thank the large team of graduate students, of Yogananda, Chai and Neeman who
carried this out. The editors have also worked hard disambiguating the references in
Grothendieck’s letters—with little help from me because of my terrible memory. I
will always be in their debt because their work has made a readable and hopefully
useful tool out of a jumble of material in my files.

I also want to thank Jean Malgoire who has given permission on behalf of
Grothendieck for the publication of his letters. For me, personally, Grothendieck’s
letters were priceless and enabled me to understand many of his ideas in their raw
form before they were generalized too far and embedded in the daunting machin-
ery of his “Éléments”. It was an unequaled pleasure to have known him. He started
the movement which has added a vast and highly productive level of abstraction to
algebraic geometry (and many related fields), an approach which is still growing
and deepening today. I consider him the greatest genius with whom I have had the
opportunity to interact and I extend my heartfelt best wishes to him on this, the year
of his 80th birthday.

Although I am not active in algebraic geometry, I have been watching some of
the spectacular developments in recent years. It is wonderful to see how the long at-
tack on birational geometry and the canonical ring in higher dimensions has paid off.
When I was in the field, it seemed as if there might be layer after layer of complexity
here, counter-examples galore. But no: a wonderful order has now appeared. Like-
wise, the structure and topology of the moduli spaces of curves is being tamed (at
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Preface

least asymptotically). Perhaps resolution of singularities in characteristic p is near
solution. The Hodge conjecture still remains a mystery, though both positive and
negative hints have been found. As I said in my preface to volume I, this beautiful
story is not finished!

David Mumford
Tenants Harbor
August 2008
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Editors’ notes

The volume contains (1) reproductions of Mumford’s published papers, (2) four
unpublished papers, and (3) mathematical correspondence between Grothendieck
and Mumford, plus several letters from Grothendieck to other mathematicians.

We tried to provide the documents with a minimum of intrusion. In the case of
published articles the originals were reproduced; the Notes at the end of this volume
list misprints, a few mathematical errors, and a smattering of hints concerning rel-
evant later developments. Article [63b] is a special case: the published version was
a Japanese translation of Mumford’s manuscript, and here we included the typeset
original. The unpublished papers and letters were newly typeset; we corrected obvi-
ous errors silently, and used footnotes for comments and additional information.

As for the correspondence, we had to decide which letters to include and how
faithful to the original we wished to be. Adopting the view that this is primarily
a mathematical document, we reproduced the letters that contain interesting mathe-
matics, and tried to make the mathematics as accessible to the reader as possible. We
modernized the notation, adopting what has become standard in the last decades. In
the case of letters from Grothendieck, we asked ourselves how much we may, and
should, alter his English. In the end we decided to correct the spelling, add the occa-
sional missing pronoun or article, adjust minor grammatical errors, and improve the
punctuation, but to refrain from changing the wording, or correcting whole phrases.
The changes are made silently, without comments.

We would like to thank W. Messing, F. Oort and S.S. Shatz for always being
willing to offer us counsel on difficult decisions and marginal cases. Since we did
not always follow their advice, we alone are responsible for our mistakes; but it was
always good to have someone to turn to when we were uncertain what to do.

We would like to thank M. Künzer for his help in reading Grothendieck’s
manuscripts. To illustrate Künzer’s talent we reproduced an original page of the
letter of 18 October, 1962; the reader is invited to try to untangle what it says on
line −6 of the page. We asked quite a few people before we turned to Künzer, and
no one else was even close.

Many people helped us by contributing illuminating suggestions for footnotes to
the correspondence, and to a lesser extent, by pointing out mistakes in the pub-
lished papers and checking the errata against the originals. We are indebted to
them all. We especially wish to express our gratitude to M. Artin, J.-L. Colliot-
Thélène, P. Deligne, O. Gabber, P.A. Griffiths, R.M. Hain, L. Illusie, N.M. Katz,
S.L. Kleiman, F.F. Knudsen, W.E. Lang, C. Liedtke, R.K. Lazarsfeld, A. Mayer,
W. Messing, T. Oda, M. Raynaud, J.-P. Serre, J. Stix and Y.-S. Tai.

The bulk of the typesetting was looked after by C.S. Yogananda at S.J. College
of Engineering, Mysore, and by team Sriranga at Sriranga Digital Software Tech-
nologies, Srirangapatna. Our thanks for their monumental effort. Yogananda also
gave us valuable LaTeX tips. We are also grateful to A. Auel, D. Fithian, S. Gupta,
A. Holschbach, A. Obus and P. Pandit, who typeset a few handwritten letters each.
G.S.D. Stevenson was the first to proofread the entire document and standardize the
mathematical notation; his help was invaluable.

August 2008 C.-L. Chai, A. Neeman and T. Shiota
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Article [63b]

Some Aspects of the Problem of Moduli

David Mumford

Abstract of the Lecture given at the Annual Meeting of
the Mathematical Society of Japan
on May 24, 1963

Sûgaku 15, 1963/1964, 155–157.

I. The first aspect which I wish to discuss is the question of how to make precise
the heuristic concept of moduli. For example, suppose one is concerned with curves
of genus g: then, for every algebraically closed field Ω , let Mg(Ω) be the set of
curves of genus g, defined overΩ , up to isomorphism. Since the moduli scheme Mg

is to classify curves, one asks at least that there be given an isomorphism between
the set of Ω -rational points of Mg and Mg(Ω). This obviously does not determine
Mg, however. A stronger demand is to ask for a collection of isomorphisms between
the set of R-valued points of Mg, and the set of curves of genus g over R, for ev-
ery commutative ring R; here a curve over R means a scheme, simple and proper
over Spec(R), whose geometric fibres are curves of genus g. Moreover, these iso-
morphisms should be functorial in R. Then, in fact, this determines Mg, if it exists.
An essentially equivalent demand is to ask that there exists a “Universal Family” of
curves over Mg itself. Such an Mg I call a fine moduli scheme; unfortunately, it does
not exist unless the classificational problem is slightly modified (via a “higher level
structure”). For higher dimensions, to find suitable modifications to “eliminate the
automorphisms” is an interesting problem.

In any case, one can compromise for a coarse moduli scheme: here one merely
asks for some collection of maps, from the sets of curves over R to the sets of R-
valued points of Mg, which are (i) functorial in R, (ii) isomorphisms when R is an
algebraically closed field. Finally, to determine Mg completely, one should ask that
it satisfy a universal mapping property with respect to all other solutions of the first
two demands.

II. The next aspect we consider is that of the qualitative properties of the sought-
for moduli scheme: especially, whether it is a true scheme, or only a pre-scheme; and
whether it is of finite type over the integers. But, in fact, examples due to Kodaira,
Nagata, Nishi, and others indicate the absence of both of these properties in the gen-
eral case of classifying higher dimensional varieties. To remedy this difficulty, the
simplest solution seems to be to modify the problem: instead of classifying varieties,
one seeks to classify polarized varieties. By a polarized variety, we mean a variety V
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together with a Cartier divisor class D, determined up to algebraic equivalence and
torsion, such that nD is induced by a projective embedding of V , if n� 0.

For this classificational problem, Matsusaka and the writer have shown that the
moduli scheme should be a true scheme, if the varieties are assumed nonsingu-
lar, and not birationally ruled. Moreover, note that a Hilbert polynomial P(n) =
χ(OV (nD)) can be attached to any polarized variety, and that it remains constant in
flat families of such polarized varieties. Then we have also shown that, for nonsingu-
lar surfaces, the moduli scheme of polarized surfaces with fixed Hilbert Polynomial
should be of finite type. Whether the same is true in dimension 3 is a very intriguing
question. Another difficult problem is to ascertain how essential is the role of the
nonsingularity assumption in these matters. In the complex analytic case, nonsingu-
lar families recommend themselves as being differentiably trivial, so that they can
be visualized as families of complex structures on a fixed manifold. In the algebraic
case, however, there seems to be no compelling reason for thinking that this is a
reasonable assumption.

III. Beyond the qualitative problems already discussed, there looms the big ques-
tion of whether, although possessing all good local and global properties, the mod-
uli scheme may fail to exist for more subtle reasons. One may put the problem this
way: the “moduli scheme” may be formally described as the quotient of a scheme by
some topologically beautiful equivalence relation but it may be impossible to give
a scheme realizing this quotient. For instance, it is sometimes impossible to “blow
down” certain subvarieties, or to “divide” some variety by the action of some group.
In this case, there would be only an open subset U of stable polarized varieties
which could be realized as a scheme.

This problem appears to be closely connected with the local projective differen-
tial geometry of embedded varieties V ⊂ Pn. To illustrate, suppose V is a nonsin-
gular curve, and that the embedding is determined by a complete linear system on
V of high degree. Then the Weierstrass gap theorem, and the Frenet–Serret equa-
tions give a very explicit picture of this embedded curve. This enables us to do two
things: In the first place, you can look at the set of x ∈ V where the Frenet–Serret
equations break down. I call these points of Hyper-Osculation, and with convenient
multiplicities, they can be added together to give a divisor on V . This possesses two
key properties: (i) as V and the embedding vary continuously, this divisor varies
continuously, (ii) the maximum multiplicity with which any x occurs in this divisor
is bounded by g2 (g = the genus of V ). This being so, projective invariants of V can
be constructed in a highly explicit fashion out of determinants in the coordinates of
these points. This is tantamount to constructing the moduli scheme for curves. In
the second place, the very explicit expression of V gives directly information on the
Chow form of V : especially on the monomials which occur in the Chow form with
nonzero coefficient and are extremal in the convex hull of all monomials of fixed
degree with this property. This, too, leads to projective invariants of space curves,
hence to moduli. In this connexion, the difficulty in the surface case appears to be
lack of very much information on the local projective differential geometry of sur-
faces in Pn.
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IV. Riemann originally asked for 3g− 3 complex numbers, called moduli, to be
attached to each curve over the complex numbers. One interpretation of this as-
sertion is to ask, not only for a construction of Mg but for a projective embedding
Mg ⊂ PN . This leads to the fourth aspect: to study the Picard group of Mg. One inter-
esting point in this connexion is that it is possible to define the Picard group of the
moduli problem itself without reference to the moduli scheme.1 Namely, by a line
bundle on the moduli problem we shall mean a collection of line bundles, one on
each scheme S for each family of curves over S; plus, for each morphism between
families, a corresponding morphism between line bundles. Heuristically, such line
bundles arise from attaching canonically one dimensional vector spaces over Ω to
each curve overΩ .

I can prove that the group of line bundles on the moduli problem, i.e., the Picard
group, is finitely generated; and that, up to torsion, there is exactly a subgroup iso-
morphic to Z of line bundles which extend to line bundles on the whole moduli
problem of principally polarized abelian varieties (via the Jacobian). I conjecture
that the group itself is Z,2 but in this connexion I can give only some curious
relations.3 For example, to any curve C, we can attach two 1-dimensional vec-
tor spaces: a)

∧g H0(C,ΩC) , where ΩC is the sheaf of differentials on C, and
b)
∧3g−3 H0(C,(ΩC)2) , where (ΩC)2 is the sheaf of quadratic differentials. These

extend naturally to line bundles L1 and L2 on the whole moduli problem. Then, up
to torsion:

L2
∼= (L1)13 .

1 See [65b].
2 This conjecture, that the image of the natural map Pic(Ag)→ Pic(Mg) is isomorphic to Z for
g ≥ 3, where Ag is the moduli problem for g-dimensional principally polarized abelian varieties
over the same base field as Mg, is true when the base field is C, or any algebraically closed field
of characteristic 0. In fact Pic(Mg) itself is isomorphic to Z in characteristic 0 when g≥ 3; see the
notes for [67d] in this volume.
3 The displayed relation between the Hodge line bundle L1 and the canonical bundle L2 on the
moduli problem was proved using the Grothendieck–Riemann–Roch theorem. This is the first
time Mumford applied the Grothendieck–Riemann–Roch theorem to obtain a relation between
two tautological classes on the moduli problem Mg.
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Article [u64a]

The Boundary of Moduli Schemes

David Mumford

1 Discussion

To begin with, what is a variety of moduli? Start with the set of all nonsingular
complete varieties of dimension n and arithmetic genus p. For each isomorphism
class of these, take one point: then try to put these points together in a variety. There
are some more requirements: a “nearby” pair of varieties V1, V2 should correspond
to a “nearby” pair of points: e.g.,

Let S = set of isomorphism classes of V ’s.
U ⊂S is “open” if, for all families of varieties of the given type, varieties of
type U occur over an open set in the parameter space.

Another requirement is that for all families

π : V −→ S

suppose you map S to S by assigning to each s ∈ S the class of the fibre π−1(s):
then this map should be algebraic.

The problem, in this raw form, has been modified bit by bit so as to make it more
plausible:

(I) Instead of classifying “bare” varieties V , one seeks to classify pairs (V,D)
where D is a numerical equivalence class of very ample divisors on V .

(II) Then break up the set S via the Hilbert polynomials of the divisors in D : viz.
for every P, let S P = isomorphism classes of (V,D) such that for all D ∈D

P(n) = χ(OV (nD)).

Now we are close to a good problem:
for all D ∈D ,
for all bases of H0(V,OV (D)) you get a canonical immersion,

V ⊂ P
n (n = dimH0(V,OV (D))−1)

such that hyperplane sections are linearly equivalent to D.
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1 Discussion

i.e., S P ∼= certain set of subvarieties V of P
n

certain equivalence relation, especially projective equivalence

(III) Why insist that V be nonsingular? The only reason appears to be that over C

families of nonsingular varieties are locally differentiably trivial: so one can
view them as families of complex structures on a fixed differentiable manifold
(or, as in the Bers–Ahlfors approach, on a fixed topological manifold). Alge-
braically, there is no point: let’s let V be any complete variety at all, maybe
even reducible, and assume that D is a class of Cartier divisors.
To go further, let’s stop and ask what problems arise: first we should take a
broad look at the topology which we are getting by throwing in all varieties—
typically it will be very un-separated; second, we should try to find open sub-
sets U ⊂ S P such that, in their induced topology, they are separated, and
“compact” if possible.

[ This means that if U could be given the structure of a moduli variety,
it would turn out complete; and it also means, directly, that if (V,D) ∈
U , and we specialize the ground field, then we can find a specialization
(V ,D) of (V,D) also in U . ]

Thirdly, we will finally have to find out if U can be made into a variety.

(IV) We understand the last problem better when we realize that, e.g., via Chow
coordinates, almost all of U is bound to come out as a variety. We saw that
S P was a quotient of a piece H of the Chow variety by an algebraic equiva-
lence relation. Such quotients always exist birationally, i.e., for a small enough
Zariski-open subset U∗ ⊂H ,

[U∗ modulo equivalence relation ]

will be a good variety. So the 3rd problem is like the first two:

The only problem is to pick the “boundary” components shrewdly,
i.e., to decide which nongeneric varieties to allow.

There again, it would prejudice the issue to think that we should necessarily
use all and/or only nonsingular varieties. And the choice should be made by
a) checking the topology, and b) checking its “algebraizability”.

(V) A final step in setting up the problem reasonably is to realize that all the same
questions occur equally well for a much more general class of problems: viz.
that of forming quotients of varieties by algebraic equivalence relations. Only
by realizing this can we hope to find simple enough examples to study first
so as to get the right feeling. Especially, the hard equivalence relations are
the noncompact ones; and in the case of moduli, this occurs principally in
forming:

H /{Projective equivalence of V ’s in P
n}

i.e., in forming an orbit space by PGL(n + 1).
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[u64a] The Boundary of Moduli Schemes

2 Present State of the Theory

very good (i) analogous problem in classifying vector bundles on a fixed curve
pretty good (ii) moduli of curves (canonically polarized)
half good (iii) moduli of polarized abelian varieties
no good (iv) moduli of surfaces of general type

3 An Example

Rather than analyze an actual moduli problem, I want to take one of the simplest
nontrivial orbit space problems, in which all the features of the conjectured results
occur:

G = PGL(2) acting on Pn, where Pn = nth symmetric product of P
1,

i.e., PGL(2) acting on the set of 0-cycles of degree n.

(= theory of binary quantics).

a) jump phenomenon:
look at P2/PGL(2). There are 2 orbits: {P + Q | P 	= Q} and {2P}. Therefore,
get 2 points x, y where x is open but not closed, y is closed but not open:

• •

This occurs in all moduli problems, and one always must exclude some points to
avoid this.
In Pn, exclude the 0-cycles

k P+(n− k)Q

whose isotropy group is infinite.
b) further nonseparation:

take n = 6
group A
︷ ︸︸ ︷∗ ∗ ∗

group B
︷ ︸︸ ︷∗ ∗ ∗ generic cycle.

Let all points in group A come together; you get in the limit:

(∗)
Pt α

3
∗

group B
︷ ︸︸ ︷∗ ∗ ∗

But suppose, as group A collapses to α , you apply a one-parameter subgroup
Gm ⊂ PGL(2), moving points away from α to β . Then the following are projec-
tively equivalent:
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3 An Example

A
︷︸︸︷∗ ∗ ∗

B
︷ ︸︸ ︷∗ ∗ ∗ and

A
︷ ︸︸ ︷∗ ∗ ∗

B
︷︸︸︷∗ ∗ ∗

the latter approaches:

(∗∗)
group A
︷ ︸︸ ︷∗ ∗ ∗

Pt β

3
∗

But the 0-cycles (∗) and (∗∗) are probably not projectively equivalent.

c) the unitary retraction: to avoid these bad things, define

K ⊂ Pn ,

K = Set of 0-cycles
n

∑
i=1

Pi , such that, putting the Pi on the Gauss sphere, and

embedding the Gauss sphere in R
3 as x2 + y2 + z2 = 1, then

the vector sum of the Pi in R
3 is (0,0,0).

One checks, if x, y ∈K , then x, y are equivalent under PGL(2) if and only if
they are equivalent under the maximal compact subgroup

K = SO(3;R)⊂ PGL(2,C) = G.

But K is compact, therefore K /K is compact and separated. And

K ·PGL(2) =
{

a
no point Q occurs in with multiplicity > n/2; and
if Q occurs with multiplicity n/2, then a = n

2(Q+ Q′)

}

.

d) stability restriction: K ·PGL(2) contains a Zariski-open set

Ustable =
{

a
no point Q occurs in a
with multiplicity � n/2

}

.

So Ustable/G has separated topology, and is compact if n is odd. It is also a variety
by virtue of a general theorem of mine.

e) semi-stability: When n is even, things are less clean.
K showed that there was a natural compactification of Ustable/G by adding a
single point representing the cycles (n/2)(Q + Q′). In fact, there is a complete
variety V n, with point ∞ and diagram of algebraic maps:

Usemi-stable V n
⋃ ⋃

Ustable Ustable/G V n− (∞)

where

Usemi-stable =
{

a
no point Q occurs in a
with multiplicity > n/2

}

.
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Article [u64b]

Further comments on boundary points

David B. Mumford

In these notes I shall describe some joint work of A. Mayer and myself, as well as
some related results, summarizing further comments made in my lecture and a 2nd
lecture by Mayer.1 During the institute lectures were also given by H. Rauch and
L. Ehrenpreis, discussing various aspects of the Torelli and Teichmüller covering
spaces of the moduli scheme for curves of genus g (cf. the notes of Ehrenpreis).
The ground field will be assumed to be the complex numbers in our discussion.
One word of apology: the full proofs of many of our results have not been written
down, so, strictly speaking, much of what follows should be taken as conjectures
not theorems.

1 Compact moduli spaces for vector bundles over curves.

This theory has been worked out by Seshadri, Narasimhan, and myself. Let E be a
vector bundle of rank r over a curve C.

Definitions:
i) E is regular if the only endomorphisms of E are multiples of the identity,

ii) E is stable if, for all sub-bundles F⊂ E, deg [c1(F)] <
rank(F)
rank(E)

·deg [c1(E)],

iii) E is semi-stable if, for all sub-bundles F⊂E, deg [c1(F)]≤ rank(F)
rank(E)

·deg [c1(E)],

iv) E is retractable if it is a direct sum of stable bundles.

1 Notes were prepared by A. Mayer for his talk in the 1964 Summer Institute at Woods Hole,
but they do not seem to have been distributed during the Summer Institute. These notes were
subsequently lost. A possibly expanded version of the notes exists, in pages 6–15 of Seminar
on Degeneration of Algebraic Varieties, conducted by P.A. Griffiths, Lectures by C.H. Clemens,
P.A. Griffiths, T.F. Jamois and A.L. Mayer. Institute for Advanced Study, Princeton, New Jersey,
Fall Term, 1969-1970, 152 pp.
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2 Compact moduli spaces for abelian varieties: Satake

If deg [c1(E)] = 0, E is retractable if and only if E admits a hermitian structure
with curvature form 0.

To obtain a modulus space for vector bundles with given rank and deg(c1), first
one must throw out irregular bundles since they give rise to jump phenomena, i.e.,
constant families of bundles, which suddenly jump to another bundle (cf. my lecture
notes, “Curves on an algebraic surface”, Lecture 7, §4). In the remaining class of
bundles the topology is still un-separated; but in the set of retractable bundles the
topology is both compact and separated, since this set of bundles is isomorphic to the
set of unitary representations of π1 of the base curve (for deg[c1(E)] = 0; otherwise
the argument can be modified). This set turns out to contain the open set of stable
bundles, and to be contained in the open set of semi-stable bundles (it is not open
itself). One finds that the stable bundles are classified by the points of a nonsingular
variety V , and that V is an open subset of a compact variety V . The set of points of
V is isomorphic to the (nonalgebraic) set of retractable bundles, and there is even a
natural map from the set of all semi-stable bundles to V , but nonisomorphic bundles
no longer correspond to distinct points:

{
regular
bundles

}
⊃

{
stable

bundles

}


{

points of
V

}

∩ ∩
{

retractable
bundles

}


{

points of
V

}

∩
{

semi-stable
bundles

}

2 Compact moduli spaces for abelian varieties: Satake

Let Vn denote the moduli scheme for principally polarized abelian varieties of di-
mension n. That is,

Vn
∼= Hn/Γn (as analytic space),

where Hn is the Siegel upper 1
2 -plane of type n, and Γn is the modular group acting

on Hn. Vn has even a canonical structure of algebraic variety over Q, due to its
interpretation as a moduli scheme2. Vn carries a canonical class of ample invertible
sheaves L (i) defined for all sufficiently large i,3 and such that

2 cf. Baily’s work, or my “Geometric Invariant Theory”. (original footnote by Mumford)
3 More precisely for all sufficiently divisible i∈N. We need this for the later statement that, as long
as n ≥ 2, the ring Rn is isomorphic to the graded ring of modular forms on Hn with respect to Γn,
that is Γ (Vn ,L (i)) corresponds to modular forms of weight i for (Vn,Γn). Without the divisibility
requirement there are problems with elements of finite order in the modular group Γn. For instance
the weight of every non-zero modular form for (Vn,Γn) is even if n is odd, because of the element
−Idn ∈ Γn.
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L (i)⊗L ( j) = L (i+ j)

when this makes sense. Therefore one has the graded ring

Rn =
⊕

i≥i0

Γ (Vn,L (i)) ,

which is known to be isomorphic to the ring of modular forms on Hn with respect
to Γn, if n≥ 2.

The Satake compactification of Vn is then the open immersion:

Vn ⊂ Proj(Rn) = V ∗n .

It turns out that there is a canonical isomorphism of V ∗n −Vn and V ∗n−1, so that set-
theoretically:

V ∗n = Vn∪Vn−1∪·· ·∪V1∪V0 .

(V0 is a single point). This amazing equation suggests that this compact variety,
which is defined only as a kind of “minimal model”, should have an interpretation
as a moduli space. In fact, consider all commutative group schemes X connected
and of finite type over C.

Definition: X is stable if X is an abelian variety.
X is semi-stable if X is an extension of an abelian variety by multiplica-

tive groups (Gm)r.
X is retractable if X is the product of an abelian variety by multiplica-

tive groups.

Exactly as before, A. Mayer and I have proven:

{
stable X with
polarization

}


{

points of
Vn

}

∩ ∩
{

retractable X
with polarization

}


{

points of
V ∗n

}

∩
{

semi-stable X
with polarization

}

Explanations

1◦ A polarization of X may be taken to mean a divisor D on X , determined up to
algebraic equivalence, such that if

π : X → X0
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2 Compact moduli spaces for abelian varieties: Satake

is the projection of X onto its abelian part, and if D = π∗(D0) (recall that Pic(X0)�
Pic(X)),4 then D0 is ample on X0 and

{(
Dn0

0

)
= n0! ,

n0 = dimX0 .

2◦ A family of these objects is a morphism

f : X→ S

with the structure of group scheme (i.e., a “multiplication” μ : X×S X→ X, etc.)
and a family of Cartier divisors D on X determined up to algebraic equivalence, and
replacements

D ′ = D + f ∗(E )

for any Cartier divisors E on S, and inducing a polarization of each fibre f−1(s).
With this definition, stable and semi-stable X’s form open sets, but retractable X’s
do not.

3◦ The meaning of the arrows in the diagram is this: let f : X→ S be a family of
semi-stable objects where S is a normal algebraic variety. Map S to V ∗n by assigning
to each s ∈ S the point of Vn0 corresponding, in the classical way, to the abelian part
of f−1(s) (n0 = dim of this abelian part). Then this is a morphism.

This last result is proven by reducing to the case where S is a curve. Then one
passes to the corresponding analytic set-up, and replaces S by a disc

{
z
∣
∣ |z|< 1

}

where all fibres of f are diffeomorphic except for f−1(0). Next one introduces the
invariant and vanishing cycles on the general fibre, so as to put the period matrix
Ωi j(z) of the abelian part of f−1(z) in a normalized form. One then computes (using
very helpful tricks of Kodaira):

Ωi j(z) =
1

2π i
logz

(
S 0
0 0

)

+
(

A(z) B(z)
tB(z) C(z)

)

,

where S is integral, positive definite and symmetric, and is obtained from the mon-
odromy substitution for the cycle |z| = 1; where A, B, C are holomorphic in z at
z = 0; and where C(0) is the period matrix of the abelian part of f−1(0). This im-
plies that Ωi j(z)→C(0) in Satake’s topology, when z→ 0.

4 In the mimeographed notes distributed during the 1964 Woods Hole Summer School, this pas-
sage reads “(recall that Pic(X) ∼= Pic(X0))”; here we changed “∼=” to “�”. The natural map
π∗ : Pic(X0) → Pic(X) is a surjection, but Ker(π∗) is nontrivial in general—it is subgroup of
Pic(X0) corresponding to all pushouts of the extension 0 → T → X → X0 → 0 by characters
T →Gm, where T = Ker(π). See also the comments in the letter [1965Apr16] from Grothendieck,
p. 706.
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3 Compact moduli spaces for curves

Let Mg denote the moduli scheme for curves of genus g. Let

Θ : Mg→Vg

be the morphism which assigns to a curve its jacobian variety with its theta-
polarization. From the work of Baily, Matsusaka, and Hoyt, it is known thatΘ is an
isomorphism of Mg with a locally closed subvariety of Vg, which we also denote
Mg.5 The simplest approach to compactifying Mg is to use its closure M ∗

g in V ∗g .
The boundary M ∗

g −Mg breaks up into two pieces

M ′
g = (M ∗

g ∩Vg)−Mg,

M ′′
g = M ∗

g − (M ∗
g ∩Vg).

Matsusaka and Hoyt showed that M ′
g is exactly the set of products of lower dimen-

sional jacobian varieties. We have proven that M ′′
g = M ∗

g−1, so that

M ∗
g = Mg∪M ′

g∪Mg−1∪M ′
g−1∪·· ·∪M0

(M0 = V0 is a single point).

The proof is based on two lemmas, and on the results of §2:

Lemma A Let C be a curve and let f : X→C be a family of curves of arithmetic
genus g [i.e., f is proper and flat and its fibres f−1(P) are connected curves of
arithmetic genus g]. Let P0 ∈C and assume that f−1(P) is nonsingular if P 	= P0.
Then there exists a diagram:6

X′

f ′
π ′

X

fC′

π
C

where

1) C′ is a curve and π is a finite morphism totally ramified over P0: let P′0 =π−1(P0),
2) f ′ is a family of curves over C′,
3) X′ − f ′−1(P′0) is just the induced family of curves over C′ −P′0, i.e.,

(C′ −P′0)×C X = X′ − f ′−1(P′0),

4) f ′−1(P′0) is reduced and has only ordinary double points.

5 The symbol Mg in this and the next sentence are incorrectly typed as “M ′
g’ in the original Woods

Hole notes. This error was pointed out by Grothendieck in [1965Apr16].
6 The proof of Lemma A of §3 was sketched on pages 7–8 in the notes of Mayer mentioned in
footnote 1. For a vast generalization of Lemma A, the semistable reduction theorem for smooth
varieties over a field of characteristic 0, see page 53 of [TE] (= Toroidal Embeddings. I). The proof
spans Chapters II and III of [TE].
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3 Compact moduli spaces for curves

Lemma B Let C be a curve and let

f : X→C

be a family of curves of arithmetic genus g such that each curve f−1(P) is reduced
and has only ordinary double points. Then the set of generalized jacobian varieties
of the curves f−1(P) forms a family of polarized semi-stable group varieties over C.

These lemmas give the inclusion M ′′
g ⊂M ∗

g−1 directly; Lemma B and an easy
construction of some actual families give the converse M ′′

g ⊃M ∗
g−1.

Unfortunately, M ∗
g is not a reasonable moduli space for curves: for example, let

a point of M ′
g correspond to

A1×Ag−1 ,

where A1 is an elliptic curve, and Ag−1 is the jacobian of a curve C of genus g−1.
Let x ∈ A1 and y ∈ C be any points. Then A1× Ag−1 is the generalized jacobian
variety of the curve:

A1

C

x = y

with an ordinary double point. In other words, the jacobian is independent of which
y is chosen: i.e., Torelli’s theorem is false for reducible curves. It is clearly neces-
sary to blow up M ′

g. This phenomenon is closely related to the fact, discovered by
Bers and Ehrenpreis, that the generic point of M ′

g is not only singular on M ∗
g : it

is not even “almost nonsingular” (= “Jungian” = “V -manifold”). In fact, Lemma A
suggests

Definition: A curve C of arithmetic genus g is stable if C is reduced and connected,
has only ordinary double points, and has only a finite group of automorphisms.

It appears that the set of all stable curves is open and compact and is naturally
isomorphic to the set of points of a compact analytic space with almost nonsingu-
lar points: M̃ ∗

g . It is still unknown whether M̃ ∗
g is a projective algebraic variety,

although it is a Q-variety. There is a proper holomorphic map

M̃ ∗
g →M ∗

g ,

which is an isomorphism over the open subset Mg. One of the remarkable features
of this case is that there are no semi-stable but not stable curves.
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[u64b] Further comments on boundary points

4 Compact moduli spaces for abelian varieties: blown up

The preceding construction suggests the possibility of blowing up V ∗n so as to obtain
a Ṽ ∗n which corresponds to a moduli problem with a larger set of stable objects. We
would like the stable points of Ṽ ∗n to correspond to polarized compactifications of
commutative group schemes X . One approach is to compactify the generalized jaco-
bian varieties of curves C. Say C is irreducible and reduced: let J be the generalized
jacobian of C. Then one has an isomorphism

{
points of

J

}



{

invertible sheaves L on C
such that χ(L) = χ(OC)

}

.

We can prove that there is a projective scheme J∗ containing J as an open subset,
and on which J acts, plus a natural isomorphism

{
points of

J

}



{

invertible sheaves L on C
such that χ(L) = χ(OC)

}

∩ ∩{
points of

J∗

}



{

rank 1, torsion-free sheaves J on C
such that χ(J ) = χ(OC)

}

.

Using this, we find an interesting Ṽ ∗2 , in which only one point is still mysterious: that
is the point which is the image underΘ of the curve of genus 2 depicted below:7

7 The picture Mumford drew on the board during the lecture in 1964 is “a dollar sign lying on

its side”
( )

according to A. Mayer. It represents two proper smooth rational curves

meeting transversally at three distinct points. Grothendieck asked “Are there pages lacking, or
were you making fun?” in [1965Apr16].
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Article [u67a]

Abstract Theta Functions

David Mumford

Advanced Science Seminar in Algebraic Geometry
Sponsored by the National Science Foundation
Bowdoin College, Summer 1967
Notes by Harsh Pittie

1 Introduction: Let A be an abelian variety defined over k, an algebraically
closed field complete with respect to a real[-valued] absolute value. Let R be the
ring of integers in k, and k the residue field; suppose char k 	= 2. Our aim is to show
that A has a “good reduction” over R: i.e., that there is a fibre product diagram:

A A A

Speck SpecR Speck

where A is a group scheme over R, and A is an extension of G
M
m by an abelian variety.

The existence of such reductions provides an abstract analogue of the existence of
the Satake compactification of the moduli scheme of A.

If A = (Gm)n, we will say that A has totally-degenerate reduction: in this case one
can get a p-adic1 analytic uniformization π : V →A, and hence the Tate–Morikawa–
McCabe theory.

We will use an abstract theory of theta-functions to perform the reduction; and
we begin by sketching such a theory.

2 Abstract Theta-functions: Classically, the theta-functions associated to
an abelian variety A arise in the following way. Let A be defined over k, and suppose
there is a surjective homomorphism π : V → A; then A∼= V/Kerπ . For example, if
k = C, V = C

g (g = dimA) and Kerπ is a lattice; or in the Tate–Morikawa–McCabe
theory, k is a local field, V = (k∗)g and Kerπ is a “multiplicative (annular) lattice”.
Then the theta-functions on V associated to A are holomorphic functions on V which
satisfy a certain functional equation with respect to Kerπ .

Quite generally, suppose we have a homomorphism π : V → A; and an ample,
invertible sheaf L on A so that if L is the induced line bundle, then π∗L ∼= 1 (the

1 When the complete valued field k has residue characteristic p > 0.
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[u67a] Abstract Theta Functions

trivial line-bundle on V—i.e., induced from OV ). Then sections S ∈ Γ (A,L) pull
back to sections π∗(S) ∈ Γ (V,1), and these are naturally interpreted as k-valued
functions on V which can be called theta-functions. These functions satisfy a kind
of periodicity with respect to Kerπ , as the following argument shows. Let γ ∈Kerπ ,
and interpret it as a translation map on V ; then π ◦ γ = π so γ∗π∗ = π∗. Therefore
we have a commutative diagram

γ∗π∗L

�
π∗L

�
γ∗1

mult. by cγ
1

where cγ is a suitable nowhere-zero function on V . Thus, if f is the k-valued function
π∗(s), then we have

f (γz) = cγ(z) f (z) , z ∈V .

We apply this formulation as follows. Let p be a prime,

Ap∞ = pts of order pn in A for some n ,

and2

Vp(A) = lim←−Ap∞ ,

the Tate-module of A at p. Then there is an exact sequence

0→Λp→Vp(A) π−→ Ap∞ → 0 ,

where π is given by π(a0,a1, . . .) = a0. Recall that there are isomorphisms Vp(A)∼=
(Qp)2g and Λp

∼= (Zp)2g (g = dimA). Thus we can discuss “local” theta-functions
corresponding to the uniformization π : Vp(A)→ Ap∞ . There is an analogous theory
of global theta-functions in which Vp(A) is replaced by the adèle group ∏p Vp(A).
However, there seem to be difficulties in the local case for p 	= 2; hence we shall
restrict our attention, from now on, to the case p = 2.

3 Construction of Theta-functions

Let L be an ample invertible sheaf on A, � : L→ A the corresponding line bundle.
For y ∈ A, let Ly = �−1(y), the fibre over y. Assume that

i) There is an isomorphism ρ : i∗L→ L where i : A→ A is the map i(x) =−x ; i.e.,
that L is symmetric.

ii) We are given a specific isomorphism ϕ0 : L0
∼−→ k.

2 The projective system which defines Vp(A) is indexed by N, each term is Ap∞ , and the transition
maps are induced by p·IdA.
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3 Construction of Theta-functions

Now we can trivialize π∗L if we can find isomorphisms Lx
∼−→ k for all x ∈ A2∞ . We

proceed to do so as follows.
Let tx : A→A be the translation tx(y) = x+y, and suppose that for some particular

x we are given an isomorphism τx : t∗x L
∼−→ L. Consider the diagram:

i∗t∗x L
i∗τx

i∗L

ρ(tx ◦ i)∗L

(i◦ t−x)∗L L

t∗−xτx

t∗−xi∗L
t∗−xρ

t∗−xL

As it stands, there is no reason to expect this diagram to commute. However, if we
modify τx by a suitable automorphism of L (which is just an element of k∗—since
L is a line bundle over a projective variety) we can force the diagram to commute.
Now suppose that α , β ∈ k∗ are automorphisms such that α · τx and β · τx make the
diagram commutative, then an easy chase shows that α2 = β 2, or α = ±β . Thus
α · τx and −α · τx are the only isomorphisms of t∗x L with L which make the dia-
gram commutative, and if we stipulate that this should be so, then an isomorphism
τ ′x : t∗x L

∼−→ L is determined canonically up to ±1.
We can define a completely canonical isomorphism σ2x from t∗2xL to L as follows,

σ2x : t∗2xL = t∗x (t∗x L)
t∗x τ ′x−−→ t∗x L

τ ′x−−→ L ,

since −τ ′x and τ ′x give the same σ2x. Thus we can get canonical isomorphisms

(σ2x)0 : (t∗2xL)0→ L0 ,

and from this ϕ0 ◦ (σ2x)0 : (t∗2xL)0 → k. But (t∗2xL)0 = L2x. Therefore we have a
canonical isomorphism

ϕ0 ◦ (σ2x)0 : L2x→ k .

Therefore we can trivialize π∗L along those fibers Lx such that t∗y L
∼−→ L for some

y solving 2y = x. But this isomorphism exists for only a few points in A. We use the
following lemma to enable us to obtain isomorphisms Lx

∼−→ k for all x ∈ A2∞ . Put
H(L) = {x ∈ A | t∗x L

∼−→ L}.

Lemma. (n2 > n). Let nδ : A→ A be the isogeny nδ (x) = nx. For all x ∈ A of finite
order, (nδ )∗t∗x L is isomorphic to (nδ )∗L for some n (n = order of x will do).

(The proof is easy: let x = ny, so y has order n2. Then (nδ )∗L ∼−→ L
n2

. But for any
M and m, H(Mm)⊇ Am. So (nδ )∗t∗x L

∼−→ t∗y (nδ )∗L→ t∗y L
n2 
 (nδ )∗L .)
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[u67a] Abstract Theta Functions

Now let x0 ∈ A2∞ be some fixed but arbitrary element. Then x0 sits in at least
one sequence (x0,x1, . . .) ∈ V2(A). We will not in general have an isomorphism
t∗x1

L
∼−→ L; however, for large enough m, (2mδ )∗(t∗x1

L) ∼−→ (2mδ )∗L by the lemma.
Since (2mδ )∗t∗x1

L → t∗xm+1
(2mδ )∗L we get a canonical (up to ±1) isomorphism

τ ′xm+1
: t∗xm+1

(2mδ )∗L→ (2mδ )∗L and thus a completely canonical σxm , and there-
fore isomorphisms ϕ0 ◦ (σxm)0 : ((2mδ )∗L)xm → k. But ((2mδ )∗L)xm = Lx0 . Thus
we get the desired isomorphism of the fiber Lx0 with k.

Glossing over the development, the final theory comes out something like this.
We begin with a symmetric, ample, invertible sheaf L on A of degree 1, as above. L
determines

i) a bimultiplicative, skew-symmetric form

e : V2(A)×V2(A)→ {2nth roots of 1 in k for some n}

ii) a “quadratic character” e∗ : 1
2Λ/Λ →{±1} satisfying

e(α,β )2 = e∗(α+β)e∗(α)e∗(β )

for α , β ∈ 1
2
Λ .

We can assume that the Arf invariant of e∗ is zero by replacing L by some t∗x L,
x ∈ A2, if necessary.
(The quadratic form3 e is classical: see for example Lang, Abelian Varieties).

In terms of this data we obtain theta-functions θ[s] : V2(A) → k for all s ∈
Γ (A,Ln), satisfying

(∗) θ[s](α+β ) = [e∗(β/2)·e(β/2,α)]n θ[s](α) for all α ∈V2(A), β ∈Λ .

This gives a homomorphism of k-algebras

θ :
∞⊕

n=1

Γ (A,Ln)→{k-valued functions on V2(A) satisfying (∗)}

where multiplication of sections s1, s2 is given by s1⊗ s2. Further, θ is injective; in
fact, if a = (a0,a1, . . .) ∈V2(A),θ[t](a) = 0 if and only if t(a0) = 0. If s0 denotes the
canonical section of L then we put θ[s0] =Θ the Riemann theta-function. It satisfies

(∗∗) Θ(−α) =Θ(α)

(∗∗∗)
4

∏
i=1
Θ(αi) = 2−g ∑

η∈ 1
2Λ/Λ

e(γ,η)
4

∏
i=1
Θ(αi + γ+η)

where γ =−1
2∑αi

(∗∗∗∗) For every α ∈V2(A) ∃β ∈ 1
2
Λ so thatΘ(α+β ) 	= 0.

3 The skew symmetric form actually.
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4 The Reduction of A over R

What is remarkable about these theta-functions is that beginning with justΘ we
can recover the pair (A,L). Suppose we start with a vector space V isomorphic to
(Q2)2g, Λ a maximal isotropic lattice in V , the form e and the quadratic character
e∗. Then we can define a theta-function Θ on V as a k-valued function satisfying
(∗∗), (∗∗∗) and (∗∗∗∗). We then put

M = k-vector space spanned by e(α,β )Θ(2α−β ), where α ∈V , β ∈ 1
2
Λ .

(This will equal the space of θ[s]’s, s ∈ Γ (A,L4).)
S0(M) = k,
S1(M) = M,
Sn(M) = space spanned by n-fold products of elements from M.

Then A = Proj(
⊕

Sn(M)) is the abelian variety sought for, and L is easily recovered
from A and

⊕
Sn(M).

Finally, let us note an important correspondence between theta-functions on V
and finitely-additive measures on a certain subspace of V . These measures arise
from the Fourier transforms of the theta-functions, and are examples of Schwartz–
Bruhat distributions. Explicitly, we can describe them as follows:
decompose V as V1⊕V2, where V1, V2 are isotropic with respect to the pairing e,
Λ = (Λ ∩V1)+(Λ ∩V2) and e∗(α) = 1 for α ∈ 1

2Λ ∩Vi. A finitely-additive measure
μ on the Boolean ring of compact open subsets of V1 is called Gaussian if and only
if

i) μ(U) = μ(−U)
ii) Given the map ξ : V1×V1→V1×V1, ξ (x,y) = (x + y,x− y), then

(μ× μ)(ξU) = (ν×ν)(U), where ν is some other measure on the same ring.

The correspondence between theta-functions on V and Gaussian measures μ on V1

is given thus:

μ(α1 + 2nΛ1) = 2−ng ∑
α2∈2−nΛ2/Λ2

e(α1,α2/2)Θ(α1 +α2)

and
Θ(α1 +α2) = e(α1,α2/2)

∫

α1+Λ1

e(α2,β )dμ(β ) ,

where Λi =Λ ∩Vi (i = 1,2) and αi ∈Λi.

4 The Reduction of A over R

We now analyze the relation ofΘ to the integers R in k (R, k as in section 1).
Let | | denote the real absolute value of k; V2(A), Λ andΘ as before.

Proposition. maxα∈V |Θ(α)| is finite and is taken on for some α ∈ 1
2Λ .
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Proof. The Riemann theta-relation

4

∏
i=1
Θ(αi) = 2−g ∑

η∈ 1
2Λ/Λ

e(γ,η)
4

∏
i=1
Θ(αi + γ+η)

gives
4

∏
i=1
|Θ(αi)| ≤ max

η∈ 1
2Λ/Λ

4

∏
i=1
|Θ(αi + γ+η)|

since |Θ(α)| is constant on cosets of Λ .
If we put α1 = α2 = α3 = α =−α4, then

(†) |Θ(α)|4 ≤ max
η∈ 1

2Λ/Λ
|Θ(η)|3 · |Θ(2α−η)| ;

since (†) is valid for all α ∈ V , applying it successively to 2α −η , 4α − 3η , . . . ,
2nα− (2n−1)η , . . . , and substituting back in (†) we get

|Θ(α)|4 ≤ max
η∈ 1

2Λ/Λ
|Θ(η)|rn · |Θ(2nα− (2n−1)η)|sn ,

where4 rn = ∑n
i=0 3/4i, sn =

1
22n .

Now in the 2-adic topology 2nα − (2n− 1)η converges to η . We know rn con-
verges to 4. Therefore we get

|Θ(α)|4 ≤ max
η= 1

2Λ/Λ
|Θ(η)|4 ,

whence
max
α∈V
|Θ(α)|4 ≤ max

η∈ 1
2Λ/Λ

|Θ(η)|4 ≤max
α∈V
|Θ(α)|4 ,

which yields the result.

Using this proposition we can normalizeΘ so that its values lie in R, but not all
lie in the maximal ideal M; that is, ifΘ denotes the induced function to k,Θ(α) 	= 0
for some α ∈V .

We now invoke the main result used for the Satake compactification (see [1]).

Theorem 1. For every theta-functionΘ on V , (i.e., a function satisfying (∗), (∗∗),
(∗∗∗) but not necessarily (∗∗∗∗)) there is a subspace W ⊆V with W⊥ ⊆W (⊥ with
respect to e) and a nondegenerate theta-functionΦ on W/W⊥ such that

suppΘ ⊆W +Λ +η0 , η0 ∈
1
2
Λ

and

Θ(η0 +η1 +α) = e∗(η1/2)e(η1/2,α)e
(η0 +η1

2
,α
)
Φ(α) (η1 ∈Λ , α ∈W ) .

4 A misprint “sn =
1

2n
” in the original is corrected here.
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4 The Reduction of A over R

The theta-functionΦ is used to construct an abelian variety B over k of dimension
h (where dimW/W⊥ = 2h) in the same way that A was constructed from Θ (see
section 3). Then the special fibre A of the sought-for group scheme A should be in
an extension

0→G
h
m→ A→ B→ 0.

Notice that if the reduction is to be totally-degenerate, then we must have W = W⊥,
and hence B = {0}.

To construct A however, we must first study how many R-valued theta-functions
come from a given k-valued nondegenerate theta-function Φ on a vector space
W/W⊥ of smaller dimension. For this question the measure-theoretic point of view
(outlined at the end of section 3) is much better. For ease of exposition we confine
ourselves to the case of totally-degenerate reduction, i.e., W = W⊥. In this case the
R-valued measure μ corresponding toΘ reduces to a k-valued measure μ, where μ
is just the point mass at 0, δ0 (the so-called “Dirac delta-function”). The main result
concerning these measures is this.

Theorem 2. Let μ be a nondegenerate R-valued Gaussian measure on Q
g
2 such

that μ = δ0. Then there is a unique subgroup M′ in Q
g
2 isomorphic to Z

[
1
2

]g
(and

equal to it after a suitable change of co-ordinates) and a unique quadratic character
c′ : M′ → R−{0} such that

μ = ∑
x∈M′

c′(x)δx .

Moreover, if we tensor M′ with R, then there is a positive-definite quadratic form
Q : M′ ⊗R→ R so that |c′(x)|= e−Q(x).

Ideally, at this point we should write down A explicitly in terms ofΘ . However,
this presents certain complications, and it is faster to construct A by means of the
theory of the Néron model and to check that its special fibre A is G

h
m by means of

Galois theory (following a suggestion of Grothendieck).
Choose a subfield k0 ⊆ k with a discrete absolute value so that A is defined over

k0, and let A0 be the Néron model of A over R0 = integers in k0. Let

A = A0 (minus the components of its special fibre not containing zero) .

Then G = Gal(k/k0) acts on V2(A) preserving Λ , e, W , M′, and Q. On V/W the
action of G is determined by its action on M′ ∩ (Λ/Λ ∩W )∼= Z

g. Hence we have a
representation

G→ O(Q)Z

into an integral orthogonal group (corresponding to the quadratic form (Q) on Z
g).5

But this group is finite! Hence replacing k0 by a finite extension k1 if necessary, we
see that G1 = Gal(k/k1) acts trivially on V/W . Since the action of G1 preserves e, it
acts trivially on W too; thus the representation takes the form

5 A misprint “corresponding to the quadratic form (Q) on Q
2g
2 ” is corrected here.
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σ −→
(

I ∗
O I

)

.

Thus A2∞ contains a subgroup H which is k1-rational and is a maximal isotropic
subgroup of points of order 2n, isomorphic to (Q2/Z2)g. Now by one of the key
properties of Néron models, all k1-rational points of A extend to R1-rational points
of A1 (A1 = Néron model of A over R1). Since H is divisible, all points of H give R1-
rational points of A1 hence H induces a subgroup H ⊆ A, isomorphic to (Q2/Z2)g.

Now from quite general structure theorems on group schemes, we have an exact
sequence

0→ L→ A
π−→ B→ 0 ,

when L is a linear group of dimension r, and B is an abelian variety. It can be shown
that π(H) is still isotropic in B and since B has dimension g− r, π(H)∼= (Q2/Z2)k,
k ≤ g− r. Therefore H ∩L has a subgroup (Q2/Z2)r, whence L = G

r
m. Using the

total-degeneracy of the theta function we can then show that A = G
g
m —i.e., that

B = {0}.

5 Analytic Theta-Functions.

In this section we will show how our theta-functions with totally-degenerate re-
duction are essentially equal to suitable holomorphic theta-functions of Tate–Mori-
kawa–McCabe, and hence that the abelian varieties uniformized by the Tate theory
are exactly those with totally-degenerate reduction.

In the algebraic theory we have outlined, the exact sequence

0→Λ →V2(A)→ A2∞ → 0

is the analogue of the sequence

0→M
q−→V (M)→ A(k) ?−→ 0 6

(where V (M) is the g-dimensional torus with character group M) of the holomorphic
theory. See Tate’s Bowdoin Colloquium talks for details. Now using the theorem of
the previous section we can express every theta-function with totally degenerate
reduction,Θa (the subscript a emphasizes that it is the algebraic theta-function) as

Θa(α+β ) = e(β/2,α) ∑
x∈M′′

e(β ,x)c′(α+ x) ,

where V = V1⊕V2 is a suitable decomposition, α ∈ V1, β ∈ V2, M′′ = M′ ∩Λ ,
M′ ⊂V1, V2 is the W of the previous section, c′ and M′ as in Theorem 2.

6 The map V (M)(k)→ A(k) is surjective when the abelian variety A over k is the quotient in the
category of rigid analytic spaces of a split torus V (M) over k by the period subgroup q(M).
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5 Analytic Theta-Functions.

In the holomorphic theory there is a quadratic character c : M→ R which deter-
mines q via the identity

(qx)y =
c(x + y)
c(x)c(y)

.

The unique holomorphic theta-functionΘh is equal to

Θh(u) = ∑
x∈M

c(x)ux.

It is now easy to relateΘh andΘa. Explicitly, we construct a map

f : M′ ⊕ (V2/V2∩Λ) {x ∈V (M) | x2m ∈ qM for some m ∈N}
⋂ ⋂

V2(A)/V2∩Λ V (M)

so that if α ∈V2, x ∈M, then

f (α)x = e(α,x) ,

and if α ∈M′, x ∈M, then

f (α)x =
c(α+ x)
c(α)c(x)

.

Note that f (V2/V2∩Λ) ∼−→ {points of order 2n in V (M)} and f (M′) is a “2-divisible
hull” of qM in V (M).
Define:

γ : M′ ⊕ (V2/V2∩Λ)→ R by

γ(α+β ) = c(α)−1 e(α,β/2) .

Then a simple verification yields

Θh( f (x)) = γ(x) ·Θa(X) .

Since we have essentially the same theta functions in the algebraic and holomorphic
cases, it is easy to deduce that the two theories provide uniformizations of the same
abelian variety.

Reference

[1] Mumford, D., On Equations Defining Abelian Varieties II, to appear.7

7 Invent. Math. 3, 1967, 75–135.
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Article [u67b]

Degeneration of algebraic theta functions1

David Mumford

1 2-adic theta functions, values in a complete valued field

Problem:
Given K: complete algebraically closed valued field; integers O , residue field

k = O/m, absolute value | | : K× → R>0 , char.(k) 	= 2.
Given V : 2g-dimensional vector space over Q2, plus e, e∗ , Λ .2

Given Θ : V → K, a theta function w.r.t. e, e∗ , coarse support(Θ) = V .3

1 This is a slightly edited version of a set of handwritten notes by Mumford in the summer of 1967.
It contains an essentially complete proof of the results in the letter [1967undated] to Grothendieck,
despite a disclaimer in the letter (see footnote 114, p. 722). Mumford lectured on these results in
the 1967 Summer School at Bowdoin, see the previous article, [u67a]. Appendix II in the 1984
Ph.D. dissertation of C.-L. Chai, London Math. Soc. Lecture Notes Series 107, 1985, pp. 237–286
is a modified version based on the same set of notes.

The notes come in two batches, reproduced as two sections. The first section contains the key
results on the structure of 2-adic theta functions associated to abelian varieties over a local field.
This structure theory is applied in §2 to the 2-adic monodromy of abelian varieties over local fields.
Two pages of the original notes are essentially the same as the last section of the Bowdoin lecture
notes [u67a]; they are not reproduced here.
2 The notations and results in [66a], [67a] and [67b], Equations defining abelian varieties I, II, III,
referred to as [Eq I, II, III] in the footnotes, are used extensively in this set of notes. In particular
e : V ×V −→ �2∞ (K) is a skew-symmetric bi-multiplicative nondegenerate pairing from V ×V to
the group of all roots of unity whose order is a power of 2, Λ is a maximal isotropic O-lattice in
V , and e∗ : 1

2Λ/Λ −→ {±1} is a quadratic character such that

e∗(α+β )e∗(α)e∗(β ) = e(α ,β )2 ∀α ,β ∈ 1
2
Λ .

3 ThatΘ : V −→ K is a theta function for (V,Λ ,e,e∗) means that it satisfies
theta transformation law: Θ(α +β ) = e∗(β/2)e(β/2,α)Θ(α) ∀α ∈V , ∀β ∈Λ .
symmetry: Θ(−α) =Θ(α) ∀α ∈V .
Riemann theta relation: For all α1,α2,α3,α4 ∈V we have

∏
1≤i≤4

Θ(αi) = 2−g · ∑
η∈ 1

2Λ/Λ

e(γ ,η) ∏
1≤i≤4

Θ(αi + γ+η), where γ =− 1
2 (α1 +α2 +α3 +α4).

See [Eq III], p. 216. The coarse support of an algebraic theta function Θ : V → K is the set of all
α ∈V , for which there exists η ∈ 1

2Λ such thatΘ(α +η) 	= 0.
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1 2-adic theta functions, values in a complete valued field

(I) All valuesΘ(α) are integrally dependent on {Θ(β ) | β ∈ 1
2Λ}; hence max |Θ(α)|

exists and is taken on for some α ∈ 1
2Λ .4 So multiplyΘ by a constant s.t.

(a) Θ(α) ∈ O for all α ∈ 1
2Λ ,

(b) ∃α ∈ 1
2Λ withΘ(α) /∈m, or equivalently |Θ(α)|= 1.

∴ Get a nonzero theta functionΘ(α) := [Θ(α) mod m] ∈ k.

(II) Say coarse support(Θ) = W + 1
2Λ , W ⊆V a cusp.5

(∗) Choose a symplectic transformation T of V s.t. T (Λ) =Λ , e∗ ≡ 1 on T (W⊥)∩ 1
2Λ .

ChangeΛ by this: Then 0 is an origin6 for W . Later, will have to apply T in reverse
to the structure Th. we get forΘ .

� OK:

Θ(α) = e∗(η/2) · e(η/2,α) ·Θ∗(α∗0 )

if α = η+α0, η ∈Λ , α0 ∈W ,

α∗0 = image of α0 in W/W⊥,

Θ ∗= k-valued nondegen. theta fcn. on W/W⊥.

Choose:

V = W1⊕W2

Λ =Λ1⊕Λ2, Λi =Λ ∩Wi

e∗ = 1 on 1
2Λi

⎫
⎪⎬

⎪⎭
standard decomp. of V

s.t. (0)⊂W⊥ ⊂W1 ⊂W ⊂V , so W = W1⊕W̃2, W̃2 ⊂W2.

Given V = W1⊕W2 and W = W1⊕W̃2 as above:
∃ 1-1 correspondence between

(a) O-valued theta fcns.Θ on V s.t. coarse supp(Θ) = W + 1
2Λ ,

(b) O-valued Gaussian measures7 μ on W2 s.t. supp(μ) = W̃2 .

4 See Prop. 1 of Abstract theta functions, paper [u67a] in this volume.
5 See Theorem on p. 230 of [Eq III] for this assertion. A cusp is a vector subspace W ⊆V such that
W⊥ ⊆W ; see p. 229 loc. cit.
6 An origin of a cusp W is an element η0 ∈ 1

2Λ such that e∗(η0) = 1 and e∗(α) = e(α ,η0)2 for all
α ∈W⊥ ∩ 1

2Λ ; see p. 229 loc. cit.
7 A k-valued even measure on W2 is a Gaussian measure if there exists a k-valued measure ν on
W2 such that (μ × μ)(U) = (ν × ν)(ξ (U)) for all compact open subsets U in W2 ×W2, where
ξ : W2×W2 −→W2×W2 is defined by ξ (x,y) = (x+ y,x− y); see p. 118 of [Eq II].
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[u67b] Degeneration of algebraic theta functions

In fact8

μ(a2 + 2nΛ2)= 2−ng ∑
a1∈2−nΛ1/Λ1

e(a2,a1/2) ·Θ(a1 + a2) ∀a2 ∈W2, ∀n ∈ N

Θ(a1 + a2)= e(a2,a1/2)
∫

a2+Λ2

e(a1,β ) ·dμ(β ) ∀a1 ∈W1, ∀a2 ∈W2

Esp:

sup

{

|μ(a′2 + 2nΛ2)|
∣
∣
∣
∣
a′2∈ a2 +W̃2 + 1

2Λ2
n≥ 0

}

= sup

{

|μ(U)|
∣
∣
∣
∣
U ⊂ a2 +W̃2 + 1

2Λ2
U compact open

}

∥
∥

sup

{

|Θ(a1 + a′2)|
∣
∣
∣
∣
a1 ∈W1

a′2 ∈ a2 +W̃2 + 1
2Λ2

}

= sup
{
|Θ(b)|

∣
∣
∣b ∈ a2 +W +

1
2
Λ
}

(III) Next step: Show that ∀Θ or μ , and ∀a2, this sup is a max.

Proof. Associate Φ toΘ s.t.

Φ(α)Φ(β ) = ∑
ζ∈ 1

2Λ1/Λ1

e(α,ζ ) ·Θ(α +β + ζ ) ·Θ(α−β + ζ )

2gΘ(2α)Θ(2β ) = ∑
ζ∈ 1

2Λ2/Λ2

e(α,ζ )2 ·Φ(α+β + ζ ) ·Φ(α−β + ζ )

∴ |Φ(α)| · |Φ(β )| ≤ max
ζ∈ 1

2Λ1

|Θ(α+β + ζ )| · |Θ(α−β + ζ )|

|Θ(α+β )| · |Θ(α−β )| ≤ max
ζ∈ 1

2Λ2

|Φ(α + ζ )| · |Φ(β + ζ )|

∴ max
ζ∈ 1

2Λ1

|Θ(α+β + ζ )| · |Θ(α−β + ζ )|= max
ζ∈ 1

2Λ2

|Φ(α + ζ )| · |Φ(β + ζ )| .

So

max
ζ∈ 1

2Λ1

|Θ(α+β +ζ )| · max
ζ∈ 1

2Λ1

|Θ(α−β +ζ )|= max
ζ∈ 1

2Λ2+ 1
4Λ1

|Φ(α+ζ )| · |Φ(β +ζ )| .

Now assume β ∈W . Use ∀x ∈W +Λ2 ∃η ∈ 1
4Λ1 s.t. |Φ(x +η)|= 1 .

Let τ(γ) = maxζ∈ 1
4Λ1
|Θ(γ+ ζ )| .

∴ τ(α+β )τ(α−β ) = max
ζ1,ζ2∈ 1

2Λ2+ 1
8Λ1,

ζ1+ζ2∈ 1
4Λ1

|Φ(α + ζ1)| · |Φ(β + ζ2)| .

Def. α ∈V is normal if max
ζ∈ 1

8Λ1

|Φ(α + ζ )|= max
ζ∈ 1

2Λ2+ 1
8Λ1

|Φ(α + ζ )| .

8 See pp. 116–117 of [Eq II].
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1 2-adic theta functions, values in a complete valued field

[
∀α ∃η ∈ 1

2
Λ2 s.t. α+η is normal.

]

So if α normal, β ∈W , then

τ(α+β )τ(α−β ) = max
ζ∈ 1

8Λ1+ 1
2Λ2

|Φ(α + ζ )|=: ρ(α) .

Esp.
τ(α+β )τ(α−β ) = τ(α)2 .

Note: If η ∈ 1
2Λ2, α+η normal, then τ(α +η)≥ τ(α).

Proof of Note.

τ(α)2 = max
ζ1,ζ2∈ 1

2Λ2+ 1
8Λ1,

ζ1+ζ2∈ 1
4Λ1

|Φ(α+ ζ1)| · |Φ(ζ2)|

≤ max
ζ∈ 1

2Λ2+ 1
8Λ1

|Φ(α + ζ )| = ρ(α) ;

α+η normal =⇒ τ(α+η)2 = ρ(α+η) = ρ(α)≥ τ(α)2. Q.E.D.

Now suppose αn ∈ a +W + 1
2Λ s.t.

|Θ(αn)| −→ sup
{
|Θ(β )|

∣
∣
∣β ∈ a +W +

1
2
Λ
}

=: s .

W.l.o.g. can assume |Θ(αn)|= τ(αn) & α normal (in view of Note above).
OK: Pass to subsequence s.t.

αn−αm ∈W +Λ (all n, m) .

W.l.o.g. may assume αn−αm ∈W for all n, m. Now if

τ(αn) = |Θ(αn)|>
√

s · |Θ(α1)|= geom. mean of s and |Θ(α1)| ,
then

s · τ(α1) < τ(αn)2 = τ(αn +(α1−αn)) · τ(αn− (α1−αn)) < τ(α1) · s ,

contradiction.
∴ s = τ(αn) for all n .

Step (III) is proved.

We conclude

Proposition 1. For any O-valued Gaussian measure μ on W2 such that the k-
valued measure μ is not zero, let W̃2 = supp(μ). Then ∀ compact open subgroup
Λ ′2 ⊂V2 and ∀a ∈W2,

sup
{
|μ(U)| ∣∣U ⊆ W̃2 +Λ ′2 + a

}

is attained.9

9 Prop. 1 has been proved for Λ ′ = 1
2Λ2. Apply an automorphism A of V2 such that A( 1

2Λ2)⊂Λ ′2 .
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[u67b] Degeneration of algebraic theta functions

(IV) Let V be a finite-dimensional vector space over Q2, let W be a vector subspace
of V , and let Λ ⊂ V be a compact open subgroup.10

Theorem 2. Let μ be a Gaussian measure on V with values in O . Let ν be the
dual Gaussian measure of μ , i.e., ξ∗(μ× μ) = ν×ν .11

Assume
(1) μ ,ν have support W ⊂ V ,
(2) ∀w ∈ V

max
{ |μ(V )| ∣∣V ⊂ w+Λ +W

}
=: σ(w) ,

max
{ |ν(V )| ∣∣V ⊂ w+Λ +W

}
=: τ(w)

exist.

Then for all w ∈ V , if c ∈ O s.t. |c|= σ(w) = max
η∈ 1

2Λ
(σ(w+η)), then

supp

{
μ
c

∣
∣
∣
w+Λ+W

}

= w+η0 +W for some η0 ∈Λ .

Proof. Claim 1: τ(w)2 = σ(w).

(1) ∃U ⊂ w+Λ +W s.t. |μ(U)|= σ(w).12

∴ |(μ× μ)(U×Λ)|= σ(w) , ∴ |(ν×ν)(ξ (U×Λ))|= σ(w) .

But ξ (U×Λ)⊂ (w+Λ +W)× (w+Λ+W),

∴ ∃U1, U2 ⊂ w+Λ +W s.t. |(ν×ν)(U1×U2)|
‖

|ν(U1)| · |ν(U2)|

= σ(w)

∴ τ(w) ≥ max{|ν(U1)|, |ν(U2)|} ≥
√
σ(w) .

(2) ∃U ⊂ w+Λ +W s.t. |ν(U)|= τ(w).

∴ |(ν×ν)(U×U)|= τ(w)2.

But

(w+Λ +W )× (w+Λ+W ) =
⋃

disjoint

ξ ((w+Λ +W +η)× (Λ+W +η))
η ∈ 1

2Λ ,

∴ ∃η , ∃U1 ⊂ w+Λ +W +η , ∃U2 ⊂Λ +W +η , s.t.

τ(w)2 = |(ν×ν)(ξ (U1×U2))|= |μ(U1)| · |μ(U2)|
≤ |μ(U1)| ≤ σ(w+η) ≤ σ(w) .

We have proved Claim 1.

10 The general notation for §1 is suspended in Steps (IV), (V) and the first statement of Thm. 1 in
(VI). In application the triple (V ,Λ ,W) in this theorem will be (W2,Λ2,W̃). Also the meaning of
the function τ here is different from that in the proof of Step (III).
11 As before, ξ : V ×V −→ V ×V , ξ : (x,y) �→ (x+ y,x− y).
12 Here U is compact open; the same for the U1, U2 and U below.

618



1 2-adic theta functions, values in a complete valued field

619



[u67b] Degeneration of algebraic theta functions
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Look at measures

μ
c

∣
∣
∣
w+Λ+W

=: μw ,
ν√
c

∣
∣
∣
w+Λ+W

=: νw .

Claim 2. (a) ξ∗(μw× μ) = (νw×νw)|ξ ((w+Λ+W )×(Λ+W)).
(b) The restriction of the measure ν×ν to

(w+Λ +W)× (w+Λ+W)− ξ ((w+Λ+W)× (Λ +W))

has absolute values strictly less than σ(w).
(c) ξ∗(μw× μ) = νw×νw as measures on (w+Λ +W)× (w+Λ+W).

Clearly (a) holds, and (b) implies (c). To see (b), suppose that

U1 ⊂ w+Λ +W +η ,

U2 ⊂Λ +W +η ,

U1 and U2 compact open,

η ∈ 1
2
Λ , η /∈Λ +W .

Then

|ν×ν(ξ (U1×U2)|= |μ(U1)| · |μ(U2)|
≤ σ(w+η) ·σ(η)
< σ(w+η) (∵ η /∈Λ +W )
≤ σ(w) (∵ assumption on w)

Claim 2 (b) is proved.13

Theorem 2 is a formal consequence of (c):

ξ∗(μw× μ) = νw×νw implies ξ (supp(μw)×W) =

call this T
︷ ︸︸ ︷
supp(νw)× supp(νw) ,

‖
{(a + w,a−w) | a ∈

call this S
︷ ︸︸ ︷
supp(μw), w ∈W} .

Start with a∈ S, u∈W . Then a±u∈ T , so (a+u,a+u)∈ T ×T , and a+u∈ S too
because ξ−1(a+u,a+u) = (a+u,0). We have shown that a+W ⊂ S for all a ∈ S.
If b ∈ S also, then b±u∈ T as before, and (a + u,b + u)∈ T ×T .

∴ 1
2
(a−b) ∈W ∵ ξ−1(a + u,b + u)∈ S×W .

So a−b ∈W for all a, b ∈ S. Theorem 2 is proved. Q.E.D.

13 Because each compact open subset of ((w+Λ +W )× (w+Λ +W ))−ξ ((x+Λ +W )× (Λ +
W )) is a finite disjoint union of subsets of the form ξ (U1×U2) satisfying the above conditions.
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(V) We now reformulate what has been proved so far, and what is expected.
Let V be a vector space over Q2, W ⊂ V a vector subspace, π : V � V /W ,
dimV = g, dimW = g− r. Let μ be an O-valued Gaussian measure on V s.t.
supp(μ) = W .
We have proved:

(1) For any compact open subset U ⊂ V /W,

σU := sup
{ |μ(U ′)| ∣∣U ′ ⊂ π−1(U), U ′ compact open

}

is reached by some compact open subset U ′.
(2) Let U and σU be as in (1) above, let cU ∈ K be s.t. |cU |= σU , and let

μU =
[ μ

cU

∣
∣
∣
π−1(U)

]
.

Then supp(μU) is a finite union of cosets of W.

Expectation 3: ∃S ⊂ V /W, S ⊂ V /W

∼ = ∼ =
Z[1/2]r ⊂ Q

r
2

and ∃ a function14 σ = σss : S−→R of the form

σ(x) = e−Q(x,x), Q a pos. def. quad. form on S ,

s.t. ∀U ⊂ V /W compact open, if 15

σU := max
x∈U∩S

σ(x) , and cU ∈ K s.t. |cU |= σU ,

then16

(a) |μ(U ′)| ≤ σU for all compact open U ′ ⊂ π−1(U) .

(b) μU =
[ μ

cU

∣
∣
∣
π−1(U)

]
is a k-valued measure whose support is exactly

⋃

y∈S∩U, σ(y)=σU

π−1(y) .

Def. The singular set S = S(μ) of μ is defined by

S = S(μ) :=
{

x ∈ V /W

∣
∣
∣
∣
∃open neighborhood U of x in V /W
s.t. supp(μU ) = π−1(x)

}

.

Def. Define the sup. map σ : S −→ R for the Gaussian measure μ by

σ(x) = max
{ |μ(U ′)| ∣∣U ′ ⊂ π−1(U)

}

14 The function σ here on the singular set S of μ is different from the function σ on W in Theorem 2.
15 The use of the notation σU here is compatible with the notation in (1) at the beginning of (V);
cf. the definition of the function σ : S→ R below and Theorem 4 (1).
16 In terms of the function σ : S−→R here, for w ∈ V , the positive number σ (w) in Theorem 1 is
equal to maxx∈S∩π(w+Λ+W )σ (x).
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for x ∈ S, where U is as above, i.e., an open neighborhood of x in V /W s.t.
supp(μU) = π−1(x). This definition is independent of the choice of U .

It remains to show that S ⊂ V /W

∼ = ∼ =

Z[1/2]r ⊂ Q
r
2

and
σ(x) = e−Q(x,x) , Q pos. def.

Proof of Expectation 3. Let ν be the O-valued Gaussian measure dual to μ , i.e.,
ξ∗(μ× μ) = ν×ν . Let T = S(ν)⊂ V /W be the singular set of ν , and let17

τ : T −→R

be the sup. map for the Gaussian measure ν on V . Then

ξ (S×S) = T ×T

and
σ(x) ·σ(y) = τ(x + y) · τ(x− y) for all x,y ∈ S .

From these we deduce

(a) S is a subgroup of V /W and 2S = S.
(b) Q :=− logσ is a quadratic form from S to nonnegative real numbers.18

Let Λ ⊂ V /W be a neighborhood of 0, and let S0 :=Λ ∩S , a subgroup of S s.t.
⋃

n∈N

2−nS0 = S .

(c) Let x1, . . . ,xn ∈ S0 be Z-linearly independent elements in S0. Look at the maxi-
mal H s.t. ∃

Q
n

∪
H

φ
φ((a1, . . . ,an)) = ∑ ai xi .

∪
Z

n S0

Let Q′ be the quadratic form on Q
n s.t.

Q′(a,a) :=− logσ(φ(a1, . . . ,an)) for all a = (a1, . . . ,an) ∈ H .

Note that19

17 The function τ here on the singular set T of ν should not be confused with the function τ(w)
on W ⊂ V in Theorem 2, nor with the function τ on V in the proof of (III).
18 For s ∈ S, we have σ (s) = 1⇔ s ∈W = supp(μ).
19 The quadratic form Q′ on Q

n satisfies Q′(a) = Q(φ(a)) > 0 ∀a ∈ Z
n. This implies that the

extension of Q′ to R
n is positive semidefinite. Otherwise the open cone C ⊂ R

n where Q′ is
negative is nonempty, and C∩Q

n is a dense subset of C, a contradiction.
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Q′ is a pos. semi-definite quad. form.

Q′(a) = 0, a ∈Q
n =⇒ a = 0.

}

(c1) [H : Z
n] < ∞.

If not, ∃ Q-vector subspace L⊂Q
n s.t. H ∩L is dense in L in classical topol-

ogy. But ∀a ∈ Z
n, φ(a) ∈ S0 ,

∴ in φ(a)+ 2mΛ , σ(φ(a))≥ σ(b′) for all b′ ∈ φ(a)+ 2mΛ

if m is large enough. Thus

Q′(a,a)≤ Q′(b,b) for all b ∈ a + 2mH .

Take a ∈ L∩Z
n and b∈ (a+2mH)∩L in particular: then the possible b’s are

dense in L. So there are some b’s for which Q′(b,b) < any given ε , and get a
contradiction.

Corollary. H is a finitely generated abelian group: w.l.o.g. H = Z
n.

(c2) Q′ is positive definite.20

If not, get

R
n

π
proj.

R
m

∪
H

(m < n)

and a quadratic form Q′′ on R
m s.t. Q′(a) = Q′′(π(a)) for all a ∈ R

n, and
π(H)⊂ R

m is not discrete. i.e., ∃ R-vector subspace L ⊂ R
m s.t. π(H)∩L is

dense in L.21 Get the same contradiction as above.

(d) S0 is a free abelian group of rank r = dim(V /W ).

Proof. Define r := dim(V /W ), d := dimQ(S0⊗Q). Then

d finite ⇐⇒ S0 fin. gen. by (c1) and (c2).

If d < r, then S0 is too small to be dense22 in Λ , OUT.
If d > r, well

S0/2S0 ⊂ Λ/2Λ ∼= (Z/2Z)r . Q.E.D.

∴

R
r

∪
S ∼= Z[1/2]r

∪ ∪
S0
∼= Z

r

20 We know that the extension of Q′ to R
n is a positive semidefinite; the assertion here is that Q′

is positive definite on R
n.

21 ∵ the closure of π(H) in R
m is a Lie subgroup of R

m of positive dimension.
22 S is dense in V /W because supp(μ) = V .
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and σ = e−Q(a,a), Q a pos. def. quad. form on R
r. Expectation 3 is proved.

(VI)

Theorem 4 (1) Every Gaussian measure μ on V (as above) can be written as

μ =∑
x∈S

μx ,

where each μx
23 24 is an O-valued measure on V with

supp(μx) = π−1(x) ∀x ∈ S
sup{|μx(U)| | U ⊂ V compact open}= σ(x) ∀x ∈ S

}

.

Similarly, the dual measure ν can be written as

ν =∑
x∈S

νx

with similar properties as above. Moreover

ξ∗(μx× μy) = νx+y×νx−y ∀x, y ∈ S .

(2) Correspondingly, suppose that Θ is an O-valued theta function w.r.t. (V,e,e∗,Λ)
related to an O-valued Gaussian measure μ on W2 as in (II), and let

(0)⊂W⊥ ⊂W ⊂V, V = W1⊕W2 ⊃W1⊕W̃ = W and Λ =Λ1⊕Λ2

be as in (II). Let π : V �V/W =W2/W̃ be the projection map, and let S⊂W2/W̃ =
V/W be the singular set of μ given by (1) above. Then

Θ(α) =∑
x∈S

Θx(α) ,

where each Θx
25 is a function on V such that

a) Θx(α+β ) = e∗(β/2)e(β/2,α)Θx(α) ∀β ∈Λ ,
b) supp(Θx)⊂ π−1(x)+Λ ,
c) Θx(α+β ) = e(β ,γx−α/2)Θx(α) ∀β ∈W⊥

if γx ∈V satisfies π(γx) = x .

23 For x ∈ S, the measure μx is the push-forward to V of a measure μ ′x on π−1(x), defined as
follows. For any compact open subset U ′ of π−1(x), let {Ui}i∈N

be a decreasing family of compact
open subsets of V such that

⋂
i∈N Ui = U ′ . Then μ ′x(U ′) = limi→∞ μ(Ui).

24 The O-valued measures μx should not be confused with the k-valued measure μw in Claim 2
in the proof of Theorem 2.
25 The functionsΘx is related to the measures μx as in (II):

μx(a2 +2nΛ2) = 2−ng ∑
a1∈2−nΛ1/Λ1

e(a2,a1/2)Θx(a1 +a2) ,

Θx(a1 +a2) = e(a2,a1/2)
∫

a2+Λ2

e(a1,β ) ·dμx(β ) , a1 ∈V1,a2 ∈V2 .
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1 2-adic theta functions, values in a complete valued field

Defining an associated tower of toroidal groups

Θ on V gives

⎧
⎨

⎩

(0)⊂W⊥ ⊂W ⊂V, π : V � (V/W )
(

we assume e∗(α/2) = 1,
∀α ∈W⊥∩ (1/2)Λ

)

S⊂V/W
Θx on π−1(x)+Λ .

(1) Θ0 on W/W⊥ defines a tower of abelian varieties Bα , indexed by compact open
subsets Uα ⊂W/W⊥.

(2) If U ⊂V is a compact open subgroup, get

(a) Uα = (U ∩W )/(U ∩W⊥)⊂W/W⊥ , hence Bα .
(b) π(U)∩S = S0, a lattice in S.
∀x ∈ S0, choose γx ∈U ∩π−1(x). Set

Φx(β ) = e(γx/2,β ) ·Θx(β + γx) β ∈W ,
a function on W/W⊥ “related” to Θ0 .

∴ Φx defines a point Pα(x) ∈ Bα .

[ If γ ′x = γx + η , η ∈ U +W , then Φ ′x(β ) = const · e(η/2,β )Φx(β + η), so
Pα(x) doesn’t change. ]

Get a homomorphism S0
Pα

Bα

x Pα(x) .

(c) Gα = SpecBα

(
⊕

x∈S0

{
T ∗Pα (x)Lα ⊗L−1

α
}
)

.

A class of rigid analytic maps

Given: K = complete valued field, C = K̂,
Given: G, a comm. alg. grp. over K of type

G

G
r
m π

A abelian var.,
L, ample inv. sheaf on A , all rational over K.

Now

G∼= SpecA

{
⊕

n∈Zr

(
Kn1

1 ⊗·· ·⊗Knr
r

)
}

,

where K1, . . . ,Kr are invertible sheaves on A, alg. equiv. to OA .
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[u67b] Degeneration of algebraic theta functions

To define a rigid analytic map φ : GC −→ P
m
C ,

need m+ 1 analytic sections of π∗(L) over GC ,

m+ 1 Laurent-type expressions Li = ∑
n∈Zr

s(n, i) , 0≤ i≤ m ,

s(n, i) ∈ Γ (A,L⊗Kn1
1 ⊗·· ·⊗Knr

r ) .

CONVERGENCE: ∀x ∈GC , get π(x) = y∈ AC , plus Ki(y)
∼−→C for i = 0,1, . . . ,m.

Then evaluate:
s(n, i) �−→ Valx[s(n, i)] ∈ L(y) .

Ask that

∑
n

Valx[s(n, i)]
{

exists in L(y) for all i ,
& not be 0 for all i .

Hence φ comes out.

2 Application to monodromy: method of theta functions

Given:

(a) an abelian variety X over K −→ get T2(X), a module over Z2
[
Gal(K/K)

]
,

(b) a principal polarization on X plus an even symmetric theta-divisor Dθ
representing it −→ get a theta function Θ : V2(X)→ K s.t.

Θ(σx) =Θ(x)σ ∀σ ∈ Gal(K/K).

[ State converse: all such (V,Λ ,e,e∗,Θ) come from (X ,Dθ ), with V2(X) = V ,
T2(X) =Λ , e and e∗ induced by Dθ . ]

Problem is to show:

if K = local field, alg. cl. res. field k, char(k) 	= 2,

& ifΓ := Gal(K/K) acts on T2(X) via a homomorphism ρX from its tamely ram-
ified quotient Γtame to the 2-adic symplectic group Sp(V,Λ ,e)∼= Sp2g(Z2),26

then ∃ an open subgroup U ⊂ Γtame s.t.
∀γ ∈U ρX(γ) operates unipotently on T2(X) .

Method: a complete description of the solutions to the theta functional equations
over a local field; viz. ∃

(i) (0)⊂W⊥ ⊂W ⊂V subspaces, π : V →V/W

26 Γtame ∼=∏� Z�(1), where � runs through all prime numbers which are invertible in k.
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2 Application to monodromy: method of theta functions

(ii) S ⊂ V/W

∼ = ∼ =

Z[1/2]r ⊂ Q
r
2

(iii) Q : S −→ R pos. def. quad. form

s.t.
Θ =∑

s∈S

Θx

(a) supp(Θx) ⊂ π−1(x)+Λ ,

(b) maxy |Θx(y)|= e−Q(x,x) ,

(c) Θx(α+β ) = e∗(β/2) · e(β/2,α) ·Θx(α) for all β ∈Λ ,

(d) Θx(α+β ) = e(β ,γx−α/2) ·Θx(α) for all β ∈W⊥ if γx ∈ π−1(x) .

Claim: It follows that

γ = id on W and on V/W⊥ ∀γ ∈U ,

i.e., the matrix representation of γ has the form
⎛

⎝
I O ∗
O I O
O O I

⎞

⎠ .

This Claim will be proved in two steps below.

Step 1. Assume that Θ : V → k is an algebraic theta function for (V,Λ ,e,e∗), and
σ is an element of Sp(V,Λ ,e) such that

• ∀x ∈V, ∃η ∈ 1
2Λ s.t.Θ(x +η) 	= 0 ,

• Θ(σx) =Θ(x) for all x ∈V.

Then σ is of finite order.

Proof of Step 1. Replace σ by a suitable power so that (σ − 1)Λ ⊆ 4Λ . We will
show that27 for any n≥ 2,

(σ −1)Λ ⊆ 2nΛ =⇒ (σ −1)Λ ⊆ 22n−1Λ .

For any x ∈ 2−nΛ , we have

Θ(x) =Θ(σx)
=Θ(x +(σx− x)) ∵ σx− x ∈Λ
= e∗

(σx− x
2

)
· e
(σx− x

2
,x
)
·Θ(x)

27 This statement was proved only in the case n = 2 in the original notes; the original left it to the
reader to do this for n > 2.
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[u67b] Degeneration of algebraic theta functions

∴ e(σx− x,x) = 1 if Θ(x) 	= 0. Pick an η ∈ 1
2Λ such thatΘ(x +η) 	= 0. Then

1 = e((σ −1)(x +η),(x +η))
= e((σ −1)x,x) · e((σ −1)η ,x) · e((σ−1)x,η) · e((σ−1)η ,η) .

The last factor is 1 because (σ−1)η ∈ 2n−1Λ ⊂ 2Λ . The product of the two middle
factors is

e((σ −1)η ,x) · e((σ−1)x,η) = e(ση ,x) · e(x,σ−1η) = e((σ2−1)η ,σx)

= e((σ −1)2η+ 2(σ−1)η ,σx) = 1

because (σ −1)2η ∈ 22n−1Λ ⊆ 2nΛ , 2(σ −1)η ∈ 2nΛ and σx ∈ 2−nΛ . So

q(x) := e((σ −1)x,x) = 1 ∀x ∈ 2−nΛ .

Now we have

1 =
q(x + y)

q(x) ·q(y)
= e((σ −1)x,y) · e((σ−1)y,x) = e(x,σ−1y) · e(σy,x)

= e(x,σ−1y−σy)

for all x,y ∈ 2−nΛ , therefore σ−1y−σy ∈ 2nΛ for all y ∈ 2−nΛ . Write σ = 1 + τ ,
we have

2nΛ ! σ2y− y = 2τy + τ2y ∀y ∈ 2−nΛ .

But τ2y ∈ 2nΛ , therefore τy ∈ 2n−1Λ for all y ∈ 2−nΛ , i.e., (σ − 1)Λ ⊆ 22n−1Λ .
Q.E.D.

We go back to the algebraic theta function Θ for (V = V2(X),Λ = T2(X),e,e∗)
attached to (X ,Dθ ). Let W ⊂ V be the associated cusp, W⊥ ⊂W . Every element
γ ∈ Γtame operates on V via an element of Sp(V,Λ ,e) s.t. γ(W )⊆W , γ(W⊥)⊆W⊥.
By Step 1, there exists an open subgroup U ⊂ Γtame such that the action ρX(γ) on
(V,Λ) has the block form ⎛

⎝
A B ∗
O I C
O O tA−1

⎞

⎠

for all γ ∈U , i.e., γ operates on W/W⊥ as the identity.

Step 2. Claim: A = I
B = 0

}

i.e., look at γ|W
know γ on W/W⊥ is idW/W⊥
want γ|W = idW .

It then follows that C = 0 too, i.e., (γ−1)V ⊂W⊥, or equivalently

e(γx− x,y) = 1 ∀x ∈V, ∀y ∈W ,

since
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2 Application to monodromy: method of theta functions

e(γx− x,y) = e(x,γ−1y) · e(x,−y) = e(x,γ−1y− y)
= e(x,0) ∵ γ|W = idW

= 1 .

So the action ρX(γ) on (V,Λ) has the form
⎛

⎝
I O D
O I O
O O I

⎞

⎠ , tD = D .

We need the following facts for the proof of Step 2; they are consequences of the
results in §1, summarized at the beginning of this section.

Fact (a). κ(x) := supη∈ 1
2Λ
|Θ(x +η)|

depends only on the image of x in V/(W + 1
2Λ).28

Fact (b). ∀x ∈V , ∃ξx ∈V , depending only on the image of x in V/W , s.t.

|Θ(x + u)− e(ξx,u)Θ(x)| < κ(x) ∀u ∈W⊥ .

We know that Θ(γx) =Θ(x)γ ∀x∈V , γ(Λ)⊆Λ and (γ−1)W ⊆W⊥. Replacing
U by an open subgroup, we may assume29 that ρ(U)∼= Z2 and

(γ−1)(Λ)⊆ 8Λ +W⊥, (γ−1)(Λ ∩W )⊆ 8Λ ∀γ ∈U ,

i.e., P(3) holds, where P(n) stands for the statement

P(n) : (γ−1)(Λ)⊆ 2nΛ +W⊥ and (γ−1)(Λ ∩W )⊆ 2nΛ ∀γ ∈U .

It is clear that Step 2 follows from Claim 3 below.

Claim 3. Suppose n≥ 3 and P(n) holds, then P(2n−1) holds.30

The first part of P(2n− 1) implies that if x ∈ Λ ∩W , ξ = 2−2n+1λ + w, λ ∈ Λ ,
w ∈W , then (γ−1−1)ξ ∈Λ +W⊥, so

e((γ−1)x,ξ ) = e(x,(γ−1−1)ξ ) = 1 .

i.e., the second part of P(2n−1) follows from the first part.

Let x ∈ 2−nΛ , n≥ 3. Write (γ−1)x = η+ u, η ∈Λ , u ∈W⊥. Then

Θ(x)γ =Θ(γx) =Θ(x +η+ u) = e∗(η/2) · e(η/2,x + u) · e(ξx,u) ·Θ(x) .

28 This sup was denoted by σ (x) in the original. Since the notation “σ (x)” was already overused
in the previous section, it is replaced by “κ(x)” here.
29 Because Sp(V,Λ ,e) is an extension of a finite group by a pro-2 group.
30 Claim 3 was extracted from the original notes; the argument there amounts to: if n ≥ 3, then
P(n) implies P(n′) for some n′ > n, therefore P(3) =⇒ γ |W = idW .
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[u67b] Degeneration of algebraic theta functions

Changing x by an element of 1
2Λ , we may assume that |Θ(x)| = κ(x). Change x to

x′ with w := x′ − x ∈ 2−nΛ ∩W . Then |Θ(x′)| = κ(x′) = κ(x) too by Facts (a), (b)
above. We know31 that

Θ(x′)γ

Θ(x′)
=
Θ(x)γ

Θ(x)
.

∴ e∗(η/2)e(η/2,x + u)e(ξx,u) = e∗(η/2)e(η ′/2,x′+ u)e(ξx,u)
∴ e(η ,x + u) = e(η ′,x′+ u) .

We have (γ−1)x = η+u, (γ−1)x′= η ′+u, η ′ −η = (γ−1)w∈W⊥∩Λ by P(n).

∴ e(η ,x) = e(η ′,x′) = e(η+(γ−1)w,x + w)

∴ 1 = e(η ,w)e((γ −1)w,x) = e(w,−η)e(w,(γ−1−1)x)

= e(w,−η+(γ−1−1)x)

for all w ∈W ∩2−nΛ .

∴ −η+(γ−1−1)x ∈ 2nΛ +W⊥

∴ γη+(γ−1)x ∈ 2nΛ +W⊥

∴ γη+η ∈ 2nΛ +W⊥ ∵ u ∈W⊥ .

Hence
2η ∈ 2nΛ +W⊥

by P(n), i.e.,
η ∈ 2n−1Λ +W⊥ .

We have shown that ∀y ∈ 2−nΛ , ∃x ∈ y + 1
2Λ s.t. (γ − 1)x ∈ 2n−1Λ +W⊥ for all

γ ∈U . So
(γ−1)Λ ⊂ 22n−1Λ +W⊥ .

Claim 3 and Step 2 are proved. Q.E.D.

31 From the structure of tamely ramified extensions of local fields.
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Correspondence 1958–1986

Grothendieck to Oscar Zariski, 6 August, 1958

Paris, August 6, 1958

Dear Professor Zariski,

I am very sorry to be obliged to tell you about a most silly misadventure which
has happened to me: a letter with documents concerning my visa application, sent to
the American embassy on July 19, has got lost in the mail, devil knows how. There-
fore I would need again two papers which were already sent me by the University:
my certificate of eligibility to an exchange program (which, according to instruc-
tions of the embassy, I should have in two copies); a statement that I will have a
sufficient salary paid to cover all costs. I am very sorry to bother you once again
with these trivial details, and I am convinced it will be the last time before coming
to Harvard at last.

Writing down the theory of schemas, I got what seems to me now the defini-
tive form of your theorem on holomorphic functions1 proved by the same standard
arguments (implying, in particular, a decreasing induction on the dimension on co-
homology, so that the statement implying H0 is proved last!) as the general finiteness
theorem for proper maps. The statement is as follows: if f : X → Y is a proper mor-
phism of noetherian schemas (think for instance of a proper morphism of algebraic
varieties), F an algebraic coherent sheaf on X , and the Rnf∗(F ) the “higher direct
images” of F by f (the sections of Rnf∗(F ) on an affine open set U of Y being the
group Hn( f−1(U),F )); if y is a point of Y which for convenience of statement we
assume closed, and if we consider the sheaf of ideals J in OX defined by the fibre
f−1(y), then (i) the Rnf∗(F ) are coherent sheaves, (ii) the completion of Rnf∗(F )y

for the my-adic topology is isomorphic to lim←−
k

Hn( f−1(y),F ⊗OX OX/J k). Taking

1 Grothendieck eventually published a different proof, of a fancier theorem, in EGA III 4. Some-
thing like the simple-minded proof outlined in this letter, of the less general theorem, may be found
in section III.11 of R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag,
1977.
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Correspondence 1958–1986

for instance F = OX , n = 0 we see that f∗(OX ) is a coherent sheaf of commutative
OY -algebras and the set of maximal ideals of f∗(OX )y is in one to one correspon-
dence with the set of connected components in the fiber f−1(y). This gives a re-
inforcement of your connectedness theorem; namely if X , Y are both irreducible,
their sheaves without nilpotent elements, f surjective, and the field of Y quasi-
algebraically closed in the field of X , then f∗(OX )y is contained in the integral
closure of Oy in k(X); if we know that Oy is “unibranch”, that is if there is only
one maximal ideal in the integral closure of Oy in its quotient field, then there can
be only one maximal ideal in f∗(OX )y as well: this gives the connectedness theorem,
without analytic irreducibility needed. Besides, using the connectedness theorems
and the same standard techniques, one gets as a consequence your “main theorem”
for arbitrary noetherian rings. So a “local” result is proved by global means.

— As an application of the general connectedness theorem, I give the following
example (which was given to me as a problem by Serre). If O is a noetherian local
ring, S the associated graded ring, X the projective algebraic set (over the residue
field) defined by S, then X is connected provided O is unibranch. —

I have some hope also of solving your two open problems on holomorphic func-
tions by these methods, using perhaps a general duality theorem, which I am now
developing, and which holds for arbitrary complete schemas (the singularities do
not matter). I will tell more about it in the seminar at Harvard.

Sincerely yours
(signed) A Grothendieck

Grothendieck to Mumford, 5 October, 1960

Paris Oct 5, 1960

My dear Mumford,

I beg very much your pardon for not having replied to your last letter nor ac-
knowledged receipt of your manuscript. Unfortunately, it is too late now to publish
it this very year; besides the referee was prevented from rereading the manuscript,
and I will have to give it to another one. I appreciate your effort to give complete
proofs and hope that you will let us publish your paper in spring 1961—which is
certainly possible if there are no other gaps of importance in the proofs.

I am glad to hear you are interested in the existence theorem for Picard schemata,2

yet I did not prove it with the generality you believe. I have to assume:

1) X flat and projective over S .

2) The fibers f−1(s) are “absolutely irreducible” and without embedded primes.

3) For every fiber, H0( f−1(s),O f−1(s))←̃k(s) .

2 See Footnote 21 in p. 650.
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To go much further will presumably demand a considerably greater effort, which I
do not intend to go into myself, but which I expect to be very much worthwhile.

Sincerely yours,
(signed) A Grothendieck

P.S. I will send you a copy of Chapter I of the Elements. For other issues of the
“Publications IHÉS” you should write to the publisher, I believe.

Grothendieck to Mumford, 20 April, 1961

A. Grothendieck
23 Boul. de Levallois
Neuilly (Seine)

Paris April 20, 1961

Dear Mumford,

I am much interested by a result of yours on passage to the quotient by semi-
simple algebraic groups, which Zariski has reported to me. Would it be possible
for you to send me an outline of the proof? Even for the group PGL(2), or the
reductive group Gm, I am not able to solve the problem, and I begin to have doubts
even if such general results (as yours, which looks very like the conjecture 8.1 in
the Bourbaki talk III on construction techniques)3 really exist. I just found various
counterexamples to my conjecture as it was formulated. For instance (as I wrote
Tate) even for very standard operations on PGL(n), the graph may not be closed and
then even a nonseparated quotient may not exist; thus in 8.1. 1◦ one has at least to
assume a closed graph (as indeed people generally do). Moreover conjecture 8.1. 2◦
seems hopelessly false, take for instance Y = P

1, and X the principal projective
bundle on Y associated to the standard ample line bundle OY (1) and the natural
homomorphism Gm → PGL(2); it is easy to see that X is “quasi-affine” i.e., an
open subset of an affine space, i.e., OX is ample, yet the sheaf OY of which it is
the inverse image is of course not ample! Thus seems to escape the hope of any
“general” construction of an ample sheaf on a quotient X/G, knowing one on X .

I knew the existence of varieties of moduli (for curves, or polarized abelian va-
rieties) over Q, for all “levels” (Stufe), but using Baily’s transcendental results,4

guaranteeing the existence over C and hence over Q of the quotient variety you
know. I am now able to perform directly the same constructions over Z, but only
for high levels n. As I do not know by now if the corresponding schemes are quasi-
projective over Z, and hence if the groups Γ = Sp(2g,Z/nZ) have orbits contained

3 TDTE III: Préschémas quotients, in Séminaire Bourbaki 1960/61, no 212.
4 W.L. Baily, Jr., On the theory of θ -functions, the moduli of abelian varieties, and the moduli of
curves, Ann. Math. 75 (1962) 342–381.
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in affine sets, I cannot yet pass to the quotient by Γ to construct Mn for smaller
levels. If your arguments are correct, they may yield the lacking proof for the quasi-
projectivity(?).

Sincerely yours,
(signed) A Grothendieck

Grothendieck to Mumford, 25 April, 1961

April 25, 1961

Dear Mumford,

I thank you very much for your letter, and would like to congratulate you on your
results. Still I would appreciate very much getting a sketch of your key-theorem
(theorem 1 of your letter). It is of course obvious that the quotient U/G exists and U
is a locally trivial principal bundle over U/G, even if U means the bigger open set
of all (x1, . . . ,xd) such that, for at least one choice of n + 2 distinct indices, we get
a projective basis of P

n. What is not clear to me is what you define to be the ample
sheaf on U/G, or probably rather how you prove that the obvious sheaf you get on
U/G (say by descending the inverse of the sheaf of highest differentials on (Pn)d)
is ample. Is your hypothesis on U really necessary?

I had obtained in the meanwhile the same counterexamples as you based on Hi-
ronaka’s construction,5 and was all the more afraid your proof was erroneous, as the
theorem Zariski read to me from your letter resembled very much to my false con-
jecture. I am glad to know you are as skeptical as I about general criteria for passing
to the quotient by the projective group, and feel more confident now. Besides, my
construction of schemata of moduli for high levels (as defined axiomatically in my
Cartan Seminar talks6 or in an older letter to Tate) resembles very much to yours,
except that I did not observe that the suitably embedded polarized abelian varieties
are completely determined by their sets of points of order n, (n big enough), which
then leads you to a rather specific situation for passing to the quotient.

It seems to me that, because of your lack of some technical background on
schemata, some proofs are rather awkward and unnatural, and the statements you
give not as simple and strong as they should be. Therefore I suggest you to wait for
writing a detailed paper till August, where I would appreciate very much discussing
these matters with you. It is much to be desired, at last, to have on these questions
a paper having the conceptual clarity in statements and proofs they deserve (espe-
cially after work like that of Igusa, which is most discouraging to read!). As for the

5 For this counterexample see Chap. 4, §3 of [GIT]; H. Hironaka, An example of a non-Kählerian
complex-analytic deformation of Kählerian complex structures, Ann. Math. 75 (1962) 190–208.
6 Séminaire Henri Cartan 13, 1960/61, Exposé 9–16.
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statement of the results, I believe my Cartan talk is a good model, and scarcely any-
thing needs to be changed. This of course would not prevent you to announce your
results at once in a random way, before writing your detailed paper.

Can you prove, as is plausible from the transcendental approach, that for modular
spaces of level n≥ 3 (over which therefore the modular family of curves and jaco-
bians is defined), the invertible sheaf on the modular scheme defined by the highest
degree differentials on the jacobians is ample? (Indeed, this really should stem from
the corresponding result for schemata of moduli for abelian polarized varieties.) In
fact, there are quite a few candidates for ample sheaves on Mg,n, and it would be
interesting to know about their relations.

In your “appendix”, you refer to a result of Matsusaka I did not hear of before,
namely the connectedness or irreducibility of the variety of moduli for curves of
genus g, in any characteristic. I did not know there was any algebraic proof for this
(whatever way you state it). Yet I have some hope to prove the connectedness of the
Mg,n (arbitrary levels) using the transcendental result in char. 0 and the connected-
ness theorem; but first one should get a natural “compactification” of Mg,n which
should be simple over Z.7 I would like to know what is known to you concerning
connectedness. I insist once more that the most interesting objects are not the classi-
cal Mg’s, but the schemata with operators Mg,n, which have much nicer properties
and achieve much preciser aims than Mg alone. For instance Mg,n (n≥ 3) is simple
over Z. Of course the strongest connectedness theorems will be concerned with the
Mg,n’s, big n, or (still better) with their Teichmüller analogues.

I indeed wrote a precise theory of the so-called “Hilbert schemata” which are
to replace Chow coordinates, but are in fact rather different. They contain as open
subsets the nonmultiple parts of symmetric products, but the points corresponding
to multiple cycles are blown up there, because an ideal at a point, primary for the
maximal ideal, is not known by telling the multiplicity (except on a nonsingular
curve!). I will give a rather detailed account in my next Bourbaki talk,8 alluded to
in talk III.

Sincerely yours
(signed) A Grothendieck

7 A proof of the connectedness, along these lines, was eventually published by Deligne and Mum-
ford; see [69c].
8 A. Grothendieck, TDTE IV: Les schémas de Hilbert, Séminaire Bourbaki 1960/61, Fasc 3, Ex-
posé 221. A better and more elegant treatment of Hilbert schemes was found later, by Mumford;
see Chapters 8 and 14 of [CAS] (= Lectures on Curves on an Algebraic Surface). Chap. 8 deals with
flattening stratifications, Chap. 14 with the boundedness of the scheme. See also [1964Aug31].
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Grothendieck to Mumford, 10 May, 1961

Paris May 10, 1961

Dear Mumford,

I thank you very much for your letter and the proof of your key theorem. I think
I will be able in the next days to read it thoroughly.

Please excuse me if I omitted to write you some time ago that I received the
revised version of your MS on the blowing down of a surface, which has been given
to the printer. You will probably get the proofs from the printer during this month. I
hope you will not be too dissatisfied with the delay of publication!

It occurred to me that I had sent you only a copy of my Bourbaki talk on quo-
tients,9 but none of my Cartan talk.10 This is done now; I will send you the following
ones within the next weeks.

The formation of the modular schemas Mg,n (n≥ 3), representing contravariant
functors, is obviously compatible with base extension. But I doubt the same be true
for Mg,1, which is the sub-product of Mg,n obtained by dividing by the finite group
of automorphisms G = Sp(2g,Z/nZ) (at least when restricting to the part of Mg,1

lying over the open subset of Spec(Z) complement of the set of primes dividing n),
and does not represent any reasonable contravariant functor (but, as you remarked,
a covariant one). Such a commutation would mean that for every open affine set of
Mg,n, stable under G and with affine ring A, H1(G,A) = 0. This can be expressed
equivalently by introducing for every x ∈Mg,n the inertia group Gx of x (which is
the group of automorphism of the corresponding algebraic curve), and demanding
that H1(Gx,Ox) = 0, where Ox is the local ring of x in Mg,n. You can also replace
the latter by its completion, which is nothing else but the local ring describing the
“formal variety of moduli” of the given curve, in the sense of my Bourbaki talk II,11

and the consideration of which is independent of the global theory. Although I did
not make any effective computation, I do not see why such a relation should hold
(even for genus g = 2); it does however for g = 1, because an equivalent formulation
of the question is whether the fibers of Mg,1 over the different points of Spec(Z) are
normal, which is indeed true for genus 1. In the same direction, there is the question
whether the natural morphism from Mg,1 into the corresponding modular space for
polarized abelian varieties is really an embedding; a priori one can say only that
Mg,1 is the normalisation of a (nonclosed) subschema of the latter, which may not
be normal.

Sincerely yours
(signed) A Grothendieck

9 Séminaire Bourbaki 1960/61, no 212.
10 Séminaire Henri Cartan 13, 1960/61, Exposé 9–16.
11 Séminaire Bourbaki 1960/61, no 195.

639



Correspondence 1958–1986

Grothendieck to Mumford, 29 January, 1962 (a)

Paris Jan 29, 1962

Dear Mumford,

Thanks for your letter, and best wishes to you and your wife for your son!
Your ampleness criterion looks nice indeed. I would appreciate to have an outline

of the proof some time.
I am afraid you will not convince me of the usefulness of Chow coordinates, in

fact your example shows again that the wrong method will lead to prove statements
under unnatural assumptions (such as normality). Although I did not check it, I am
convinced that the method I used for the theorems of passage to the quotient in my
Bourbaki talk III12 will yield:

Let X quasi-projective over S loc. noeth., R ⊂ X×S X a closed subscheme such
that

(i) R is “set-theoretically an equivalence relation”,
(ii) pr1 : R→ X is proper (hence projective) and universally open.

Then Y = X/R exists, X → Y is proper (and universally open), R → X ×Y X is
a bijective closed immersion. [I checked this long ago when X is finite over S; no
openness conditions are then required.]

If such a statement should be of use somewhere, I can include it in Chap. V.
However, I never needed it, as it is much too coarse for the kind of problems I was
considering. In fact, it should be considered rather as a statement of a theory of
schemes “modulo M ”, where M is the set of all morphisms which are “universal
homeomorphisms”, which one wants to consider as isomorphisms in the new cate-
gory (obtained by adjoining formally their inverses). N.B. under the usual finiteness
assumptions, “universal hom.” = “finite surjective radicial morphism”. If one sticks
to, say, algebraic groups, one gets Serre’s “quasi-algebraic groups” = groups mod
purely inseparable isogeny.

Tate wrote me you are talking in your seminar on your theorem about passage
to the quotient. I would appreciate to know when you obtain results on existence of
Picard schemes (I am giving a Bourbaki talk on Picard on Feb 18).

Sincerely yours,
(signed) A Grothendieck

12 Séminaire Bourbaki 1960/61, no 212. Note that, in Théorème 6.1 on p. 212-14, the hypothesis
of universal openness is replaced by the hypothesis of flatness, and the proof uses quasi-sections.
In a later Éxposé, Séminaire Bourbaki 1961/62, no 232, Grothendieck mentions a second proof,
which uses the Hilbert scheme; see Remarque 5.1 on p. 232-13. The details were explained by
Mumford in a conversation with Altman and Kleiman, who published them on p. 70 of their article
Compactifying the Picard scheme, Adv. in Math. 35 (1980) 50–112.
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Grothendieck to Mumford, 29 January, 1962 (b)

Paris Jan 29, 1962

Dear Mumford,

I have been too rash in my reply to your last letter: in effect, I was thinking of
a reduction of the general case (concerning passage to the quotient under the con-
ditions you know) to the case where R → X is finite. However, in the latter, I have
no means of attacking the problem, which in fact meets with a few unsolved prob-
lems on equivalence relations I still had in store. Therefore I grant you that, for the
time being, in your example Chow coordinates do give mathematical information
about existence of quotients which is not obtained by other means. I do not expect
this situation to hold for long still! Besides, Chevalley had nontrivial unpublished
results on quotients, of course never using Chow coordinates, which may well cover
the cases we have in mind. Unfortunately he is very sick at the moment, with a
so-called “pancreatitis” and there is no asking him about anything now. One more
comment: it seems that, for the application of Chow coordinates, your regularity
assumptions: X normal, R → X univ. open, are not the right thing exactly, unless
you assume R irreducible. What is needed, in effect, seems that all components
of all fibers of R → X have the same dimension (which does not follow from the
assumptions as you stated them).

It also appears to me that in my Bourbaki talk III,13 on quotients, in th. 6.1. (i),
the assertion that X/R = Y is quasi-projective is proved only if R is really an
equivalence relation (or R→ X finite), and not only a preequivalence (this excludes
the case of groups operating with fixed points!). I do not know at present if there
may be a counterexample in the general case. I guess you are right to say that “the
last word has not been said” at all in the theory of quotient schemes!

Best regards
(signed) A Grothendieck

Grothendieck to John Tate, 5 February, 1962

Paris Feb 5, 1962

Dear John,

In connection with my Bourbaki talk,14 I pondered again on Picard schemes. For
instance, as I told Mumford, I proved that if X/S is projective and simple,15 then

13 TDTE III: Préschémas quotients, Séminaire Bourbaki 1960/61, no 212.
14 TDTE V. Les schémas de Picard: Théorèmes d’existence, Séminaire Bourbaki 1961/62, no 232,
and TDTE VI. Les schémas de Picard: Propriétés générales, ibid., no 236.
15 The standard terminology has changed from “simple” to “smooth”.
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PicτX/S is of finite type over S.16 More generally, the decomposition of PicX/S
according to the Hilbert polynomials (in fact, the first two nontrivial coefficients of
the polynomial suffice) consists of pieces which are of finite type, hence projective
over S. Another way of stating this is to say that a family of divisors Di on the
geometric fibers of X/S is “limited” iff the projective degrees of the Di and D2

i are
bounded.

Another result, of interest in connection with your seminar, is a proof of the fact
that, for an abelian scheme A/k, k a perfect field, the absolute formal scheme of
moduli over W∞(k) is simple over k. This comes from the following general fact:
Let X0/S0 be simple, X ′0/X0 étale, S0 subscheme of S defined by an ideal I of
square 0. Let ξ0 ∈ H2(X0,GX0/S0

⊗OS0
I ) and17 ξ ′0 ∈ H2(X ′0,GX ′0/S0

⊗OS0
I ) be

the obstruction for lifting. Then ξ ′0 is the inverse image of ξ0 under the obvious
map. As a consequence, if X0/S0 is abelian, taking X ′0 = X0, X ′0→ X0 multiplication
by n prime to the residue characteristic, we get ξ0 = n∗(ξ0). If S = SpecΛ , Λ local
artin, and mI = 0, then we are reduced to an obstruction in the H2 of the reduced
X0⊗Λ0 k = A, satisfying ξ = n∗(ξ ) for n prime to p. Using the structure

H∗(A,GA/k)

∗∧

H1(A,OA)⊗ tA ,

we get n∗(ξ ) = n3ξ , hence (n3− 1)ξ = 0. Taking n = −1 we get 2ξ = 0, hence
ξ = 0, and we win!

I just noticed18 the proof does not give any information for residue char. = 2!
Here is a simple proof valid in any char.: Consider the obstruction η0 for lift-
ing X0×S0 X0, then η0 = ξ0⊗ 1 + 1⊗ ξ0, and η0 is invariant under the automor-
phism (x,y)� (x,y+ x) of X0×S0 X0. Thus we get an element ξ =∑i, j λi, jei∧e j in
H2(A,OA) =

∧2 t, s.th. η = ∑i, j λi, je′i∧ e′j +∑i, j λi, je′′i ∧ e′′j in
∧2(t⊕ t) is invariant

under (x,y)� (x,y + x), carrying e′i� e′i + e′′i and e′′i � e′′i , hence trivially ξ = 0!
As a consequence, we get that the scheme of moduli for the polarized abelian

schemes, with polarization degree d, is simple over Z at all those primes p which do
not divide d. This comes from the fact that the obstruction to polarized lifting lies
in a module H2(A,E ), where E is an extension (the“Atiyah extension”)

(∗) 0→OA→ E →GA/k→ 0

whose class c in H1(A,Ω 1
A/k) is just the Chern class dL

L of the invertible sheaf L

on A defining the polarization. Now in the exact sequence of cohomology for (∗),
the map

Hi(GA/k)
∂ (i)

Hi+1(OA)

∼ = ∼ =

∧i t ′ ⊗ t
∧i+1 t ′

t = tA, t ′ = tÂ

16 See Footnote 25.
17 Here GX0/S0

and GX ′0/S0
denote the relative tangent sheaves for X0/S0 and X ′0/S0 respectively.

18 This paragraph was penned in vertically, in the left margin.
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is trivially described in terms of

c ∈ H1(A,Ω 1
A/k)
 Hom(t,t ′) ,

where the homomorphism c : t→ t ′ is just the tangent map for ϕ : A→ Â defined by
the polarization. This map being surjective by assumption, ∂ (i) is surjective, hence
Hi(E )→ Hi(GA/k) is injective, in particular

H2(E )→ H2(GA/k)

is injective. As the obstructions obtained in H2(GA/k) are zero, the same holds for
the polarized obstructions in H2(E ), hence the assertion of the simplicity. (If how-
ever p | d, simplicity does not hold at any point of M over p !)

Using the simplicity for the formal scheme of moduli of abelian varieties, I can
prove the following:

Let X/Λ be flat, proper, H0(X0,O0)
∼← k, whereΛ is local artin with residue field

k. Assume PicX0/k exists, and is simple over k, i.e., dimPicX0/k = dimH1(X0,OX0)
(always true in char 0). Then

a) Pic0
X/Λ exists and is an abelian scheme over Λ .

b) The “base extension property” holds for Rif∗(OX ) in dimension 1, and more
generally in any dimension i such that

i∧
H1(X0,OX0)→ Hi(X0,OX0)

is surjective, and H1(X ,OX) is free over Λ .

Idea of proof:

a) Pic0
X/k is constructed stepwise. Having Pic0

Xn−1/k = An−1, to get An we first
lift arbitrarily An−1 to an abelian scheme A′n. We then try to construct the
can. invertible “Weil sheaf” on Xn×Λn A′n, extending the given Weil sheaf on
Xn−1×Λn−1 An−1. The obstruction lies in

H2(X0×A0,OX0×A0)
 H2(OX0)×H2(OA0)×H1(OX0)⊗H1(OA0) ,

and in fact, as easily seen, in the last factor H1(X0,OX0)⊗H1(A0,OA0) 
 tA0 ⊗
H1(A0,OA0)
H1(A0,GA0/k). This space is exactly the group operating in a sim-
ply transitive way on the set of all extensions of An−1. Thus we can correct A′n in
just one way to get an An with a “Weil sheaf” on it! This does it.

b) Let ω be the conormal sheaf to the unit section of A = Pic0
X/S, thus ω is free

because A/S is simple, and by the definition of Pic0
X/S we have

H1(X ,OA)
 Hom(ω ,OS) .

This description holds also after any base extension, hence the fact that H1(X ,OX )
is free over Λ and its formation commutes with base extension. This implies also
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H1(X ,OX )→ H1(X0,OX0) surjective, hence Hi(X ,OX )→ Hi(X0,OX0) is surjec-
tive for the i’s as in the theorem, ok.

Corollary. Let A/S be any abelian scheme, then the modules Rif∗(OA) on S are
locally free and in fact 
∧i R1 f∗(OA). If PicA/S exists, then Pic0

A/S is open and is
an abelian scheme over S.

(Moreover, biduality holds, as follows easily from the statement over a field . . . ).

Corollary. Let f : X → S be flat, proper, k(s) ∼−→ H0(Xs,OXs) for every s, let s ∈ S
be such that dimH1(Xs,OXs) = dimPicXs/k(s), (the latter defined, if PicXs/k(s) is
not known to exist, in terms of the formal Picard scheme). Then R1 f∗(OX ) is free at
s.

This is always applicable if char k = 0.
I do not know if, in the case considered, the Rif∗(OX ) or even Rif∗(Ω j

X/S) are
also free at s, even in char 0. It is true for f∗(Ω 1

X/S) whenever we know that
dimH1(Xs,OXs) = dimH0(Xs,Ω 1

Xs
), for instance if char k(s) = 0 and f : X → S

is projective and simple. (If moreover S is reduced, Hodge theory implies all
Rif∗(Ω j

X/S) are free at s; but if S is artin, I have no idea!)

I now doubt very much that it be true in general that PicτX/S is flat over S, or even
only universally open over S, when X/S is simple. Here is an idea of an example,
inspired by Igusa’s surface. Let A/S be an abelian scheme, G a finite group of au-
tomorphisms of A. If G operates without fixed points on B/S projective and simple
over S, with OS

∼−→ g∗(OB), we construct X = B×G Â which is an abelian scheme
over Y = B/G, and one checks

PicX/S 
PicY/S×S (PicÂ/S)
G

(where upper G denotes the subscheme of invariants), hence

PicτX/S 
PicτY/S×S AG .

Hence for getting examples of bad PicτX/S, we are led to study schemes of the

type AG, with S say spectrum of a discrete valuation ring V . Thus we are led to the
questions:

a) Can it occur that there are components of C = AG which do not dominate S?
For instance, AG

1 = unit subgroup (set theoretically, or even scheme-theoretically)
and AG

0 	= unit subgroup set theoretically—where A0, A1 are the special and the
generic fibers.

b) If C1 = AG
1 is connected (for instance is the unit subgroup), and hence C◦=C◦0∪

C◦1 is open, can it occur that C◦ is nonflat over S [for instance C1 = {e},C◦0 	= {e}]?
c) Same questions for H1(A,OA/S)G = tÂ

G and H0(A,Ω 1
A/S)

G = tA
G (in order to

get examples where the dimensions h0,1 and h1,0 for the fibers make a jump in the
case of equal characteristics).
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The trouble is I have no idea how to get nontrivial ways of letting a finite group
operate on an abelian variety. It seems that starting with products of elliptic curves
and using only endomorphisms of the factors, for instance letting a finite subgroup
of GL(n,R) operate on En, where R is the ring of endomorphisms of the elliptic
curve E , won’t give a counterexample (I more or less proved this latter statement).
If p is the residue characteristic, one sees easily that the only trouble against flatness
can come from a Sylow p-subgroup of G. For instance, in a) the question is equiv-
alent to getting an example where Tp(A0)→ Tp(A1) (where Tp is the contravariant
Tate functor, Tp(M) = Hom(p∞M,Qp/Zp), and A0 and A1 are the geometric fibers)
induces

Ĥ−1(G,Tp(A0))→ Ĥ−1(G,Tp(A1))

which is not injective. I am convinced such things can happen. Perhaps you or Mum-
ford are cleverer than I and find a counterexample? What I did get easily was an
example of an abelian scheme X/S [product of two elliptic curves over S] such that
multiplication p : PicX/S →PicX/S is not universally open, i.e., such that there
exists an irreducible component C of PicX/S not dominating S, but such that pC is
contained in a component dominating S. [N.B. if n prime to all residue char., multi-
plication by n in any PicX/S is étale.]

Best regards to Karin, kids etc.
(signed) Schurik

P.S. I just proved: If X → S is simple and projective, then PicτX/S is projective
over S. Method:

a) From the fact that the fibers of Pic0
X/S are proper, follows that Pic0

X/S is proper
over S, hence closed in PicX/S, hence easily that PicτX/S is closed in PicX/S.
It remains to prove it is of finite type over S—hence proper over S, and quasi-
projective over S, hence projective.

b) For every n > 0, the kernel of PicX/S
n−→PicX/S is of finite type over S [and

even more: the multiplication μ by n is of finite type, hence finite]. If n is prime
to the residue characteristics, this follows from the fact that μ is étale and has
finite fibers. This reduces to the case S of char p > 0, n = p. Then I use a tech-
nique of descent involving the “relative p-power scheme” (X/S)(p), following a
suggestion of Serre.

c) For variable s ∈ S (S noetherian), the Néron–Severi torsion group of Xs remains
of bounded order. This can be shown using the method of Matsusaka’s proof for
the finiteness of the “torsion group”. From a), b), c), the theorem follows.

Remark: Using the Picard–Igusa inequality for ρ = rank of Néron–Severi, and Lef-
schetz type theorems I told you about, one gets also that ρ(Xs) remains bounded for
s ∈ S (S noetherian).

Question: Is PicτX/S always of finite type over S, under merely the usual assump-
tions for existence of PicX/S? I have no proof even if X → S is normal! Same
question for ρ . This seems related to the question of uniform majorization of the
Mordell–Weil–Néron–Lang finiteness theorem, for a variable abelian variety.
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Grothendieck to Mumford, 31 March, 1962

31.3.1962

My dear Mumford,

I was quite interested by your letter. Concerning your example of a nonflat
Picτ ,19 I am convinced there should be still stronger counterexamples, insofar as
1◦) Picτ need not be flat over S even at points of the connected component of the
identity 2◦) Picτ need not even be universally open over S, except at points corre-
sponding to the part of the torsion of Néron–Severi prime to the characteristic; i.e.,
in the case where S is the spectrum of a valuation ring, there may be components
of Pic which do not dominate S. Even in case 1◦; examples with S the spectrum of
a valuation ring (discrete of course) should exist. I wrote to Tate about the matter
about two months ago, telling him how one could adapt Igusa’s example so as to
reduce oneself to producing suitable examples of finite groups of automorphisms on
abelian schemes (which should give also examples where the H1,0 and H0,1 of fibers
of simple morphism make jumps . . . ) and begging him for help, but that unnice chap
never answered a word. Besides, did the same tell you that I proved the simplicity of
moduli for abelian schemes (either formal moduli, or polarized moduli with polar-
ization degree prime to the char)? Using this, I can prove that H0,1 behaves decently
whenever the Pic of the special fiber is simple . . . .

I am particularly happy with your simple example of a nonexisting Pic.20 I
still naively surmised descent of Picard schemes would not cause any difficulty,

19 Grothendieck described this example in TDTE VI, Séminaire Bourbaki 1961/62, no 236, Re-
marque 2.9 as a deformation of an Igusa surface over an Artinian local ring. Here is an attempt to
reconstruct this example: Let E1, E2 be ordinary elliptic curves over an algebraically closed field
k of char. 2, and let a ∈ E2(k) be a nontrivial 2-torsion point of E2. Let X = (E1×E2)/(x,y) ∼
(−x,y + a). The Hodge numbers of such an Igusa surface X is the same as those of an abelian
surface, and the Hodge-to-de Rham spectral sequence degenerates. Let I be the k-linear dual of
H1(X,ΘX ), and let R := k⊕ I be the Artinian local k-algebra with I2 = (0). Let X1 → Spec(R)
be the universal first order equi-characteristic deformation of X , i.e., its Kodaira–Spencer class
γ ∈ I⊗H1(X,ΘX ) is the identity map for H1(X,ΘX ). Then Picτ(X1/S) has two connected com-
ponents, the neutral component Pic0(X1/S) and another component P ′. The structural morphism
P ′ → S factors through a closed subscheme of S defined by a nonzero ideal of R. So Picτ(X1/S)
is not flat over S at points of P ′. The key facts are:

(a) For any nontrivial line bundle L on X with L ⊗2 ∼= OX , the Chern class cdR
1 (L ) is an element

of Fil1hodgeH2(X,Ω•X ) whose image c1(L ) in gr1
hodge = H1(X,Ω1

X ) is nonzero.

(b) The natural map H1(X,Ω1
X )×H1(X,ΘX )−→ H2(X,OX )∼= k is a nondegenerate pairing.

An example of a nonflat Picτ , where the base scheme is the spectrum of a discrete valuation
ring with mixed characteristics (0, p), was published in Prop. 4.2.4 on p. 138 of M. Raynaud, “p-
torsion” du schéma de Picard, Astérisque 64 (1979) 87–148. In Thm. 4.1.2 on p. 132 loc. cit., it is
shown that PicτX/R is flat if X proper flat over a discrete valuation ring R with mixed characteristics
(0, p) and absolute ramification degree e < p−1. By the counterexample mentioned in the previous
paragraph this statement is false when e≥ p−1; it is also false for the equicharacteristic p case.
20 See TDTE VI Séminaire Bourbaki 1961/62, no 236, 0.a. This example is discussed on p.210 of
the book Néron Models by S. Bosch, W. Lütkebohmert and M. Raynaud, Springer-Verlag, 1990,
and in greater detail in 9.4.14 on p.267 of S. Kleiman: The Picard scheme, in Fundamental Alge-
braic Geometry, Math. Surveys Monogr. 123, Amer. Math. Soc. 2005, pp. 235–321.
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and had felt satisfied in your very example with proving the existence of Pic in
the case where the irreducible components of the special fiber are geometrically
irreducible.21 Still there remains the hope that Picτ exists in great generality, or at
least (in case the Pic groups of the fibers are simple) Pic0, obtained by taking the
subfunctor of the Pic functor corresponding to invertible sheaves inducing on the
special fibers sheaves that are algebraically equivalent to 0;22 (in case Pic exists
and its fibers are simple, I proved that Pic0 is open).

It is quite mysterious to me how from your general remarks on Severi–Brauer
schemes you will deduce the existence of Pic in the case you claim, fibers separa-
ble and irreducible components being geometrically irreducible. Whatever way you
present technicalities, it seems to me you will need a theorem of the following type:
f : X → S being as before (of course, also projective and flat), there should exist a
family (Ui,Si) of finite étale multisections of X over open subsets Ui ⊂ S, such that,
for every S′ over S and every ξ ∈ Pic(X ′/S′) “sufficiently ample”, corresponding to
some immersion of X ′ into a P

N
S′ as usual (we can in fact suppose without loss that

the Brauer–Severi schema corresponding to ξ is trivial), and every s′ ∈ S′, there ex-
ists a Ui below s′ such that the multisection S′i of X ′ over U ′i deduced from Si, viewed
as a family of zero cycles on the fibers of P

N
S′ , consists only of zero-cycles in your

open set (where passage to the quotient by the projective group and the symmetric
group in (PN)m is possible). Did you prove anything such? I wonder how you will
use the hypothesis on the irreducible components of the fibers of X/S!

You make an allusion to results of yours “over Q” for vector bundles over non-
singular curves. Do you just mean “in char. 0”—as just afterwards you assume the
ground field algebraically closed. I confess the little you say about it does not sug-
gest much to me! The reference in my notes on properness criteria which you did
not understand was to III 5.5.1. (I guess you will get Chap III very soon, as it has
appeared by now; I had copies sent to Hartshorne and Lichtenbaum too). This states
that if X is separated of finite type over say a complete local noetherian ring, and if
Z0 is an open and proper subset of the special fiber X0, then there exists an open and
closed subset Z of X , proper over S, whose special fiber is Z0 (and Z will in fact be
the biggest closed subset of X proper over S).

Lubkin’s result seems very unlikely to me too, but although I had a little thought
of constructing a counterexample over S = P

1 (keeping in mind π2(S) = Z), I did
not succeed. I will keep the question in mind, and discuss it with Serre when he
comes back from Bourbaki next week.

Sincerely yours
(signed) A Grothendieck

21 The representability theorems for the Picard functor come in two flavors, as schemes or as
algebraic spaces. See 8.1 and 8.2 of S. Bosch, W. Lütkebohmert & M. Raynaud, Néron Models,
Springer-Verlag, 1990. See also 19.4 of S. Kleiman, The Picard scheme, cited in Footnote 20.
Mumford’s existence theorem of the Picard scheme, stated on the first page of TDTE VI, Séminaire
Bourbaki 1961/62, no 236, and also on p. viii of [CAS] (= Lectures on Curves on an Algebraic
Surface) in a slightly weaker form, is still unpublished; see also Remark 19.4.18 of Kleiman’s
article loc. cit.
22 See the last paragraph of [1965Jan23] for a counterexample based on a remark of M. Raynaud.
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Grothendieck to Mumford, 23 June, 1962

Neuilly June 23, 1962

Dear Mumford,

I was of course quite interested by the results you stated in your last letter. If you
want to explain the ideas of the proof to me when I come to Harvard this will take
a while, as it turns out that I won’t come this year, due to health troubles for my
wife and children. If you have time to give me an idea of the proof for finite type
of PicP

X/S by letter, I would appreciate it. I wonder if you can prove the slightly
stronger result I had in case f : X → S is simple, and the fibers of pure dimen-
sion d, namely that it is sufficient that, in P(n) = a0nd + a1nd−1 + a2nd−2 + · · · ,
the coefficients a1 and a2 remain bounded [in terms of divisors, D and D2 have
bounded projective degrees] in order for the invertible sheaves considered to belong
to a quasi-compact subset of PicX/S? My proof, following Matsusaka, uses equiv-
alence criteria and Riemann–Roch for surfaces, and is technically rather involved.

Sincerely yours,
(signed) A Grothendieck

P.S. Do you know if PicτX/S is of finite type over S, when f : X → S is separable

(= flat with reduced geom. fibers)?23

Grothendieck to Mumford, 6 July, 1962

23 Boul. de Levallois
Neuilly (Seine)

Neuilly July 6, 1962

Dear Mumford,

I enjoyed very much the proofs you gave me in the last letter, your proof of finite
type for Pic f is certainly much simpler than mine (which gives a more precise re-
sult, in a less general case). The main step in my proof (besides Matsusaka’s method
using Riemann–Roch, to deal with the case of nonsingular surfaces—a method now
superseded by your proof) is the following:

Theorem. Let f : X → S be a projective and flat morphism whose fibers are of
depth≥ 3 at closed points, Y a Cartier Divisor on X, transversal to the fibers i.e.,
flat / S, and ample relative to S, assume PicX/S and PicY/S exist, then the morphism

PicX/S→PicY/S

is of finite type.

23 See Footnote 25.
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Idea of proof. Let Y0 = Y , define Ym (m≥ 0) as usual, then using exact sequences of
cohomology, it is not hard to show that PicYm/S →PicY0/S is of finite type. (NB
if S 	= /0, there exists a nonempty open subset U of S such that the restriction of the
previous morphism over U is affine—a fortiori of finite type. This proves finite type
for the morphism by noetherian induction on S). This permits us to replace Y0 by Ym,
large m. Using the depth≥ 2 assumption and the (easy part of) equivalence criteria
as developed in my IHÉS Seminar 1962, one gets that, for large m, PicX/S →
PicYm/S is a monomorphism. One is reduced to proving that, for any section of
PicYm/S over S, its inverse image in PicX/S is of finite type over S, and using that its
projection to S is a monomorphism, one is reduced to proving the following: Assume
S irreducible with generic point s, let M be an invertible sheaf on Y such that Ms

does not come from an invertible sheaf on Xs, then there is an open neighbourhood
U of s such that t ∈U implies that Mt does not come from an invertible sheaf on Xt .
To prove this, using depth≥ 3 and the “existence” part of the equivalence criteria,
one gets that the assumption on Ms means that either (i) there exists m′ ≥ m such
that Mt does not come from an invertible sheaf on Ym′ or (ii) there exists a coherent
sheaf Ls on Xs, invertible in a neighbourhood of Ys but not invertible on the whole
of Xs, having depth≥ 2 at all closed points, and inducing Ms. It is now easy to see
that either property (i) or (ii) will still hold in a neighbourhood of s.

Unfortunately this proof involves a considerable technical background. The the-
orem just stated, together with your finiteness theorem, proves the following:

Theorem. Let f : X → S be flat projective with geometrically integral fibers, as-
sume the fibers are of depth≥ d at closed points, and let d′ = Sup(0,d−2). Then,
in order to ensure quasi-compactness for a subset of PicX/S in terms of the coeffi-
cients of the Hilbert polynomials, one can neglect the d′ last coefficients.

If for instance the fibers of f are Cohen Macaulay and of dimension n, this means
that one needs to look only at the first three coefficients (the first one being inessen-
tial anyhow, being the projective degree of the fibers). Does this statement become
false if the fibers of f are not Cohen–Macaulay, and (say) normal of dim 3?

I doubt if there will be an occasion for me to expound the theory of formal moduli
in a seminar, before Chap V is published. (Next year I will run a seminar together
with Demazure on semi-simple group schemes, whereas my main interest will lie
in developing (at last) Weil cohomology for schemes). I had noticed also, at the
very start of my ponderings on the subject, that, in the case where “all obstructions
vanish”, i.e., the functor one wants to represent is “simple”, the existence of formal
moduli is immediate; the main point of the theory is of course to construct also
singular formal modular varieties.

I include a copy of a letter to Hironaka, containing various questions. I would
appreciate any comments you would make; Mike Artin has perhaps an idea on some
of them. Besides, is Mike still in Cambridge? I wrote him lately to ask him to write
us now a firm answer if he wants to come to Paris in 63/64, but did not get any
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answer. Perhaps you could give him a call about it, if he is still there.

Sincerely yours
(signed) A Grothendieck

P.S. I have a few comments on Picard24 of a projective scheme over a field k,
(which we may assume algebraically closed). First, if X is any scheme, denote
by K(X) the usual group constructed with locally free sheaves on X , this is aug-
mented into H0(X ,Z) = Z

π0(X) (by rank), let I(X) be the kernel. Serre proved (in
a very elementary way) that when X is quasi-compact and has an ample sheaf, and
dimX = d < +∞, then I(X)d+1 = 0. This has various applications, for instance: let
P be the group of invertible elements of K(X), these are of the type 1+ y, y ∈ I(X),
consider the inclusion map P→ K(X), this as a map of Z-modules is a polynomial
map of degree ≤ d. Therefore the natural map Pic(X)→ K(X) has the same prop-
erty, and of course keeps it if we follow it by any linear map. Thus, if again X is
projective over a field k, and if F on X is coherent, then L � χ(F ⊗L ) is a
polynomial map on the group Pic(X). As Serre remarked some time ago (before
Riemann–Roch was proved), from this follows that χ(F ⊗L ) does not change if
we replace L by a sheaf which is congruent to it mod Picτ(X), in other words, for
any F and L ∈ Picτ (X), we have χ(F ⊗L ) = χ(F ). (Use the fact that Picτ (X)
has a composition series where the factors are divisible, or torsion groups. One can
also prove this invariance of χ by a direct argument, using still Id+1 = 0 but not the
polynomial type of χ). This proves for instance that under the conditions of your
finiteness theorem for PicP

X/S for a projective flat morphism f : X → S (integral
geometric fibers), PicτX/S is contained in one PicP

X/S (provided S connected), and
therefore of finite type over S, and moreover the pieces PicP

X/S are stable under
translation by PicτX/S.

Besides, there is a converse to the previous result, to the effect that “τ-equiva-
lence” is in fact equivalent to “numerical equivalence”, namely if L invertible is
such that for every coherent F , χ(F ⊗L ) = χ(F ) i.e., χ(F (L −1)) = 0, then
L ∈ Picτ (X). Indeed, it is sufficient (O(1) denoting as usual an ample sheaf on
X relative to k) to assume χ(O(n)⊗L ⊗m) = χ(O(n)) for any integers n, m. This
means in fact that the sheaves L ⊗m have the same Hilbert polynomial, hence remain
in a quasi-compact subset of PicX/S, which by definition means L ∈ Picτ(X).
(NB the argument supposes X integral, but it is easy to get rid of this assumption
in the original statement). One interesting consequence of the last criterion, for a
projective morphism f : X → S as above: the subscheme PicτX/S is not only open,
but also closed!

There seems to be another characterisation of τ-equivalence to 0 for L on a
projective X/k. With the previous notations, note first that if L is τ-equivalent to
0, then for any ample sheaf M on X , L ⊗M is again ample, therefore L (1) and
more generally the sheaves L ⊗n(1) must be ample. (This fact is well known and
an easy consequence of the fact that for every neighbourhood U of 0 in Pic0 =
G, U ·U = G; a still simpler proof—in fact a trivial one—is obtained using your

24 See Footnote 25.
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ampleness criterion, and the fact that L is numerically equivalent to 0). I believe
the converse should be true. Let V be the Néron–Severi group of X tensored by
the reals, which is a finite dimensional vector space over R, endowed with an open
convex cone P (generated by ample sheaves), let P be its closure. The previous
conjecture would follow from the fact that P does not contain any line (i.e., P does
not come from a cone in a smaller quotient space . . . ). Another way of stating this
is that for any x ∈ P, the set P∩ (x−P) is relatively compact (which would yield an
interesting finite-type criterion in Pic). Generally speaking, what facts are known
to you concerning the shape of P?

A last question about finiteness criteria. Consider the map χ : V → R (polyno-
mial of degree ≤ d) deduced from χ : Pic(X)→ Z by ring extension. Select an
a ∈ P (corresponding to the choice of an ample sheaf O(1), for instance), then for
any ξ ∈V , χ(a+nξ ) is a polynomial with respect to n, say Pξ (n) (the Hilbert poly-
nomial of ξ with respect to a). Let ci(ξ ) be its coefficients, which are polynomial
functions in ξ . If ξ varies in V in such a way that the coefficients ci(ξ ) remain
bounded, does ξ remain bounded (we now assume X irreducible)? Perhaps this is
just a formal consequence of your finiteness result, (which corresponds to taking
a, ξ in the original lattice of V ); this should be considered as a generalisation of
the known fact that on the Néron–Severi space of a nonsingular surface, the inter-
section form has just one positive square. Of course, under suitable assumptions on
the depth of X at closed points, one should be able to disregard some of the last
coefficients ci(ξ ), in the criterion of boundedness.

Grothendieck to Mumford, 12 July, 1962

12 July, 1962

Dear Mumford,

I had a little more thought about finiteness questions for Pic, and have finally
come to a solution of about all the questions I had met with.25 The key facts I will
state in

Theorem 1. Let S be a noetherian prescheme.

(i) Let f : X → Y be a surjective morphism of proper S-schemes, suppose PicX/S
and PicY/S both exist, then f ∗ : PicY/S→PicX/S is of finite type.

25 An account of the finiteness theorems, along the lines of this letter and the previous letter
[1962Jul06], appeared in two exposés in SGA6, LNM 225, Springer-Verlag, 1971: Exposé XII,
M. Raynaud, Un théorème de représentabilité relative sur le foncteur de Picard, pp. 595–615; Ex-
posé XIII, S.L. Kleiman, Les théorèmes de finitude pour le foncteur de Picard, pp. 616–666. Re-
sults on the Picard functors are explained in Chap. 8 of S. Bosch, W. Lütkebohmert & M. Raynaud,
Néron Models, Springer-Verlag, 1990, and also in S. Kleiman, The Picard scheme, in Fundamental
Algebraic Geometry, Math. Surveys Monogr. 123, Amer. Math. Soc. 2005, pp. 235–321.
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(ii) Let Y be a projective S-scheme, X a “hyperplane section” i.e., the sub-pre-
scheme of zeros of a section of an invertible sheaf L on Y ample relative to
S. Assume again PicY/S and PicX/S exist, then f ∗ : PicY/S →PicX/S is of
finite type, provided all irreducible components of the geometric fibers of X/S
are of dimension ≥ 3.

(NB in other words, in both statements, a subset of PicY/S is quasi-compact iff its
image in PicX/S is. It is evident how to state these theorems so that they make sense
without the assumption of existence for the Picard schemes, and the proofs work as
well. The same remark holds for all other statements which seem to make use of the
existence of certain Picard preschemes. The proof shows also that in cases (i) and
(ii), if S is the spectrum of a field, the morphism f ∗ is even affine).

(iii) Let X be a projective S-scheme, with integral geometric fibers all of dimen-
sion n, endowed with a sheaf OX(1) very ample over S. In order for a subset M
of PicX/S to be quasi-compact it is necessary and sufficient that, in the Hilbert
polynomials a0xn +a1xn−1 + · · · of the elements of M, the coefficients a1 and a2

remain bounded.
(NB It can be shown also that if we express the invertible sheaves on geometric
fibers stemming from M in terms of Cartier divisors D, the condition is also
equivalent with asking that D and D2 should have bounded projective degrees—
this statement makes sense even when the fibers are singular, because if D is a
Cartier divisor one can give a meaning to Dk and degDk for every k . . . .)

(iv) Let X be a proper S-scheme such that PicX/S exists. Then, for every integer
n 	= 0, multiplication by n in this group prescheme is a morphism of finite type.

As a corollary of (i) and (iii) we get the following

Corollary 1. Let X be proper over S such that PicX/S exists, then PicτX/S is of
finite type over S.

Also, as a trivial consequence of (i) and (ii):

Corollary 2. Under conditions (i) or (ii), if L is an invertible sheaf on Y , then L is
τ-equivalent to 0 iff its inverse image on X is. In other words, if k is an algebraically
closed field and S its spectrum, denoting by LN(Y ) the Néron–Severi group of Y
mod torsion, LN(Y )→ LN(X) is injective, a fortiori for the Picard numbers ρ(Y )≤
ρ(X).

In the same way, using (i) to reduce to the projective case, (ii) to cut down the
dimension of fibers to be≤ 2, then again (i) and resolution of singularities for a sur-
face (over an algebraically closed field) to reduce to the case of a simple morphism,
and lastly Néron’s theorem, the Igusa–Picard inequality, and corollary 1 we get:

Corollary 3. Let X be proper over S. Then the Néron–Severi groups of the geometric
fibers of X/S are of finite type, and of bounded rank and bounded order for the
torsion subgroups.
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I will give the idea of the proof of theorem 1. Logically, (i) comes first, (ii) uses a
weaker version of (iii) and is needed itself to prove (iii) in full strength, (iv) uses (i)
and corollary 1 (in the case X/k normal, to ensure that the kernel of multiplication by
n, n prime to the residue characteristic, is of finite type over S if S is the spectrum of
a field k . . . ) hence to a certain extent (ii) and (iii) or some other known information
as Néron’s theorem, or finite generation of fundamental group.

The proof of (i) relies heavily on the ideas of nonflat descent (expounded roughly
in my Bourbaki talks), it is pretty natural although cumbersome in details. At first
sight, there seems to be a drawback because of the lack of criteria for effectiveness
of descent data in the case of a nonflat morphism (assumed to be of descent with
respect to locally free sheaves say); if we had always effectivity we would be able to
conclude that, if S 	= /0, there exists in S a nonempty open set U such that over U the
morphism PicY/S →PicX/S is affine. I do not know if this is a true statement in
general (as the schemes involved are not of finite type over S, it does not follow from
the corresponding known fact over a field, when applied to the generic fiber . . . ).
However, having only in mind the finite type property, one gets along by remarking
(for the simple types of morphisms f one can reduce to) that PicY →PicX can
be factored through an S-prescheme Q, with Q→PicX an affine morphism, and
PicY → Q a monomorphism. Indeed, Q expresses the classification of invertible
sheaves on X with descent data relative to f , (to give such descent data on a given L
on X is expressed in taking a section of a suitable scheme affine over S), the fact that
PicY → Q is a monomorphism comes from the fact that we assume f a morphism
of descent for invertible sheaves, (universally with respect to base changes S′ → S).
Now we are reduced to proving that PicY → Q is of finite type, which amounts
to verifying that if a descent datum on a given invertible sheaf L on X induces on
the generic fiber a noneffective one, it is noneffective on the neighbouring fibers as
well—a very easy fact indeed.

For (ii) I use your finiteness theorem. However, it seems to me that your proof is
incomplete at one point, namely when you conclude that (granting H0 of dim > 1
for all invertible sheaves considered) the effective divisors D yielding the sheaves
L remain in a quasi-compact subset of D iv. In fact, we know only that the Hilbert
polynomial for D is POX −PL−1 , now it does not seem obvious to me that, from the
assumption that the Hilbert polynomials PL remain bounded, the same is true for
the polynomials PL−1 . Therefore it seems that your argument applies only, a priori,
if you know that the sheaves OD can be chosen in a way so as not to have embedded
primes, (at least no embedded primes of dimension 0); indeed, from the induction
assumption it follows at least that except for the constant terms, the coefficients of
the Hilbert polynomials for the divisors D remain bounded, (and the case where
the relative dimension of X/S is 0 or 1 does not offer any difficulty). If however
the fibers of X/S satisfy Serre’s property (S2), for instance are normal (the only
case I will use in the proof of (ii)), then the OD are without any embedded primes,
and we get through. Once (ii) is proved, one can recover your original statement
without restriction, and in the stronger form of the theorem 1 (iii), as follows. By
criterion (ii) one reduces easily to the case when X/S is of relative dimension 2
(in which case your version and mine agree). Of course, we can always reduce to
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proving quasi-compactness when restricting over some nonempty open subset of
S, S integral. But with this restriction in mind, it is easily seen that we can find a
finite morphism f : X ′ → X , such that X ′/S satisfies to the same conditions as X/S,
but has moreover fibers satisfying (S2), and such that f induces on every geometric
fiber an isomorphism except at isolated points. (NB of course, the verification of this
fact reduces to the case when S is the spectrum of a field; then the set Z of points
where X is not S2, i.e., not Cohen–Macaulay, is finite because X is integral of dim2,
and, denoting by i the inclusion U = X−Z → X , we take X ′ = Spec(i∗(OU ))).
Moreover, an invertible sheaf on a fiber of X and its inverse image have the same
Hilbert polynomial, except for a fixed constant (namely length of OX ′s /OXs). This
way we are reduced to proving your criterion for X ′ instead of X , for which it is
already known.

To prove (iv) we can assume n a prime, and are reduced to proving that, for every
section of PicX over S, its inverse image by n is of finite type over S. Now this
inverse image is a formally homogeneous principal space over n Pic, which is of
finite type over S by corollary 1. This reduces us to proving the following: if the
fiber of this prescheme at the generic point s of S (assumed integral) is empty, so are
the neighbouring ones. If n is distinct from the characteristic of k(s), we can assume
it is prime to all residue characteristics, then the scheme considered is étale over
S, hence easily the conclusion. (NB in fact, a universally open morphism which is
locally of finite type and has finite fibers is of finite type—thus we need only the
part of corollary 1 stating that, over a field, the torsion of Néron–Severi killed by n
prime to the characteristic is finite). If n is equal to char k(s), we can assume S to be
of characteristic n = p > 0, and then, using the Frobenius functor relative to S, we
get a canonical factorisation of multiplication by p as

(+) PicX/S
g−→PicX(p)/S = (PicX/S)

(p) f ∗−−→PicX/S ,

where
f : X → X (p)

is the Frobenius morphism, and the first map in (+) is the Frobenius morphism for
the prescheme P = PicX/S over S. As the latter is locally of finite type over S, it
follows that g is finite. Moreover f is finite and surjective, and therefore, by (i), f ∗ is
of finite type. Hence f ∗g is of finite type and we are through. (NB I proved first (iv)
for a simple morphism, a few months ago, in this case f : X → X (p) is flat, and the
theory of flat descent implies easily that f ∗ is affine, without using the more delicate
theorem 1 (i)).

I did not solve in full generality the following problem: Let X/S be projective
over S, such that PicX/S exists, let M be a subset of PicX/S, then prove M is quasi-
compact iff there exists n such that

OX (−n)≤M ≤ OX(n)

(inequality with respect to the order relation on all fibers defined by the cone of
ample sheaves). Using (i) and (ii), one can reduce to the case where X/S is of relative
dimension 2 and with normal irreducible fibers. However, if S is the spectrum of a
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field (which we may assume alg. closed) the answer is affirmative, as results at once
from the more general:

Theorem 2. Let X/k be proper, k alg. closed. There exists a finite number of integral
curves Ci in X, with normalisations C′i , such that, for a subset M of PicX/k to be
quasi-compact, it is necessary and sufficient that the numbers degLC′i (L ∈ M)
remain bounded.

Proof: using (i) and (ii) we are reduced to the case where X is a normal irre-
ducible surface. Using resolution of singularities for a surface, we can assume X
nonsingular. In this case, the fact is known and results from (a) Néron’s finiteness
theorem (b) the fact that the fundamental bilinear form on LN(X) is nondegenerate.
[The latter results formally, besides, from the weak RR for surfaces and your finite-
ness theorem (which yields also, besides, the fact on the signature of the quadratic
form): using RR, your criterion is equivalent with: putting D′ = 2D + K, (K the
canonical divisor), if D′2 and D′E remain bounded, D remains in a finite subset of
LN(X). This excludes the possibility of the bilinear form being degenerate, because
the set of D ∈ LN(X) in the kernel of the bilinear form satisfies the finiteness crite-
rion. Also (b) implies directly that LN(X) is free. Then Igusa’s argument applies to
yield the Igusa–Picard inequality, without using Néron’s result. Thus corollary 3 of
Theorem 1 (a common generalisation of Néron’s and Igusa’s result) is now proved
without reference to Néron’s result, (using heights etc.). I wonder if you are able
to give a direct proof of Néron’s theorem from your finiteness criterion, without
using Igusa’s involved argument (using the structure of the fundamental group of a
curve), and to get rid in the proof of Theorem 2 of resolution of singularities of a
surface. I would expect that this is possible, using the following argument. Let X be
any complete surface over k (not necessarily normal), then using Serre’s remark that
I(X)3 = 0, we get a canonical bilinear form in LN(X), (X need not be projective,
see below proof of (i) =⇒ (ii) in corollary 1), by setting

B(L ,L ′) = χ(OX)− χ(L )− χ(L ′)+ χ(L ⊗L ′)

(this definition, and the whole of intersection theory, generalizes to varieties of arbi-
trary dimension . . . ). Now, if X is integral and proj., this form is nondegenerate, and
has just one positive square. (This statement of nondegeneracy + Néron of course
implies theorem 2). This is an easy consequence of resolution of the singularities of
X and of theorem 1 (i), taking into account that the canonical bilinear form is com-
patible with the maps LN(X)→ LN(X ′) stemming from morphisms of degree 1,
f : X ′ → X . Do you have any idea of how to get rid, in the proof of nondegeneracy,
of the resolution of singularities? What happens if X is not projective?26 (I used
projectivity through the fact that there is at least one positive square for the bilinear
form, and that any subspace, in a quadratic space of signature (1,s), which contains
one positive square, is nondegenerate).]
26 Both questions were addressed in two articles by Kleiman cited in Footnote 25: in section 7,
pp. 662–666 of Exposé XIII in SGA6 (LNM 225), and in Appendix B, pp. 319–321 in Math.
Surveys Monogr. 123.
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As an easy consequence of Theorem 2, we get:

Corollary 1. Let X/k be proper, L an invertible sheaf on X. The following condi-
tions are equivalent:

(i) L is τ-equivalent to zero.
(ii) For every coherent F on X, χ(F ⊗L ) = χ(F ).

(ii bis) As before, with F = OY , Y an integral curve contained in X.
(iii) For every integral curve contained in X, letting Y ′ be its normalisation,

degLY ′ = 0 (NB with notations of theorem 2, it is enough to take for Y one
of the Ci).

And for completeness, if X/k is projective, I state the following equivalent condi-
tions:

(iv) L ⊗m(1) ample for every integer m.
(v) (If X is integral) χ(L ⊗m(n)) = χ(O(n)) for every m, n, i.e., the sheaves L ⊗m

all have the same Hilbert polynomial.

Proof: (i) ⇒ (ii). By a devissage argument and Serre’s result I(X)d+1 = 0 for
a quasi projective X of dimension d, one proves (without projectivity assumption,
for any prescheme of finite type over k) I(X)d+1K•(X) = 0, where K•(X) is the
Grothendieck group for the category of all coherent sheaves on X (not only locally
free ones as in the definition of K•(X); K• behaves covariantly for proper mor-
phisms, K• contravariantly for arbitrary morphisms). It follows again that the map
L �L ⊗F from Pic(X) into K•(X) is polynomial of degree≤ d if F is a coher-
ent sheaf on X ; hence, if X is complete, L � χ(F ⊗L ) has the same property.
From this, by Serre’s remark, follows that the function is constant on classes modulo
Picτ(X).

(ii) ⇒ (ii bis) ⇒ (iii) is trivial, (iii) ⇒ (ii) follows trivially from theorem 2, (i)
⇒ (iv) is known and (ii) ⇒ (v) trivial, (iv) ⇒ (i) results trivially from theorem 2,
and (v)⇒ (i) from your finiteness theorem. As I remarked in my previous letter, the
criterion (v) is useful in order to prove the

Corollary 2. Let f : X → S be flat projective with integral geometric fibers, then
PicτX/S is open and closed in PicX/S.

This raises some questions: does the result remain true if we drop the projectivity
assumption? Of course one is reduced to the case where S is the spectrum of a
valuation ring, and one would like to apply the corollary 2 to theorem 1, and Chow’s
lemma; but there is a difficulty, as in Chow’s lemma X ′/S will not have integral
geometric fibers, therefore the conclusion to be proved for X/S may be false for
X ′/S (example: a conic degenerating into two lines). In the previous corollary, is it
enough to assume the geometric fibers of X/S irreducible (not necessarily reduced)?
If X/S is normal i.e., flat with normal geometric fibers, is it true that PicτX/S is

proper over S (as is Pic0
X/S)? This is equivalent with asking that nPicX/S (kernel of

nth power) should be proper over S, and I doubt it is true. In characteristic 0, this is
equivalent with stating that the Néron–Severi torsion groups of the geometric fibers
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are of the same order (in fact, isomorphic) if S is connected; I doubt very much that
this is true. (Of course, the point is that I do not assume X/S simple).

I now become aware I forgot to give indications for the proof of theorem 1 (ii).
First, using (i), one can assume Y/S to be normal relative to S, with irreducible
geometric fibers, and X equally flat over S, and distinct from Y , therefore a relative
Cartier divisor. Moreover, replacing X by a suitable multiple and using (i), we can
assume the ample sheaf L (whose section gives X ) to be very ample, i.e., X is really
a hyperplane section. Moreover, we can now assume (again by suitable base change)
that there exists another hyperplane section X ′/S which is normal over S, and is a
relative Cartier divisor. Let M be a subset of PicY/S whose image MX in PicX/S is
quasi-compact, then the Hilbert polynomials of the elements of MX remain bounded,
therefore the same is true for the Hilbert polynomials of the elements of MX ′ . By
your criterion in the normal case, it follows that MX ′ is also quasi-compact. Then
we can replace in the argument X by X ′. Now as the fibers of Y/S are assumed
of dimension ≥ 3, these of X/S are of dimension ≥ 2, and as the fibers of X/S
and Y/S are normal, they are of depth ≥ 2 at their closed points. This is enough
to use the “equivalence criteria” I alluded to in my last letter (the assumption that
the geometric fibers of X be of depth ≥ 3 at their closed points being stronger than
actually needed!), and to carry through the argument I indicated there. Ouf!

I hope my sketchy indications are clear enough to convince you, modulo the
IHÉS seminar of this year. Of course I will send you a copy of the seminar as soon
as everything is written up.

Sincerely yours
(signed) A Grothendieck

Grothendieck to Murre, 18 July, 1962

July 18, 1962

My dear Murre,

I recently had some thoughts on finiteness conditions for Picard preschemes, and
substantially improved on the results stated in the last section of my last Bourbaki
talk.27 The main result stated there, for a simple projective morphism with con-
nected geometric fibers (namely that the pieces PicP

X/S are of finite type over S),
has been extended by Mumford to the case where instead of f simple we assume
only f flat with integral geometric fibers (at least if these are normal). Using his re-
sult (the proof of which is quite simple and beautiful) I could get rid of the normality
assumption, and even (as in theorem 4.1. of my talk) restrict to the consideration of
the two first nontrivial coefficients of the Hilbert polynomials. The key results for
the reduction are the following (the proofs being very technical, and rather different
for (i) and (ii), except that (ii) uses (i) to reduce to the normal case; moreover (ii)

27 Referring to TDTE VI, Séminaire Bourbaki 1961/62, no 236.
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uses Mumford’s result and the equivalence criteria as developed in my last Semi-
nar):

(i) Let X , Y be proper over S noetherian, let f : X→ Y be a surjective S-morphism,
assume, for simplicity of the statement, that the Picard preschemes exist, then
f ∗ : PicY/S→PicX/S is of finite type (and in fact affine if S is the spectrum of
a field), i.e., a subset M of PicY/S is quasi-compact iff its image in PicX/S is.

(ii) The same conclusion holds for a canonical immersion X → Y if Y/S is projec-
tive, with fibers all components of which are of dimension ≥ 3, and if X is the
subscheme of zeros of a section over Y of an invertible sheaf L ample with
respect to S.

A connected result is that, for any X/S proper and integer n 	= 0, the nth power
homomorphism in the Picard prescheme is of finite type.

I tell you about this, namely (i), because of the method of proof, involving of
course considerations of nonflat descent. The fact that I do not have any good ef-
fectivity criterion does not hamper, by just recalling what the effectivity of a given
descent datum means. Now it turns out that, by a slightly more careful analysis of
the situation, one can prove the following theorem, of a type very close to the one
you have proved recently, and to some you still want to prove as I understand it.

Theorem. Let S be an integral noetherian scheme, X and X ′ proper over S, and
f : X ′ → X a surjective S-morphism. Look at the corresponding homomorphism for
the Picard functors f ∗ : PicX/S→PicX ′/S . Assume:

a) the existence problem A defined below for X/S has always a solution (this is
certainly true when X/S is projective).

b) the morphism fs : X ′s→Xs induced on the generic fiber is a morphism of descent,
i.e., OXs → f (OX ′s )⇒ h(OX ′′s ) is exact.

Then, provided we replace S by a suitable nonempty open set, the homomorphism f ∗
is representable by a quasi-affine morphism, more specifically in the factorisation of
f ∗ via the functor representing suitable descent data, f ∗ = vu with u affine and v a
monomorphism (as you well know), v is in fact representable by a finite direct sum
of immersions.

Corollary. Without assuming b), but instead in a) allowing X/S to be replaced by
suitable other schemes Xi finite over X, the same conclusion holds, namely f ∗ is
representable by quasi-affine morphisms.

This follows from the theorem, using a suitable factorisation of f . For instance,
using Chow’s lemma and the main existence theorem in my first talk on Picard
schemes,28 one gets:

Corollary 2. Assume X/S proper satisfies the condition:

a′) for every X ′ finite over X, there exists a nonempty open subset S1 of S such that
problem A for X ′|S1 has always solution

28 Referring to TDTE V, Séminaire Bourbaki 1961/62, no 232.
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(this condition is satisfied if X/S is projective). Then, provided we replace S by
a suitable S1 nonempty and open, PicX/S exists, is separated, and its connected
components are of finite type over S.

N.B. The proof does not give any evidence towards the fact that, in the theorem, one
could replace “quasi-affine” by “affine”. This is true however over a field, because
a quasi-affine algebraic group is affine! It would be interesting to have a counterex-
ample, say, over a ring of dimension 1 such as k[t], X and X ′ projective and simple
over S and X ′ → X birational, or, alternatively, X and X ′ projective and normal over
S and f : X ′ → X finite. A counterexample in the latter case would of course provide
a counterexample to the effectivity problem for a finite morphism raised in my first
talk on descent . . . .

“Problem A” is the following: given X/S and a module F on X , to represent the
functor on the category of S-preschemes taking any S′/S into a one-element or into
the empty set, according as to whether F ′ on X ′/S′ is flat with respect to S′ or not,
where X ′ = X×S S′, F ′ = F ×S S′.

Given X/S, we say that “Problem A for X/S has always a solution” if, for every
coherent F ′ on some X ′/S′, the previous functor on (Sch)/S′ is representable by an
S′-scheme of finite type. The main step in my proof of existence of Hilbert schemes
shows that this condition is satisfied when X/S is projective; in the proof, essential
use is made of the Hilbert polynomial, in fact we get a solution as a disjoint sum
of subschemes of S corresponding to various Hilbert polynomials. Still I would
expect that the functor is representable as soon as X/S is proper. In view of the
application we have in mind here, it would be sufficient (for any integral S) to find
in S a nonempty open set S1 such that Problem A has always a solution for X1 =
X ×S S1 over S1. To prove this weaker existence result, it is well possible that a
reduction to the projective case is possible, using Chow’s lemma and some induction
on the relative dimension perhaps. I also would expect that a proof will be easier
when working over a complete noetherian local ring, hence the case of a general
noetherian local ring by flat descent. And it is well possible that, putting together
two such partial results, a proof of the existence in general could be obtained. (I
met with such difficulties already some time ago in a very analogous nonprojective
existence problem, which besides I have not solved so far!) This problem A has
been met also by Hartshorne (a Harvard student), but I doubt he will work seriously
on it. Thus I now write to you in the hope you may be interested to have a try at this
problem. As a general fact, our knowledge of nonprojective existence theorems is
exceedingly poor, and I hope this will change eventually.

Sincerely yours,
A. GROTHENDIECK
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Grothendieck to Robin Hartshorne, 17 September, 1962

Bures Sept. 17, 1962

My dear Hartshorne,

I thank you very much for the notes on your work on Hilbert schemes. They strike
me as very ingenious. The main result is striking, the methods of proof illuminating,
the technical difficulties to be overcome quite serious—I am sure it will be a very
good thesis indeed.29 I did not check enough the hard part, namely Chap IV, but I
am confident your constructions are all right. Moreover, I think your method should
enable you to make a still closer analysis of the structure of HilbP, for instance
to determine the irreducible components, their dimensions, and their mutual inci-
dence relations. For instance, for every set of integers m∗ = (m1, . . . ,mr), consider
the locally closed subset Mm∗ of M = HilbP of points having that invariant, then the
irreducible components of M are among the closures of the irreducible components
of the Mm∗ ’s. The first question one might try to solve is whether the Mm∗ ’s are irre-
ducible, also to determine their dimension and the incidence relations between their
closures, etc. [For given P, m, the results will probably be different according to
the characteristic, for (according to Serre) there are components of HilbZ lying over
single primes.] Quite a few pieces of information along these lines seem already
contained in your proof of the connectedness of M (cf. my P.S.). Perhaps such an
analysis will lead you to solve (in the context of Hilbert schemes, replacing Chow
varieties) Weil’s problem whether the geometric irreducible components are already
defined over the prime field; this would follow of course if you could prove that the
Mm∗’s are geometrically irreducible. I recall the following remarkable implication
of a positive answer to Weil’s problem: if X is a nonsingular projective variety de-
fined over the field C of complex numbers, u an automorphism of C, and Xu the
variety over C deduced from X by u (via the base change C

u−→ C, or, equivalently,
by applying u to the coefficients of the equations describing X ) then X and Xu are
homeomorphic, hence have same homology and homotopy invariants. (At this mo-
ment, it is not known whether this statement is true.30)

Another type of problem to be investigated: consider the open subset M′ of M
corresponding to simple subvarieties of P

r; determine the irreducible components
of M′ (i.e., those of M that meet M′), in particular determine for which Hilbert poly-
nomial P we have M′ 	= /0 i.e., there exists a nonsingular subvariety of X admitting
this P. Here Borel’s theorem will not help much, as M′ is not complete.

One suggestion in case the invariants ni are not enough to get hold of the com-
ponents of M: there are various other invariants that may help, and have the same
semi-continuity property, for instance the values of the Hilbert function, or even the
integers dimHi(X ,OX (n)), any i, n. I do not know anything about these, (except the
semi-continuity and the fact that the alternating sum is continuous and a polynomial

29 This 1963 Princeton University thesis was published in R. Hartshorne, Connectedness of the
Hilbert scheme, Publ. Math. IHÉS 29 (1966) 5–48.
30 See C. R. Acad. Sci. Paris 258 (1964) 4194–4196, for a counterexample by Serre.
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in n), any other general information about this set of integers, for variable X , would
be welcome.

Another problem, of a very different type, is to determine the category of lo-
cally free sheaves over M = HilbP

S , where S is for instance the spectrum of Z, or of
a prime field, or an algebraically closed field. This problem is trivially equivalent
with finding all functors, associating to an S′ over S and a subscheme X of P

r
S′ with

Hilbert polynomial P, a locally free sheaf E on S′, in a manner compatible with base
change. One way to get such functors is to take E = f∗(OX (n)), with large n, (and
also Ri f∗(OX (n)) for suitable n, depending on P and i), and those obtained from
such sheaves E by the usual tensor operations. For instance, taking exterior powers
of maximal order, one gets various invertible sheaves En (n large). A first question is
to determine the relations between these En (viewed as elements of the Picard group
Pic(M) say), and to see if these generate the latter. Of course, in the above construc-
tion of E by means of direct images of OX twisted by n, we could as well replace OX

by any other sheaf F , flat with respect to S′, and depending functorially on (S′,X ′)
(or what amounts to the same, a sheaf F on the universal X = XM over the modular
scheme S′ = M, F flat over M)—as one would get for instance starting with a lo-
cally free sheaf of P

r
S, and inducing it on the subschemes X of P

r
S′ . In other words,

one is led to investigate equally the category of locally free sheaves on XM, and on
P

r
S, and their various interrelations by means of direct and inverse images (and of

course tensor operations). A complete picture (even for the category of locally free
sheaves on projective space only) is probably quite out of reach for the time being.
However if, instead of the full category of locally free sheaves, one is content to
work with the ring K(M) generated by their elements (as studied in connection with
the Riemann–Roch theorem in Serre–Borel’s paper), it would be possible perhaps to
achieve complete results. These would allow to determine at least the group Pic(M),
and presumably Pic(XM), in terms of K(M) and K(XM). Moreover, once one knows
Pic(M), one should determine for every L ∈ Pic(M) the group H0(M,L ) (hav-
ing an evident functorial interpretation, in terms of the functor corresponding to E ),
and of course the tensor operations H0(L )×H0(L ′)→ H0(L ⊗L ′), in particu-
lar one should know the algebras ∏

n≥0 H0(L ⊗n), and have thus a complete insight
into all possible projective embeddings of M. For the time being even H0(M,OM)
is not known, because, although M is geometrically connected, it is generally not
reduced (even for curves in P

3 over a field of char. 0, according to Mumford), there-
fore it is not clear whether H0(M,OM) as a ring has nilpotent elements or not! Of
course, the knowledge of this ring alone implies your connectedness theorem; thus
the questions raised here, which are concerned with M as a scheme and not only as
a topological space, may turn out to be rather tough. It is not even clear whether or
not Pic(M) is discrete. If S is the spectrum of an algebraically closed field, so that
Pic(M) is the set of points rational over k of the Picard group-scheme PicM/k, the
question in char 0 amounts to the question if H1(M,OM) = 0 (in char p > 0, one
can only say that the latter relation implies that PicM/k is discrete, hence Pic(M)
finitely generated). An argument in support of this conjecture (discreteness) would
be that those invertible sheaves on M one gets from locally free sheaves on P

r (by
twisting with large n, inducing on XM , taking the direct image, and highest exte-
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rior power) form a finitely generated group, as one sees using the fact that K(Pr) is
generated as a ring by the class of O(1). Thus at first sight I do not see a way of
constructing a nonconstant continuous family of invertible sheaves on M!

I include in this letter some trivial comments on your notes. I am not sure I will
find time very soon to work through the details of Chap 4, hoping that in your final
version it will simplify a little? Is it possible to keep your manuscript?

Sincerely yours
(signed) A Grothendieck

P.S. It is known that Borel’s fixed point theorem extends to an arbitrary ground field,
provided “solvable” is understood as “solvable over k”; this applies to the triangular
group, in particular.

Grothendieck to Mumford, 2 October, 1962

Bures Oct. 2, 1962

Dear Mumford,

Thanks for your letter which has just arrived. I did not completely understand
what you are after by looking at Chow points. However I can certainly help you in
defining your map H ilb→D ivGrass.31 As usual, I like to give a general setting. I
confess I did not systematically write down all that I am going to state, but enough
bits of it here and there, some time ago, to be sure it can be done without much
effort.

Let X be a quasi-compact prescheme having an ample sheaf, so as to allow locally
free resolutions of coherent sheaves. Let’s denote by K(X) the ring of classes of
locally free sheaves on X ; as well known this is also, as a group, the group of classes
of coherent sheaves on X having finite projective dimension. Taking highest exterior
powers of locally free sheaves, one gets a natural homomorphism:

dét : K(X)→ Pic(X)

which you called rightly the first Chern class. Thus dét(F ) is also defined for any
F of finite cohomological dimension, and behaves multiplicatively with respect to
exact sequences of such F ’s. To define it, take a locally free resolution of F by

31 The proof sketched in this letter, with the details completed, appeared in J. Fogarty, Truncated
Hilbert functors, J. Reine Angew. Math. 234 (1969) 65–88.
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Li’s, and take the alternating product of highest exterior powers. Besides, looking
closer it turns out one can even define functorially (with respect to isomorphisms)
in F an invertible sheaf dét(F ) on X this way, for instance an automorphism of F
defines one of dét(F ), i.e., a section of O∗X ! As a consequence of this remark, the
definition of dét(F ) does not really require global resolutions, and is valid on any
locally ringed space whatever!

Next let f : X → Y be a quasi-projective morphism, for simplicity choose a Y -

immersion X
j

↪→P
r
Y . A coherent sheaf F on X is called “of finite projective dimen-

sion relative to Y” if it is of finite projective dimension on P
r
Y . This is easily seen

to be a purely local property on F (Pr
Y can be replaced by A

r
Y ), independent of the

chosen immersion. It is always satisfied if F is flat with respect to Y . Assume supp
F proper over Y . Then one can define an element f!(F ) the following way,

f!(F ) ∈ K(Y ) :

The assumption implies that we can resolve F on P
r
Y by sheaves of the type

g∗(Ei)(n), or rather sums of such, where Ei on Y is locally free. (Indeed, we may
assume F free on P

r
Y , and for n big, represent F as a quotient of g∗(g∗(F (n))),

but for such n, g∗(F (n)) is locally free on Y ; going on this way, one shows one
eventually gets a resolution of F of the desired type). One then defines

f!(F ) =∑
i
(−1)iEi ·g!(OPr

Y
(n))

with
g!(OPr

Y
(n)) =∑

i
(−1)iRig∗(OPr

Y
(n)) .

(NB g denotes the projection of P
r
Y on Y ). Of course one verifies the independence

of this definition from all choices performed. Besides f! is characterized by the
following properties:

a) Additivity for exact sequences.

b) Transitivity, if one has X
f−→ X ′ g−→ Y , with g flat.

c) If F is flat with respect to Y , and all Ri f∗(F ) are locally free, then

f!(F ) =∑
i
(−1)iRi f∗(F ) .

Moreover, we have the following way to get f!(F ) up to torsion if F is flat over Y :

d) For big n, the locally free sheaf f!(F (n)) on Y , as an element of the abelian
group K(Y ), is a polynomial in n, whose constant coefficient is precisely f!(F ).
(In fact, n �→ f!(F (n)) is a polynomial in n, coinciding for big n with the previ-
ous function).

NB I convinced myself that the general Riemann–Roch theorem can be stated
and proved for a morphism f : X → Y which is quasi-projective and “a complete
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intersection” (i.e., such that X is a complete intersection in P
r
Y ), for any sheaf F

which has the properties stated, allowing to define f!(F ).
On the other hand, you have in mind how intersection theory can be phrased in

terms of the ring operations of K(X), which allow besides to get rid to a large extent
of all regularity assumptions, provided we do not try to intersect any two cycles
(because the sheaves they define will not be of finite cohomological dimension in
general), but rather classes of sheaves instead.

Now your definition! Let X ↪→ P
r
Y be proper and flat over Y , with relative dimen-

sion ≤ d, we want to associate to it a section of D ivGrassr−d−1(Pr
Y ), in a functorial

way with respect to base change, so as to have H ilb→ D ivGrass. We make the
base change Y ′ → Y , with Y ′ = Grassr−d−1(Pr

Y ). Now in P
r
Y ′ we have canonically

a projective subbundle Mr−d−1 = M′, the structure sheaves of X ′ and M′ can be
viewed as coherent sheaves on P

r
Y ′ , we can take the product of the elements they

define in K(Pr
Y ′), and take the image under g′! : K(Pr

Y ′)→ K(Y ′), which is defined
as P

r
Y ′ is projective and flat over Y ′. Now take the dét:

L = détg′!(OX ′ ·OM′)

to get an invertible sheaf on Y ′. Let T = g′(X ′ ∩M′), Y ′0 = Y ′ − T , then OX ′ ·OM′
restricted to g′−1(Y ′0), is of course 0, therefore (as the definition of g′! is local on
the base), the sheaf L |Y ′0 is trivial. Looking at it more closely, one even finds a
canonical trivialisation of L |Y ′0, L being itself canonically defined as a sheaf (not
only as an isomorphism class of sheaves). To make this precise, I should have de-
fined more precisely g! as associating, to an F having the stated conditions, not
only an element of K(Y ), but an object of the category of finite complexes of locally
free sheaves on Y , with morphisms being the hyperext. Such an object of course
defines an element of K(Y ) by taking alternating sums of the components (which
is the same if we replace the object by an isomorphic one), and thus taking the dét
we get again an element of Pic(Y ); but more precisely we have directly a functor
dét : C→ Inv of the aforesaid category into the category of invertible sheaves (gen-
eralizing my remark on dét in the beginning). Moreover, the definition should be
extended of course, assuming for simplicity X flat over Y , from a single F to the
category C(X) of finite complexes of locally free sheaves on X , getting thus functors

C(X)
f!−→C(Y ) dét−→ Inv(Y ). Now in C(X) the tensor product is functorially defined,

and going back to the situation with H ilb etc., viewing OX ′ and OM′ as defining
objects of C(Pr

Y ′) (via resolutions), written OX ′ and OM′ for simplicity, and taking
their product and applying the functor détg!, we get L in a functorial way. (Thus,
X could be replaced by any sheaf F on P

r
Y flat with respect to Y , and L depends

functorially on such an F . . . ). This then makes clear that we have a canonical sec-
tion of L |Y ′0, coming from a canonical isomorphism O

∼−→ (OX ′ ·OM′)|g′−1(Y ′0) and
applying the previous functor to this. Now it is easy to verify (I hope) that this ratio-
nal section of L over Y ′ = Grass is in fact everywhere defined, due to the fact that
Y ′ is simple over Y and that Y ′0 contains the generic points of the fibers of Y ′ over Y ,
and that one shows that, on every fiber of Y ′, the section is regular and defines the
usual Chow divisor (which of course I did not check). Of course, instead of taking
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Grass, one could also take multiprojective space over Y , as does Chow, I do not
know if the theory of Chow coordinates works the same using d + 1 hyperplanes,
or a linear subspace of codimension d +1 as you suggest, except that it is of course
still true that a pure cycle of dimension d is determined by a Chow point in your
version. Sticking to Chow’s definition, M′ would be an intersection of d + 1 hyper-
planes which might at some points intersect excessively, therefore we better keep
the system of d + 1 divisors Di and directly look at the product OX ′ ·OD1 · · ·ODd+1

instead of OX ′ ·OM′ .
To compute L , one can as well first induce OM′ on X ′ (in the sense of course

of the categories C(Pr
Y ′), C(X ′), i.e., first taking a locally free resolution of OM′ ),

then project on Y ′ by f ′! , where f ′ : X ′ → Y ′ is the projection, and take the dét.
Working, for simplicity, with Y ′ the multiprojective scheme, the induced object in
C(X ′) is a complex having as underlying graded module the exterior algebra of( ∏

0≤i≤d
M⊗Mi

)
, where M [resp. Mi] is the inverse image of OPr

Y
(1) by the projection

of P
r
Y ′ → P

r
Y [resp. P

r
Y ′ → Y ′ → (ith factor P

r
Y of Y ′ = (Pr

Y )d+1)]. Perhaps this may
help to identify the sheaf you constructed on Y (as highest coefficient in the Hilbert
polynomial expressing the function n� dét f∗OX (n) for big n, or equivalently n�
dét f!OX(n) for any n), as the inverse image of a suitable ample sheaf of D iv(Y ′)
under the section we just defined of D iv(Y ′), as you suggest. I have no feeling
whether such an interpretation is possible. These questions are of course related
to the problem I proposed to Hartshorne a few weeks ago, namely to determine
(over various ground schemes S such as Spec(Z), the spectrum of a field or others)
the complete structure of K(M) and K(XM), where M is a component of the H ilb
scheme, and XM ⊂ P

r
M the universal flat subscheme of P

r—together of course with
the operations f ! and f! coming from the projection f : XM → M. I made one or
two wishful conjectures, including that K(M) is generated by invertible sheaves and
that Pic(M) is “discrete”, but I grant I have no serious support for such conjecture. I
wonder if you are able to compute H0(M,OM) and H1(M,OM) over a field, say k =
C. Is the first k, the second 0? Even the first question has no obvious answer, because
of the existence of nilpotent elements in M. A good knowledge of M should even
contain, not only Pic(M), but also knowledge of the H0(M,L ) for L ∈ Pic(M),
the tensor operations etc.

For the computations you have in mind it may be enough to know that, for a
projective bundle P associated to a locally free E of rank r + 1 over a base Y ad-
mitting an ample sheaf, K(P) is completely determined (as a λ ring) by the fact
that, as a module over K(Y ), it has a basis consisting of the classes of OP(n) = L n

with n0 ≤ n ≤ n0 + r. The most convenient is to take n0 = −r, i.e., write uniquely
an element x of K(P) as ∑i ci L i (−r ≤ i ≤ 0), then f!(x) = c0. As for the ring
structure of K(X), known when L −r−1 is known as a linear combination of the
basis elements L i (−r ≤ i≤ 0), it is obtained by writing simply λ−1(E −L ) = 0,
i.e., λt(E ) vanishes when substituting t by −L −1. From this, the K of various flag
fiber spaces associated to E , including grassmannians, can be determined in terms
of K(Y ), E ∈ K(Y ) in a purely formal way, as in the talks I gave in Chevalley’s
Seminar. As D ivGrass is essentially a projective fiber bundle over Grass (due to the
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fact that the Picard scheme of Grass is étale over the base, and any invertible sheaf
on Grass is “cohomologically flat” over the base), the K of this scheme is easily de-
termined too. Of course, when you have an X ⊂ P flat over Y , the invertible sheaf it
defines on Y by our previous construction is easily computed in terms of the element
∑ciL −i of K(P) defined by X . The fact that X has relative dimension≤ d over Y is
then expressed by the fact that, if we take for K(P) the basis formed by the elements
Hi (0 ≤ i≤ r), with H = 1−L , (H “hyperplane section”), then the coefficients ci

with i > r−d have augmentation 0. From this I guess your assertion about the Δ k+1

should follow formally. Anyhow, I guess the story will be clearer if instead of an X
you take a coherent sheaf on P

r
Y flat with respect to Y , or complexes on P

r
Y . . . .

To come back to your initial problem of moduli for projective invariants of va-
rieties, I do not see the point in what you call “my best result so far”, concerning
moduli for projective curves. Once you know the existence of a modular scheme for
jacobi curves of level n, does it not follow trivially that there is a modular scheme
for curves in P

3, by taking the previous modular scheme, a suitable open subset of
the Picard scheme of the modular curve over it, and a suitable open subset of some
grassmannian scheme over the latter? I did not figure this out, therefore I wonder if
there are some difficulties, or if you stick to your approach via “stable Chow forms”
only because of the hope that some time that method might yield results on higher
dimensional varieties?

I did not understand at all your suggestion concerning Murre’s theorem.32 In
fact, Murre has two theorems, one (the easier, the first he got) concerns a group
functor which is embedded in a representable one; then his criterion does not need
any Rosenlicht type condition. In this case your suggestion falls short, as Murre’s
criterion applies also when H → G is not a closed immersion, for instance is a
monomorphism Z→ G, where G is a group scheme of finite type over k such as
Gm, say. On the other hand in his second criterion, concerning a functor which is not
embedded in another, (this condition being replaced by the Rosenlicht condition),
I do not see what your condition 4) could possibly mean. In any case, besides, the
ground field need not be algebraically closed.

I guess you heard that Mike proved that, over C, the Weil cohomology = usual
cohomology. Pondering over his proofs this now appears almost trivial, moreover
his method yields some basic results in arbitrary characteristic. The development
of a large part of Weil cohomology now seems to me a mere routine matter, and
I feel the complete equivalent of the classical theory, including Weil’s conjectures,
should be obtained within the next one or two years. Just the typical Kähler–Hodge–
Lefschetz type things will perhaps offer some serious difficulty.

Sincerely yours
(signed) A Grothendieck

32 The results were published in J.P. Murre, On contravariant functors from the category of pre-
schemes over a field into the category of abelian groups (with an application to the Picard functor),
Publ. Math. IHÉS 23 (1964) 5–43.
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P.S. I had an afterthought on the relative Cartier divisor you request on Y ′ = Grass;
I gave you one, but no proof that it is a positive divisor. However as Y ′ is simple,
hence flat over Y , it is enough to prove it is positive at points of Y ′ which are di-
visorial on the fiber of Y ′ → Y (simple reasons of “depth”), and besides reduce to
the case where Y is local artinian (and points y ∈ Y such that dimOY,y = 1). This
implies it is enough to look at what happens at generic points x′ of the intersection
suppF ′ ∩M′. Now such a point will project onto a generic point of suppF , hence
F ′ will have projective dimension r−d at it (i.e., will be Cohen–Macaulay). More-
over the elements of OP′,x′ defining M′ as a complete intersection will form an F ′-
sequence, so that the higher Tor

OP′
i (F ′,OM′) vanish, and F ′ ⊗OM′ is of projective

dimension (r−d)+ (d + 1) = r + 1. Moreover, supp(F ′ ⊗OM′) will be finite over
Y ′ when localizing at such a point y′. From this it follows easily that f ′! (F

′ ⊗OM′)
is (on this neighbourhood of y′) just the usual f ′∗(F ′ ⊗OM′), and the latter is at y′
of cohomological dimension (r +1)− r = 1, where r is the rel. dimension of P′/Y ′.
But, as you already noticed, such a sheaf on Y ′ does define a positive Cartier divisor
at y′. This concludes the proof! I wonder if there is something simpler to do it?

Grothendieck to Mumford, 18 October, 1962

Bures 18.10.1962

Dear Mumford,

Thanks for your letter. Unfortunately, I have no idea how to rigidify in general
polarized varieties with no infinitesimal automorphisms in a discrete way. Anyhow,
didn’t you give me once an example with no automorphisms whatsoever (infinites-
imal or finite) for which there was no reasonable local modular family?33 In this

33 This sentence is somewhat mystifying. Suppose that X is an algebraic variety proper over a
field k with “no automorphisms whatsoever”, then the deformation functor Def(X) of X is pro-
representable by Schlessinger’s criterion; see M. Schlessinger, Functors of Artin rings, Trans.
Amer. Math. Soc. 130 (1968) 208–222. In other words, over the complete local ring R which pro-
represents Def(X), there exists a flat proper formal scheme X over Spf(R) such that every defor-
mation of X over an Artinian ring S is the pull-back of X by a unique homomorphism R→ S of
local rings. So the formal scheme X over Spf(R) can be regarded as a “reasonable local modular
family” for X . On the other hand the formal scheme X over R may not be algebraic (i.e., there
may not exist a proper scheme X over R whose formal completion is X → Spf(R)), which might
be what Grothendieck had in mind. The following example, due to P. Deligne, illustrates this pos-
sibility. Let A be an abelian variety over an algebraically closed field k of dimension g≥ 2. Choose
a finite set of distinct closed points x1, . . .,xn ∈ A and let X = Bl(A,x1, . . . ,xn) be the blowing up
of A with center {x1, . . .,xn}. If n is large and x1, . . . ,xn are in general position, then the variety
X will have no non-trivial automorphisms whatsoever. On the other hand one can show that the
universal deformation X of X is not a scheme over R—because the universal deformation of A is
not algebraic.

L. Illusie suggested that Grothendieck might have meant the following: an example of a proper
algebraic variety X with no automorphisms whatsoever whose local deformation space is trivial.
Fake projective spaces, e.g., those constructed by Mumford in [79a], have the above properties.
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context, I never really developed (in the spirit of my talk on formal moduli) the
question of a modular field for say an algebraic scheme X over some field k, s.t.
H0(X ,GX ) = 0, and, for simplicity, the group of automorphismsΓ of X being finite
(say, by imposing if needed a polarization on X , or some other extra structure). To
such an X there should be associated something like

a) A field k0, finitely generated over the prime field
b) A galois extension k1 of k0, with group Γ
c) A scheme X1/k1, such that for g ∈ Γ , then ∃ k1-isomorphism Xg

1 
 X1
(but of course, no descent data to k0!)

d) An isomorphism X1Ω 
 XΩ , where Ω is some common (big) extension of k1
and k.

Data a), b), c) in terms of X should be canonically definable, independent from
field extension or k, k0 should be contained in any “field of definition” k of X , and,
if k is algebraically closed, k0 should be something like the field of invariants of all
σ ∈ Autk such that Xσ 
 X , at least up to inseparability. In the rigid case, Γ = e,
k0 will be just the smallest field of definition for X , and X comes in a unique way
from an X0 over k0. Did you ever try to work out these things? If you do not assume
H0(X ,GX ) = 0, something should still be feasible, replacing Galois extensions by
principal homogeneous spaces under an algebraic group of automorphisms.

Your result of finiteness on polarized nonsingular surfaces34 is quite interesting.
I would appreciate very much to have an idea of the proof.

It seemed to me, looking at Mike’s arguments, that his lemma on divisor classes
(using resolutions) can be completely eliminated. Unfortunately, for the time being,
everything is tied to equal characteristics (in fact, even to algebraic schemes). The
key lemma35 is the following one:

If Xn is nonsingular over a field k, alg. closed, then every point has an open
neighbourhood U having the following structure: There exists

U = Un
fn−→Un−1−→·· ·−→U1

f1−→U0 = Spec(k) ,

where every fi is an “elementary” morphism; namely obtained from a simple proper
morphism g : V −→W with geometric fibers connected of dim 1 (V a nice relative
curve over W ) by removing an étale multisection Z. Thus, from the point of view of
topology, U is remarkably simple, its universal covering being contractible and its
π1 a successive extension of free groups [hence U 
 Bπ1, the classifying space of
such a group π1!].

Sincerely yours,
(signed) A Grothendieck

34 This refers to the second main theorem in [64].
35 A proof of this key lemma was published as Prop. 3.3 in SGA4 Exposé XI, on p. 69 of LNM 305,
Springer-Verlag, 1973.
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Grothendieck to Michael Artin, 14 February, 1963

Bures Feb 14, 1963

My dear Mike,

I was just going to write you when I got your letter. First I want to ask you
if you feel like refereeing Néron’s big manuscript on minimal models for abelian
varieties36 (it has over 300 pages). I wrote to Mumford in this matter, who says he
will have no time in the next months, do you think you would? Otherwise I will
publish it as it is, as it seems difficult to find a referee, and the stuff is doubtlessly to
be published, even if it is not completely OK in the details.

I started thinking on the cohomology of schemes, after reading your notes which
I find quite useful. (As for comments of detail, we will discuss about it when you
are here and we are organizing the seminar). I got a few results:

1) Let f be a proper morphism of locally noetherian schemes, then for any torsion
sheaf F on X , formation of Ri f∗(F ) commutes with arbitrary base-extension.
(It is equivalent to state that, for Y strictly local, i.e., the spectrum of a lo-
cal hensel ring with separably closed residue field, the maps Hi(X ,F ) →
Hi(X0,F0), where X0 is the special fiber, are isomorphisms.)

2) Let f be as above, assume F a constructible torsion sheaf (constructible means
that, for any x ∈ X , the restriction of F to the closure Z of x is given by an étale
group-scheme over a nonempty open set of Z. It is equivalent to say when X is
noetherian that F is a noetherian object of the category of sheaves on X . . . ).
Then the sheaves Ri f∗(F ) are constructible.

The same should hold if f is only assumed to be of finite type, provided F is prime
to the residue characteristics. By virtue of 2), it is enough to show it for an open
immersion U → Y and F = �n. Whenever resolution of singularities is available,
one is even reduced to the case where Y is regular, and U the complement of a
divisor having only normal crossings, and then it would follow from the conjectural
statement about the Ri f∗(�n) when U is the complement of a regular divisor. Thus,
using your local result, we get:

3) Let f be a morphism of finite type of locally algebraic preschemes over a field
of char 0, F a constructible torsion sheaf on X , then the sheaves Rif∗(F ) are
constructible.

The same technique yields the comparison theorem:

4) Under the conditions of 3), assume the ground field is C, the field of complex
numbers. Then formation of Ri f∗(F ) is compatible with passing to the under-
lying “usual” topological spaces and sheaves.

The result 1) on base extension should be true if we drop the properness assump-
tion, assuming instead that F is prime to the residue characteristics, and that the
base change Y ′ →Y is “regular”, namely flat with geometrically regular fibers. This
would be applicable to situations like Y a “good” local ring, and Y ′ its completion,

36 Published in Publ. Math. IHÉS 21 (1964) 361–484.
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or situations deduced from this one by base extension on Y , which would be a nice
thing to have in order to know once for all that, for instance, for cohomological pur-
poses, a “good” hensel ring can always be replaced by its completion. For the time
being I cannot prove that general result, even in characteristic 0 (NB when resolu-
tion of singularities is available, it can be shown to be equivalent with the statement
about the regular divisor in a regular scheme . . . ). However, using the local Lef-
schetz techniques, I proved your “key lemma”37 without resolution of singularities,
and from this:

5) The conclusion of 1) remains valid when dropping the properness assumption,
assuming f of finite type, F prime to the residue characteristics, and the base
change morphism Y ′→Y simple (which means regular and locally of finite type).

This implies the usual result on the cohomological structure of a regular scheme and
a regular divisor in it in various “relative” cases. Using this, and 1), one gets in a
pretty formal way:

6) Let f : X → Y be proper and simple, G a commutative group scheme over X ,
finite and étale over X , (we say that the sheaf defined by G is “locally constant”),
prime to the residue characteristics. Then the sheaves Ri f∗(G) on Y are equally
locally constant. The same holds true if we replace X by X − Z, where Z is a
closed subscheme of X simple over Y (but of course G has to be defined on the
whole of X ).

Truth to tell, I checked this only when Y is the spectrum of a discrete valuation ring,
but I think from this and 2) the general result should follow. I think also that 1)
will yield the Künneth formula for a product, over a field, of two preschemes one of
which is proper; of course, the same should hold true without properness, sticking to
coefficients prime to the characteristic. Of course, the main interest of 6) is to allow
computations of cohomology in characteristic p > 0 from transcendental results in
characteristic 0, just as for the fundamental group. Besides, the main steps in the
key results 1) and 5) are the analogous statements on fundamental groups. The main
techniques I developed so far in algebraic geometry have to be used: the existence
theorem on coherent algebraic sheaves, nonflat descent, Hilbert and Picard schemes
(the latter for nice relative curves only), Lefschetz techniques. Thus it was not so
silly after all to postpone Weil cohomology after all this.

Here is what I can say about the Brauer group Br(X) of a prescheme (more
generally, a ringed space). We define it as the group of classes of Azumaya algebras
over X , two such algebras A and B being considered equivalent if there exist locally
free sheaves E , F on X and an isomorphism

A⊗End(E )
 B⊗End(F )

or, what amounts to the same, if there is a locally free E and an isomorphism

Bo⊗A
 End(E ) .

37 A version of the “key lemma” here, also referred to as Mike’s “key lemma” in the last para-
graph of [1963Feb21], was published as Lemma 2.6 in SGA4 Exposé XV, on p. 196 of LNM 305,
Springer-Verlag, 1973.
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Viewing an Azumaya algebra of rank n2 as being defined by an element of H1(X ,
PGL(n)) (NB étale “locally finite” topology38), and using the obstruction (cobound-
ary) map corresponding to the exact sequence

e→Gm→ GL(n)→ PGL(n)→ e ,

one obtains a homomorphism39

c : Br(X)→ H2(X ,Gm)

which is always injective (as results formally from the fact that the vanishing of the
obstruction means the possibility of lifting the structure sheaf to GL(n)). Denoting
by XZ the prescheme X with the Zariski topology, and using the map f : X → XZ

and the Leray spectral sequence, we get

0→ H2(XZ,Gm)→ H2(X ,Gm)→ H0(XZ,R2 f∗(Gm))→ H3(XZ,Gm)

(using R1 f∗(Gm) = 0); if X is regular this shows (using Hi(XZ,Gm) = 0 for i≥ 2):

H2(X ,Gm) = H0(XZ,BrX ) (X regular),

where BrX = R2f∗(Gm) is the sheaf on X whose fibers are the groups

H2(Spec(OX ,x),Gm) = Br(Spec(OX ,x)) .

The last equality comes from

Br(X)
 H2(X ,Gm) if X local,

as you noticed, since, by the choice of the topology, we have

(∗) Hi(X ,F ) 
 Hi(π ,H0(X̄ ,F ))

for any sheaf F , X̄ being the universal covering. (NB I do not know if we would
obtain the same result taking the étale topology you like best; this amounts to the
question whether, for X local, H2(X̄Mike,Gm) = 0.40 Did you check this result, at
least for X regular?). In fact, now that I am writing about it, I get aware that (lacking
the foundations on the étale locally finite topology, which I grant is not too nice), I
do not even know if (∗) above is true, therefore I do not know even for X local if
Br(X) = H2(X ,Gm).41 I wonder even if by chance the category of sheaves for the
two topologies (the étale and étale locally finite) are not equivalent, at least for X
normal say, so that the cohomological theory is the same for both; remember that
the covering families I take are by no means closed under composition, and that

38 This is the topology (etf), “topologie étale finie”; see SGA3 Exposé IV 6.3.
39 The typed formula reads Br(X)→ H2(X,OX ). The OX may have meant O∗X .
40 Here “the étale topology you like best” is the standard étale topology, denoted (et) in SGA3
Exposé IV 6.3. So H2(X̄Mike,Gm) = H2(X̄et,Gm).
41 The 2nd argument of this H2 was handwritten and looks like either OX or Gm.
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by saturating we may well come very close to the good étale topology of yours.
Anyhow, all I stated before is good taking any topology between the étale locally
finite and the flat quasi-compact one, the latter gives the “largest” H2(X ,Gm) (NB
they are included ones in the others), and, I hope, all Hi(X ,Gm) should be the same
in all these topologies, at least for the étale and the quasi-finite and flat one. The flat
topologies have the advantage that, for any n, we have the exact sequence

e→ �n→ SL(n)→ PGL(n)→ e ;

this shows for instance that the part of H2(X ,Gm) (and hence of Br(X)) coming
from H1(X ,PGL(n)) comes in fact from H2(X ,�n) and hence is annihilated by
n. If you write this as meaning that A⊗ A⊗ ·· · ⊗A 
 End(E ), some E , for any
Azumaya algebra A of rank n2, the tensor product being n-fold, I do not see any
direct geometric description of the E in terms of A!

As for your question whether Br(X) = H2(X ,Gm) in general, I very much doubt
it is true, even if X is regular.42 Granting it is true if X is local and regular, this
would mean that for variable U on a regular prescheme X , U � Br(U) is a sheaf
on X , or also that for any two open sets U , V and elements of Br(U), Br(V ) that
match in the intersection, there is an element of Br(U ∪V ) inducing them. Grant-
ing the standard local results (which are proved in algebraic geometry over a field),
this would imply that whenever Y is a closed subset of codimension at least 2 in X ,
and u an element of Br(X −Y ), it comes from an element of Br(X).43 All I could
do along these lines is remark that any element of H2(X ,Gm) can be represented
by an element of Br(U), where U = X −Y with Y of codimension ≥ 3 (using the
fact that a reflexive module over a regular local ring of dimension 2 is free). Thus

42 The cohomology group H2(X,Gm) in this letter is the cohomology for the étale finite topology
(etf). In the rest of this footnote we use the étale topology.

The Brauer group Br(X) is a torsion group. The cohomology group H2(Xet,Gm) is torsion if X
is regular, but not so in general. So any scheme X such that H2(Xet,Gm) is not torsion (so X is not
regular) will have Br(X) 	= H2(Xet,Gm); see 7) P.S. of [1963Feb23] (p. 685) for such an example.

Denote by Br′(X) the torsion subgroup of H2(Xet,Gm), called the cohomological Brauer group
of X . One can ask whether the canonical map Br(X)→ Br′(X) is an isomorphism for X quasi-
compact and separated. (If either the quasicompact or the separated assumption is dropped one can
produce counterexamples with X locally noetherian and integral.) It is a theorem of O. Gabber that
this “conjecture” Br = Br′ is true if there exists an ample invertible sheaf on X . Gabber’s proof is
unfortunately not recorded. A different proof is in a preprint by A.J. de Jong, A result of Gabber,
available from http://www.math.columbia.edu/˜dejong/

In the case when X is affine, this statement is proved in Gabber’s dissertation, Some theorems on
Azumaya algebras, published in The Brauer group (Sem. Les Plans-sur-Bex, 1980), pp. 129–209,
LNM 844, Springer-Verlag, 1981. Some other cases, including abelian schemes, toric varieties and
surfaces were known before Gabber’s general theorem. The reader can consult the survey article by
R.T. Hoobler, When is Br(X) = Br′(X)? in Brauer Groups in Ring Theory and Algebraic Geometry
(Wilrijk, 1981), LNM 917, pp. 231–244, Springer-Verlag, 1982. More references can be found in
the Math. Reviews articles MR2017247 (2005b:14032), MR1970808 (2004b:14029), MR1866495
(2002i:14023).
43 In the case when Y is regular, the purity result discussed here for torsion prime to the residue
characteristic can be found in Thm. 6.1 (p. 134) of A. Grothendieck, GB III : Exemples et complé-
ments, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, 1968, pp. 88–188. (In the
statement of Thm. 6.1 in op. cit. one should assume that Y is regular.)
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the first counterexample should be looked for in dimension 3. Here is a sugges-
tion for a “universal” counterexample44 over C: take the Eilenberg–Mac Lane space
K(Z/nZ,2), approximate it homotopically up to dimension d ≥ 2 by a nonsingular
variety, (this is possible, if I remember well, by a construction of Atiyah), and take
the canonical class in H2(X ,Z/nZ) and its image in H2(X ,Gm). The idea is that
perhaps one can give some nonempty necessary topological conditions on an ele-
ment of H2(X ,Z/nZ) to come from a projective (topological) bundle, or rather for
an element of H3(X ,Z)
 H2(Xtop,Gm) to be the Bockstein coboundary of such an
element of H2(X ,Z/nZ). To be precise, ask Bott (say) if the Bockstein of the canon-
ical H2(K(Z/nZ,2),Z/nZ) can be defined by a projective bundle on K(Z/nZ,2),
as an obstruction to lifting to GL(n), i.e., as the inverse image of a certain obvious
canonical class in H2(BPGL(n),Z/nZ). If not, we get the expected counterexam-
ple . . . . 45

Grothendieck to Mumford, 21 February, 1963

Bures 21.2.1963

My dear Mumford,

I think I can give an affirmative answer to your question. First note that, to give a
functor of the kind you say, is equivalent to giving a functor F : (Sch/S)◦ → (Ens)
endowed with a structure of O-module, where O is the functor T � Γ (T,OT), and
such that F be of “local type”, i.e., for every argument T , U � F(U) for U an open
set of T is a sheaf (of modules) on T , and that moreover the previous sheaf be coher-
ent. Your problem then is whether F is representable (in the usual sense) by a vector
bundle, in a way to respect the module structures. Of course, the question is local
on S, so we may assume S affine for simplicity, say S = Spec(A). It turns out that, in
practice, a functor F as above is in fact always defined via a functor M�G(M) from
arbitrary A-modules to abelian groups (or A-modules, this amounts to the same), by
putting F(T ) = G(B) if T = Spec(B), and deducing F(T ) in general by recollement.
I guess there should be a simple way of expressing in general equivalence between
giving an F or a G, via “Nagata’s trick” for instance, using, to define G(M) in terms
of F , the algebra DA(M) = A⊕M (M ideal of square zero) . . . but in fact I do not
care too much, as in practice one has a direct hold of G. The question therefore be-
comes to characterize (given a noetherian ring A) the covariant functors CA→ (Ens)
(CA = category of A-modules) which are representable by a module of finite type.
(To say that this functor comes from a functor with values in the category (Ab) of
abelian groups just means G is additive, i.e., transforms finite products into prod-
ucts). Here is a set of necessary and sufficient conditions, which give the answer in
those cases I have needed so far:

1) G commutes with filtering direct limits.

44 Cf. 5) in [1963Feb23] (p. 684).
45 What we have of the letter ends here, without a signature.
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2) G is left exact (which means also: additive, and left exact in the sense of additive
functors of abelian categories). Of course, due to 1), it is enough to check left
exactness for arguments of finite type over A.

3) For every noetherian algebra B over A, separated and complete for some J-adic
topology, and every module of finite type M over B, the map

G(M)→ lim←−G(M/Jn+1M)

is an isomorphism.
4) For every noetherian algebra B over A, and M a module of finite type over B,

G(M) is a module of finite type over B. (In fact, it is enough to check it for
B = A).

5) For every ideal J such that A/J 	= 0, there exists a nonnilpotent element f in
A/J such that, if we put B = (A/J) f , the “induced functor” GB : CB→ (Ens) is
representable by a B-module of finite type.

Conditions 1), 2), 3) are “exactness conditions”, in 3) it is enough to take the case
where B is either the completion of a local ring of A for the usual topology, or the
completion of A itself for some ideal J. 4) is a simple finiteness condition. In practice
3) and 4) are verified by the standard theorems of the type “finiteness” “comparison”
“existence” of EGA III, whereas 1) and 2) are about trivial. Condition 5), of “generic
representability”, is more delicate to verify in the applications. Restricted to prime
ideals J, this condition is equivalent to

5a) The function p� rankk(p) G(k(p)) on Spec(A) is constructible.

However, this does not imply 5) in general. If A is quotient of a regular ring
(harmless condition, by standard reduction steps to algebras of finite type over Z!),
5) is equivalent to the following:

5b) For every ideal J in A such that B = A/J 	= 0, and every module Ω of finite
type over A/J, there exists f ∈ B, nonnilpotent, with the following property: for
every prime p 	! f of B and every regular sequence ( fi) of parameters of Bp,
the canonical homomorphism

G(Ωp)⊗B

(
Bp

/(

∑
i

fiBp

))
−→G

(
Ωp⊗B

(
Bp

/

∑
i

fiBp

))

is an isomorphism.

(NB This condition is anyhow necessary, even if A is not a quotient of a regular
ring, and in the stronger form where one does not assume the fi to be a whole system
of parameters).

The main application I had in mind was in the following situation: let f : X → Y
be a proper morphism (Y locally noetherian), E , F two coherent modules on X ,
with F flat with respect to Y , and consider the functor

M � HomOX (E ,F ⊗Y M ) .

This functor is representable by a coherent sheaf P over Y (M is a variable quasi-
coherent sheaf on Y ). Same is true for ExtiOX

(X ;E ,F ⊗M ), assuming for sim-
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plicity Y affine, provided Exti−1
OX

(X ;E ,F ⊗M ) is identically zero (to ensure left
exactness). In the Harvard seminar I gave another simpler proof, valid only if E was
a cokernel of a homomorphism of locally free sheaves, for instance for f projective;
I was unable then to deal with the general case.

As a consequence of the previous statement it follows that, for f : X → Y proper
and flat and g : Z → X affine, the prescheme ∏X/Y Z/X exists and is affine over
Y , and of finite type over Y if g is of finite type. An important particular case is
the one when g is a closed immersion, i.e., Z is a closed subscheme of X , then we
get a closed subscheme of Y , whose points are the points of Y the fibers of which
are majorized by Z. In the general application I stated the proof of condition 5b) is
not quite trivial, and (apart from standard constructibility considerations) uses some
local duality theory!

By a very analogous technique, just a little more delicate, I was able also to
give a general characterization of those functors (Sch/S)◦ → (Ens) which are rep-
resentable by S-preschemes X which are locally quasi-finite and separated over S.
This criterion becomes especially handy in the important case when we want X to
be not only locally quasi-finite, but locally nonramified (for instance a monomor-
phism). In all cases which I have looked at, when I expected to find such a repre-
sentability, I have been able to prove it by this general criterion, of course indepen-
dently of any projectiveness assumption. For instance for correspondence classes,
Néron–Severi schemes when they are likely to exist etc. In particular, for any abelian
scheme I can construct the Néron–Severi scheme, for any two abelian schemes also
HomS-gr(A,B) and the scheme CorrS(A,B) of correspondence classes, etc. As an
application, if A is any abelian scheme over S locally noetherian and geometrically
unibranch, then A is globally projective over S. Another application is to the “flat-
tening functor” you discussed once about with Hartshorne, corresponding to a given
proper morphism f : X →Y and a coherent sheaf F on X , which we want to “make
flat over Y”. As a consequence, as I once mentioned to you, we get that, for any
proper scheme X over an integral noetherian S, there exists a nonempty open set
U in S such that the Picard scheme of (X |U)/U exists, and has various good extra
properties such as Picτ being both open and closed in Pic, flat over the base etc.46

However, this technique does not seem to give the case when S is not integral, even
assuming the Picard scheme over the local ring of the generic point exists. Anyhow I
do not intend to investigate this any further, as I have started at last working on Weil
cohomology and this keeps me busy enough. I got some satisfactory results, includ-
ing good behaviour of cohomology under specialisation, and I am quite optimistic
about cohomology being ready-to-use within the next one or two years.

I got a few byproducts about birational transformations, and I wonder if these
are known. Let f : X → Y be proper birational, X and Y regular schemes. Then
H2(Y,Gm)→ H2(X ,Gm) is bijective (birational invariance of the extended Brauer
group)—at least, for the time being, if everything is of finite type over a field, or
simple over the integers (these restrictions are certainly superfluous, and will be
eliminated with the solution of some pending local question in the case of a reg-
ular scheme and a regular divisor in it . . . ). Of course π1(X)→ π1(Y ) is bijective

46 Mumford’s comment in the margin: “NOT assuming f∗(OX ) = OS??” See also Footnote 25.
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by purity, and from this I can deduce47 that all geometric fibers Z are simply con-
nected. Hence Picτ(Z) is unipotent, and I believe is zero (this I checked if Z is of
dimension 1). Using resolution of singularities in the very strong form of Hironaka,
namely the fact that X can be dominated by X ′ deduced from Y by nice quadratic
transformations, (available for “good” preschemes of characteristic 0), it follows
also that Ri f∗(A) = 0 if i is odd, A any coefficient group prime to the residue charac-
teristics, hence Hi(Z) = 0 for i odd for such coefficients. I wonder if you can check
(I won’t think, counter-examplify!) such things in characteristic p > 0? Besides,
H2(Z,Gm) = 0 (perhaps assuming Z regular, I don’t remember exactly), in any case
H2(Z,�n) is “algebraic” i.e., equal to the image of H1(Z,Gm)48 (if n prime to the
characteristic of the ground field for Z). —I begin to realize it would be extremely
handy to have resolution for all “good” rings, as now seems reasonable; there are
still various things I cannot prove without. However I got Mike’s “key lemma”49

about A{t} without assumption on A, using local Lefschetz theory as expounded in
my seminar of last year. In fact, about every technique I worked out so far seems to
be needed to get the basic properties of cohomology of schemes in sufficient gener-
ality (and apparently, more will be needed still!).

Sincerely yours
(signed) A Grothendieck

Grothendieck to Michael Artin, 23 February, 1963

Bures 23.2.1963

My dear Mike,

I want to ask you a few questions and give some complements to my last letter.

1) What about Néron’s Manuscript?
2) What about Lichtenbaum’s notes of Grothendieck’s and Mumford–Tate’s sem-

inars?50

47 A proof of the hoped-for purity result, for torsion prime to the residue characteristic, is due
to O. Gabber, using methods in earlier work of R.W. Thomason, Absolute cohomological purity,
Bull. Soc. Math. France, 112 (1984) 397–406. Gabber’s proof can be found in K. Fujiwara, A
proof of the absolute purity conjecture (after Gabber), Algebraic Geometry 2000, Azumino (Ho-
taka), Adv. Stud. Pure Math. 36, Math. Soc. Japan, 2002, pp. 153–183. More information about
the purity conjecture can be found in Gabber’s 2004 Oberwolfach Report, On purity for the Brauer
group, Report No. 37/2004, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach Re-
ports 1 (2004), 1971–1973, European Math. Soc.
48 A typo in the original, “equal to the image of n”, is corrected here.
49 Lemma 2.6 in SGA4 Exposé XV, on p. 196 of LNM 305.
50 This refers to the Mumford–Tate seminar in the spring of 1962. Lichtenbaum’s notes on the
lectures by Grothendieck, Mumford and Tate have not been published. See also Remark 9.4.18 in
S.L. Kleiman, The Picard scheme, in Fundamental Algebraic Geometry, Amer. Math. Soc. 2005,
pp. 235–321, where the contents of Mumford’s personal folder for this seminar are described.
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3) I feel very silly lately, as I am wondering if the following is not always true:
Let X be a prescheme, X0 a closed subscheme of X , F an injective torsion sheaf on
X , then is F0 = F |X0 injective, or at least is it true that Hi(X0,F0) = 0, i > 0? The
analogous statement for Zariski topologies is false anyhow, but the étale topology
may resemble more to paracompact topologies! This would imply that, whenever
H0(X ,F ) ∼→ H0(X0,F0) for every torsion-sheaf F (which, for X noetherian, sim-
ply means that for every X ′ finite over X and connected, nonempty, X ′0 is connected,
nonempty), then Hi(X ,F ) ∼→ Hi(X0,F0), every i! Thus the 1◦) of my previous let-
ter would become evident (whereas my proof is a simple but nontrivial one, and uses
far more than just the “connectedness theorem” as would be the case if the “conjec-
ture” above were true). Moreover, it would give the analogous comparison theorem
for the spectrum X of any noetherian ring A separated and complete for some I-adic
topology, with X0 = SpecA/I, (which I have not proved as yet!)
4) I got a result on cohomological dimension of affine schemes, in a rather formal

way from the statement 1) of my previous letter (in fact I need only that, for X = P
1
Y ,

Y strictly local, and any torsion sheaf F on X , Hi(X ,F ) = 0 for i≥ 2).

Theorem Let F be a torsion sheaf on A
m
Y (Y strictly local, noeth. of dim. n), which

is “zero in codimension < d,” i.e., if x is a geom. point in codim. < d, then Fx = 0.
Then Hi(Am

Y ,F ) = 0 if i > m+ n−d, provided at least Y comes from a scheme of
finite type over a noeth. ring of dim.≤ 1 by “strict localization.”

Corollary 1 Let X be a closed subscheme of A
m
Y , of codimension ≥ d. Then

cd(X)≤ n + m−d .

Corollary 2 Let X be any affine scheme of finite type over Y , let a be the closed point
of Y and Y ′=Y−{a}, X ′= X |Y ′ , X0 = Xa = X−X ′, and ν = sup(dimX0,dimX ′+1).
Then

cd(X)≤ ν .

Corollary 3 Let X be an affine scheme of finite type over a field k, k sep. closed.
Then

cd(X)≤ dimX

(of course, in fact equality holds).

Corollary 4 Let Y be as in the theorem, and U an affine open subset of Y (for
instance U = Yf , some f ), then cd(U)≤ n. (Take m = 0 in the theorem).

From Corollary 3 follows the

Lefschetz Theorem Let X be projective over k sep. closed, Y a hyperplane section,
Y and X regular. Then the natural map

Hi−2(Y,FY ⊗ Ť )−→Hi(X ,F )

is surjective if i≥ n+1, bijective if i≥ n+2, where n = dimX. Here F is a locally
free torsion sheaf of order prime to the char, and T the “Tate sheaf” prime to char. k.
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This gives the result (which I understand from Tate you know already)

Hn(X ,�⊗n
N )
 Z/NZ

(X projective, simple over k, connected, N prime to the char, n = dimX ), and once
we have duality, by transposition, the usual statement

H j(X ,F )−→H j(Y,FY)

is a monomorphism if j ≤ n−1, bijective if j ≤ n−2.
N.B. I doubt not that the theorem is true for any Y , at least if Y is “good,” for

instance complete. I checked cor. 4 for Yf if dimY ≤ 2, any Y . Whenever cor. 4 is
true, it implies the following for the field of fractions K(Y ) of Y , when Y is integral:

cdK(Y )≤ n .

I wonder if this result can be proved directly in all cases.

5) The suggestion in the previous letter for a counterexample concerning the
Brauer group is somewhat inaccurate, in various ways. Anyhow, Serre checked there
is no hope to get a counterexample through topological obstructions, namely, for any
finite complex X and any torsion element ξ in H3(X ,Z), there exists a projective
bundle on X (some n), whose obstruction is ξ . Thus H3(X ,Z) = H2(X ,C∗) is really
the “topological Brauer group” of X !51

Besides, did you notice that the extended Brauer group H2(X ,Gm), for regular
X , is invariant under proper birational morphisms, at least whenever the standard
local theorem H i

Y (Gm) = . . . is true (for instance X of finite type over a field . . . ).
Thus, at least for surfaces over a perfect field (when resolution is available), Br(X)
is an invariant for the function field K (X a complete regular model).52

6) I tried again to prove that, for a “good” strictly local ring A, the fibers of
Spec Â→ SpecA are acyclic (for coefficients prime to the residue char. of A), and
simply connected (with same restriction on Galois groups). For the statement “sim-
ply connected” I can reduce, by local Lefschetz theory, to the case dimA = 2, A
normal, and to prove that thus any Galois covering of Â, unramified outside the ori-
gin, comes from a Galois covering of A. Thus we would be through if one could
resolve singularities at least in dim. 2! I have the feeling that the dim. 2 case is re-
ally irreducible in a way, and demands some other methods than those I know . . . . I
begin to respect dim. 2!

Sincerely yours,
(signed) A Grothendieck
i.e., Schurik

51 See Thm. 1.6 of Grothendieck, GB I, Séminaire Bourbaki 1964/65, no 290.
52 Proofs of results in this paragraph appeared in section 7 of GB III. They can now be comple-
mented using Gabber’s purity theorem mentioned in footnote 47 for [1963Feb21] (p. 682).
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7) P.S. It is not always true that Br(X) = H2(X ,Gm), even if X is local and normal
of dim. 2. In fact, if X is not regular, H2(X ,Gm) is not necessarily a torsion group.
To see this, look at the resolution

0−→GmX −→R∗X −→DX −→PX −→ 0

with R∗X the sheaf of rational invertible functions, DX the sheaf of Weil divisors,
PX the cokernel of R∗X → DX , which can be called the “sheaf of (strictly) local
divisor class groups.” The cohomology of X in dim 	= 0 with coefficients in R∗X , DX

is torsion, hence mod torsion we have

Hi(X ,GmX )≡ Hi−2(X ,PX) , i≥ 3 ,

H2(X ,GmX )≡ H0(X ,PX)/ ImH0(X ,DX) .

Assume, for instance, X has an isolated singularity x, let Ox (Ox) be the local ring
(resp. its strict henselization), thus

H2(X ,Gm) = Cl(Ox)/ ImCl(Ox)

when Cl is the divisor class group. Now there are I believe examples of Mumford’s
where Cl(Ox) = 0, whereas Cl(Ox) 	= 0, and even Cl(Ox) a nontorsion group (you
should check this point).53 Hence the counterexample.

One last remark: for a complete, nonsingular surface X over an alg. closed field,
we get an interpretation of b2−ρ as the rank of the module of points of order n of
Br(X), which is a free module over Z/nZ, where n is prime to the characteristic and
to the torsion of the Néron–Severi group.

Best regards to Jean and the kids,

(signed) Your Schurik

Grothendieck to Mumford, 11 June, 1963

Bures, June 11, 1963

Dear Mumford,

I understand you published something (e.g., so-called “pathology”54), please
send me a reprint; I hope you will put me on your general mailing list, if you have
one.

Matsumura lately told me he proved representability of Autk(X), X proper over
a field k, using Murre’s method.55 I then tested my criterion for representability of a

53 See [61a].
54 [61b] and [62a].
55 This result was published in H. Matsumura and F. Oort, Representability of group functors, and
automorphisms of algebraic schemes, Invent. Math. 4 (1967) 1–25.
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functor F/S by a scheme separated and unramified over S, I told you about, and got
more general results. For instance if X and Y are locally of finite type over a field
k, X proper over k, then there exists a finite separable extension k′ of k, depending
only on X , such that Homk′(Xk′ ,Yk′) is representable; thus, if k is separably closed,
Homk(X ,Y ) is representable. The analogous result holds if X , Y are locally of finite
type over S noetherian and integral, X being proper and flat over S, provided we
restrict to some open nonempty subset of S. Besides, without assuming S integral,
but say X with integral geometric fibers and admitting a section along which X is
simple over S, HomS(X ,Y ) is representable. The general result from which these
can be easily deduced is as follows: Let X , Y , Z be locally of finite type over S, X and
Y proper and flat, let φ : Z→ X be given (for instance, Z is a flat finite multisection
of X/S), hence a homomorphism of functors

F = HomS(X ,Y )−→ G = HomS(Z,Y ) ;

consider the subfunctor U = Fφ of F where F→G is unramified, more precisely, its
points with values in S′/S consist of those u′ : X ′ → Y ′ such that, for every s′ ∈ S′,
the following map be injective:

HomOX ′
s′
(u′∗s′ (Ω

1
Y ′

s′
),OX ′

s′
)−→ HomOZ′

s′
(v′∗s′ (Ω

1
Y ′

s′
),OZ′

s′
) ,

where v′ = u′φ ′. This functor U is an open subfunctor of F (and the idea is to
exhaust F by such open subfunctors Fφ , with suitably large Z’s). Look at the induced
homomorphism

U = Fφ −→G ;

the result is that this homomorphism is representable by unramified separated mor-
phisms. As a consequence, if G = HomS(Z,Y ) is representable, so is Fφ .

It is possible that, for any X , Y over S as above, HomS(X ,Y ) is representable
locally for the flat quasi-finite topology; this can be checked (even for the étale
topology) when X is simple over S, or only with separable fibers. A question which
is not solved by the method is (in the case of a ground field) whether the connected
components of Homk(X ,Y ) are of finite type over k; I suspect not.

Murre is in Bures for one month now. He is trying to prove his general crite-
rion of representability for group functors, dropping the commutativity condition,
and the last two conditions (Rosenlicht’s condition, and the separation axiom), by
relying still more on the techniques of formal moduli and descent. The idea is to
construct first the local ring of the generic point of the connected component of e,
by the smallest ring of definition for the canonical point of the functor G with val-
ues in the function field of the formal group prorepresenting G at e, and then use an
easy generalisation of Weil’s theorem on group varieties to construct the whole con-
nected component. But there are considerable technical difficulties involved, such as
effectivity criteria for “birational” equivalence relations or “birational” descent data
(everything in nonflat, nonfinite, cases). It would be quite a progress for the non-
projective construction techniques if Murre could overcome these difficulties, even
if the final theorem on representation of group functors should not be of frequent
use. Perhaps Murre will run a seminar on formal moduli in 64/65.
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Anything new going on there? Here Bass proved a beautiful theorem using his
K1 functor of rings, namely for SL(n,Z), n ≥ 3, the topology of subgroups of finite
index equals the topology of congruence subgroups.56

Sincerely yours
(signed) A Grothendieck

Grothendieck to Mumford, 5 August, 1963

5.8.1963

My dear Mumford,

Thank you for your letter. I am glad you had such an interesting time in Japan.
However, for the time being I do not think of traveling myself, and probably my first
long trip abroad will be to Harvard, in perhaps two years or three. I am sorry to hear
Hironaka accepted a position at Columbia and will not be around in Cambridge any
longer. Couldn’t he get a comparable salary at Brandeis?

I knew in effect that it was possible to check Serre’s conjecture on the tangent
space of Picred by duality, when I wrote the last formula of SGA1 XI; but I never
actually did it.

Let X/k be proper, and for every xi ∈AssOX , let yi ∈ x̄i, and let ki be the separable
algebraic closure of k in k(yi). Let k′ be a field extension of k that splits all of the
extensions ki/k. Let Y be any locally algebraic scheme over k, then Homk′(Xk′ ,Yk′)
exists. As you see, there is no need for the geometric irreducible components of
X/k to be defined over k′. The proof is easy by the general result I stated in my last
letter. Besides, in all this, a more general and more convenient point of view is to
abide with the functor∏X/k Y/X when X proper over k, and Y/X given; everything I
did applies to this situation. Besides, instead of assuming that k′/k splits the ki/k, it
would be enough to assume that∏k′i/k′(Yyi)k′ are representable (where k′i = ki⊗k k′).
For instance if the fibers Yyi are quasi-projective, then∏X/k Y/X exists, and is in fact
an increasing union of a sequence of quasi-projective open subsets.

I have been pretty busy for the last two weeks writing an outline for Hartshorne’s
seminar on residues and duality. It takes me longer than I thought it would to put
things in a decent order, but I think I can begin typing in a few days and he will have
most of it by the end of August.57 Verdier has promised me to write an outline of

56 Published in H. Bass, M. Lazard & J.-P. Serre, Sous-groupes d’indice fini dans SL(n,Z), Bull.
Amer. Math. Soc. 70 (1964) 385–392.
57 This appeared in R. Hartshorne, Residues and Duality, LNM 20, Springer-Verlag, 1966. A com-
pendium, in which some of the tricky points are worked out in greater detail, was published in
B. Conrad, Grothendieck Duality and Base Change, LNM 1750, Springer-Verlag, 2000. An exten-
sive account of the developments in the theory since Grothendieck’s manuscript, written by J. Lip-
man and entitled Notes on derived functors and Grothendieck duality, will appear in: Foundations
of Grothendieck Duality for Diagrams of Schemes, LNM 1960, Springer-Verlag, 2009, pp. 1–261.
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those results on the foundations of homological algebra I told him I would need. I
think, in order to get started, Hartshorne should take these foundations as granted, at
least as far as proofs are concerned. Anyhow, as you know, it is planned that Verdier
comes to Harvard in 64/65, and he will give probably some course or seminar on
homological algebra and duality for topological spaces (the results being formally
exactly parallel to duality for coherent modules on schemes).

As for me, I am running two joint-seminars next year, one with Demazure on
group schemes, continuing the one of last year (the writing down of my own talks
is far from finished and takes a long time!), one with Mike on étale cohomology. I
hope we will have time to include duality and the application to L-functions over
finite fields.

I will be interested to know what is going on in Harvard, and especially what you
are doing yourself. Is there no resolution of singularities for good schemes in view?

Yours
(signed) A Grothendieck

Grothendieck to Mumford, 16 September, 1963

Bures Sept. 16, 1963

Dear Mumford,

Artin transmitted your question concerning passage to quotient in analytic spaces,
to construct a Picard modular space as stated in my talk in Cartan’s Seminar.58

Looking back at it, I see I used without proof the following fact, (which I hope is
not false!): if X/S is a projective flat scheme such that OS

∼→ f∗(OX ) universally,
looking at the modular space F for immersions X → P

n
S of the special type consid-

ered loc. cit., is it true that PGL(n+1)×F→F ×F is an immersion? (Or at least,
when S is of finite type over C, a homeomorphism into for the usual topologies).
To prove it is an immersion is equivalent to the following: Assume S = SpecV , V
discrete valuation ring, and assume i1, i2 : X ⇒ P

n
S are given, such that on the two

fibers, i1s and i2s : Xs → P
n
s (s ∈ S) are conjugate, to prove i1 and i2 are conjugate

under an element of PGL(n+1)(V ). Can you say something about this problem?59

Yours
(signed) A Grothendieck

58 See Séminaire Henri Cartan 13, 1960/62, Exposé 16, Thm. 3.1 and its proof.
59 Mumford’s comment at the bottom margin:
Have λ : Gm −→ PGLn+1 , Zi ⊂ P

n , Zi −→ Z .

Assume αi ∈Gm s.t. Zi ↪→ P
n λ (αi)−−−→ P

n approaches Z ↪→ P
n.

Say H0(OZ) = k , H1(OZ(1)) = (0) , H0(OPn (1)) ∼−→ H0(OZ(1)) .

⎫
⎪⎬

⎪⎭

?=⇒ αi have a limit
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Grothendieck to Mumford, 1963/4 undated60

Dear Mumford,

Thanks for your letter, and also for your manuscript on “Geometric Invariant
Theory”, which I have not quite read through yet. I noticed in Chap I some inaccu-
racies (for instance concerning questions of openness of morphisms), a detailed list
would perhaps be tedious. I hope in the final draft the cross-references will be easier
to find than in the one I read, where I did not always succeed to get the right ref-
erence. One remark on terminology: your use of the word “reductive” seems to me
misleading, as it conflicts with the terminology generally adopted (which Demazure
and I follow also in our seminar), couldn’t you invent some other word? Apart from
terminology, you seem always implicitly to assume your groups (at least the reduc-
tive ones) smooth over the ground field, without ever stating this. Strictly speaking,
your definition of “reductive groups”, in char p > 0, yields exactly the “multiplica-
tive type groups” i.e., the duals of usual discrete comm. groups (if k alg. closed),
including such groups as �p. Besides, I give a rather detailed study of these groups
(from a point of view of course very different from yours, and over arbitrary ground
schemes) in talks VIII to X of SGA3 (and you should get pretty soon talks VIII to
XIV, which are being bound).

I was surprised to find the corollary you missed in EGA III 7 was not there.61 In
a way, we should have repeated as corollaries, in sections 7.7 and 7.8., whatever we
did in the previous sections! But I agree the one you state is particularly useful, and
should not have been forgotten.

The references you ask: 62

a) f : X −→ Y open finite type, X , Y irred., Y noeth.
=⇒ f equidimensional, IV 14.2.2.;
converse if Y is normal (or geom. unibranch) IV 14.4.4. (Chevalley)

b) f : X −→ Y finite type, then x� dimx f−1 f (x) is upper semicontinuous
IV 13.1.3. (Chevalley)

c) f : X −→ Y finite type, X Cohen–Macaulay, Y regular, then f open⇐⇒ f flat
IV 15.4.2.

d) X
f

g

Y

h
S

Everything of finite pres., g, h flat, fs flat =⇒ f flat on Xs

IV 17 . . . . (I will have it more precise when Dieudonné is back from
Japan with the manuscript!)

e) X reduced of finite type over Z =⇒ X̃ finite over X
IV 7.7. (same remark as above). (Nagata)

60 We are placing this letter according to its position in Mumford’s file. [GIT] was written during
the academic year 1962/63 at the IAS.
61 The corollary in question was published by Mumford in [AV]; see the theorem towards the
bottom of p. 46. The same corollary is found in R. Hartshorne, Algebraic Geometry, Springer-
Verlag, 1977, Prop. III.12.2. Generalizations were studied in SGA6, and for applications to K-
theory see R.W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived
categories, The Grothendieck Festschrift, Vol. III, Progr. Math. 88, Birkhäuser, 1990, pp. 247–435.
62 In this paragraph IV = EGA IV and III = EGA III.
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f) PGL(m+ 1)S represents AutS(Pm
S ), will be in one of the later paragraphs of III

which have not been written up. A sketch of the proof, using available references
of Chap III, should take no more than half a page. The reason why I did not in-
clude it in III 4 was that I have to use the fact that Pic(Pm

k ) is the group generated
by O(1), for which one needs that the local rings are UFD . . . , which we had not
available there.

Besides, part 1 (out of 4) of Chap IV has just appeared, and you will have a
reprint pretty soon. It contains only IV and IV 1, part 2 (already at the printer)
contains paragraphs 2–7 (including the theory of “excellent local rings”), most of
the references you need are in part 3, (paragraphs 8 to 15), which will be given to
the printer within a month or two. Part one contains also the list of all paragraphs 1
to 21 (of which only the two last are still to be written in a publishable shape).

About your functor Mg(S ), I wonder what you mean by “ordinary double point”,
namely how are you to prevent (if you want the valuative criterion of properness)
two double points to collapse to a triple point? It seemed to me one should allow
multiple points of any order, but of “loose” type (as coordinate axes in n-space) so
that Pic(C) does not acquire a unipotent component. But I confess I did not think
this over seriously. By the way, Igusa seems to have a really beautiful nonsingular
projective model in char 0 for compactifying the usual modular varieties with levels,
which he has completely worked out for g = 2, but which according to him should
generalize to all g, for principally polarized abelian varieties.63

I am sorry not to have heard anything before on Schlessinger’s thesis,64 which
sounds interesting; but what you say about it is somewhat short for me to understand,
especially what you mumble about the case H0(g) 	= 0 and the smooth topology. If
some day there is anything mimeographed or printed available I would appreciate
getting a copy!

I did not prove anything noticeable in the last year, although I lately spent one
month or two trying to prove Weil’s conjectures. I have found lots of conjectures
on algebraic cycles,65 which I expect will keep me (and others perhaps) busy for
quite a while. Mike will tell you about it next month I guess. I’ll try again during
the vacation to prove something along these lines, it seems time at last to know
something at least on algebraic cycles which are not divisors.

Yours sincerely
(signed) A Grothendieck

63 The generalization of Igusa’s result mentioned here is known as the toroidal compactification;
see [SC] (= Smooth Compactification of Locally Symmetric Varieties).
64 Part of M. Schlessinger’s 1964 Harvard Ph.D. thesis was published as M. Schlessinger, Functors
of Artin rings, Trans. Amer. Math. Soc. 130 (1968) 208–222.
65 See A. Grothendieck, Standard conjectures on algebraic cylces, in Algebraic Geometry (Internat.
Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, 1969, pp. 193–199.
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Grothendieck to Mumford, 31 August, 1964

Bures 31.8.64

Dear Mumford,

I am just through reading Dieudonné’s final version of EGA IV paragraphs 11
to 15. You may be interested in our final version of Chevalley’s openness criterion,
which reads as follows

Theorem 14.4.1 Let f : X → Y be locally of finite presentation, y ∈ Y , x maximal
in Xy = f−1(y), assume y geometrically unibranch on Y . The following conditions
are equivalent:

(a) f is universally open at x (or, what trivially amounts to the same, at every
point in the closure of x in Xy).

(b) If z is the maximal generisation of y, i.e., the generic point of the unique
irreducible component Y0 of Y through y, there exists an irreducible compo-
nent Z of X, containing x and equidimensional over Y0 at x, i.e., such that
dimx Zy = dimZz.

(b′) For every open neighbourhood U of x in X, and every generisation y′ of y,
dimUy′ ≥ dimx Uy holds.

If Y is locally noetherian, these conditions are also equivalent to the following:

(c) f is open at x.

NB The equivalence of (b) and (b′) is about trivial, the essential part of the theo-
rem being (b)⇒ (a). This theorem gives as a corollary 14.4.2, equivalent conditions
for f to be universally open at all points of Xy, namely through conditions (b), (b′)
or (c) at the maximal points of Xy; however, it is easily seen that we may state these
conditions as well at all points of Xy, and also state equivalently

(b′′) dimUz ≥ dimUy for every open subset U of X .

As another consequence 14.4.8, we get a necessary and sufficient condition for a
morphism locally of finite presentation f : X → Y to be universally open. (In fact,
the criterion obtained is really a pointwise criterion on maximal points of fibers): if
Y ′ is the normalisation of Yred, it is necessary and sufficient that X ′ = X×Y Y ′ → Y ′
be open (universally so if Y is not supposed locally noetherian), which is equivalent
also to either of the conditions in terms of dimensions seen above. It is very likely
besides that everything holds without any reference to a noetherian condition, but
we could not settle this point (and I guess you do not care anyhow).

I included also a proposition of yours as follows:

Proposition 14.5.10 Let Y be noetherian, f : X→Y locally of finite type, surjective
and universally open. Then there exists a finite surjective morphism Y ′ →Y such that
X ′ = X×Y Y ′ admits sections locally over Y ′.

As a corollary 14.5.11, we state the conclusion you had in mind, namely that
if a morphism Y1 → Y , locally of finite type, becomes affine after the base change
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X → Y , then it was affine before. We also give the analogous descent statement
14.5.12 for ampleness of an invertible sheaf on Y1, relative to Y .

Thank you very much for your notes on surfaces,66 which I looked through with
pleasure. Here are a few comments and questions.

1◦ Page 8.1. you state the problem of the existence of a flattening stratification
for a proper morphism X → S and a coherent sheaf F on X , S locally noetherian.
Now this problem is practically solved, namely as I indicated to you in an old letter
of mine, the flattening functor in this case is indeed representable by a prescheme
S′ of finite type over S, and a monomorphism S′ → S. The only question which
remains (and I would rather guess the answer to be negative) is whether S′ → S is a
stratification; but this is, I believe, rather inessential for all applications. (NB as S′ →
S is a monomorphism it is automatically quasi-affine, a fortiori quasi-projective).

2◦ I appreciated very much your Chapter 14, particularly the theorem on
page 14.4. I did not check through the details of your proof, but I guess your result
holds true if, instead of taking sheaves of ideals, you take subsheaves, or equiva-
lently and preferably for my taste, quotient sheaves, of a fixed coherent sheaf? In
this form, your theorem is a significant amelioration of a finiteness theorem in my
Bourbaki talk on Hilbert schemes, namely loc. cit. 2.1. (where instead of “il faut”
one must of course read “il faut et suffit”). Now it would seem very likely that an
analogous quantitative version should equally exist for loc. cit. 2.2. (where instead
of ≤ s− 1 one should read ≥ s, and instead of s− 2 one should read s− 1; in the
reformulation 2.3 read s instead of s−1).67 Namely that the limitedness of quotients
F/Hi = Gi, as expressed, say, by the twisting n0 needed so that for n ≥ n0, both
Serre’s statements hold for Hi(n), can be estimated by a polynomial with respect to
the coefficients of degree ≥ s, if we restrict to quotients Gi such that the associated
cycles are all of dimension ≥ s (the polynomial depending only on X , F , OX (1)
and s). I wonder if you checked this variant of your theorem, which I would like
to consider as a starting point for a systematic “quantitative” version of the stan-
dard finiteness theorems (as once Mike told me about, à propos making quantitative
Noether’s theorem of finiteness of integral closure).68

3◦ I liked also Bergman’s Chap 26–27,69 and especially his universal Witt
scheme, realized as a formal power series functor. This meets with some old ponder-
ings of mine on power series beginning with 1, on which I make some comments in
my little paper on Chern classes (the appendix to the Serre–Borel paper). As I point
out there this is not only a ring, but a λ -ring (and even a “special” λ -ring), on the
other hand since Gabriel’s seminar on formal groups I had the feeling that the Witt
rings must also have a λ -structure (or something very close to it). Namely, accord-
ing to Dieudonné–Cartier–Gabriel, certain algebras over W∞(k) (the Witt vector ring
over the perfect field k) allow to classify, either commutative formal groups without

66 Published in [CAS] (= Lectures on Curves on an Algebraic Surface).
67 Mumford wrote a question mark (?) in the left margin.
68 Mumford wrote a question mark (?) in the left margin.
69 “Bergman’s Chap 26–27” appeared as Chap 26 in the published version.
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toroidal part (one might call them ind-unipotent), or ordinary unipotent algebraic
groups (the two classifications being in fact dual), in terms of modules over these
algebras. Now, in the categories in question, one has not only a structure of abelian
category, but also the notion of tensor product and consequently of exterior power.
Now this extra structure should be reflected in some extra structure of the mentioned
classifying algebra, and presumably, en dernière analyse, by W itself. This question
should certainly be investigated some day, and perhaps Bergman has a good starting
point. I guess, besides, you noticed that, analogously, the classifying space of the in-
finite unitary group of K-theory is not only a group in the hot-category, but actually
a λ -ring, and the same remark applies to the orthogonal case, these facts reflecting
simply the λ -ring structure of the K-functors.

4◦ The proof of the fundamental theorem, Chap 23, via Kodaira–Spencer, is
not really different from the proof in Chap 25. This is still more striking if one
has in mind Cartier’s own proof of his theorem on smoothness of algebraic groups
in char 0, or rather formal groups, which is precisely using the exponential, so I
suspect that what Kodaira–Spencer do is just giving Cartier’s proof. Besides, the
proof you give of Cartier’s theorem is also the one I intend to include in EGA; it
goes further for it proves also that if G is a group scheme locally of finite type over
a noetherian ground scheme S say, such that S is of char 0 i.e., lies over Spec(Q),
and that the sheaf ωG/S = I /I 2 (I is the augmentation ideal on G coming from
the unit section) is locally free on S, then G is smooth over S along the unit section
(and therefore on the connected components of the identity of the fibers). This can
be applied for instance to Picard schemes, where we have a direct construction of
ωG/S and where the assumption of local freeness of the latter just means that X/S is
“cohomologically flat in dimension 1” i.e., what amounts here to the same, satisfies
the base change property for R1 f∗(OX ) ( f is assumed flat, proper, with f∗(OX) =
OY universally). One remark which could have been made already in Chap 23 is
that Kodaira–Spencer’s theorem is valid as stated there, simply replacing the char 0
assumption by the assumption that PicX/k is smooth. It is not clear why in Chap 25
you feel obliged to give a weaker statement of the theorem, assuming H1(X ,L )= 0.

The result and proof in Chap 28 70 is really very nice and elegant. Suggestion
for a thesis: give a version of this theorem as a criterion for smoothness along the
unit section of the Picard scheme (or Picard proscheme) over an arbitrary base (or
an artin base, which amounts to the same). The right cohomological operations,
replacing Serre’s Bockstein operations when the base is not of a given char p > 0,
will clearly be the ones arising from the formal powers series scheme, and they
would seem to deserve more study.

5◦ I was interested by your numerical result on page 17.7. Do you have an anal-
ogous result for higher dimensional varieties? This reminds me also of some posi-
tivity questions I once discussed with Mike, which he promised he would tell you
about, (but I am not sure he kept his promise!). First take a surface (say projective
nonsingular), and the vector space over Q defined through numerical equivalence
of divisors, in this space we have the closed cone Q defined by the quadratic form,

70 Chap 27 in the published version.
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and, restricting to the part of degree≥ 0, the closed cone P⊂Q generated by ample
sheaves, whose interior consist exactly of elements having a positive integral mul-
tiple defined by an ample sheaf, and the closed cone R defined by positive divisors,
generating the cone R. By the prop. on page 18.1 Q◦ ⊂ R, hence Q ⊂ R, moreover
P ⊂ Q. Using this and Nakai’s criterion for ampleness, one finds that P = R◦, the
polar of R or R, hence R = P◦. This however gives not Nakai’s result, but it suggests
the following: if a divisor D is such that, for every divisor C > 0, one has C ·D > 0,
is it true that D is ample? A priori, we know only that it follows D2 ≥ 0, and by
Nakai this is almost what is needed to imply ampleness, namely we need D2 > 0.
Do you know the answer?71 More generally, if X is projective smooth of any dimen-
sion, D a divisor, and if D ·C > 0 for any curve on X , is it true that D is ample? Is it
true at least that D is in the closure P of the cone defined by ample divisors, which
would then imply DpZp ≥ 0, if Z is a subvariety of X of dimension p. This weaker
statement is certainly true on a surface, what about a threefold?72

I would like even a lot more to be true, namely the existence of a numerical
theory of ampleness for cycles of any dimension. Assume for simplicity X projec-
tive nonsingular connected of dim. n, let Ai(X) be the vector space over Q deduced
from numerical equivalence for cycles of codimension i (presumably this is of finite
dimension over Q), and Ai(X) = An−i(X) defined by cycles of dimension i, pre-
sumably Ai and Ai are dual to each other. Let A+

i be the closed cone generated by
positive cycles, and let Pi ⊂ Ai be the polar cone. The elements of Pi might be called
pseudo-ample, those in the interior of Pi ample (which for i = 1 would check with
the notion of ample divisor, if for instance the strengthening of Mumford–Nakai’s
conjecture considered above is valid). The strongest in this direction I would like
to conjecture is that the intersection of pseudo-ample (resp. ample) cycles is again
pseudo-ample (ample), thus the intersection defines

Pi×P j→ Pi+ j .

If i and j are complementary, i+ j = n, this also means that the natural map ui : Ai→
An−i maps Pi into A+

n−i (and one certainly expects an ample cycle to be at least

71 Mumford wrote a “NO” in the margin. A counterexample is in the next letter; see Footnote 74.
72 Mumford wrote a question mark (?) in the margin. This conjecture turned out to be true; a gen-
eralization to all dimensions (not just threefolds) was proved by S.L. Kleiman, Toward a numerical
theory of ampleness, Ann. Math. 84 (1966) 293–344. Given an irreducible projective variety one
says, in current terminology, that a divisor D on X is nef (or numerically effective) if (D ·C) ≥ 0
for every irreducible curve C on X . These generate a closed cone Nef(X) ⊆ N1(X)R in the finite-
dimensional real vector space of numberical equivalence classes of divisors. Kleiman’s theorem
is that the interior of Nef(X) is exactly the open cone of ample divisor classes. In particular, as
Grothendieck suggests, if (D ·C) > 0 for all curves C—or even if (D ·C) ≥ 0 for all C—then D
lies in the closure of the ample cone of X . (However Mumford’s example shows that these do not
imply that D is ample.) For a detailed discussion of these matters see Chapter 1.4 of R.K. Lazars-
feld, Positivity in Algebraic Geometry. I, Springer-Verlag, 2004; Kleiman’s theorem appears there
as Theorem 1.4.8 on page 44. It is equivalent to the assertion that the cone of nef divisors is dual
to the closed cone NE(X) ⊆ N1(X)R generated by all effective curves on X . Mori discovered
that parts of this cone of curves have a remarkable special structure, and this plays a central role
in the minimal model program. See Chapters 1–3 of J. Kollár and S. Mori, Birational geometry of
algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, 1998.
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equivalent to a positive one!). For i and j arbitrary, the above inclusion can also be
interpreted as meaning that the intersection of an ample cycle with a positive cycle
is again (equivalent to) a positive cycle. Of course, one would expect an ample
positive cycle to move a lot within its equivalence class, allowing to consider proper
intersections with another given positive cycle. I wonder if you have any material
against, or in favor of, these conjectures?

I am busy right now, granting Weil’s conjectures (via the Lefschetz and Hodge
type statements for algebraic cycles) plus Tate’s, to get the right feel for what should
replace the rational cohomology of schemes (there is certainly also something like
an integral cohomology, but this is too sharp for the time being), namely to define
the right category of “sheaves” and their basic properties.73 One striking fact, which
is certainly true, is that for a scheme X of finite type over the integers, taking l-adic
sheaves over X (l prime to the residue char.) arising through any simple “geometric”
construction (as higher direct images of Ql etc), say any of the Tate sheaves Ql(n),
the cohomology modules Hi(X ,Ql(n)) for variable l are canonically isomorphic
to some Hi(X ,Q(n))⊗Q Ql , where Hi(X ,Q(n)) is a certain vector space of finite
dimension over Q. Vaguely speaking, this is the (common) subspace of the elements
of Hi(X ,Ql(n)) which can be constructed “in terms of algebraic cycles”. . . . The
philosophy is here that in a way, for a scheme of finite type over SpecZ, the whole
of its cohomology is “algebraic” i.e., has direct arithmetic significance. For the time
being unfortunately, nothing new concerning the proofs of the basic conjectures.
All I did was to construct “intermediate jacobians” in terms of cycles algebraically
equivalent to zero, the necessary majorization for the construction coming from the
l-adic Betti-numbers. But except for the definition, Ind duality for complementary
(to dimX−1) dimensions, which is practically part of the definition, I have no result
concerning these abelian varieties. (NB in the classical case, they correspond just to
a small piece of Weil’s intermediate jacobians).

Sincerely yours
(signed) A Grothendieck

Mumford to Grothendieck, 1964 undated

Dear Grothendieck,

Thanks for the long and very interesting letter. I’ve been thinking off and on for
the last 2 weeks on some of your questions.

(I)74 There is a surface F , with divisor D such that

(D2) = 0
(D ·C) > 0, all positive divisors C.

73 Mumford wrote a question mark (?) in the margin.
74 A counterexample to a question raised by Grothendieck in the previous letter. See Footnote 71.
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Proof. The idea is to take char = 0 and F to be a “generic” ruled surface over a
curve Γ of sufficiently high genus g, of even type (i.e., F = P(E ) where degc1(E )
is even). Then, mod algebraic equivalence, Pic(F) is generated by

f —the fibre of the ruling
E—any “unisecant”, i.e., cross-section of the ruling.

Then one may as well replace E by E− k f so that (E2) = 0. This E is the example.

One has to check (E ·C) > 0, all positive irreducible C.
The idea is this: say C is algebraically equivalent to aE +b f , hence (E ·C) = b; also
either a = 0 =⇒C = f or a > 0 =⇒C an a-fold covering of Γ .

1◦ K (the canonical class) is algebraically equivalent to −2E +(2g−2) f . Then

2pa(C)−2 = (C + K) ·C≥ a(2g−2)

since C is an a-fold covering of Γ . This implies immediately that b≥ 0 or a = 1.
2◦ If a = 1, b ≤ 0, then you have my “un-stable” ruled surfaces which depend

on only 2g− 1 parameters (as opposed to the 3g− 3 moduli for generic ruled
surfaces over Γ ).

3◦ If a > 1, b = 0, then F contains a curve C which is an unramified a-fold covering
of Γ .

3◦ (i) a = 2. Then we get a diagram
F×Γ C

F C

Γ
and F ×Γ C ∼= P(L1⊕L2) over C and F = F ×Γ C/Z2. It is easy to check
that there are very few of these ruled surfaces.

3◦ (ii) a > 2. Let C̃/C be a further unramified covering s.t. C̃/Γ is Galois with group
π . Let F̃ = F×Γ C̃. Then F̃ has ≥ 3 disjoint sections, so F̃ ∼= P

1× C̃, so

F = P
1× C̃/π .

Also the inverse image of C⊂F in F̃ is a set of≥ 3 sections {ai}×C̃⊂P
1×C̃

permuted by π . Therefore π acts on P
1× C̃ by a product of some action on

P
1 with the given action on C̃; there are only a few such, of course.

(II) Re limited families of sheaves of ideals I ⊂ OPn (the generalization to sub-
sheaves of any F is easy by the way). Let O/I = F . Let

P(m) = χ(F (m)) =
n

∑
i=0

ai

(
m
i

)

.

Then we know that determining a0, . . . ,an puts I in a limited family. Suppose you
go further and assume F has no 0-dimensional associated cycles. Fixing a1, . . . ,an
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does not put I in a limited family. The example is below. I notice that you don’t
prove that in Exposé 221 either (so there is no contradiction). (For ≤ s−1 in 2.2,
write ≥ s−1 and that seems to be what you proved). BUT:

If F has neither 0 nor 1-dimensional associated cycles, then we’re ok. In fact:

Theorem. Look at the set of all coherent sheaves F on P
n satisfying

i) χ(F (m))− χ(F (0)) = given P(m),
ii) F has no 0 or 1-dimensional assoc. cycles,

iii) Hi(F (m)) = (0), i > 0, m≥ n0.

Then there is a polynomial fn in n0 and the coefficients a1, . . . ,an of P such that

|χ(F )| ≤ fn(n0;a1, . . . ,an) .

Cor. If F = OPn/I , then by my arguments in Ch. 14, one verifies (iii) for an
n0 depending polynomially on a1, . . . ,an (n.b. control of H2 for I is the same
as control of H1 for F ). Hence one gets a polynomial gn(|a1|, . . . , |an|) s.t. m ≥
gn(|a1|, . . . , |an|) =⇒ I is m-regular.

Sketch of Proof :

Lemma 1. Let the coherent sheaf F on P
n be n0-regular, and let

χ(F (m)) =
n

∑
i=0

ai

(
m
i

)

.

Then

dimHi(F (n0− �))≤
(

�−1
i

)

·
n

∑
j=i

aj

(
n0− i−1

j− i

)

= gi,n(�,n0,ai, . . . ,an)
if �≥ 1, 0≤ i≤ n.

◦
Now, for any F , put D i(F ) = Exti

OPn (F ,Ω n
Pn). One checks that if H is a “good”

hyperplane, then

D i(F )⊗OH = ExtiOH
(F ⊗OH︸ ︷︷ ︸

FH

,Ω n−1
H )(−1) .

Call this D i(FH)(−1).

GENERALITIES:

1◦ Wi = suppD i(F ) has codim [at least] i, dim [at most] n− i .
2◦ For m� 0, dimH0(D i(F )(m)) = dimHn−i(F (−m)) .
3◦ (n− i)-dimensional components of Wi are exactly the (n− i)-dimensional

associated prime cycles of F .

(∗) Now say D i(FH) is n1-regular, i = 0,1, . . . , i0.

Then D i(F )⊗OH is (n1 + 1)-regular, 0≤ i≤ i0.
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∴ (as in Ch. 14)

H j(D i(F )(m)) = (0), j ≥ 2, m+ j ≥ n1 + 1.

Look at the spectral sequence of duality [here D i = D i(F )(m)]:

∗ ∗ ∗ ∗ · · ·
H0(D i0+1) H1(D i0+1) H2(D i0+1) ∗ · · ·
H0(D i0)

...

H0(D0)

H1(D i0)
...

H1(D0)

0
...

0

0
...

0

· · ·

· · · m≥ n1−1
↑

all transgressions are 0 here
not killed either.

Therefore

dimH1(D i(F )(m)) ≤ dim of (i+ 1)st term of abutment

= dimHn−i−1(F (−m))
≤ gn−i−1,n(n0 + m,n0,an−i−1, . . . ,an)

by lemma 1. Hence as in Ch. 14, we get estimate:

D i(F ) is n2-regular, where

n2 = n1 + 1 + gn−i−1,n(n0 + n1,n0,an−i−1, . . . ,an).

Prop. Using induction, we prove that there are polynomials Gn,i such that:

D0(F ) is Gn,0(n0,an−1,an)-regular,
D1(F ) is Gn,1(n0,an−2,an−1,an)-regular,

· · · · · · · · ·
Dn−2(F ) is Gn,n−2(n0,a1, . . . ,an)-regular,
Dn−1(F ) is Gn,n−1(n0,a0,a1, . . . ,an)-regular,
Dn(F ) is Gn,n(n0,a0,a1, . . . ,an)-regular.

◦
Now apply this to our case: by hypothesis (ii), get

Dn = (0), and Dn−1 has 0-dimensional support.

Therefore, ∃G(n0,a1, . . . ,an) s.t. all D i are G(n0,a1, . . . ,an)-regular. Hence, if m≥
G(n0,a1, . . . ,an)

dimH0(F (−m)) ≤
n

∑
i=0

dimHn−i(D i(F )(m)) = 0 .

∴ |χ(F (−m))| ≤
n

∑
i=1

dimHi(F (−m)) ≤ h(m,n0,a1, . . . ,an) . QED
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Example:

Family of 1-dimensional subschemes Xn ⊂ P
3 s.t.

(a) Xn has no 0-dimensional component
(b) deg(Xn) = 2, all n
(c) {Xn} not limited, esp. dimH0(OXn)→+∞ in n.

Proof : Xn is to be double line: 2�.
Let line � be x = y = 0, where x, y, u, v are homogeneous coordinates. Let Fn be a

surface x fn(u,v)+ ygn(u,v) = 0, where fn, gn homog. of degree n−1, no common
linear factor. Then Fn has degree n, Fn ⊃ �, and Fn is nonsingular along �. Let Xn be
the Cartier divisor on Fn, 2�; i.e., ideal is (x2,xy,y2,x fn + ygn). Then in fact:

0−→I −→OXn −→O� −→ 0 ,

where I is the invertible sheaf O�(n−2).

∴ dimH0(OXn) = n.

(III) Apropos of:75

V a n.s. projective 3-fold
D a divisor on V

(D · γ)≥ 0 for all curve γ ⊂V
2
2
3 ?

(D3)≥ 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

or of the stronger conjecture:

V a n.s. projective 3-fold
D a divisor on V

∀ surfaces F ⊂V , assume that the
divisor class (D ·F) on F is ample

2
2
3 ?

D ample on V .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2)

☞ I don’t know anything about their validity. However, they don’t look impossibly
difficult. Maybe the fellow Kleiman here will have an idea.

75 Of the questions raised below, we now know that III (1) is true; see Footnote 72. Aside from
III (1) and III (2) Mumford also wrote the following in the margin near this line in his copy of this
letter:

(D3) > 0
(D2 ·H) > 0
(D ·H2) > 0

=⇒
?
|nD| 	= 0

for some n

⎫
⎬

⎭

701



Correspondence 1958–1986

I’ve been working out Néron’s latest height paper for applications to Mordell’s
conjecture. Personally, Néron seems to me to make a real mess of his theory; but I
am finally seeing what it amounts to. It looks as if

a) there is an intersection theory on absolute surfaces (i.e., regular 2-dimensional
F , proper over Spec(Z)), and the index theorem is still valid,

b) as a consequence, if F → SpecR→ Spec(Z) is Stein factorization, g (= genus
of generic fibre over R) ≥ 2, and if there is an infinite sequence x1, x2, . . . of
rational points (i.e., sections of F/Spec(R)) then ∃ a > 0, b real s.t.

ht(xi)≥ 2ai+b (additive height)

or
ht(xi)≥ 2(2ai+b) (multiplicative height).

Best wishes,
(signed) David Mumford

Grothendieck to Mumford, 19 December, 1964

Bures 19.12.1964

Dear Mumford,

Can you please tell me if you have a counterexample to the conjecture, say, that
in the category of complex analytic spaces (or schemes over C . . . ) the functor cor-
responding to the classification of projective nonsingular surfaces with polarization,
without automorphisms, is representable. What if we do not put the polarization in
the structure, working in (Sch)/C say, and still restricting to structures without au-
tomorphisms? All I definitely remember is that you made an example showing the
modular space is not separated. Did you ever publish examples of that kind?

I take the opportunity to ask you if you know an example of an algebraic surface
(proj. nonsingular) over C, whose H2 is spanned by algebraic cycles, which is not
ruled? Or where moreover H1 = 0, and which is not rational?76 In fact, there are
analogous question for varieties of arbitrary dimension . . . .

Sincerely yours
(signed) A Grothendieck

76 If we interpret H2 and H1 as the Betti cohomology with coefficients Q, then any Enriques surface
X gives an example Grothendieck asked for. Indeed we have h2,0(X) = h0,2(X) = 0, h1,1(X) = 10,
so H2(X(C), Q) is spanned by fundamental classes of divisors. Moreover π1(X(C)) ∼= Z/2Z, and
H1(X(C),Z) = (0).
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Grothendieck to Mumford, 17 January, 1965

17.1.1965

Dear Mumford,

Thank you very much for your letter answering my questions concerning moduli.
I am not sure I understand well what you mean though, and would appreciate some
more precise information, if possible.

a) Let F be some open subfunctor of the following one G: G(S) = set of all classes
(up to isomorphism) of X projective and flat over S, satisfying H0(Xs,OXs)

∼←−
k(s), endowed with polarization (i.e., section of the Pic functor over S) which is
very ample on each fiber and satisfies H1(Xs,Ls) = 0, dimH0(Xs,Ls) = N for
every s (these last restrictions for mere convenience), and every Xs “without au-
tomorphisms respecting the polarization”. By a standard argument using Hilbert
schemes, if one assumes that F corresponds moreover to a fixed Hilbert polyno-
mial, F is just a quotient M/G, where M is a projective scheme over Spec(Z) and
G the projective group operating freely on M. As far as I understand from your
letter, you have no example to the effect that F , i.e., M/G, is nonrepresentable
by a prescheme (of finite type over Spec(Z) necessarily!); the phenomenon you
allude to when speaking of “birationally ruled surfaces” is just the fact that if
you do not exclude these, your functor F will be nonseparated and more pre-
cisely the image of G×M in M×M will be nonclosed? On the other hand, when
working in the category of analytic spaces rather than preschemes, you state (at
least in the case of surfaces) you are pretty sure the quotient is representable—
at least when you exclude the above-mentioned surfaces. Now I once verified a
general theorem of passage to quotient, in the context of analytic spaces, by a
flat equivalence relation R ↪→ M×M, the conclusion being that the quotient is
representable if and only if R ↪→ M×M is an immersion (or what amounts to
the same, iff the topology of R is induced by the one of M×M); of course, if this
condition (trivially necessary) is satisfied, then M/R is separated if and only if
the immersion R→M×M is closed. Now in the case when the analytic situation
comes from an algebraic one over C, immersion, respectively, closed immersion
in the algebraic or in the analytic sense is the same. On the other hand, in the
algebraic case, we have the valuative criterion in order to check immersions, re-
spectively, closed immersions. Thus we are led exactly to the following question:
Let X/S be a polarized scheme as above, corresponding to an element in F(S),
S being the spectrum of a discrete valuation ring, let X ′/S be another one, let s0

(s1) be the special (generic) point of S, assume that Xs1 and X ′s1
are isomorphic,

and Xs0 and X ′s0
isomorphic (by “isomorphism” we mean one respecting polar-

ization; it must be necessarily unique). Is it true that X and X ′ are isomorphic?
An affirmative answer is equivalent with the statement that R ↪→ M×M is an
immersion, and if we restrict to S lying over Spec(C), or simply “of char 0”, it
is equivalent with the possibility of passing to the quotient analytically. Do you
have any result concerning this question? Did you actually check that, when re-
stricting to surfaces which are not birationally ruled, you even have the stronger
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result about R ↪→M×M being a closed immersion, i.e., Xs1 and X ′s1
isomorphic

implies X and X ′ are isomorphic? The ideal would be to be able to state some ge-
ometric conditions on the fibers of X/S characterizing those F for which either
of the two valuative conditions are satisfied.

b) I did not understand your motivation for the feeling that, when dealing with vari-
ation of structure for nonpolarized analytic varieties without automorphisms, the
functors you get will generally not be representable. The case of infinite discrete
groups operating badly (as in the case of complex tori) seemed to me to occur
precisely because of the existence of automorphisms, which I have excluded. On
the other hand, your BlowF functor is not an open subfunctor of the big functor
I was considering, and the big one might be representable without the small one
being so. In other words, it may happen that you have a family X/S of surfaces
“without automorphisms”, such that the condition making the fibers birationally
equivalent to a given fiber (a rather screwy condition by the way, of which I
would expect nothing good anyhow) is not representable. What would be more
convincing would be a case when, on the local variety of moduli M for a given
analytic compact nonsingular variety X0 without automorphisms, there are points
s arbitrarily near to s0 where the family X/M is no longer modular, for instance
the Zariski tangent space to M at s has not dimension equal to dimH1(Xs,TXs).
I wonder if such kind of phenomena are actually known to you.

c) Serre told me about your remark on Siegel’s remark,77 which is extremely nice
indeed. Do you think one can recover also the case of arbitrary polarizations
(not necessarily separable ones)? I confess I am afraid that the additive type part
of the kernel of the polarization might make trouble, as introducing a continu-
ous set of indeterminacies . . . . Besides, have you got any results on the actual
dimension of the modular variety in char p > 0 for polarized abelian varieties
in the case of inseparable polarizations? You remember perhaps that the Zariski
tangent space becomes bigger than usual, which implies that the modular variety
must either have bigger dimension (which would imply that there are polarized
abelian varieties which do not lift to char 0) or else be nonreduced everywhere.
Did Serre tell you about his candidate for an abelian variety in char p which
should not lift (an inseparable quotient of the product of two elliptic curves with
Hasse invariant 0)?78

Sincerely yours
(signed) A Grothendieck

77 Neither Mumford nor Serre could remember exactly what this was about. Mumford suggested
that, maybe, it concerned reducing the moduli spaces of arbitrary separably polarized abelian vari-
eties (of a fixed degree) to the principally polarized case by isogenies.
78 Mumford announced in [69b] that every abelian variety in char p can be lifted to an abelian
variety in char 0. P. Norman and F. Oort, Moduli of abelian varieties, Ann. Math. 112 (1980)
413–439, completed this program, and also showed that the moduli space Ag,d of g-dimensional
abelian varieties with a polarization of degree d in char p has dimension g(g+1)/2. A theorem of
Mumford asserts that the local deformation spaces for Ag,d are of the form Spf(k[[t1, . . ., tg2 ]]/I),
where I is an ideal generated by g(g− 1)/2 elements; see Thm. 2.3.3 of F. Oort, Finite group
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Grothendieck to Mumford, 23 January, 1965

23.1.1965

Dear Mumford,

Thanks for your letter, I finally looked at your example with Blow2 and got your
idea,79 namely that the valuative criterion I was asking for becomes definitely false
if one does not include polarization into the statement—a strange fact in a way!
Do you know if for surfaces as the ones of your example, there are strict local
varieties of moduli, namely that the local variety of moduli (of Kuranishi . . . ) is still
modular at points near the center? If so, one gets an “open” subfunctor of the big
functor I told you about (except one is forgetting about polarization) which can be
written as M/R, M the little Kuranishi modular variety, R an analytic equivalence

relation which is étale (i.e., R
pr1−→M is étale) but R →M ×M not being an

immersion. It still would remain possible that one can represent the general functor
corresponding to varieties of (say) analytic compact spaces without automorphisms,
as M/R, M an analytic space and R an étale equivalence relation—a problem
equivalent, I guess, to whether the Kuranishi local modular variety is “strictly” so.

I have no particular use for an answer to the valuative question I asked you,
except that one certainly should know one day what is going on! Besides, I once had
to ask you the analogous question for the Picard functor, in order to prove theorem
3.1, page 16-13 of Cartan’s seminar 60/61; I begin to believe that this theorem is
probably false, as I do not see any reason why the corresponding valuative criterion
should be valid. You would probably be able to get a counterexample out of your
shirt’s sleeve, if you tried.

By the way, Raynaud remarked that if G → S is a group prescheme over S,
flat, of finite presentation, with connected fibers, then G→ S is necessarily sepa-
rated.80 This yields lots of cases where Pic0

X/S and PicX/S are not representable,
although the standard conditions (implying formal representability) are satisfied.
Take for instance X → S with S the spectrum of a discrete valuation ring, f proper,
X regular, [dim(X) = 2] generic fiber X1 smooth and geom. connected, special fiber
X0 = ∑νiCi (Ci prime divisors, νi > 0), let d = gcd((νi)). Then if d > 1, Pic0

X/S
is nonseparated and hence nonrepresentable, therefore PicX/S is not representable
either. Besides, if d = 1 one gets a canonical morphism of functors

ϕ : J 0→Pic0
X/S

scheme, local moduli for abelian varieties, and lifting problems, Algebraic geometry, Oslo 1970
(Proc. Fifth Nordic Summer-School in Math.), Wolters-Noordhoff, 1972, pp. 223–254. The two
results imply that Ag,d,n, classifying g-dimensional abelian varieties in char p with a polarization
of degree d and a level-n structure, where n≥ 3, gcd(n, p) = 1, is a local complete intersection.
79 Blow2 stands for the moduli space of 2 times blown up surfaces—subtleties arise when the
points come together, since the order of blowing up must be specified.
80 For a proof of Raynaud’s remark see SGA3 VIB, Propriétés générales de schemas en groupes,
Cor. 6.5 on page 351 of LNM 151, Springer-Verlag, 1970.
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where J is the Néron model of the Jacobian of X1, and Pic0
X/S representable⇐⇒

ϕ is an isomorphism⇐⇒ ϕ0 is an isomorphism (ϕ0 = ϕ⊗ k(S)). I do not know if
these conditions are always satisfied when d = 1.81

Sincerely yours
(signed) A Grothendieck

Grothendieck to Mumford, 16 April, 1965

Bures April 16, 1965

Dear Mumford,

I read through your nice notes from Woods Hole: “Further comments on bound-
ary points”.82 Unfortunately, my copy stops on page 7 with the words: “the curve
of genus 2 depicted below:”. Are there pages lacking, or were you making fun?83

I have just two mathematical comments: Page 4, lines 1 and 2,84 the equality
Pic(X) = Pic(X0) holds only in the stable case, otherwise you have to replace the Pic
groups by the Néron–Severi groups to have a correct statement. Page 5, line 10,85

it does not seem clear to me (but rather unlikely!) that Θ is really an isomorphism
of Mg with a locally closed subvariety of Vg, say N,86 all I know is that the im-
age N of Mg is indeed locally closed, and Mg → N is finite and radicial, and in
fact makes Mg a normalization of N (N turns out to be geometrically unibranch).
Your statement would mean that N is normal, which I doubt to be true. Besides,
line 11 87 reads Mg instead of M ′

g. Also, page 7, I did not quite see what you mean

81 The condition “dim(X) = 2” was inserted by the editors. The proof of the assertions about
Pic0

X/S and further information can be found in M. Raynaud, Spécialisation du foncteur de Picard,

Publ. Math. IHÉS 38 (1970) 27–76. The assertion that Pic0
X/S is not representable if d > 1 is part

of Thm. 2.1 on p. 66. The statement about ϕ : J 0→Pic0
X/S is proved in Thm. 8.2.1 on page 66.

The answer to the question in the last sentence is yes if for instance the residue field of the closed
point of S is perfect; see Thm. 8.1.4 on page 65.
82 [u64b] in this volume.
83 The missing picture depicting a stable curve of genus 2 was “a dollar sign lying on its side”; see
p. 604, Footnote 7.
84 p. 601, lines 1 and 2 in this volume; see also Footnote 4 in the same page.
85 P. 602, line 6 in this volume.
86 The Torelli map in [u64b] is indeed an immersion of Mg to Vg ; this is true over a field of
characteristic 0. However, the same statement may not be true over a field of characteristic p > 0,
and it is false when p = 2. See F. Oort and J. Steenbrink, The local Torelli problem for algebraic
curves, in Journées de géométrie algébrique d’Angers (juillet 1979) / Algebraic Geometry Angers
1979, Sijthoff & Noordhoff, 1980, pp. 157–204
87 This misprint in [u64b] is corrected in the retyped version in this volume; see p. 602, Footnote 5.
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on line 12,88 do you just mean to say that there is no natural definition, by analogy
with the previous discussions, of a notion of semi-stable curves?

One question about your result on page 4, giving as it seems an axiomatic de-
scription of the Satake compactification, analogous to the axiomatic description of
Vg itself: a) Is there a hope to get such a description over Spec(Z)? b) What about
throwing in “levels”? How should one define a level n rigidification on your group
schemes?

Sincerely yours

Grothendieck to Mumford, 4 October, 1965

Bures 4.10.1965

Dear Mumford,

Thank you very much for your notes on theta functions (pages 1 to 77),89 and
your book on geometric invariant theory.90 I was certainly pleased by the advertising
you are doing there for schemes, and flattered by the opinion you express in your
introduction on my own work. However, I am sorry to state I have not really read it
as yet, although this is in my program and the short size and vivid style will make
it not too hard for me to stick to it, I hope! I just had a quick reading of your notes
on θ -functions, which look very nice indeed; I hope, when you will have written up
the whole, you’ll send a copy of the remainder too. Maybe you could include too a
description of the group of automorphisms of the extension G(L ) (is the first letter
supposed to be a gothic G?),91 which will eventually act on the modular scheme,
and of what happens when you replace L by L ⊗n, variable n, as one would like to
know how the corresponding modular schemes match together. A paragraph giving
the connection with the transcendental construction would be nice too, for ignorant
people like myself,—or is this what you intend to do in your paragraph 6? How
do you intend to publish the theory? Another book would not seem a bad idea! In
this case, or for any other book you would care to write (e.g., theory of surfaces),
I would like to mention to you that Kuiper and I (and maybe a third man who is
still not well determined) are starting to publish a new series of advanced books on
pure mathematics, in North Holland Publishing Company, and we would certainly
appreciate to have you in the series. The first book in our program will be one of
Giraud on noncommutative homological algebra,92 essentially his thesis in fact. He

88 P. 603, line −1 in this volume.
89 [66a].
90 [GIT].
91 Grothendieck probably referred to a handwritten symbol in the original manuscript of [66a]; in
the published version it appeared as G (L).
92 Published as J. Giraud, Cohomologie non abélienne, Grundlehren der Math. Wiss. 179, Springer-
Verlag, 1971.
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did quite a good job, although to a great extent expository, and it will certainly
become a standard reference within a few years. For instance, I will have to use his
formalism intensively to formulate a Galois theory for motives. Besides, I am more
or less decided to write a book myself on the theory of motives, despite the fact that
it is likely that the whole theory will remain conjectural for a long time, so it should
be called a program of a theory rather than a theory.

By the way, I have the feeling that one main point in realizing something like
Kronecker’s “Jugendtraum” is a theory of moduli for motives, and it is already
clear to me how in this optic to generalize the Siegel generalized half-plane and the
Siegel modular group acting on it (these corresponding just to polarized motives of
weight 1). The deeper point is how to put an algebraic structure on the quotients one
obtains, and how to interpret geometrically these quotients as modular schemes for
polarized motives. Now this question should in essence be identical with the follow-
ing one, for which your present work perhaps may give you some idea. By a Hodge
structure, I will mean a free module of finite rank M over Z, together with a bigrad-
ing of the complex vector space M⊗Z C, having positive partial degrees, and total
degree n if we want a Hodge structure of weight n, and such that there should exist
a bilinear form φ : M×M→ Z, alternating or symmetric according as n is odd or
even, such that φC is compatible with the bigradings when C is considered of degree
(n,n), and that φC(ηx,x)(−1)n should be a positive definite Hermitian form on MC,
where η is multiplication by (−1)p on the component of first degree p. Such a form
will be called a polarization of the Hodge lattice M. If X is a projective nonsingular
variety defined over C, then by Hodge theory the lattices Hn(X ,Z) mod torsion can
be viewed as Hodge lattices, any polarization of X (in the classical sense) defining a
polarization of that Hodge lattice. In this way, one gets a functor from the category
of (semi-simple effective) motives defined over C (never mind what that means for
the moment!) into the category of Hodge lattices. Hodge’s conjecture just amounts
to saying that this is a fully faithful functor, at least when working modulo isogeny,
and I feel the whole story in this respect should be that it is even an equivalence
of categories. In a down to earth way, this essentially amounts to saying that any
Hodge lattice is isomorphic to a sub-Hodge lattice (in fact, a direct factor) of some
Hodge lattice Hn(X ,Z), always up to isogeny. By general principles, one should be
able to take dimX = n, (although this would not be a good idea when starting with
a Hodge structure of weight 1, as then the natural X to take would be the associated
abelian variety, not some generating curve on it), and to restrict to consideration of
the primitive part (in the sense of Hodge–Lefschetz theory, namely the part that, re-
stricted to a hyperplane section, vanishes). The problem then is to give, in terms of
the “transcendental data”: a polarized Hodge structure M, an explicit construction
of some canonical X , presumably with a definite projective embedding, realizing
that Hodge lattice, for instance as being isomorphic (or isogenous) just to the prim-
itive part of Hn(X ,Z). To do things quite canonically, probably something like your
θ -level structure will be required as an extra-structure on M. More important, the
construction should be so canonical as to carry over to continuous, and more specif-
ically, to complex-analytic families of Hodge structures (these being defined in a
rather evident way, but taking care that an “integrability condition” has to be sat-
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isfied in the complex analytic case). Also, in view of Kronecker’s dream, the finite
modules M/nM over Z/nZ, variable n, should be recoverable in some way on the
model X , say as finite subsets, as in the case n = 1 the points of finite order of an
abelian variety. This latter point, I confess, is still very vague in my mind; it will
have to be tied up with some extra structures on X , replacing the additive structure
of an abelian variety (maybe a “hypergroup” structure, as inherited for instance by
the quotient of a group by any finite group of automorphisms acting) . . . . Of course,
this would not be of any arithmetic use unless it also behaves properly with respect
to families. Besides, I feel much less positive about the possibility of this latter el-
ement of structure, perhaps the analogy with abelian varieties is fallacious in this
direction. After all, even without it, it will turn out that the transcendental func-
tions of passage to quotient, from the Siegel-type modular spaces (which can be
defined as certain homogeneous spaces of algebraic groups defined over Q) to their
algebraic quotient spaces (obtained by passing to the quotient by various discrete
subgroups, commensurable with the group of integral points) will allow a descrip-
tion of the various “motivic” classes of infinite Galois extensions, as generated by
values of transcendental functions constructed some way or other from the previous
ones.

One question about your theory of θ -functions. You always make that assump-
tion of separable polarization. But you have certainly noticed that for any abelian
scheme X over a base S, endowed with a polarization, defining a morphism X → X ′
with kernel the finite flat group scheme K, your definition yields a canonical exten-
sion

1→GmS→ E→ K→ 1,

and the group-scheme E operates on f∗(L ) whenever your polarization is given by
an actual invertible sheaf L (not a great restriction as you know). Maybe it’s nicer
to view K as acting on the Brauer–Severi bundle defined by the polarization! How
far does your theory extend to this case? For instance, do you know, when S is the
spectrum of an algebraically closed field, if this representation is still irreducible?
Because of the variety of possibilities of structure of K (as a nonseparable group
scheme), you cannot reduce all possible extensions E to a discrete set of standard
types, by which you then rigidify. However, nothing would prevent you from start-
ing with one extension E0, and looking at those polarized abelian schemes whose
extension E is locally isomorphic (for the fpqc topology, say) to E0, and looking at
modular schemes for these. Certainly Cartier’s theorem will tell you anyhow that
the alternating form K×K→ Gm is nondegenerate (i.e., K is autodual in the sense
of Cartier), thus the main point seems first to pick out a K with such an autoduality.
For instance, you can start with any flat commutative K′, and take K = K′ ×K′′,
with K′′ = D(K′) (Cartier dual). The case when you take precisely for K′ an étale
group, and K′′ its dual, is essentially the one you consider in your notes, but one
does not see any reason why to restrict to residue characteristics prime to rank K′;
in a way, you should still get then the more general polarizations in any characteris-
tics (namely those for which you have the maximum number of geometric points in
K)—they deserve not to get lost on your way! Besides, it looks an interesting ques-
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tion to determine, over a perfect field say, all finite commutative group schemes over
k endowed with an alternating autoduality—there should not be any difficulty to get
the complete picture and see whether any such K can be written as K′ ×D(K′) and
the obvious form on it (one will have to use Dieudonné–Gabriel’s structure theory
in terms of modules over the Witt vectors, together with the operations V , F . . . ).93

Maybe, even, you will be able to get in your system smooth modular schemes, which
might allow you to solve the problem of lifting an abelian variety to char. 0.94

Best wishes
(signed) A Grothendieck

Grothendieck to Mumford, 1 November, 1965

Algiers Nov. 1, 1965

Dear Mumford,

I have become aware that I have been a bit rash with the conjectures I told you
about Hodge structures, as in the form I stated them they contradict Tate’s conjec-
ture, which implies the following: if X is a smooth, connected simply connected
scheme over C, and V a polarized complex analytic family of Hodge structures
parametrized by Xhol, then V is “algebraic” only if it is a constant family. Now
it is easy to get examples of V ’s, (with X say any homogeneous space under an
affine group over C) which are nonconstant, therefore (one hopes!) not “algebraic”
(as one would like Tate’s conjectures to hold). However, one should try to test if
one really cannot get an algebraic V that way. To start, I wonder if a single Hodge
structure V with even partial degree (therefore giving rise to a “Hodge-group” G
s.th. GR is compact) can be algebraic (except when G is commutative). For instance,
do you know an algebraic smooth projective surface Y over C, such that H1,1(Y,C)
is spanned by algebraic cycles, and dimH0,2(Y,C)≥ 2??95 I would appreciate your
comments!

Yours,
(signed) A Grothendieck

P.S. What about your θ -functions, are you going to write a book?

93 Not every such K has this property: Let K be the group E[p] of p-torsion points on a supersin-
gular elliptic curve E over Fp. Then K is indecomposable, while the K is autodual via the Weil
pairing.
94 See Footnote 78, at the end of [1965Jan17].
95 In [1965Dec03], Grothendieck said that Mumford solved this question affirmatively.
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P.S. Here is what are the modular varieties one gets from considerations of motive-
theoretic Galois theory.

G = reductive connected alg. group defined over Q

UR = dimension one twisted real torus, with UR(R) identified with
the group of complex numbers of modulus 1

i0 : UR→ GR homomorphism of algebraic groups over R, s.th.
i0(−1) is central, and s.th. the centralizer KR of
i0(
√−1) is such that KR(R)0 is maximal compact

in GR(R)0. Moreover, for every R-simple compo-
nent of GR, the corresponding component of i0 is
not trivial.

CR = CentrGR
(i0)⊂ KR

Q = GR/CR

“Siegel-space” = S= G(R)0

G(R)0∩CR(R)

(a connected component)
Q(R)

N.B. S has a natural complex structure (inherited from the one on Q(R) in fact)
invariant by the operation of G(R). Every linear representation (over Q) of G in a
vector space V (over Q), together with a lattice V0 of V , defines a complex analytic
family V of Hodge structures (necessarily globally polarizable—to get a polariza-
tion of the family, one picks a “form of polarization” ϕ on V invariant by G) on
S, at least when one fixes a “total degree” n and assumes that i0(−1) operates on
V as the homothety (−1)n. (It is not hard to describe S by a universal property as
representing some functor F(X), X complex analytic, explaining that every V as
above should define, in an additive and multiplicative way for varying V , a Hodge-
structure V over X .) If Γ ⊂ G(R) is the group leaving V0 fixed, then Γ operates on
(V ,S).

Note that in general S is not Riemannian symm., but is a fiber space over a
R.S. space, with fibers which are projective complex homogeneous spaces under
KC. This implies at least that S is simply connected, hence is the univ. covering of
M = S/Γ if Γ operates freely.96

The modular varieties I expect to carry algebraic structure over Q (and morally,
Z) are the varieties S/Γ , where Γ ⊂G(Q)∩G(R)0 is commensurable with G(Z)
(for some matrix representation of G, giving a meaning to G(Z)). However, it is
possible that one will have to impose on the data some extra conditions, either arith-
metic (involving existence of “Frobenius elements” in I(Q), I = G/flat.aut.),97 or
geometric on GR (such as: GR has no compact factor). A typical case which fits
in the general description, but for which I have no evidence so far if S/Γ has an
algebro-geometric interpretation in terms of moduli for motives, is the following:
start with a vector space of finite dimension V over Q, with a fundamental bilinear
form ϕ given, symmetric or alternating, take G = SO(ϕ), take any i0 : UR → GR

s.th. i0(−1) = id (if ϕ is symmetric), i0(−1) = −id (if ϕ is skew-symmetric), and

96 This paragraph was written vertically in the left-hand margin.
97 The original is hard to read, e.g., “flat.” can be “int.”, but I is meant to be an inner form of G.
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a positivity condition of ϕ relative to the bigrading of VC defined by i0, which I
will not write down. Then S is a direct generalization of Siegel’s half-space, and
classifies all Hodge-structures with underlying Q-vector space V , i.e., all bigradings
of VC, satisfying the usual symmetry condition for complex conjugation, which are
compatible with ϕ (i.e., ϕ is a polarization), and for which the dimV pq

C
have given

values (depending on the weights of UC operating on VC . . . ). The truth is that, as
these special types of S, S/Γ are in a way “universal” for all others (namely the V ’s
considered above are induced from ones on such special type of S), if the “modular
family” V of Hodge-structures on such a S/Γ was “algebraic,” i.e., came from a
relative motive over the complex analytic space S/Γ , (or even on some underlying
structure of alg. var. over C), the same would be true for every modular family on
some S/Γ . Taking the case G(R) compact, and thus S/Γ = S = complex projec-
tive homogeneous space X under GC by Borel, we would get a polarized motive
over the analytic space S corresponding to X . If we admit the GAGA yoga (coming
from polarized abelian varieties) that such a family must also be a motive over X ,
(or the above strengthening of the original assumption), we get a contradiction with
Tate’s conjectures (because X is simply connected, as well known). So I really do
not know what to believe!98

To come back to the general case, maybe I should add that a necessary condition
for S/Γ to be algebraic and the Hodge-structure V/Γ over S/Γ algebraic too,
is (granting Tate’s and Hodge’s conjectures): for every g ∈ G(R)0, and every Γ0

of finite index in G(Z), the smallest alg. subgroup H of G such that HR contains
g[i0(UR)]g−1 and Γ0 is G itself.99 Question: If GR is semi-simple without compact
factor, is G(Z) always Zariski-dense in G??100

By the way: did you make out if, for the modular varieties S/Γ of your Boulder
talk (which I have just read), the image of S/Γ in the usual Siegel modular variety
is an algebraic variety, or at least constructible?101

Grothendieck to Mumford, 3 December, 1965

Bures Dec. 3, 1965

Dear Mumford,

Thanks for your letter. I am sorry my own from Algiers has not reached you. Be-
fore writing it all over again I’ll wait to see if by chance it has not gone by sea mail.

98 Mumford’s answer “PROBABLE ANS. ∼∃ alg. families of S/Γ (since S/Γ not alg. itself)” is
written vertically in the left-hand margin.
99 The following sentence was crossed out in the hand-written letter. “I did not try to test directly
this condition, even in the case of the usual Siegel modular space, if it should be false in that case,
as we know that S/Γ is algebraic and that so are the V /Γ over it, it would follow that either
Hodge’s or Tate’s conjecture is wrong.”
100 An arrow is drawn from this question to Mumford’s answer “Yes??” in the left-hand margin.
101 Mumford’s answer “I believe so, but haven’t written it down.” is in the left-hand margin.
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Please tell me if it should still arrive. Indeed a few days after my over-optimistic
letter of October I got more realistic on the matter of deducing more or less arbi-
trary families of Hodge structures from motives, as this was going to conflict with
Tate’s conjectures. In my Sahara letter, I was expounding for you in some detail my
perplexities, and gave also a detailed description of the complex analytic modular
varieties I had been interested in, generalizing the Siegel–Griffiths ones.102 I well
know they are not bounded domains in general, but fiber spaces over such bounded
domains, with fibers homogeneous spaces under complex linear groups . . . . This in
itself would not bother me. Nor do I understand what are the results of Griffiths, and
if they are really conclusive to the effect that there are no algebraic structures where
I first expected some. With the notations of your letter, did you mean to say that
for every Γ -linearized invertible bundle on D, H0(D/Γ ,L ⊗n) is zero (and this still
when replacing Γ by any subgroup of finite index, so as to achieve for instance that
Γ should operate freely)? Besides, I never got any reprint from Griffiths. If his result
concerns only the “canonical” bundle of highest differential forms, this alone does
not look so convincing. From my point of view, the main trouble is that it is very
easy, among the modular varieties I alluded to for varying Hodge structures, to get
any type of compact algebraic homogeneous space under a complex algebraic linear
group, for instance X = P

1, but such families cannot stem from a motive (say over
the field of functions of X , or its algebraic closure . . . ), without contradicting Tate’s
conjectures, which imply the following: let k be a field, (here k = C), K a “regular”
extension of finite type, M a motive over K such that the operations of Gal(K/K)
on Tl(M) = l-adic cohomology realization of M (some l prime to the char) is trivial,
then M comes from a motive over k (and in the case k = C, K the function field
of some X over C, this implies that the corresponding family of Hodge structures
on X , or some Zariski-open subset of X to be more accurate, is constant). Now P

1

is simply connected, and any family of Hodge structures parametrized by P
1 must

give rise to a trivial Tl ! Notice that I do not demand that the “family” of smooth
projective algebraic varieties, whose Hodge cohomology should contain the given
Hodge structure over X as part of it, needs to be defined on the whole of X ; it is
enough that it be defined on a Zariski-open subset 	= /0 (or only on some X ′ 	= /0 étale
over X ), in order to contradict Tate’s conjectures. As you surmised, what matters is
not that the given family of projective varieties should be nonconstant, but that its
Hodge cohomology (or rather, the piece of it we are looking at . . . ) should be so.
The question I was asking, about the existence of individual surfaces with ρ = h1,1

and h2,0 > 2, and which you solved affirmatively,103 arises when one wants to get

102 The “Siegel–Griffiths ones” and “results of Griffiths” below refer to the period spaces an-
nounced by P. Griffiths in Proc. Nat. Acad. Sci. USA 55 (1966) 1303–1309 and 1392–1395, ibid.
56 (1966) 413–416; later published in Amer. J. Math. 90 (1968) 568–626.
103 The question in [1965Nov01] asks for surfaces with ρ = h1,1 and h2,0 ≥ 2. The example given
by Mumford is not recorded, but is likely to have been an elliptic surface. The following example,
courtesy of P. Deligne, is closely related to modular forms. Let p ≥ 5 be a prime number, and let
f : E → X(p) be the universal elliptic curve over the compactified modular curve X(p) attached to
the principal congruence subgroup Γ (p) ⊂ SL(2,Z) of level p. The fibers of E over the cusps of
X(p) are cyclic chains of p copies of P

1’s. By the Leray spectral sequence for f and the Eichler–
Shimura isomorphism, the Hodge structure for H2(E (C),Q) is a direct sum of a Hodge structure
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such a compact simply connected modular variety for Hodge structures of degree 2,
by looking at the “Hodge-group” for it and asking that it be compact. By the way,
do you know any actual example of a Hodge structure which cannot be embedded
in the Hodge cohomology of an algebraic variety?

Sincerely yours
(signed) A Grothendieck

P.S.: Did you discuss a bit with Artin on the notion of motive?

Grothendieck to Mumford, 9 December, 1965

Dec 9.12.1965

Dear David,

I am glad to know you got my Algiers letter after all. Maybe you can say me a
few words more about Griffiths, as I asked already in my previous letter, which I
wrote Monday.

The fact that motives over any field form an abelian category follows from con-
jectures A and B of the letter to Serre of which I sent you a copy.104 These, I feel,
are considerably less remote than Tate’s and Hodge’s conjectures, at least I hope so.
By the way, why don’t you discuss a bit with Mike on motives—I spent about one
day telling him about the yoga. Also, in a letter from Algiers to him, I raised a few
questions, in connection with “p-adic” cohomology in char. p and Hodge cohomol-
ogy, with the hope that if some answers are negative, he or you would know and tell
me right away.

Motchane tells me you are planning to come to IHÉS in 1967/68. That would be
great—but please tell me if it is not just an extrapolation by M. of what you really
stated to him!

Yours,
(signed) Grothendieck

of type (1,1) and a Hodge structure of type {(2,0), (0,2)}. Moreover the type (2,0) Hodge com-
ponent is naturally isomorphic to the space of all cusp forms of weight 3 with respect to Γ (p).
The Hodge number h2,0(E ) is given by a standard formula for the space of cusp forms for Γ (p); it
grows like p3/12 as p→ ∞.
104 This 27 August 1965 letter to Serre was published in Correspondance Grothendieck–Serre,
Soc. Math. France, 2001, pp. 232–235.
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Grothendieck to Mumford, 9 May, 1966

Pisa 9.5.1966

Dear Mumford,

Thanks a lot for your preprint “Abelian quotients of the Teichmüller modular
group”.105 I have a few questions and comments.

P. 1 I think the formulation you give of Riemann’s existence theorem is due not to
Artin but to Serre, who gave a Bourbaki talk on this about ten years ago.106

P. 2 it seems to me that you prove th. 2 only in a weaker form, replacing “rational
maps” by “morphisms”. If th. 2 is true as stated, maybe you should show why.

P. 6 the lemma is due, I believe, to Matsumura (in his thesis). By the way, your
proof of b) using the assumption of blowing down, whereas the statement
works on any normal base, is somewhat misleading.

P. 7 cor. 1, do you know if “nonsingular” can be replaced by “normal”?
P.10 when you pretend you can compactify the modular variety for curves of genus

g, adding only pieces of codimension at least 2, should you not assume g≥ 3?
It seems to me Igusa has proved that for g = 2, the modular variety is affine.
In any case, I think it would be useful for the reader that you state somewhat
more explicitly what your and Mayer’s result says; (or is it really in your
Woods Hole talk?107).

P.15 the statement of Dehn’s main result, by a simple reference to the figure 2,
is not very clear. Maybe you could say what the generating curves are? One
thing I found very misleading when reading your drawings was the double
sense of the word “holes”, which you use in a certain sense p.14, whereas on
figure 3 it seems to mean a “handle”.

P.21 can you send me a reprint of [6]?

As a general impression, I found it kind of astonishing that you should be obliged
to dive so deep and so far in order to prove a theorem whose statement looks so
simple-minded. For instance, using linear pencils of plane curves, could one not
prove that any two sufficiently general curves of genus g can be connected by a
linear family of curves?

I recently got a general result on modular varieties for rigidified abelian varieties,
which I believe should be shared by all or at least many of the nonsingular algebraic
varieties you get from arithmetic type discrete groups operating on suitable homoge-
neous spaces—namely the following: if X is connected, reduced and locally of finite
type over the ground field k, with given geometric point x, then a morphism X →M
is known when you know the geometric point image of x, and the action on the fun-
damental groups π1(X ,x)→ π1(M, f (x)). This is a corollary of the following: if A,

105 Published in [67d].
106 See Thm. 1 of J.-P. Serre, Revêtement ramifié du plan projectif, Séminaire Bourbaki 1959–60,
no 204.
107 Referring to [u64b].
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B are two abelian schemes over X , l a prime number, ul : Tl(A)→ Tl(B) a homo-
morphism, and if the restriction of ul to x comes from a homomorphism Ax → Bx,
then ul comes from a homomorphism u : A→ B (of course unique).108 These results
I can prove only if k is of char 0, and the proof uses quite sophisticated means, such
as some very recent result of Tate’s on his “p-divisible groups” on local fields with
unequal characteristics, and Serre and Tate’s lifting theory for abelian varieties in
char p > 0. I wonder if you could think of any purely transcendental proof of the
same result? I am finishing writing up the story and will send you a preprint of the
proof pretty soon.

Best wishes

(signed) A Grothendieck

P.S. I am in Pisa till May 30.

Grothendieck to Mumford, 18 May, 1966

Manua di Pisa 18.5.66

Dear David,

I wonder if I did not misunderstand the last question of your letter (under the
name, devil knows why, of “a Mordell–Weil theorem”), as the affirmative answer
seems so trivial. Namely let A, B be abelian preschemes over any connected S of
char. 0, s ∈ S, us : As → Bs a homomorphism, claim: there exists a largest abelian
subscheme Z of A, such that us|Zs lifts to Z→ B, namely: if Z, Z′ are such, they are
majorized by a third one Z′′ having the same property. To see this, let v : Z×S Z′ →A
be the natural morphism, N its kernel. N is smooth over S (true for the kernel of any
homomorphism of proper and smooth group preschemes over an S of char 0, as you
will easily check), and of course proper over S. Take Z′′ = (Z×S Z′)/N. (NB This
exists even without projectivity assumption on Z×S Z′ over S, by the way, using a
general theorem of passage to quotient which, I believe, is stated in Murre’s talk
on unramified functors.)109 This Z′′ can be identified with an abelian sub-group-
prescheme of A. Of course, if us is a monomorphism, then for every Z as above,
Z→ B is a monomorphism, as the kernel is smooth and proper over the connected
S, and the fiber of said kernel at s is zero, hence also the whole kernel.

In char p > 0 or unequal characteristics, these results are no longer true, as fol-
lows from Koizumi’s example. It will be true however if S is regular of dimension 1
if, instead of insisting on sub-group-schemes Z of A, you look at morphisms Z→ A
whose kernel at every fiber is radicial, and on the maximal fibers reduced to 0.

108 This result was published in A. Grothendieck, Un théorème sur les homomorphismes des
schémas abélièns, Invent. Math. 2 (1966) 59–78.
109 Séminaire Bourbaki 1964/65, no 294.
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Why do you conjecture the Albanese varieties of the level modular varieties are
zero? It’s false for genus 1! What about genus two? What about the subgroups of
finite index, made abelian, of the integral symplectic group Sp(2g,Z), do you know
if they are finite?110 It seems clear anyhow that they cannot contain a factor Z,
because then the p-adic analytic group Sp(2g,Zp) would have an open subgroup
having a quotient isomorphic to Zp (if g ≥ 2, and using the nontrivial theorem of
Bass–Lazard–Serre111), which it cannot. But on the other hand, is it not known by
Borel–Harish-Chandra that the subgroups of finite index of Sp(2g,Z) are finitely
generated? If so, this would prove that made abelian they become finite. By the
way, thinking of the geometric interpretation of those subgroups as fundamental
groups, it occurs to me we know beforehand they are finitely generated, without us-
ing Borel–HC, so it seems I myself answered the question I asked you. This solves
also your g = 2 case, which you thought you had to solve separately, as for g = 2, the
two types of modular varieties, for curves or abelian varieties, are essentially bira-
tionally equivalent; or does that silly Galois-group Z/2Z cause serious trouble? Of
course it might . . . . By the way do not the Teichmüller groups, just as the Sp(2g,Z),
correspond to some algebraic groups, which could allow to apply the p-adic argu-
ment above? I confess I do not have any feeling so far for these Teichmüller groups.
It would be nice to have them fit in the general yoga of arithmetic type discrete
groups!

I am sorry for this somewhat chaotic letter. I came just back from Pisa where I
spent two hours trying without success to overshout the tremendous noise coming
from the street, while giving some introductory talk on l-adic cohomology. The
noise here is just killing, otherwise everything is quite nice.

Yours
(signed) A Grothendieck

Grothendieck to Mumford, 4 November, 1966

Massy 4.11.1966

Dear Mumford,

I do not see why I should take offense when you tell me your opinions on some
mathematical matters, all the less when I begged you to do so! As for your fears

110 The answer is “yes”: the abelianization of any subgroup of finite index in Sp(2g,Z) is finite
if g ≥ 2, for instance because Sp(2g,R) and Sp(2g,Z) both satisfy Kazhdan’s property (T). For a
more general statement on the finiteness of the maximal abelian quotient of an arithmetic subgroup,
see Chap. VIII, Corollary 2.8 on page 266 of G.A. Margulis, Discrete Subgroups of Semisimple
Lie Groups, Springer-Verlag, 1991.
111 Referring to H. Bass, M. Lazard and J.-P. Serre, Sous-groupes d’indice fini dans SL(n,Z), Bull.
Amer. Math. Soc. 70 (1964) 385–392. The congruence subgroup problem for the group Sp(2g,Z)
here is solved in H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem
for SLn (n≥ 3) and Sp2n (n ≥ 2), Publ. Math. IHÉS 33 (1967) 59–137.
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concerning the eventual inclusion of the SGA seminars into EGA go, I can assure
you that in every special instance, we (essentially Deligne and I) will decide to do
this work only if the duplication in substance is not excessive, if the treatment of the
known material can be made considerably simpler and more satisfactorily than in the
SGA texts. This question will not arise before chapter IX, anyhow, as nearly all the
material contemplated for the Chapters V to VIII (with the exception of part of what
might be included in VII) is not available in the literature even in imperfect form.
(Thus nearly everybody—and maybe you are the only exception—considers that my
Bourbaki talks on construction techniques are too condensed to be of another use
than one of preliminary information on what may be done, and a few indications of
proofs). If we go on with a comparable speed as in the past, these chapters alone will
keep us busy for another eight years or so, and by then we will have a clearer picture
of what would be most useful to do next—and maybe to decide whether we should
push the treatise any further at all. Of course in Chap VIII we will include about
all we will know by then on Picard schemes, including the existence questions you
allude to, about which I do not think I really know much more than you; Raynaud
is working on the question for pencils of curves though, and there are a few precise
results available in this case, including when the Picard functor is not representable.
I guess that within the next few years the things one would really like to know along
these lines will be clarified, and EGA VIII will be the equivalent of a book, giving
an account of a well-understood subject!

As for the very spirit of a treatise like EGA, similar to Bourbaki, I have experi-
enced so far that to write a really systematic treatment, even when including topics
which are considered well known, is in the long run the more economical thing to
do (on the one hand), and, by forcing you to more care and overthought on even
familiar matters, an incentive to new progress as well. Of course, it does not serve
exactly the same purpose, and should not be read the same way, as a paper or a
moderately sized book on a more limited topic. With this restriction in mind I still
believe (why should I not defend myself a bit!) that it is quite helpful to those who
want to work in the field, by relieving them many times from tedious tasks by the
possibility of reference to ready-to-use statements (not always is the situation as the
one you complained of for Künneth-type relations in EGA III!), and providing some
ready-to-use techniques.

I told Mlle Rolland to send you SGA3 3 and 4, and I hope you will finally get it!

Yours
(signed) A Grothendieck

P.S. I am sending you back in this same cover the paycheck from Harvard, as I do
not consider to have done any work there, and hence do not think it proper to take
any pay for it. I feel bad enough that I was obliged so abruptly and disappoint a few
nice people, including myself!
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Grothendieck to Mumford, 7 March, 1967

7.3.1967.

Dear David,

You once stated that you may be able to come to the IHÉS for something like
two months in spring 1968. I wonder if your plans have grown more definite now
and if you could tell us about it. There would be of course many people around here
very interested if you could come for some time.

I would like to ask you a mathematical question, related with some results of Bott.
One states that if there is, on a nonsingular analytic compact variety V , a holomor-
phic vector field with only isolated zeros, then the Chern numbers can be computed
in terms of the behaviour of the vector field at these zeros, and hence vanish if the
vector field does not vanish—a somewhat surprising result I found. The other states
that if a finite group G acts holomorphically on V , so that for g 	= e, g acts with only
isolated fixed points, then the Chern numbers mod N = cardG can be computed in
terms of the local action of the isotropy groups at the various points of V , and hence
if G operates freely, then the Chern numbers are congruent to 0 mod N (the latter re-
sult being rather trivial directly, by the way). Using a somewhat different proof from
Bott’s, by using Segal’s techniques, Illusie can extend the case of a finite group act-
ing to the case of a smooth proper algebraic scheme over any field, it seems.112 It
is plausible too that by using the Lefschetz–Verdier formula for coherent sheaves,
one should be able to work out an analogue of Bott’s result for a vector field in the
abstract case, however it seems that the method would yield information only for
the Chern numbers mod p. Now, the yoga is that in char. p > 0, to give a vector field
is not really better than to give an action of a p-group (for instance, if Ap = 0 resp.
Ap = A, giving A amounts to giving an action of �p resp. �p), and therefore I would
not really expect anything better than a result mod p to hold. But on the other hand,
of course, the last Chern class on V can be computed as the number of zeros (with
multiplicities) of the vector field A (as an integer, not only mod p). So an example
should decide what to expect. Thus, I would be pleased if you could find a surface
in char. p > 0 with a vector field that vanishes nowhere, and still such that c2

1 = K2

(K the canonical bundle) be 	= 0. Or let’s say it the following way: assume a sur-
face (projective, nonsingular) V be given in char. 0, with the group Z/pZ operating
freely on it, and assume that we can find a nondegenerate reduction of V into char. p,
in such a way that the given action extends to a free action of the group-scheme �p

say; now why should this imply that K2 = 0 (instead of K2 ≡ 0 mod p which we
know before-hand)? Of course, we must have c2(V ) = 0, because the c2 is invariant
under specialization, and the specialized V will have a nowhere vanishing vector
field; so there does in fact exist a nontrivial cohomological necessary condition for
being able to reduce as stated the situation into characteristic p.

112 Comments by L. Illusie: “The result which Grothendieck alludes to is in my paper, Nombres de
Chern et groupes finis, Topology 7 (1968), 255–269. However, I worked in the context of almost
complex varieties, with Atiyah–Segal K-theory. I didn’t discuss the case of smooth proper schemes
over an arbitrary field, and I haven’t written any other paper on this topic.”
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By the way, I would appreciate having your comments on my comments to your
proof of the Tate–Serre conjecture on the Néron model; do you agree with my criti-
cism? Did you think again about it? I did not, and I doubt I will have time to include
it into this year’s seminar.

Did I tell you that Raynaud and I decided to write a book on Picard together?
Also, Raynaud is willing to join us to finish writing up EGA (Chapters VI to VIII).
So maybe Picard will be part of EGA after all, but the point is not too important of
course. Raynaud is developing extremely nice representability theorems concerning
Pic in his seminar.

Yours
(signed) Schurik

Mumford to Grothendieck, 1967 undated113

Dear Schurik,

I thought about your question of finding a surface with �p or �p acting freely, yet
(K2) 	= 0, but I couldn’t find one. There may be a better chance with higher dimen-
sional varieties, since, using Kodaira’s classification and some old Italian theorems
(that I don’t trust), there would appear to be very few surfaces in char. 0 for which
c2 = 0, (K2) 	= 0.

About the Néron model: yes, your comments were quite correct and the “proof”
that you indicated in your letters to Serre does indeed use essentially local uni-
formization and my “proof” is quite false. However, I have applied my theta func-
tions to the problem, and, if K is a complete discrete valued field, residue char. 	= 2,
I think I can now prove both (a) the result on the monodromy and (b) the result
on the “stable” Néron model. I say “think” because I haven’t written down the de-
tails systematically. In fact, one should get a rather complete “structure theorem”
for these abelian varieties (I hope).114
⎧
⎨

⎩

K = complete discrete valued field, alg. cl. residue field k, char(k) 	= 2 .

C = K̂ = completion of alg. cl. of K .

Let X/K be an abelian variety.

Then, after replacing K by a finite algebraic extension, one constructs

a) an algebraic group Y/K of “toroidal” type, i.e.,

0−→G
r
m −→ Y −→ Y ∗ −→ 0 ,

Y ∗ an abelian variety ,
b) f : YC→ XC a rigid analytic homomorphism defined over K ,

113 This letter was written sometime between March and August of 1967—Mumford wrote [u67b]
in Maine during that summer before going to India. We are placing it here because the first part of
the letter answers a question in [1967Mar02].
114 See [u67b] in this volume, which, however, was written in the same summer.
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such that:

(I) Y ∗ has nondegenerate reduction, hence there exists a scheme Y /Spec(R)
(smooth, connected fibres) whose generic fibre is Y , whose special fibre Y
is again an algebraic group of toroidal type.

(II) f induces an algebraic isomorphism

f̄ : Y −→ [ connected component of special fibre of Néron model of X ] ,

where the latter group is stable under finite extensions of K.
(III) If

Y ′C = {x ∈ YC | the set of powers {xn} is bounded}
= {x ∈ YC |closure of x in Y meets Y } ,

115

then YC splits canonically:

0−→ Y ′C −→ YC −→ Γ r −→ 0

(Γ = value group of C) [ i.e., there is a canonical reduction of the structure
group (C∗)r of YC/Y ∗C to (integers of C)∗r ]. Then

Ker( f ) is
⎛

⎝
torsion-free, finitely generated
all its elements are rational over K

Ker( f )∩Y ′C = {0} .

(IV) For all finite algebraic extensions L/K, f (YL) = XL.

About visiting Paris in 1968 : yes, I would like to do this and I had meant to
write about this for some time. I would like to come for the month of May if this
is alright. I will be coming (from India) with wife, 2 kids, and a Norwegian girl
who helps with the kids. Perhaps you could ask your secretary to write me about the
kind of accommodation that is available? I understand the Institute maintains some
apartments? Thanks for your help in this.

Best Wishes,
(signed) David

115 The part “ Y meets Y ” in the second description of Y ′C was inserted by the editors. The original
words near the margin were cut off during the photocopying process.
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Grothendieck to Mumford, 2 May, 1967

Massy 2.5.1967

Dear David,

Thanks for your interesting letter on connections and stratifications. I had al-
ready wondered if by chance it is not always true for, say, a quotient of a power
series ring over a field of char. 0, that the formal de Rham complex is a resolution
of k, and if the de Rham complex for an algebraic variety, i.e., a scheme of finite
type over k, does not always yield the correct cohomology (this would be a conse-
quence, when X is complete, of a complex analytic variant of Poincaré’s lemma for
X , using Serre’s GAGA). I had noticed with some surprise that it works for quite
a few singularities of curves (like ordinary double points and cusps), and also a
few Artin rings, and did not succeed to construct an example of an Artin ring giv-
ing the wrong H0 of de Rham. So I am happy you got that silly question out of
the way. I wonder though if by chance it does not work right for sufficiently “sim-
ple” singularities? I will also appreciate very much getting details on your ideas on
compactification of the modular varieties and the connectedness theorem, as soon
as you have some notes available. Today I sent you by air mail a photocopy of the
notes on de Rham cohomology and crystals; they are still extremely sketchy, despite
the floods of sweat they took to the redactors, who I am afraid did not understand
too well so far what they were writing. I hope though that you will find the defi-
nition of the connection on de Rham cohomology explicit enough; I did not check
though that the curvature tensor was zero, but do not doubt this is so.116 Also you
will find, when X/S is smooth and moreover S of char. zero, a definition of the
absolute stratification of R f∗(Ω ∗X/S). As in the case of the connection, this does not

116 The fact that the Gauss–Manin connection has curvature zero was proved in N.M. Katz &
T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math.
Kyoto Univ. 8 (1968) 199–213.

Here are two additional pieces of information; they may be both correct:

(a) W. Messing informed us that he “believe[s] Grothendieck had checked [the same fact] also, by
the Autumn of 1967 (which was when the Katz–Oda paper was written).”

(b) In a letter to T. Oda, dated December 12, 1967, Grothendieck said:
“Thanks to you and Katz for your letter∗ on [the] integrability of the Gauss–Manin connec-

tion. I believe the same result should come out more conceptually, as well as the Leray spectral
sequence,† using the ‘crystalline site’, which allows an interpretation of de Rham cohomology
without using differentials. [. . . ] I did not know the direct proof you propose for integrability,
which looks interesting.”
∗ A letter from N.M. Katz and T. Oda to Grothendieck on November 20, 1967, announcing and

describing their algebraic proof of the integrability of the Gauss–Manin connection.
† Katz and Oda’s letter also said, “A similar idea provides, in special cases, the Leray spectral

sequence of de Rham cohomology which is conjectured at the end of your paper on de Rham
cohomology.”
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a priori imply a corresponding stratification on the cohomology sheaves Rif∗(Ω ∗X/S),
except in the case when we know that their formation commutes with arbitrary base
change. Now when f is proper, this condition (by the standard Künneth type ar-
guments) also just means that the Rif∗(Ω ∗X/S) are locally free, and this condition
turns out to be a formal consequence of the fact that these sheaves are coherent
(assuming S noetherian) and that the complex K• = R f∗(Ω ∗X/S) from which they
stem is bounded from above and endowed with an absolute connection, i.e., here a
connection over a ground field k (here k = Q). To see this, we are reduced to the
case when S is of finite type over k by a standard limit argument. On the other hand,
we now get the result by descending induction on i, using the fact that when the
H i(K •) are locally free for i > i0, then formation of H i0(K •) commutes with
base change, hence H i0(K •) has a stratification, hence is locally free. One can
prove the same result by a transcendental argument, not using the canonical strat-
ification, by reducing to the case when k is the field C of complex numbers and S
is reduced to a point (hence artinian), using GAGA to reduce to the corresponding
complex analytic statement, and using Poincaré’s lemma for the (analytic) de Rham
complex of X/S. I hope the same transcendental argument, using a suitable “rela-
tive” Hodge theory (over an Artin ring over C) should prove when f is projective
that the Rqf∗(Ω p

X/S) are equally locally free, which will imply that the spectral se-

quence beginning with these as E p,q
1 and ending up with Rnf∗(Ω ∗X/S) degenerates,

i.e., that the relative Hodge cohomology is just Gr(Rnf∗(Ω ∗X/S)), the graded sheaf

associated to relative de Rham cohomology.117 The argument applies in any case
(as was pointed out to me long ago by Hironaka) when S is reduced. I could not get
it out when S is just artinian, by a purely algebraic proof, using the corresponding
result over the residue field and the fact that the de Rham cohomology is free, by
some general argument of spectral sequences; maybe I just did not try hard enough,
as the information available on the spectral sequence seems already rather strong.
Notice also that the fact that R1 f∗(OX ) is locally free is proved in my second talk on
Picard schemes (corollaire 3.6); when f is of relative dimension 2, what about the
prospective dual R1 f∗(Ω 2

X/S)? (In fact, the former is a priori the dual of the latter, by
the global duality theorem . . . .)

Of course, the theory of crystals gives considerably more on the Rif∗(Ω ∗X/S) than
just a stratification, namely it endows them with a canonical structure of an absolute
crystal; i.e., these sheaves extend automatically to sheaves over any infinitesimal
neighbourhood of S. Although this point of view is not worked out in the notes,
it must come out rather formally, I am convinced, by interpreting these sheaves as
coming from Rifcris(OXcris), where fcris : Xcris → Scris is the morphism of the abso-
lute crystalline topoi associated to the morphism of schemes f : X → S. The same
remark should hold in arbitrary characteristics too, using now “crystal” in the sense
of the IHÉS notes, namely involving divided powers; this is something pretty more
precise than just a connection on the sheaves Rif∗(OXcris) . . . . For the applications of

117 The degeneration at E p,q
1 of the relative Hodge-to-de Rham spectral sequence was proved in

Thm. 5.5 of P. Deligne, Théorème de Lefschetz et critères de dégénérence de suites spectrales,
Publ. Math. IHÉS 35 (1968) 107–126.
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this to varieties or formal groups in char. p > 0, in particular to the interpretation
of Dieudonné module and infinitesimal variations for p-divisible groups, as sug-
gested in my Pisa letter to Tate, I want just to point out that if A is a ring, and p
a prime number which is nilpotent in A, (for instance A = Wn(k), k a perfect field
of char. p > 0) then the ideal pA admits a canonical structure of divided powers.
Thus I think that my interpretation of infinitesimal variations of an abelian variety
or a p-divisible group works correctly when one takes, as infinitesimal parameter
varieties, varieties endowed with an extra-structure of divided powers in the aug-
mentation ideal. This (I think) is enough for various applications, such as a nice
description of the Dieudonné module (using the previous remark on the Wn(k)), and
at the same time rules out the unpleasant counterexample in my Pisa letter, which
was concerned precisely with “vertical” (relative to Spec(Z) or Spec(W (k)) vari-
ations of structure, namely those remaining in char. p > 0 —the explanation now
being that in an ideal m of a ring of char. p > 0 there can be no divided power struc-
ture unless m(p) = 0!118 Of course, in char. 0, the divided power structure always
exists and is unique, so does not add anything, which explains why things worked
so smoothly in char. 0.

Yours
(signed) Schurik

Grothendieck to Mumford, 1 August, 1967

Letter from Groth. 8/1/67 119

Coates and Jussila are very busy writing down the notes of my talks on de Rham
cohomology,120 which should be ready within a few weeks. I will send you however
in this letter a copy of the two pages containing a direct construction of the Gauss–
Manin connections. By the way, I had some extra thought about the definition of
p-adic cohomology in char. p, and believe I have the right definition at last, using
still another site, the so-called “de Rham site” of a relative scheme X/S, whose ob-
jects are (Zariski) open subsets U of X , together with a “thickening” U ′ of U i.e., a
nilpotent immersion U →U ′ over S, and moreover a “divided powers structure” on
the augmentation ideal for OU ′ →OU . When working in char. 0, this extra structure
is uniquely determined and we get the usual “site cristallin”, whose cohomology

118 Here m(p) is the ideal generated by elements of the form xp with x ∈ m. In the original the
formula looks more like m p than m(p). Apparently Grothendieck forgot to put in the pair of
parentheses by hand—otherwise the statement is false as he surely knew. A counterexample due to
Koblitz and Ogus is in 4.4.1 of P. Berthelot and W. Messing, Théorie de Dieudonné cristalline III:
théorèmes d’equivalence et de pleine fidelité, The Grothendieck Festschrift, Vol. I, Progr. Math. 86,
Birkhäuser, 1990, pp. 173–247.
119 Handwriting of Mumford; so August 1 may be the date of receipt.
120 Published as: Crystals and the de Rham cohomology of schemes, in Dix Exposés sur la Coho-
mologie des Schémas, North-Holland, 1968, pp. 306–358.
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with coefficients in the structure sheaf of local rings is just (when X smooth over
S) the relative de Rham cohomology H

∗(Xzar,Ω ∗X/S). It now seems to me that es-
sentially the same proof will show the same result in arbitrary characteristics, when
working with the de Rham site, involving divided powers. These divided powers
seem in a most subtle way to rule out the troubles I had come upon in my Italian
letter to Tate on crystals121 (in connection with elliptic curves of Hasse invariant
zero). It seems to me that, at least for those smooth proper schemes in char. p > 0
which lift to char. 0, all the usual properties for the p-adic cohomology will then
follow readily from the known results in char. 0, the ground ring for the cohomol-
ogy theory being actually the ring of Witt vectors W (k) (not its field of fractions,
as in Washnitzer–Monsky’s theory). This should then rule out the possible presence
of denominators pr in Weil’s conjectures, which I alluded to in my letter to Serre
on the standard conjectures for algebraic cycles.122 I also got finally quite an inter-
esting letter from Griffiths. As far as I could understand, though, he does not know
about any new “finite” relations for the “geometric” Hodge structures (those em-
beddable in the Hodge structure associated to a projective smooth variety over C),
but infinitesimal relations concerning variation of Hodge structure coming from a
variation of an algebraic variety. The result he states is enough in any case to take
care about my worries concerning Tate’s conjectures, as you pointed out to me your-
self. Maybe after all there are no such finite relations as we contemplated, but only
infinitesimal ones. It would be of course highly interesting if the necessary condi-
tions he obtains for an infinitesimal variation of Hodge structure to be “geometric”
are also sufficient, and to get a corresponding result for finite variations. His results
anyhow show the a priori possibility of a completely different picture for moduli of
motives from the one I originally had in mind, with an essential part being played by
differential equations. This checks very well with my de Rham yoga, where differ-
ential operators of arbitrarily high orders are involved in quite an essential fashion.

Yours
(signed) Schurik

Grothendieck to Mumford, 18 March, 1968

Massy, March 18, 1968

Dear David,

Thank you very much for your letter, which has crossed with Deligne’s telling me
very much the same thing as you told me in yours! I believe your proof is concep-

121 A scan of this letter is available from
http://www.math.jussieu.fr/˜leila/grothendieckcircle/mathtexts.php
122 This letter on the standard conjectures, dated 27 August, 1965, is in Correspondance
Grothendieck–Serre, Soc. Math. France, 2001; Grothendieck–Serre Correspondence (bilingual edi-
tion), Amer. Math. Soc., 2004.
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tually less sophisticated and therefore simpler than Deligne’s (although in essence
the same)123, but that Deligne’s systematic use of “étale topoi” as generalized vari-
eties will eventually provide the better insight into the geometry of these questions.
I am convinced this is really an important generalization of the notion of scheme,
and we will have to deal with it systematically, alongside with Mike’s intermediate
generalization124, starting with EGA VI.

The proof in my letter to Serre about semi-stable reduction of abelian schemes
(via a monodromy theorem (1−gN)2 = 0 for l-adic H1) works all right in all cases,
and yields even in arbitrary dimension (when written out with care) (1−gN)i+1 = 0
in Hi, as was known to Griffiths by transcendental methods in the complex case.
Thus I have two essentially different proofs of the monodromy theorem, one arith-
metic (which works over any discrete valuation ring R which has residue field of
finite type, or which is localized from an algebra of finite type over a field), the
other geometric (which works without restriction on R, provided i = 1).125 Both
work in characteristic zero (all i, any R); both use resolution some way, and both
would work for any R, any i if resolution was known for schemes of finite type over
Z, except that the geometric proof uses moreover purity. En revanche, it gives a little
more precise information in the smooth case (namely the exact exponent i+ 1); for
i = 1, we need resolution and purity only in a range of dimensions where both are
known (by Abhyankar, and Zariski–Nagata’s purity theorem). The arithmetic proof
on the other hand applies also to nonconstant coefficients—all that is needed is that
the l-adic sheaf whose cohomology we are taking comes from a situation of finite
type over the integers; morally, this means that it comes from a motive over your
scheme X . I did not try to make the geometric proof yield the same kind of gener-
alization; it may turn out notably more difficult. All these things will be explained
at length, including applications to Néron models and the like, in my own exposés
in SGA7 “Groupes de Monodromie Locale”, which is a joint seminar by Deligne
and myself, and has started this month. Later Deligne will give an algebraic proof of
Lefschetz’s theorem126 about the Pic of the “general” surface of degree ≥ 4 in P

3,
which works in any characteristics, after some general facts about vanishing cycle
theory. By the way, as you will have gathered, Deligne is extremely bright; I believe,
brighter than anybody else I know in mathematics.

Now to your comments about the use of the word “variety”. I was a bit sur-
prised to see that this question nearly upsets you, and still more by what you say
on algebraic geometry becoming “a still more unpleasant subject” with its “rival

123 Referring to the proof of the irreducibility of Mg, paper [69e] in this volume.
124 The notion of algebraic spaces.
125 Grothendieck’s arithmetic proof of the monodromy theorem was published in the appendix to
J.-P. Serre and J. Tate, Good reductions of abelian varieties, Ann. Math. 88 (1968) 492–517, and
also in the appendix of SGA7, Exposé I, LNM 288, Springer-Verlag, 1972. The geometric proof
was published in §3 of SGA7, Exposé I. See SGA7, Exposé IX, Modèles de Néron et monodromie,
for further discussion of the monodromy theorem. For a more elementary proof of the stable re-
duction theorem for curves see M. Artin and G. Winters, Degenerate fibres and stable reduction of
curves, Topology 10 (1971) 373–383.
126 The proof appeared in Exposé XIX of SGA7, LNM 340, 1973, pp. 328–340.
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schools”. . . . I never realized algebraic geometry was an unpleasant subject, nor that
there was any rivalry among algebraic geometers; I have lived so far in the belief
that all of us, although tastes and yogas may largely differ from one to another, are
working towards a common goal of better insight into geometry, and that every one
among us is glad about any good result any of his colleagues would get, and ea-
ger to make use of it, whatever the methods and the spirit in which this result may
have been obtained or exposed. Does your own experience really tell you anything
to the contrary? Also, I wish to assure you that I would never think of suspecting
you or anybody else of being “personal”, as you feared apparently I would, when
discussing about any mathematical question, including questions of terminology. I
would like you, on the other hand, to be as sure that I don’t take it personally ei-
ther, and that, when working out a terminology, my aim is not to tease, annoy or
hurt anybody, and you less than anybody else. In fact, I learned with Bourbaki (and
through my own experience) how much a good terminology is important for an eas-
ier understanding of mathematics and smoother working, and to be very painstaking
in these matters, more than the average mathematician I would think, and to spend
a nonnegligible amount of time on it. It is after serious consideration that I decided
myself with Dieudonné, for instance, to change “simple” into “smooth” after SGA3,
“non ramifié” into “net” more recently, “locally free sheaf of rank one” into “invert-
ible sheaf” according to Tate’s suggestion, and “prescheme” into “scheme” resp.
“scheme” into “separated scheme”. I do not pretend the result to be perfect, but I
guess it is coherent and reasonably suggestive, and does not seem to offer difficulties
to young people who have no “mental blocks” by too strong a habit of one of the
other existing terminologies. But even if you believe the result to be bad, discussion
will be easier if you don’t assume it is so by purpose and in order to annoy anybody.
Now let me come to the points you make about the word “variety”, and to my own
points.

1) You contend the word has already a precise and generally accepted meaning, I
accept that it has for various mathematicians, but that the meaning is now pretty
much different from one to another. You wrote me which is yours: an integral
separated algebraic scheme. Mike on the other hand uses the word to mean just
any algebraic scheme, and, according to context, he will understand implicitly
that the scheme is separated, or that it is only locally of finite type (instead of
finite type as an algebraic scheme should be); by the way, he uses much the same
way analytic variety to mean any analytic space (in the sense of my exposés in
Cartan’s seminar). Weil’s use of “variety” is closer to yours, but still different,
as he assumes it to be geometrically integral. I am not too sure what is Zariski’s
terminology, but I guess it will be still different, something like a subset of pro-
jective space defined by a set of equations; I would have asked him if he were
around, and maybe he would have been a bit embarrassed really to tell me what
he means by “variety”!

2) I do not think there is a strong tendency in French to imply nonsingularity by the
use of the word “variété”. In algebraic geometry at least such an implication has
never existed. In topology, most times nowadays when topologists speak about
“varieties”, they admit varieties with boundaries, and as soon as one starts tak-
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ing products, even the boundaries acquire singularities. In the Cartan seminars,
“variété analytique” does imply nonsingularity, but this terminology is by no
means universally accepted. See Mike’s use above. Also, if people like Thom
or Whitney speak about “analytic varieties”, they are mostly interested in their
singularities, which they want to stratify in various ways!

3) Quite generally, I think that the natural trend now in the use of the word “variety”
is to make its meaning ever wider—so much so as to include even functional
spaces, when allowing the varieties to be infinite dimensional! This is in a way
not better nor worse than viewing an arbitrary scheme (not only noetherian ones,
or those of finite type over a field) as being “varieties”. I believe that the only ‘a
priori’ natural limitation to the use of this word should be that it should extend
as far as does the specific geometric intuition, and some of the main technical
features, of the objects which were initially considered. Objects which have local
rings, tangent spaces and higher order differential invariants, for which all or
most of the most important geometric constructions (projective bundles and other
fibrations, Picard varieties and the like, normalisation etc) can be performed,
seem to me to be eligible for the term “variety”. I think however, like Deligne,
that objects like the “étale topoi” present some essentially new features, which
demands for a more sophisticated kind of geometric intuition than the usual one,
mainly through the fact that morphisms of such objects (and in particular, their
geometric points) may have nontrivial automorphisms—and that for this reason
it would be unwise to subsume them also under the name of “variety”.

4) As you admit yourself in your letter, it seems rather likely that the most natural
“compact” moduli objects, for curves or abelian varieties, are not schemes, but
just what we would like to call “varieties”. Now these modular objects, you will
agree, are among the most basic and important ones geometers would like to
study, and I am convinced that their importance will still increase both for ge-
ometry and number theory in the next fifty years or more. So, just because of a
taboo coming from some particular training of yours, you would forbid yourself
forever to call these remarkable beings “modular varieties”, as everybody has
done so far since Riemann, I believe? I think you have just missed that point,
that these “varieties” are precisely the good kind of objects, just varieties! Not
really any different from what one has considered so far, and providing just a
closer and better link with the usual analytic varieties (or “analytic spaces”)—as
various operations which could so far be performed only in the complex analytic
context acquire a meaning also in algebraic geometry.

5) Quite generally, it is becoming rather clear now that the new “varieties” are the
more “natural” objects when compared say with schemes, because the category
of these varieties seems to have a remarkable stability with respect to those ge-
ometric constructions which seem the most important, and which sometimes get
us out of the category of classical minded varieties, or schemes: contractions and
other types of passage to quotient, representation of functors of Hilbert and Pi-
card type, modular spaces of all kinds . . . . Therefore these objects do deserve a
simple name, and possibly one which has already a rich intuitive content through
the use which has been made of it before? I believe this is by no means an insult
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to the classical people, but will eventually turn out to be an homage to them—as
at present it is intended to stress for the “usager” the geometric significance of
this comparatively new notion.

I discussed the matter with Deligne, who essentially shares my opinion on this
matter. However, he told me that he did not wish to use this word consistently at the
cost of upsetting you as it seems it does. We have little hope to convince you that
the usage we want to make of the word “variety” is at present the best, but we do
hope at least that you will let yourself be convinced that there is nothing offending
to anybody in this use, that each of us came to the conclusion that this is best by
objective motives, and not personal ones wishing to hurt anybody. After all, it is
really not catastrophic if you go on using the word variety according to your own
taste, and certainly quite a few others will do the same. At present, the only motive
which keeps us from using the terminology which objectively seems to us the best,
and to go on working with our minds in peace, is a personal one, as neither of us has
a wish to hurt your feelings! Therefore, please consider the matter again and write
us if your feelings need really be hurt, or if you believe that it is reasonable that we
should adopt a terminology which, after careful consideration, seems best to both of
us, and for which neither of us is able to find a satisfactory substitute.

With my best wishes to you and your family

(signed) Schurik

Please give my best regards to the Seshadris, to Ramanujam and to Ramanathan.

Grothendieck to Mumford, 2 August, 1968

Massy 2.8.1968

Dear David,

I looked through Cartier’s notes on formal groups, as I am interested in a de-
scription of p-divisible groups over a scheme of char p > 0, or more generally over
a scheme all of whose residue characteristics are p or zero. His description does not
look too handy directly, especially the filtration he has to use is rather annoying.
One would like something which directly generalizes Dieudonné’s description over
a perfect field: free modules of finite type over the ring W of Witt vectors, together
with F and V satisfying the three known relations (in fact, V following from F . . . ).
Did you work out any such description using Cartier’s work? If so, I would be very
grateful to you to write me what you know. I have been trying a bit to make more
precise what I mumbled to you about crystals and p-divisible groups; that is why I
need Cartier’s stuff. By the way, I convinced myself that the description I suggested
for p-divisible groups over unequal characteristic discrete valuation rings works
only if the maximal ideal has topologically nilpotent divided powers structure. But
this restriction should be unnecessary when dealing with p-divisible groups up to
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isogeny over V : such a structure should correspond exactly to a Dieudonné space M
over the field of fractions K of W , and a filtration of M⊗K L (L = K⊗W V ) subject
to the only condition that the dimensions of the two occurring factor spaces should
be the correct ones (namely the dimensions of the group and its dual in char. p). I
more or less checked this when the group in char p is “ordinary”, i.e., extension of
any ind-étale by a multiplicative type p-divisible group.

Best regards
(signed) Schurik

Grothendieck to Mumford, 9 August, 1968

Massy, August 9, 1968

Dear David,

Thanks a lot for your letter of July 24, which I got yesterday. I am sorry you
cannot come for a whole year in 70/71, but am glad that you think you can come
for about two months. Thanks for suggesting that I should come to Warwick for
a while that same year. I guess it could be done, if you do not expect me to be
there for longer than a week or ten days. I am ready to tell other people about that
symposium to suggest participation, but maybe it would be useful if you could tell
me a few words more what such a “low-pressure symposium” will be supposed
to look like. Also thanks for your invitation to join the panel of invitations for the
next international Congress; as I am not too convinced of the usefulness of such
Congresses, I believe however you better leave me out!

I got Griffiths’ preprints and “disclaimer”127 at the same time as your letters. It
looks quite startling indeed, but I had no time to look at it seriously as yet. And I
managed to lose the preprints, and had to ask Gr. for another copy! By the way, his
results (about which he is himself dubious) do not affect what I really call the stan-
dard conjectures, on which the theory of motives relies; these do not assert anything
about τ-equivalence. But in order to come to a coherent picture concerning inter-
mediate jacobians, and the tie they provide between Hodge’s index theorem and
the Néron–Tate form (by interpreting the intersection form on primitive cycles as a
Néron–Tate form on a suitable intermediate jacobian), it has been extremely tempt-
ing to surmise that τ-equivalence equals numerical equivalence. I will have to re-
consider the matter anew if really this assumption should turn out to be false. These
questions were on my holidays’ program, but I did not start so far, as I was still busy
trying to come to some understanding on crystals and their relations to p-divisible

127 The papers were published as On the periods of certain rational integrals, I, II, Ann. Math. 90
(1969) 460–495 and 496–541. However the published version contains no “disclaimer”. Note also
that Grothendieck gave a purely algebraic proof of Griffiths’ theorem, which was written up by
N. Katz in Éxposé XX of SGA7, LNM 340, Springer-Verlag, 1973, pp. 341–362.
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groups (which should really be called Barsotti–Tate groups128, as p-divisible should
just mean that multiplication by p is an epimorphism, and not more). I hope you got
my last letter asking you questions in this connection on Cartier’s theory, and that
you will be able to give me some information I need.

Best wishes
(signed) Schurik

Grothendieck to Mumford, 4 September, 1968

Sept. 4, 1968

Dear David,

Thanks for your letter. If you think I can give you advice on selecting speakers
for the next congress, I will certainly not refuse giving it to you; but I guess for this
there is no need for me to join your panel. A rather evident thing would be to ask
that Griffiths should give a one hour talk. I am particularly impressed by theorem
(∗∗) stated in his “disclaimer”, opening completely new perspectives. But have you
been able to discover where, in Gr.’s paper, this theorem is proved, or even to con-
vince yourself that the proof is OK? In any case, his theorem E (5.6) completely
convinced me that my feelings on the relations between Hodge’s index theorem and
the Néron–Tate form were erroneous, so that I have no reluctance any longer to ad-
mit that τ-equivalence is indeed distinct from homological equivalence.129 As for
the explanations you give me in your letter, they seem to me to concern rather Gr.’s

128 Grothendieck’s footnote: Tell me if you agree, please.
129 Comments by Phillip Griffiths, concerning [1968Aug09] and [1968Sep04]):

“Thank you for sending me the email with Grothendieck’s letters to David. I believe what they
are referring to (the part about my stuff) is

homological 	= algebraic

equivalence for higher codimensional cycles, even modulo torsion. Later, Clemens showed the
quotient

LHS/RHS

is a countably but not finitely generated abelian group. My methods (and intuition) were classical
analytic/geometric and it seems that David—to none of our surprise—was able to understand the
argument and convince Grothendieck. Together with David’s example of dimCH2(X) = ∞ on a
surface X with pg(X) 	= 0 this opened up an era (maybe “can of worms”) of stuff regarding cycles
with, at least to me, the main real progress since being the conjectures of Bloch–Beilinson which
at least bring some order into CH∗(X) and explain why dimCH2(X) =∞ occurs (cf. the paper by
Mark Green and myself in IMRN, 2003 that treats this).

Of course the central question—the Hodge conjecture together with its generalizations by
Grothendieck—has seen no real progress in 50 + years (except that it has so far been consistent
with other known / conjectural things).

What comes through also in Grothendieck’s letters, and this was my personal experience as
well, is how direct and to the point he is. Oh that he had written EGA.”
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theorem E, whose proof I understand (as I knew Lefschetz’s proof of Noether’s the-
orem); but I do not see why this should directly give an example, say, of a curve on
a three-fold, homologous to zero and not τ-equivalent to zero. With your notations
(V a general hypersurface section of high degree of W ), the question remains why
a primitive cycle of middle dimension on X , whose restriction to W gives the zero
element in Weil’s intermediate jacobian J(V ), should be itself homologous to zero?
Gr. himself refers for this to the rather technical §’s 11 to 15!

I made some progress with the relations between Tate–Barsotti groups and crys-
tals since I last wrote you, but was waiting to get your answer to my questions
before starting some final checking for the crystal interpretation of the Dieudonné
module, and also in order to check that if S is any (?) scheme of char. p > 0, then
a Tate–Barsotti group on S is “the same thing” as a crystal M of locally free mod-
ules over S (crystal in the absolute sense, i.e., over SpecZ, or SpecZp, and in a
sense slightly more sophisticated than in my notes, by asking that the divided power
structures in the definition of the crystalline site should be compatible with the one
we have on the maximal ideal of Zp), plus the maps F and V between M and M(p)

satisfying FV = p · id, VF = p · id. (In case p = 2 one will have to be more care-
ful, but I believe that an analogous statement will still make good sense). Then
the analogue of Tate’s theorem for the equicharacteristic case should follow from
the general crystal-theoretic fact (which I did not try to check either so far) that if
M, M′ are crystals of locally free modules over the noetherian normal connected
scheme S (no F and V here, and indeed I like to think about crystals as coming from
cohomology groups of higher dimension as well), then any morphism between the
generic fibers of these crystals is induced from a morphism M → M′. I also see
along which lines to look for a generalization of Tate’s theorem to crystals in the
unequal characteristic case, via the definition of a functor from filtered crystals with
“Frobenius” F to Galois modules over the generic point; the description of this
functor remains however the most mysterious point, which I will have to elucidate
first in the case of Tate–Barsotti groups, with the help of Cartier’s theory and Tate’s
ideas. The theorem should be that this functor is fully faithful working mod isogeny.
Granting this functor, I see also what should replace Serre–Tate’s theorem (cor. 1 to
th. A in my Inventiones paper)130 in higher dimensions, so as to get a principle of
proof of conjecture 1.4 of that paper in arbitrary dimensions: namely for a projective
smooth scheme X over the unequal characteristic discrete complete valuation ring
V , a de Rham cohomology class should be algebraic if it is algebraic when inter-
preted as a crystalline cohomology class of the special fiber X0, and if moreover it
has the correct filtration. In other words, the functor from semi-simple motives over
V , to pairs of a motive M0 over the residue field k, together with a filtration of its
crystalline realization Tcr(M) (a finite dimension vector space over the quotient field
K of V ), is fully faithful. (Analogue of Hodge’s conjecture!) Maybe these statements
will even turn out to be provable!

In connection with these questions, I wonder if for a projective smooth variety X0

over k, one can foresee the value of the hp,q of any lifted variety from the structure

130 Invent. Math. 2 (1966) 59–78; the corollary is in p. 63.

736



Grothendieck to Mumford, October 10, 1968

of the crystalline Hn(X0) (n = p + q) together with the F-structure on it, namely
the semi-linear map Hn → Hn stemming from the Frobenius map X0→ X (p)

0 . For
instance, are the hp,q independent of the lifting? I would appreciate to know if you
have any idea on this.

Best wishes
(signed) Schurik

My personal address:
2 Av. de Verrières, Massy (Essonne) France

NB. I take my mail at the IHÉS only once a week.

Re P.S. I am puzzled about Gr.’s 10.12, which looks false: take a family of subva-
rieties W of P

r with variable periods, and blow them up! Therefore I am dubious
about the proof of 10.13 as well.

Grothendieck to Mumford, October 10, 1968

Massy 10.10.1968

Dear David,

Thanks for your letter. In the meantime I have thought some more about Griffiths’
result, and come to exactly the kind of proof you outline. It seems to me (although I
did not check carefully enough) that the same argument carries over to char. p > 0,
whenever we know that Lefschetz’s hard theorem holds true (no trouble for com-
plete intersections for instance!) and provided we know moreover that, for a general
hypersurface section of X2m of some high enough degree, the vanishing cohomol-
ogy of Y 2m−1 is not of level 1; and for this, if we take the ground field to be finite, it
is enough that we can find some hypersurface section Y of that degree, nonsingular,
defined over a finite field with q elements, such that the proper values of Frobenius
acting on E(Y 2m−1) (the vanishing part of the cohomology of Y ), divided by qm−1,
are not all algebraic integers; or what amounts to the same, that the coefficients ci

of the corresponding polynomial f (t) = ∏(1 +αit) are not divisible by (qm−1)i.
Of course, the transcendental situation suggests that we should even get maximum
level 2m−1, i.e., we should not be able to divide by qi even. Now Katz told me that
this can be effectively checked for various complete intersections in P

r: indeed, it is
enough that Y has no point rational over its field of definition k, because the number
of such points (if Y is of dimension n, even or odd, it does not matter of course) is

1 + q + · · ·+ qn +(−1)n∑αi ,

which implies that not all algebraic integers αi are divisible by q if this sum is to be
zero! On the other hand, you can find a hypersurface of given degree, multiple of
q−1, rational over the field with q elements and which has no point over that field,
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by taking ∑aiX
d(q−1)
i = 0, the ai ∈ Fq being such that no partial nonempty sum of

them is equal to zero; this works at least if q is > number of variables, by taking all
ai equal to 1. If the intersection of that hypersurface with X is nonsingular, we win.
This works for instance for Griffiths’ quadric in P

5 (if char. 	= 2, at least).
A weird fact is that Griffiths’ construction gives examples only over function

fields, no field algebraic over the prime field. It seems quite hard to deduce an ex-
ample over a number field, say, although there should certainly be such an example!
I feel less secure over a finite field, and would not be surprised if it turned out that
in the case where the ground field is the algebraic closure of a finite field, then nu-
merical equivalence implies τ-equivalence. One heuristic reason is that the points
of abelian varieties over such a field are of finite order. Another key invariant we
can associate to a cycle Z on X/k which is cohomologically trivial on Xk, namely
the element of H1(k,R2i−1f∗(Ql(i))) stemming from the Leray spectral sequence,
should vanish (by virtue of the Weil conjectures) when k is a finite field. I would
suspect that for k of finite type in the absolute sense, the vanishing of that class
implies τ-equivalence to zero, and more precisely should be characteristic of some
more refined equivalence, something like Picard-equivalence up to torsion, which in
the transcendental case would be expressible by the fact that the image of the class
in Griffiths’ torus is a torsion element.

I did not prove what I surmised about the relations of Barsotti–Tate groups in
char. p to Dieudonné crystals, and have not been thinking about these things for
some time. Cartier says he checked the statement I proposed about classification of
B–T groups over unequal characteristic discrete valuation rings with divided powers
in the maximum ideal, in terms of a filtration of the extended Dieudonné module. I
do not think he looked at the corresponding statement (without divided powers) for
classification up to isogeny.

Yours
(signed) Schurik

Grothendieck to Mumford, 20 November, 1968

20.11.1968

Dear Mumford,

Thanks for your letter and your very nice paper on rational equivalence, which
I just read.131 Some trivial comments: in par. 1 the nonsingularity of X is not used.
On page 4, line −6, the relation S = S̃/G would need a word of explanation, as it
uses normality of S and char. 0. Page 5, instead of “any” you mean “commutative” I
guess; it took me a while to understand what you meant to say before lemma 1, till I
realized that f : S→Y and η f were as before, but that you just allowed S̃ and p and

131 [69d] (= article 28 (pp. 753–762) in [SP1]).
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f̃ to change. (NB I often have trouble when reading you with such trivial matters,
whereas otherwise your informal style makes understanding rather easier.) Page 6,
line 10 the meaning of “too” is mysterious. Page 9, line −2, I guess m depends on
i too. I think you may add as a corollary to your result that Samuel’s conjecture (or
question) that ((x)− (y))× ((x′)− (y′)) on a product variety is rationally equivalent
to zero is false already for the product of two elliptic curves (as this would imply in
this case that rational equivalence of 0-cycles is the same as Albanese equivalence).

Your objection to carrying over Griffiths’ construction to char. p is met with by
observing that the monodromy representation of π1(P1−{critical points}) is irre-
ducible on the vanishing cycles space, just as in the transcendental setup; a fortiori,
the corresponding “motive” cannot split. This is proved by Lefschetz’s argument
using the Picard–Lefschetz formula and the fact that the vanishing cycles corre-
sponding to various critical points are still conjugate to each other. The first fact will
be proved by Deligne in our seminar this year, by an argument of reduction from
char. 0 to char. p, which requires care but is of rather standard nature; in char zero
the transcendental theory can be used. (I do not know if a purely algebraic proof can
be found;132 I suppose yes for a pencil of curves, and you should know best . . . .)
The conjugacy statement should come out just the same way as in the classical case,
using the irreducibility of the variety of critical hyperplanes, and will certainly be
done too by Deligne in this seminar. He needs it for proving Noether–Lefschetz’s
theorem in char. p. I confess I never wrote out full proofs myself, but am quite con-
fident it will come out all right. I would expect Deligne to talk on this in January or
February, and if you are interested he may send you a Xerox of his notes then (or
even now if they exist already in readable shape).

Katz made an interesting suggestion133 towards proving the conjecture suggested
by what happens in char zero, namely that the level of the vanishing cycles space of
the general hypersurface section in a pencil, of a given high degree, is maximal, by
[reducing to] the conjecture that the pth power map

Hn−1(Yt ,OYt )
(p) −→ Hn−1(Yt ,OYt )

(or rather on the “vanishing part”) is not nilpotent (possibly even semi-simple). The
same would hold then for any sufficiently general t, and, if we are working over a
finite ground field, this would imply that, for most specialisations of Yt to a finite
ground field, the Frobenius acting on the vanishing part of Hn−1(Ys,OYs) has (some)
nonvanishing proper values. If the proper values of Frobenius acting on Hodge co-
homology were just the reductions mod p of the proper values of Frobenius acting
on l-adic (or crystalline) cohomology, we would be through, and we would have

132 An algebraic proof of the Lefschetz theorem (due to M. Noether) is in P. Deligne, Le théorème
de Noether, SGA7 Exposé XIX, LNM 340, Springer-Verlag, 1973, 328–340.
133 Katz carried out his own proposal; see Exposés XX and XXI of SGA7, especially [Exposé XX,
part 4.1.2 of Theorem 4.1] and [Exposé XXI, Theorems 1.4 and 4.2].

Relevant later work can be found in N. Koblitz, p-adic variation of the zeta-function over fam-
ilies of varieties defined over finite fields, Compositio Math. 31 (1975) 119–218, as well as L. Il-
lusie, Ordinarité des intersections complètes générales, The Grothendieck Festschrift, Vol. II, Progr.
Math. 87, Birkhäuser, 1990, pp. 376–405.
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the extremely precise statement: the number of proper values of Frobenius (acting
on some Hi or a piece thereof) which are units is exactly equal to the semi-simple
rank of Frobenius acting on the corresponding Hi(X ,OX ) resp. a piece thereof (the
contribution of the other pieces of the Hodge cohomology does not count for ob-
vious reasons). Now things in general won’t be that simple, because of p-torsion
phenomena for Y , which will make the Hodge cohomology a little too big as far as
rank, i.e., number of proper values, is concerned. But Lefschetz’s theorems as stated
in his Borel tract suggest that the torsion of Y should be just the torsion of X , i.e.,
independent of the degree of the hypersurface section, so I guess asymptotically (for
high degrees) it should not count—provided we prove that the semi-simple rank of
Frobenius acting on Hn−1(Yt ,OYt ) becomes large. So this is really what should be
proved. The trouble is that, although this is again a purely geometric question, it
does not seem at all a trivial one, even restricting to the case X a surface (say even
X = P

2 !) and taking a general hypersurface section (not restricted to belong to a
pencil). The question then is whether the general curve thus obtained has (many)
étale coverings of order p not coming from coverings of X . Do you have any feeling
about this question?134

Do you have any idea how to get Griffiths’ example over a number field? And no
illuminating examples concerning the Hodge conjecture?

I wonder if you, Mike and Hironaka would object in principle to including a
paper by Atiyah in Zariski’s blue volume135, in case a paper should be ready before
the fixed deadline. He promised us a paper already a while ago from his index series,
and wants to keep his promise now, but would not like to have too long publication
delays. He says he would be quite willing to dedicate something to Zariski, if he got
a suitable paper ready in time.

Yours
(signed) Schurik

PS Maybe it will interest you that I worked out something like a formal substitute,
for a smooth morphism f : X −→ S with S of char 0, and a cycle on X which is
cohomologically equivalent to zero on the fibers with respect to de Rham cohomol-
ogy, of the corresponding section of the system of Weil–Griffiths jacobians of the
fibers (which make sense only transcendentally). Namely, the tangent space t along
the zero section of this system makes sense purely algebraically in terms of relative
de Rham cohomology, and heuristically Griffiths’ section, when expressed locally
as an exponential, defines a jet of infinite order of that vector bundle over S, at least
up to translation by the image of a horizontal section of the de Rham cohomology
sheaf ω on S. Now this jet (more precisely a certain section of P∞

S/Q
(t) modulo the

image of ω) can be given a purely algebraic definition, and even a pretty simple one.
As a consequence, the images of the Griffiths section, à la Manin, corresponding to

134 False for P
2; P

2 is simply connected, but the general curve of high degree on it has many cyclic
covers of order p.
135 Volume dédié au Professeur Oscar Zariski à l’occasion de son 70e anniversaire, Publ. Math.
IHÉS 36, 1969.
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“Picard–Fuchs equations”, can be given also a purely algebraic description. I think
analogous constructions can be made in unequal characteristics, but I did not clear
up my mind on this as yet.

Grothendieck to Mumford, 8 April, 1969

Massy 8.4.1969

Dear David,

I am establishing a bibliography of your papers and would like you to help me,
as there are a few of your papers which I do not have (including some of which you
sent me preprints or reprints, which I gave away without keeping track to whom).
Could you either give me precise bibliographical indication or send me a reprint of
the following of your works:

1◦ Your paper on Teichmüller groups (don’t have it any longer).
2◦ Your book on abelian varieties, after your Tata course.
3◦ Your theorem about liftings of abelian varieties to char. 0,136 which you ex-

plained at Tata. Reference to that Tata talk would do (title?).
4◦ Extension to char. p > 0 of the Italian theorems characterizing rational and ruled

surfaces.137 (Never got a preprint.)
5◦ Your recent counterexample to Severi’s “theorem” on 0-cycles on surfaces (don’t

have any preprint left).138

6◦ Is there any better reference for your work on abstract θ -functions, compacti-
fications of Néron models etc, than the Bowdoin notes by H. Pittie139 (which I
found pretty poor)?

Sorry to write you such an uninteresting letter! Nothing very interesting to report
upon. I guess Katz sent you notes of his nice theorem about L-functions mod p,
which will be used in our seminar to do Griffiths’ example for complete intersec-
tions. Berthelot found a better definition for the crystalline site, dropping the nilpo-
tency condition for the divided powers and replacing it by the condition that p is
nilpotent on the objects of the site. The trouble with char. p = 2 disappears, and the
construction of Dieudonné modules via crystals (for Barsotti–Tate groups) comes
out beautifully for all p. Exponentials no longer exist but logarithms do, and this
is OK for defining Chern classes for instance. No doubt left that the definition of
Berthelot is good.140 But there is an immense amount of work to be done on crys-
talline cohomology! Also, to tie it up with Deligne’s beautiful generalized Hodge

136 [69b] in this volume.
137 [69a] (= article 22 in [SP1]).
138 [69d] (= article 28 in [SP1]).
139 [u67a] in this volume.
140 Berthelot’s thesis, containing the work Grothendieck mentions, was published in Cohomologie
Cristalline des Schémas de Caractéristique p > 0, LNM 407, Springer-Verlag, 1974.
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theory for arbitrary algebraic varieties over C . . . .141 I guess I will spend the next
time trying to understand a little better crystalline cohomology in char. p > 0, and
just leave Griffiths and Deligne to find out how things look like over C—and Deligne
to explain everything to us in the coming year’s seminars!

I hope Mike, Hei and you were not too annoyed at the blue journal not coming
out when expected, and that by now Oscar got at least the title pages with the dedi-
cations.

Best regards
(signed) Schurik

Grothendieck to Mumford, 14 April, 1969

14.4.1969

Dear David,

Thanks a lot for your letter. I appreciated very much your proof of the fundamen-
tal intersection formula, and (with your permission) would like to include your proof
in SGA5 VII, as an appendix to the exposé (to be ready soon) of Jouanolou, where
he proves the same formula, but in the relative case over any base (X , Y smooth
over S), no quasi-projectivity assumption, and working in the l-adic cohomology
ring.142 Indeed, Deligne remarked about one year ago that f ∗ f∗(y) is multiplicative
in y, i.e., = y f ∗ f∗(1), in the cohomological context, which comes out rather triv-
ially (such types of results will be in his exposé SGA4 XVIII of Poincaré duality
for étale cohomology, which he is supposed to finish writing this summer), and us-
ing this Jouanolou proves formula (4.6) of SGA6 XIV143 by reducing to the case
of codimension 1, using the blowing up, in a rather simple way (less sophisticated
than yours). I find it amazing how nicely things come out finally, just introducing
these blown-up schemes which at first may seem extraneous to the situation! By the
way, did you try also to get a proof of the formula (4.8) of SGA6 XIV (p.11)144

by analogous arguments?145 If so, I would appreciate knowing your proof, and re-
producing it alongside with your other proof. In the case of l-adic cohomology,
Jouanolou again did the work (not neglecting torsion), and in SGA5 VII this will

141 P. Deligne, Théorie de Hodge I, in Actes du Congrès International des Mathématiciens (Nice,
1970), Tome 1, Gauthier-Villars, Paris, 1971, 425–430; Théorie de Hodge II, Publ. Math. IHÉS 40
(1971) 5–57; Théorie de Hodge III, Publ. Math. IHÉS 44 (1974) 5–77.
142 Mumford’s proof of the “self intersection formula” appeared in SGA5 VII, Thm. 9.2 on p. 337
of LNM 589, Springer-Verlag, 1977. The proof of the “key formula” appeared in SGA5 VII,
Prop. 9.6 on p. 343 of LNM 589.
143 LNM 225, Springer-Verlag, 1971, p. 676.
144 Ibid., p. 677.
145 Another question is written on the left margin: “And, do you have a proof of RR without
denominators for an immersion, in the Chow ring?”
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figure, together with the corresponding structure theorem for the cohomology of
the blown up scheme (which previously I could handle only up to torsion, and only
using Deligne’s preliminary result!). By the way, in this connection I would like
to point out to you a nice foundational paper of Manin on motives (not using any
conjectures!) whose main result is the computation of the motive of a blown-up vari-
ety. It is “Correspondences, motives and monoidal transforms”, Mat. Sbornik, T.77
(119), no 4, p.475–507. I hope it will be translated into English.

I did not understand your allusion to Schottky–Wirtinger, as I am ashamed to
confess that I never heard about them. I will ask Serre about it, and would of course
be interested to get any notes of yours.

Incidentally, I have already your θ -functions I to III146 in Inventiones, and am at
present only out of part I, which I lent to Raynaud. If you have parts I left, please
send one to Raynaud (you sent him only II and III) and one more to me, to make a
complete set I to III which I can give away to some chap here; otherwise I send you
back II and III.

I spent a few days in Romania. There are two or three bright chaps there, and
some more pretty good young people, and I enjoyed discussing with them, includ-
ing on nonmathematical topics; but life as a whole looks pretty grim there, it gives
the impression of a devastated country from the very start. People hate the Russians
a great deal, and their own police still more, but they will say the first aloud (al-
though never in print), but the second they won’t. There is still a seminar going on
applications of matérialisme dialectique to mathematics, an inheritance from times
which remain pretty little removed and quite fresh in everybody’s memory—but I
am pretty sure there is not a single person in Romania who really gives a damn for
communism, at least statistically speaking (because nuts you will find anywhere if
you look out for them), and excepting the police of course.

Yours
(signed) Schurik

Grothendieck to Mumford, 8 August, 1969

Massy, 8.8.1969

Dear David,

Thanks for your letter. I have no comment to make to your tentative list of invited
speakers—except that Lubkin [ . . . ].147 As for the generalization you suggest for
EGA IV 17.5.5 (and a variant of 17.15.15) I agree I should have included it, and
will do so in the next edition, if Dieudonné lives old enough. (By the way, there

146 [66a], [67a] and [67b] (= articles 10–12 in [SP1]).
147 One phrase each in this and two other letters, [1986Jan09] and [1987Feb11], are deleted per
instructions from Mumford. Grothendieck and Mumford wrote their convictions—they did not
believe in everything Lubkin claimed.
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is quite a bit already I would like to change in EGA IV!). However I believe you
forget one assumption on f : X → Y (besides f loc. of finite type, Y integral, all
components of X dominate Y and have generic fiber of dim≥ n,Ω1

X/Y is locally free
of rank ≤ n), namely: Y geometrically unibranch. (Otherwise take Y to be a curve
with an ordinary double point, and X the normalisation.) It is enough then that,
instead of assuming Ω 1

X/Y to be locally free of rank ≤ n, we assume it generated
locally by n elements. This implies that we have locally a factorization of f as
X → X ′ = Y [t1, . . . ,tn]→ Y , with X → X ′ neat (= unramified); but X ′ is integral
and geom. unibranch since Y is, and it is easily seen that every component of X
dominates X ′, hence by EGA IV 18.10.2, X → X ′ is étale, hence X → Y is smooth.

Best regards
(signed) Schurik

Grothendieck to Mumford, 5 January, 1970

Massy, 5.1.1970

Dear David,

A month ago I got an official invitation to give a talk at the Congress of Nice, to
my surprise, as I knew the panel on alg. geom. had not proposed me as a speaker.
After asking Serre about it, he explained that the organizing committee had proposed
me directly, and that by giving a 50 minutes talk I would not prevent any other
geometer who may have more interesting things to say, i.e., by refusing no one
else would be invited instead. So I accepted, with the idea of giving an outline
of my ideas (or what will have become out of them by September) on relations
between Barsotti–Tate groups and crystals—as it is my intention to devote most of
my research time during the next months to these questions; I hope it is OK with
you.

Jouanolou has finally worked out in all details your nice proof of the self-
intersection formula in the Chow ring (without neglecting torsion), which will be
part of SGA5 VII.9. Using still your idea, he was able to prove also the “key-
formula” for a blown-up scheme in the Chow ring, still without neglecting torsion
(same reference), and the Riemann–Roch formula without denominators for an im-
mersion of quasi-projective smooth schemes over a field (also in the Chow ring).
He also is able to prove the correct formula for λ n(i∗(x)) as an element of K(X),
as given in my 1957 RR report in the case of char. zero.148 I think I already wrote
you that he proved some time ago the correct l-adic formula for the cohomology
of a blown up variety, again without neglecting torsion, and even as a formula in a

148 The results mentioned here appeared in J.P. Jouanolou, Riemann–Roch sans dénominateurs,
Invent. Math. 11 (1970) 15–26.
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derived category . . . . Thus a number of questions raised in the last exposé149 of the
Riemann–Roch Seminar SGA6 are settled.

During the month I was in Italy, I worked out various foundational questions on
Barsotti–Tate groups over a more or less arbitrary base, assuming only (most times)
p to be nilpotent. The fact that the base is no longer assumed to be artinian demands
considerable extra care, and practically everything one wants to prove for the BT
group G = lim−→n G(n) has to be refined to statements about truncated BT groups G(n).

Moreover, for this, a general deformation theory of flat group schemes is needed,
for which I have quite clear-cut statements ready, but which has still to be proved as
part of Illusie’s thesis. Granting this, one of the striking byproducts is the following,
which for simplicity I will state over a field k of char. p: consider the formal variety
of moduli M of the BT group G0 over k, hence a universal deformation GM of G0

over M. Consider GM(1) = Ker(p · idGM ), which is a flat deformation of G0(1) over
M. Then M is versal for G0(1) (viewed as a group killed by p) in the sense of
Schlessinger, i.e., “G0 and G0(1) have the same variety of (formal) moduli”.

In this connection, I wonder if the following might be true: assume k alg. closed,
let G and H be BT groups, and assume that G(1) and H(1) are isomorphic. Are
G and H isomorphic? This is true, according to Lazard, if G is a formal group of
dimension 1. Another question is: what are the finite groupsΓ which are isomorphic
to a G(1), for G a BT group? A necessary condition is that Γ be killed by p and that
the sequence

G
F−→G(p) V−→G

be exact. Is this condition sufficient?
Thanks for your notes on “varieties defined by quadratic equations”,150 which I

had no time to look through as yet. Since I set back to do some research, I consid-
erably had to cut down reading! Still, I keep on my table whatever I think I should
read sooner or later, so please do not stop sending me reprints!

Best wishes to your and your family for the new year!

Yours
(signed) Schurik

P.S. Please send your mail to my personal address, as I stopped working at IHÉS
(as Deligne probably told you).

149 Exposé XIV.
150 [70] in this volume.
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Mumford to Grothendieck, January, 1970151

About your questions — over an algebraically closed field k ⊃ Fp.

1. If G is finite, p = 0 in G and

G
F−→G(p) V−→G

is exact, then indeed G can be embedded in a BT-group.

Pf. Use Dieudonné modules. The question becomes: ∀k-vector spaces M with p-
linear (resp. p−1-linear) endomorphisms F , V such that

Ker(F) = Im(V ) , Ker(V ) = Im(F) ,

does there exist a free W (k)-module N with σ -linear (σ−1-linear) endomorphisms
F , V such that FV = VF = p and (N⊗W(k) k,F ⊗ 1,V ⊗ 1) ∼= (M,F,V ). One can
check that all such M’s have the following type of bases:

M ∼=
{

span of e1, . . . ,em, . . . , Fie j, . . . , V �e j, . . . . . .
1≤i≤r j 1≤�≤s j, 1≤ j≤m

}

mod Fr j e j =
m

∑
t=1

b jt ·V st (et), 1≤ j ≤ m, det(b jt) 	= 0 ,

where FV �e j = 0 ∀�≥ 1; VFie j = 0 ∀ i≥ 1.

Let N be the identical module over W (k), with b jt any nonsingular matrix lifting the
b jt above, except

FV �e j = p ·V �−1e j ∀�≥ 1, VF�e j = p ·F�−1e j ∀�≥ 1.

2. In general, if G1,G2 are two BT-groups,

G1(1)∼= G2(1) 	=⇒ G1
∼= G2 .

Pf. Just look at Manin’s long paper,152 classifying all BT-gps over k & this is pretty
clear. For instance, take the case of 2-dimensional G’s (i.e., the associated formal gp
is 2-dimensional). The G(1)’s, as described in 1, depend on at most 4 parameters,
while Manin’s types depends on arbitrarily many. This is not precise but it “clearly”
could be made so.153

151 Part of a letter from Mumford to Grothendieck, written between Jan. 5 1970 and Jan. 15 1970.
This fragment of Mumford’s response is all we have.
152 Y. Manin, The theory of commutative formal groups over fields of finite characteristic, Usp.
Math. 18 (1963) 3–90; Russ. Math. Surveys 18 (1963) 1–80.
153 However G1(1) ∼= G2(1) =⇒ G1 ∼= G2 if one of the two BT-groups G1,G2 is minimal; see
Thm. 1.2 of F. Oort, Minimal p-divisible groups, Ann. of Math. 161 (2005) 1021–1036. See also
4.1 and 4.2 loc. cit. for examples of the negated implication in 2.
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Grothendieck to Mumford, 15 January, 1970

15.1.1970

Dear David,

I agree that the answer to the question of characterizing groups G(1) for G a BT
group, over an algebraically closed (or more generally, perfect) field is rather trivial,
using Dieudonné’s theory. By the way, a similar argument shows that if Γ is a finite
group over k which is a flat module over Z/pn

Z (or, what amounts to the same,
killed by pn and such that Ker(p · idΓ ) = Im(pn−1 · idΓ )), then, if n 	= 1, there exists
a BT group G over k (perfect field) such that Γ 
 G(n) if k algebraically closed or
Γ is radicial unipotent. On the other hand, using the (not as yet proved) deformation
theory of Illusie for flat groups I alluded to in my last letter,154 one can prove that if
S is a local complete noetherian scheme with residue field k of char. p, and Γ a finite
flat group scheme over S which is killed by pn, then, if Γ0 is isomorphic to a group
G0(n), Γ is isomorphic to a group G(n) (G0, G being BT groups over k, S). Thus,
if k is perfect, we get a nice characterisation of the groups G(n), which presumably
should hold also without any restriction on k.

On the other hand, I could not make any sense out of the indications you gave
me for constructing an example (over alg. closed k) where G(1) 
 G′(1) but G 	

G′. You say that for two-dimensional formal p-divisible groups G, the moduli for
G(1) form a variety of dimension at most four; but this seems nonsense, because if
you fix not only the dimension d of the Zariski tangent space to G(1), but also the
corresponding number d∗ for the Cartier dual G(1)∗ (so that d +d∗ is the “height”),
then the moduli space for G(1) is of dimension dd∗, which for variable d∗ gets
arbitrarily high! Maybe there has been some misunderstanding on my part.

Thanks for your comments concerning my troubles with IHÉS. Fortunately
things got arranged, as I was backed by my colleagues from IHÉS for demand-
ing that no military funds should be used for the budget. Finally Motchane told us
that no such funds were being used in 1970, and that he gave us “une assurance
morale” (not being qualified to give us a formal commitment in this respect) that
no such funds were to be used in the future. Thus I have taken up my job at IHÉS
again, which of course is also the best solution in personal respect, as the position at
IHÉS is quite satisfactory in various respects. Maybe you can inform Deligne about
this outcome, as I will probably not write him before a week or so.

Best wishes to you and your family

(signed) Schurik

154 Published as L. Illusie, Complexe Cotangent et Déformations I and II, LNM 239 (1971) and
LNM 283 (1972).
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Mumford to Grothendieck, 24 May, 1984

May 24, 1984
Professor Alexander Grothendieck
Mathématiques
University of Montpellier
2, Place Eugène Bataillon
34060 Montpellier
France

Dear Grothendieck,

Thank you very much for sending me your “Esquisse” which I have shared with
half a dozen others here. I felt thrilled to hear what you are thinking about and very
excited by your ideas.

You asked me in the margin about whether Tg,ν was known to be the same as
π1(“Mg,ν at ∞”). I had wondered about this, too—a long time ago I had asked Tits
about it. It seems to me that it follows now from the Thurston–Hatcher paper in
Topology.155 But it also follows from the much more powerful and amazing result
of Harer156 (conjectured by Mosher). He constructs a complex Cg of dimension
6g− 4 on which Tg,1 operates (the idea will apply directly if ν = 1 and adapts,
I guess, to other ν), plus a subcomplex Dg containing the (2g− 1)-skeleton of Cg,
plus a Tg,1-equivariant homeomorphism

(Cg−Dg)
≈−→ Teich space of type (g,1) .

In fact, Cg is a union of k-simplices, one for each (k +1)-tuple σ0, . . . ,σk of disjoint
arcs in a reference surface Sg with base point Pg, such that all σi begin and end
at Pg, σi are not homotopically trivial and no two are isotopic, all mod isotopy of
(Sg,Pg). And Cg−Dg is the set of simplices for which Sg−⋃σi is union of cells.
The homeomorphism can be constructed elegantly using the theory of Strebel dif-
ferentials, or the theory of measured foliations. In any case, I think it proves what
you want—and more! Enclosed is a xerox of a letter157 of mine with more details.

I would like to ask you, on another level, would you consider coming here for
some period—it could be a short period, or it could be much longer—to pursue your
research? We can offer you travel and support at $850 per week; or a full salary if
you can come for a longer period. I realize you are deeply attached to your retreat
in the south of France, but perhaps you’d like to think over the possibility of coming
here. We can offer you time to do research and contact with lots of people with
common interests. It would be wonderful to welcome you here again.

155 Referring to A. Hatcher & W. Thurston, A presentation for the mapping class group of a closed
orientable surface, Topology 19 (1980) 221–237.
156 This result was published in J. Harer, The virtual cohomological dimension of the mapping
class group of an orientable surface, Invent. Math. 84 (1986), 157–176.
157 Mumford’s note on the margin: “I can’t find this right now. I’ll send it later.”
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On a more personal note, let me tell you that I have been working in artificial in-
telligence recently—specifically computer vision. There are some fascinating ideas
and problems here. I’d love to discuss these with you if we ever get a chance.

I hope to hear from you soon,

Warmly,
(signed) David
David Mumford

Grothendieck to Mumford, 29 June, 1984

Les Aumettes 29.6.84

Dear David,

I was very pleased to get your warm and enthusiastic letter in response to my
“Esquisse”. This is the first time since 1978 (the first glimpse upon the anabelian
iceberg!) that one of my former friends in the mathematical world shows a sign of
interest in these things, which my own instinct very evidently tells me are basic and
exciting indeed. It is very strange—and I do feel like a stranger today among those
people I used to like a lot. I should add that it seems kind of natural to me that
you should be the one exception, which is in accordance with some lively former
impression I’ve got about you.

I must apologize for being late in replying. One reason is that I’ve been sick for a
few weeks now, from overwork I’m sorry to say—something really stupid! During
the last four months I’ve been “just about to finish” some work, which had started
as the “introduction” to Pursuing Stacks, and which has grown into a 500 page
retrospective of my life as a mathematician, and of the predicaments which struck
some of my work after I left the mathematical milieu. It was a very interesting
and fruitful reflection, which is going to be the main part of vol. 1 of Reflexions
Mathématiques. But with this feeling, of just having to finish up the stuff and be
through, I overstrained, and it turns out I’ll have to take a complete rest for a few
weeks, maybe months. Still, I think I’ll send you a copy of that retrospective (in
French) sometime in September, and hope it will interest you. I’ve learned a lot
writing it . . . .

For the reason just said I’ll not, at present, dive into mathematical matters in
connection with your letter, except to tell you I’m glad the property that I needed
for π1(Mg,n) is ok.158

Thanks also a lot for your suggestion to spend some time at Harvard. If any place
should be congenial to me, apart from my home, for discussing some of the things in
math which have been interesting me in the last years, it is the Harvard area indeed.

158 In this case Mg,n means the moduli stack of curves of genus g with n marked points, and the
π1 is a mapping class group. In the letter Grothendieck refers to the stacks Mg,n as “Teichmüller
multiplicities”.
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It is not clear though that I’ll feel the desire or need within the next years to leave my
home for the sake of doing maths more efficiently. If it should happen I’ll contact
you again. In the meanwhile, if you’ve a chance to drop by at my place, you’ll be
very welcome (I am able to accommodate you, if you feel like staying a few days).
In any case I’ll write you if I’ve mathematical questions which I feel you may know
about (or simply be interested in). But for the time being I’ve got to rest!

Affectionately, (signed) Alexander

PS Rather write to my personal address: Les Aumettes, 84570 Mormoiron, France.

Mumford to Grothendieck, 26 December, 1985

Dec. 26, 1985

Dear Grothendieck,

I’ve spent quite a bit of time in the last week trying to read your long testimony—
something I was very interested in as you have always been a very important
and vivid figure in my life. I have been impeded by my inadequate knowledge of
French—it is very easy for me to read French mathematics, but not at all easy to read
more elaborate things. But I have been very moved by many of the things you say
and very upset by others. I hesitated for some days trying to imagine how I might
reply. I want to do so but I don’t know what I can say which is helpful.

One thing I want to write you about is a rather specific suggestion. For at least
10 years I have had the hope that at some point the right occasion would arise
to propose the publication, in a suitably edited form, of a large number of your
mathematical letters to your friends. For me, the letters that you wrote me are by
far the most important things which explained your ideas and insights. The letters
are vivid and clear and unencumbered by the customary style of formal French
publications. I assume that the letters you wrote to others are similar. They express
succinctly the essential ideas and motivations and often give quite complete ideas
about how to overcome the main technical problems. I have been very conscious
of the difficulties that the younger generation has in getting a clear idea of your
theories. This may be blunt and insensitive, but I should say that I find the style of the
finished works, esp. EGA, to be difficult and sometimes unreadable because of its
attempt to reach a superhuman level of completeness. But, for myself, I never liked
Bourbaki either! This is a personal thing, but the point is that your letters would offer
a clear alternative for students who wished to gain access rapidly to the core of your
ideas. My proposal would be to approach someone with a broad knowledge of your
theories, such as Artin or Mazur, and give them permission to approach the others
to whom you wrote at length to send them copies of your letters (with personal
details removed). They could then examine the whole corpus and glue and paste and
provide orienting remarks, producing a first draft of a publication for you to review. I
feel sure that such a collection would be extremely useful to the younger generation,
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many of whom don’t have a good appreciation of your ideas at all. I’m not just
thinking of motives or D-modules ∼ crystals of which you write at length. I find
equally distressing the lack of understanding of duality (no-one reads Hartshorne’s
book on duality because they find it too long), of topoi/stacks (or the related general
existence theorem of Artin’s), or (earliest of all) the comparison theorem for π1

(never published outside SGA1 I believe). There are hordes of smaller but crucial
insights such as your letter to me about the yoga of Koszul (φ ◦ψ =(−1)abψ ◦φ , . . .)
which showed me what was what with determinant bundles.159 What do you think?
The collection of letters would also serve as a key to the other published things—
SGA, EGA.

On another level, I wanted to make some other remarks vis-a-vis intellectual
“burial” and the influence of other people. It is very impressive that very few truly
innovative ideas ever become current through the straightforward direct route of
simply being published, read, understood and used by one’s contemporaries. Quite
often others “rediscover” them—which is a euphemism for the idea coming to them
directly or indirectly at a time when they are not prepared to understand it—and
then, when they are prepared, they think it is their idea. Other times, the focus of
the international community shifts and a beautiful insight is forgotten for 30–40–50
years, until a new eddy carries people back to renew the old. Then again, people’s
idiosyncrasies sometimes prevent them from publishing their ideas in an accessible
way: I think of Thurston especially who has published almost nothing of his basic
theory of 3-manifolds and the associated developments in the theory of surfaces
(e.g., geodesic laminations, “train-tracks”, etc.). I think that it is rare that a beautiful
idea is really forgotten, but it is probably fairly common that ideas get mis-attributed.
I was quite disturbed by the merely passing recognitions that is given the work
of Shafarevich, Arakelov and Parshin, when Faltings provided the last push that
achieved the Mordell conjecture. (I don’t mean that he is not a very strong and deep
thinker too, whose faith and belief in the method was very very crucial—but just
that the Russian school had provided both the basic tools and the motivating ideas
of the proof.) Anyway, I do not think your ideas are buried, at least not buried too
deeply! I believe there is a world-wide reaction today, a trend, towards mathematics
that is more concrete and even computational, as opposed to extremely abstract ideas
epitomized by categories/functors/“Tohoku”. This is not universal. Mathematics (as
opposed to, e.g., particle physics) has the luxury of meandering and dividing like a
river in a delta (Shafarevich’s metaphor was the amorphous growth of an amoeba).
But my perspective is that the intellectual center of gravity is shifting right now
back to rather concrete problems, and this makes it very hard for people to read
SGA and EGA. There is clearly a dialectic in mathematics between the concrete
and the abstract, and nothing short of the death of mathematics could prevent the
center of gravity from shifting back, however, at some point. My feeling therefore

159 The letter in question, from Grothendieck to F.F. Knudsen, was published as Appendix B
to F.F. Knudsen, Determinant functors on exact categories and their extensions to categories of
bounded complexes, Michigan Math. J. 50 (2002) 407–444; the appendix appears in pages 441–
444. Knudsen’s article is based on Grothendieck’s letter and develops its ideas, in particular of
having determinants with values in Picard categories.
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is that certain themes in your work, esp. the definition itself of a scheme and the
theory of étale and crystalline cohomology, will continue to play a central role,
while some of the perspectives will be less appreciated for a while. But this is all
facile generalization: the reality is always more complicated.

On a more personal note, in a minor way I can share some of your feelings. What
has happened in my life is that I came to a point where I felt that my life was passing
quickly and that there were other ideas, other questions that I had once wanted to
think about but had totally forgotten while I was immersed in my career as a pure
mathematician. These questions were those about the nature of intelligence, about
how one thinks and what “thought” consists of. I felt as a student, and I feel now,
that the computational perspective offers one a fantastic tool to help disentangle
these questions and wanted to pursue these ideas before it was too late. Anyway,
for three years now I have done essentially no algebraic geometry. What is most
disconcerting for me is the feeling of being, on a professional level, in a limbo:
before, I had a clear acknowledged position in a clear limited field. When I dropped
that I was a complete unknown, sometimes a mistrusted outsider, often a confused
student faced with a diverse array of unfamiliar specialties. Anyway, it has been a
bit difficult.

Thank you for sending me your testimony, and let me wish you, in the conven-
tional phrase, a “very happy new year”. I do indeed wish you a fruitful and rewarding
New Year.

Sincerely, with Best Wishes,
(signed) David Mumford

Grothendieck to Mumford, 9 January, 1986

Les Aumettes Jan. 9, 1986

Dear David,

Thank you very much for your letter, and for your sympathy and concern. It is all
the more precious and welcome to me as, among the host of my former friends and
students from before my departure, there have been extremely few who so much as
took the trouble to reply to ReS,160 and (believe it or not) altogether only three in-
cluding you, who would express the feeling that there was maybe something wrong
somewhere. The other two are Samuel and (remarkably enough) Illusie, one of the
three main artisans of the “Burial”. Besides these three, I got a number of letters
expressing interest, sympathy and concern from more recent friends from the math-
ematical milieu, and still more from people wholly outside and (presumably for this

160 A. Grothendieck, Récoltes et Semailles. Available from
http://www.math.jussieu.fr/˜leila/grothendieckcircle/recoltesetc.php
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very reason) less reluctant to accept a certain disturbing picture of this milieu, which
progressively comes into the fore as the reflection in my “testimony” proceeds.

I greatly appreciate too the effort you made to dig through the French, which
certainly isn’t easy, as I have been using often rather colloquial expressions which
you wouldn’t find in any dictionary. I was contacted by a New York publisher who
wants to have the book translated and distributed in the US. I hope the project is
realized, and will be glad to have you get a copy as soon as it is available.

Your letter strikes me as friendly and thoughtful, eager to be “helpful” one way
or another—which in itself is comforting, and I am grateful for your concern. Let
me be outspoken though, David, and tell you that I feel the emphasis in your letter
and in your concern is misplaced. Namely, you need not worry (any more than I
did and do) about me, or about my work and the recognition given to it. This is not
the problem. As far as my person goes, my life is a very happy and fulfilled one,
and the episode of writing “Reaping and Sowing”, and discovering the “Burial” in
its various aspects and impressive proportions, has been part of it (including the
moments which have been kind of hard, and which all the less I would wish not to
have gone though . . . ). If I don’t get a renewal of nomination in CNRS (which has
become still more hazardous through the publication of ReS), I’m entitled anyhow
to retirement after two more years, which will then allow me to devote myself en-
tirely to those things which fascinate me most, foremost among which, meditation.
But even before this, I am to a large extent independent of the good or bad will of
my colleagues in the mathematical milieu. As for my work, including the part of
it which is still buried or dismantled or made fun of, it is quite clear to me that, if
mathematics (and mankind) goes on for a while still (which I don’t really feel any
more sure about than fifteen years ago . . . ), people couldn’t possibly prevent them-
selves from exhuming my ideas and a certain overall vision, or else rediscovering
it. And as far as paternities go, I am not sure really many people seriously believed
(even if they pretended to) that étale cohomology, motives and motive-theoretic Ga-
lois groups are due to Deligne, étale duality and derived categories to Verdier, the
key ideas and the very notion of crystal to Berthelot—and for those who decided to
forget what the score was, I guess that (whether they like it or not) the publication
of ReS is going to call it back to their minds. And this will be all the more so if
(as I now plan) I do spend a few years still, giving a sketch of the vision which was
buried, and developing a little, in an informal way, one or the other of its tenets: six
operations, crystals, motives, “stacks” and a certain approach to homotopy theory.
(And presumably, leaving out the big program of Teichmüller–Galois theory and of
anabelian algebraic geometry.)

If something deserves thought and concern it isn’t me and my work, but the air
in the mathematical milieu you are part of161, as I once was part of it. You are

161 Grothendieck’s footnote: (Jan. 10) The expression “air” (in the mathematical community)
strikes me as inadequate. My perception of reality would be better expressed by saying that I
see this community as a gangrened body, of someone who doesn’t care to take notice. In such a
case, whatever you may say to him about what you are seeing is lost—the words, however plain,
have just lost their meaning. This impression has been very strong lately, with the response to ReS
from within the community . . . . And I wonder: what is the sense of doing mathematics, with ears
and eyes shut, within such a context?
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explaining to me, but perhaps rather explaining to yourself as a way to reassure
yourself, about the pendulum of fashion or moods swinging back and forth between
the “concrete” and the “abstract” (which is surely familiar to me, be it only from
my own work . . . ), and about people rediscovering things which had become for-
gotten (which is just as familiar to me). However, all this has nothing to do with
the Burial and the spirit of the Burial. You know it yourself, and I need not explain
it to you. What I do not as yet understand at all is what my particular person, and
my particular impact on the mathematics of my time, or on the friends and students
sharing with me the same milieu (and the same passion for mathematics), has to do
with the present deep degradation of the professional ethics and of the quality of
relations between mathematicians; and notably, the relation between those in posi-
tion of prestige and power, and the others. What is clear to me though, from various
echoes I got from here and there, is that this degradation is by no means restricted
to the super-fraud and the derision around my work (and the work of Mebkhout)
and the derision around my person. More still than by your suggestions of how to
“remedy” the oblivion of, or the difficulties in approaching my work, I would be
interested in your personal testimony, echoing mine, about your own contacts with
the Burial during the last sixteen years, and beyond this, possibly, about occasional
glimpses of the general degradation I have been alluding to; and be it only to tell me
that you haven’t noticed anything at any time, if this should be so. This degradation
need not express itself, necessarily, by outright dishonesty and cynicism, it may just
as well show through the gradual thickening or fading-out of liveliness, mutual con-
cern and delicacy in relations between people. To speak of just two close colleagues
of yours with whom I felt ties of close friendship and sympathy; my last letters to
Barry Mazur and to John Tate go back to 1976 and to 1981 and never got a reply,
and none of the two (nor Raoul Bott, who I was quite fond of too) took the trouble
to reply to Récoltes et Semailles, which I sent with a personal dedication to each. I
mention them because they happen to be at Harvard—but similar cases have been
countless for the last ten years, and still more so with the sending out of personal
copies of Récoltes et Semailles.

But let me get back to cases of outright fraud and ruthless cynicism, as exempli-
fied by the remarkable volume LN 900 on motives (one of the most cited books in
the literature), or by the very name “SGA4 1

2 ” (same remark), or, more shameless
than all, the Colloque Pervers (same remark again for the Proceedings of the Collo-
quium, in two volumes, published in Astérisque). The fraud in these cases is evident
and glaringly clear to all those who are in touch with the topics dealt with—in the
third case, it should add up to at least fifty world-wide known specialists, includ-
ing such “stars” as Deligne, MacPherson, Beilinson, Malgrange, Verdier, and many
others. Here it is not some well-known “ancestor”, who used to be in a position of
power himself but who isn’t around any more, who is being plundered—or, if he is
indeed, this isn’t really the crux of the matter. The whole Colloquium (exhibiting for
the first time a substantial portion of the panoply of the unnamed ancestor . . . ) took
place through the solitary and obstinate work of an unknown pioneer, who (draw-
ing inspiration from the ancestor) succeeded to do the work that Deligne had been
unable to conceive of and to do, ten years before. Through the connivance of the par-
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ticipants in this Colloquium this “unknown soldier”, who did the work which none
of these brilliant people had ever dreamed of, isn’t named at all in the first volume of
the Proceedings, and in the second only quite incidentally and never with reference
to the main result which was the very spring of the Colloquium. I said enough about
this affair in ReS, so that I need not dwell upon any more details. In connection with
your letter, the association came to me with the Lubkin affair—I believe you never
really looked too closely at what happened, and (as far as I remember) I never took
the trouble to discuss the matter with you, which appeared to me as [ . . . ]162 —the
only case I was confronted with in the period till 1970 (when I left). I was surprised
that it should go through, unnoticed, but I was too busy then doing mathematics to
worry too much. Maybe, in those clement times, what protected Lubkin was that his
status was a modest one, so people would feel it wasn’t nice in such a case to be too
fussy. And I am not sure there is a direct link between this particular isolated case
of fraud, and the “new times” which set in about ten years or so later, when fraud
gradually has become the “new look” in mathematics. What strikes me is that the
situation is now exactly reversed—nowadays it is a whole bunch of some among the
most prestigious mathematicians, who will (by common agreement) shamelessly
rob an obscure “assistant” in a provincial university, that nobody (except the bunch
in the know) has ever heard of . . . .

The point I want to make is this one. This kind of “new look” is alien to your own
ways, sure enough, and getting to come into touch with it some way or other is em-
barrassing and painful, so it is understandable you prefer to turn away your eyes and
forget about it. And I am afraid that most of the mathematicians and maybe all, who
have not been won over to the “new look” (and I doubt not there are many still), just
react that very same way. Maybe they’ll say “poor Grothendieck” or (à la rigueur)
“poor Mebkhout” (as far as the Burial goes) or “poor such and such”—and then turn
to more pleasant thoughts. It may be more beneficial though to have a closer look
to what is going on (however painful), and, when this is done, not to hesitate to call
a fraud a fraud, and a crook a crook, even if this should be disagreeable to those
who like to carry on their swindle, and to trample on the defenseless. Just turning
your head away will indeed benefit the new style, and contribute your own share (in
the passive mode) to the proliferation of such things as the Colloque Pervers, which
already now is considered as something perfectly normal and honorable by the en-
tire mathematical community. At any rate I got precious few responses, from within
the math community, who would clearly imply they do not consider it normal nor
honorable. Your response at any rate, however thoughtful, friendly and sympathetic,
does not.

Just one more word. The situation of Mebkhout, since ReS was sent out, has
become more difficult than ever—he has to face the hostility of nearly all colleagues,
who will let off their own embarrassment (at the inequity of what was done to him
through some of the most brilliant members) by holding him responsible for ReS,
as the one holding the strings etc. He is at present at IAS, for three months, and
I suppose he must be very isolated and ill at ease at this place, with people like

162 Short phrase deleted.
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Deligne, Langlands, Faltings (all very much “partie prenante” of the Burial). His
friends (none of whom has the courage or weight to speak out publicly) foretell him
that he may well be fired from CNRS (where he finally got admitted a few years
ago), and that his future will no doubt be a dark one. And this prediction cannot
but turn true, if the climate of cynicism, and of indifference to it I have been trying
to describe should prevail. I am not sure that any single action by anyone, however
prominent, can really remedy this state of affairs. But I do know that (on a wholly
different level) just one act of decency and respect, of just anyone, however humble
his status, means a lot . . . .

This letter has become prohibitively long, David, and still I am far from having
responded to all you touched upon in your long and thoughtful letter. Maybe some
other time—this time, I responded first to what was strongest on my mind, I hope
you won’t mind (indeed, I’m sure you will not!). I look forward to hearing from you
again. Please give my regards to our common friends, and above all to Oscar and
Yole, if you have a chance. (I heard from Yole, and later from Mike Artin,163 that
Oscar isn’t at all in good shape.)

Affectionately
(signed) Alexander

All the best for the New Year too!

Personal address (much speedier)
Les Aumettes
84570 Mormoiron
France

Mumford to Grothendieck, 11 February, 1986

February 11, 1986
Alexander Grothendieck
Les Aumettes
84570 Mormoiron
France

Dear Alexander,

Thank you for your long and moving letter which I have thought about quite a
bit. I also discussed the questions you raise with various friends to see if this would
give me a different point of view.

But after all this, I really must say I don’t agree with you that there has been a
general degradation in the manners and customs of the mathematical community.

163 Grothendieck’s footnote: Mike had the courtesy to answer and acknowledge receipt of ReS,
in a few embarrassed lines before passing to news about Oscar, and then to mathematical matters
which to me have just no meaning any more . . .
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By moving into different fields, what I have found is that on the contrary pure math-
ematics has better manners and is much more gentle than any of the other fields
I have touched. So many other fields have a standard custom of not acknowledg-
ing your rivals’ work if you can avoid it (and, in fact, everyone has “rivals” to begin
with) and being brutal in your criticism of others whenever you have an opportunity.
I feel that there are lapses in the mathematical world, but they are rare, the people
involved are usually guilty more due to oversight than to intent, and almost everyone
tries to rectify the errors. On the other hand there is more of a general tendency in
mathematics to forget whatever the previous generation did!

I can’t comment on the specific cases of fraud you talk about because I haven’t
been involved and I don’t want to second guess who did what without asking them.
I know that others besides yourself have been very upset by particular incidents
(Siggy Helgason or Gabriel Stolzenberg for instance). As for Lubkin, as I recall it,
he was indeed [ . . . ],164 but I also believe he had some good ideas of his own (his
version of étale Cech cohomology for instance) and he got his sad reward by being
wholly ignored.

So that’s my perception of this isolated corner of the world: still rather blissfully
lucky. I’m sorry that this perception is so different from yours. I feel this letter is
a very inadequate way of communicating. It would be very nice if we could meet
in person again some time. I hope you know how vivid and influential a figure you
were in my life and my development at one time. Let me extend my very best wishes
to you now.

Sincerely,
(signed) David
David Mumford

164 Short phrase deleted.
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Notes

In these notes, “page x (y)” means page x in the original publication and page y in
this volume; “page x (vol. I, p. y)” means page x in the original and page y in [SP1].

[61a] The topology of normal singularities of an algebraic surface
and a criterion for simplicity.

1. Page 5 (3), line −2 (a note concerning the Theorem): The generalization of the
Theorem for (V n,P) becomes false for every n > 2. Brieskorn has produced
examples in which P is a normal isolated hypersurface singularity of type za0

0 +
. . .+ zan

n = 0 . See Proc. Nat. Acad. Sc. USA 55 (1966) 1395–1397, and Invent.
Math. 2 (1966) 1–14.

2. Page 6 (4), line 3 of the 4th paragraph:

“note (a) Si j ≥ 0” should read “note (a) S′i j ≥ 0”.

Of course these two statements are equivalent, but next sentence refers to prop-
erties of the matrix S′.

3. Page 15 (13), line −5: “minimal prime ideal” should read “height one prime
ideal”.

4. Page 16 (14), lines−5 and−4: The first conjecture in the last paragraph on this
page, that the ideal class groups of the holomorphic local ring o and its comple-
tion o∗ are canonically isomorphic, is true. In fact the obvious generalization to
a henselian pair (A, I) is also true; see the Corollary at the bottom of p. 573 of
R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann.
scient. Éc. Norm. Sup., Ser. 4, 6 (1973) 553–603.
Notice that the holomorphic local ring o is strictly henselian. The case where
A = o is a two-dimensional henselian local ring was proved by Boutot in 1971.1

1 J.-F. Boutot, Groupe de Picard local d’un anneau hensélien, C. R. Acad. Sc. Paris 272 (1971)
A1248–A1250.
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5. Page 16 (14), lines −3 and −2: A modified version of the second conjecture in
the last paragraph is true. Denote by X̂ the formal completion of the reduced
exceptional divisor E := E1 + · · ·+ En in F ′. Then there exists an exceptional
divisor Z ≥ E supported in E such that the natural map Pic(X̂)→ Pic(D) is
an isomorphism for every divisor D ≥ Z supported in E . This follows from
Lemma 2.10 on p. 494 of M. Artin, Some numerical criteria for contractibility
of curves on an algebraic surface, Amer. J. Math. 84 (1962) 485–496, and the
standard GFGA theorems. The (strict interpretation of the) original conjecture,
that the natural map Pic(X̂)→ Pic(E) is an isomorphism, is false. An example
is provided by Example 6.3 (i) on p. 193 of H.C. Pinkham, Normal surface
singularities with C

∗ action, Math. Ann. 227 (1977) 183–193. In this example,
E = E1 +E2 +E3, where E1 is a smooth elliptic curve, E2 and E3 are isomorphic
to P

1, with the following intersection numbers: (E1 ·E1) =−1, (E2 ·E2) = (E3 ·
E3) = −2, (E1 · E2) = (E2 · E3) = 1, (E1 · E3) = 0. Moreover the restriction
TrE1(E) := O(E)⊗OE1 of O(E) to the elliptic curve E1 is trivial. The short
exact sequence 0→ H1(E1,TrE1(−E))→ Pic(E + E1)→ Pic(E)→ 0 shows
that the strict version of the second conjecture fails.

[61b] Pathologies of modular algebraic surfaces.

1. The displayed formula on p. 342 (vol. I, p. 734) should read

φ∗1 (dt/t) = φ∗2 (dt/t) = φ∗3 (dt/t) = d(xyz)/(xyz) .

[62b] The canonical ring of an algebraic surface.

1. The canonical ring of a complex algebraic variety of general type has since
been proved to be finitely generated in any dimension. An analytic proof was
given by Y.-T. Siu, Finite generation of canonical ring by analytic method, Sci.
China Ser. A 51 (2008) 481–502. An algebraic proof exists in preprint form in
C. Birkar, P. Cascini, C. Hacon and J. McKernan, Existence of minimal models
for varieties of log general type.

2. Page 613 (22): In the first displayed formula, “(K2)−deg(c2)” should read

(K2)+ deg(c2) .

3. Page 614 (23), footnote: The cited paper by M. Artin appeared in Amer. J. Math.
84 (1962) 485–496.

[65a] A remark on Mordell’s conjecture.

1. Page 1008 (47), line 15: “Vk ” should be “Xk ”.
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2. Page 1009 (48), line −2: In the definition of a divisorial correspondence, in-
stead of requiring δ ∈ Pic(X×Y ) to be trivial when restricted to both X×{pY}
and {pX}×Y , one should impose the first (resp. the second) condition only
when dim(Y ) > 0 (resp. dim(X) > 0). (The universal mapping property (*) on
p. 1010 (49) then gives a k-rational point η̃ ∈ Jk for any element η ∈ Pic(C) of
degree 0 in the Picard group of C as in the proof of Proposition 2 on p. 1013
(52).)

3. Page 1010 (49), line 17: “J is characterized” should read “Ĵ is characterized”.
4. Page 1010 (49), line −4: “with X = J” should read “with X = Ĵ”.
5. Page 1014 (53), line 7: “ p∗1(x )” should read “ p∗1(x0)”.

[65b] Picard groups of moduli problems.

1. Page 33 (56), line 8: There has been enormous progress on the question of the
rationality of Mg , which remains a subject of active research. In characteristic
0 the following are some highlights.

• Mg is of general type if g≥ 24. See [83]; J. Harris, Invent. Math. 75 (1984)
437–466; J. Harris and D. Eisenbud, Invent. Math. 90 (1987) 359–387.

• Mg is rational for g = 1,2,4,6. See I. Dolgachev, Proc. Symp. Pure Math.
46, Part 2, 1987, pp. 3–16 for more information.

• Mg is unirational for g ≤ 13. For g ≤ 10 this is classical and was known to
Severi in 1915. For g = 12 see E. Sernesi, Ann. Sc. Ec. Norm. Sup. Pisa 8
(1981) 405–439; for g = 11 or 13 see M.C. Chang and Z. Ran, Invent. Math.
76 (1984) 41–54.

2. Page 47 (70), 3rd line of §3: Insert “complete” after “reduced”.
3. Page 49 (72), in the displayed formula (b): The term on the far right, i.e., the

expression “ [(S2×X2)×(S1×S2) T ]”, should read

[(S1×X2)×(S1×S2) T ] .

4. Page 53 (76), line 15: In the displayed formula of line −14, that is right after
the phrase “We get a diagram”, add g below the arrow T −→ S, to become
T −→g S .

5. Page 57 (80), line 14: “ λ−1
γ ” should read “ λ−1

λ ”.

[67d] Abelian quotients of the Teichmüller modular group.

1. Page 227 (105): See the extensive comments on a preprint version of this paper
by Grothendieck in his 1966 May 9 letter to Mumford (p. 717 in this volume).

2. Page 228 (106), line −4: It is clear from the context that the precise conjecture
here is that the rank of H2(Γg,Z) is one for g≥ 3: as mentioned on p. 243 (121),
H2(Γ2,Z) ∼= Z/10Z. The first significant breakthrough on this question was
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made by J. Harer, who showed in 1983 that H2(Γg,Z)∼= Z for g≥ 5; see Invent.
Math. 72 (1983) 221–239. Note that the claim in the paper that the torsion part
of H2(Γg,Z) is isomorphic to Z/(2g−2)Z was incorrect. Since then there has
been enormous progress on the cohomology of the mapping class group and the
cohomology of Mg,n and M g,n . In particular, H2(Γg,Z) has been computed:
it is isomorphic to Z for g > 2, and is isomorphic to Z/10Z for g = 2.

3. Page 233 (111), line −3: replace “x− xγ ” by “x− xy ”
4. Page 244 (122): Paper [8] in Bibliography is [u64b].

[69a] Enriques’ classification of surfaces in char p.

1. Page 329 (vol. I, p. 664), lines 6, 9, 10, 11: “OEi(−E2
i )” should read “OEi(−Ei)”;

similarly in line 8, “H1(OEi(−E2
i ))” should read “H1(OEi(−Ei))”

[69b] Biextension of formal groups.

1. Page 307 (141), lines 2 and 3: In a letter to P. Cartier in the winter of 1967/8,
Mumford explained the definition of a multiplicative biextension of commuta-
tive formal groups and a related notion of a “polarized canonical module” over a
commutative ring R of characteristic p and outlined a proof that generic abelian
varieties in characteristic p are ordinary, in (a) and (b) below, similar to (ii)–(iv)
on p. 307: (a) when R is a complete noetherian local ring, a polarized canonical
module ovr R determines a deformation of polarized p-divisible groups over R;
(b) a “generic” polarized canonical module deforming that of an abelian variety
X over R/mR can be shown to be ordinary, by reducing to the case when the
original abelian variety X satisfies α(X) = 1.

A version of the proof sketched in steps (i)—(iv) was published by P. Norman
and F. Oort, Ann. Math. 112 (1980) 413–439. The proof uses a version of the
method mentioned in (iii) below, published by P. Norman in Ann. Math. 101
(1975) 499–509. The notion of a displayed Dieudonné module in Norman’s pa-
per was generalized by T. Zink into a new Dieudonné theory for p-divisible
groups, called the theory of displays. See T. Zink, The display of a formal
p-divisible group, in Cohomologies p-adiques et applications arithmétiques I,
Astérisque 278 (2002), 127–248; T. Zink, A Dieudonné theory for p-divisible
groups, in Class field theory—its centenary and prospect (Tokyo, 1998), Adv.
Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001, 139–160; W. Messing,
Travaux de Zink, Séminaire Bourbaki 2005/2006, Exp. 964, Astérisque 311
(2007), ix, 341–364.

2. Page 307 (141), line −6: Cartier’s results were published by M. Lazard in
LNM 443, Springer-Verlag, 1975.

3. Page 308 (142), line 5: The following should be added as a footnote for the
definition of the ring AR:
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‘The ring AR is the completion of the noncommutative ring W (R)[V ][F] with
respect to the right ideals V n W (R)[V ][F ]. Explicitly, the ring AR consists of all
infinite series of the form

∑
m,n≥0

V m[amn]Fn with amn ∈ R ∀ m,n≥ 0

with the property that for every m ≥ 0, there exists an integer Cm such that
amn = 0 for all n ≥ Cm. Here [amn] denotes the Witt vector (amn,0,0, . . .), the
“Teichmüller representative” of amn.’

4. Page 310 (144), §2: The notion of biextension was further developed in Exposés
VII, VIII of SGA7I, LNM 288, Springer-Verlag, 1972. The set of isomorphism
classes of biextensions of G×H by F is Ext1(G⊗L H,F) , when G, H, F
are abelian groups in a topos. In LNM 980, L. Breen developed the notion of
cubical structures and related it to biextensions.

5. Page 313 (147), line −10: “Φ,Ψ are the group laws of G and H respectively”
should read “Φ,Ψ are the group laws of H and G respectively”.

6. Page 319 (153), line 3: “β (Pm,Qn) = P.(m,n).Q∗” should read “β (Pm,Qn) =
P ·β (m,n) ·Q∗”.

[69d] Rational equivalence of 0-cycles on surfaces.

1. Page 197 (vol. I, p. 755), 3 lines above the displayed commutative square: “in-
duced 2-form” should read “induced q-form”.

[70] Varieties defined by quadratic equations.

1. Page 70 (232), line 4 of the second paragraph: The word “natural” should be
eliminated. In fact the homomorphism ρα : K(L)→ G (Pα) which splits the
extension

1→ k∗ → G (Pα)→ K(L)→ 1

is unique up to Hom(K(L),k∗) .
2. Page 75 (237), line 12: W denotes the image of

∑
α∈X̂

Γ (L⊗Pα)⊗Γ (M⊗P−α)→ Γ (L⊗M)

as in the proof of the Lemma on p. 68 (230).
3. Page 79 (241), line 2 from bottom: The displayed formula should read

P(x,y) = χ(L)
g

∏
i=1

(x−αi y) .
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4. Page 80 (242): The displayed formula on line 8 should read

P(x,y) = (constant) ·
r

∏
i=1

(x−αi y) · yg−r .

5. Page 99 (261), line 4: Insert “abelian” between “complementary” and “subvari-
ety”.

[71a] Theta characteristics of an algebraic curve.

1. Page 189 (vol. I, p. 488), line 12: “E is a π∗OX ′ -algebra” should read “E is a
π∗OX ′ -module”.

[71b] A remark on Mahler’s compactness theorem.

1. Page 291 (265): The last displayed formula (second formula in the statement of
Theorem 2) should read

{
Γ ∈MC

G | Γ ∩Uε = {e}, measure(G/Γ )≤ D
}

(in other words, the superscript “C” should be moved from ΓC to MC
G ).

[72d] Introduction to the theory of moduli.

1. Page 176 (274), 4 lines before Corollary: “ψ : M→ N” should read “Ψ : M→
N”.

[73c] A remark on the paper of M. Schlessinger.

1. Page 117 (326), the last line: The paper by H. Pinkham was published in J.
Algebra 30 (1974) 92–102.

[75b] Matsusaka’s big theorem.

1. Page 513 (327): A refinement of Theorem 1 by J. Kollár and T. Matsusaka states
that k0 depends only on the first two coefficients of the Hilbert polynomial P(k);
see Amer. J. Math. 105 (1983) 229–252. An effective estimate of k0 is provided
in Y.-T. Siu, Ann. Inst. Fourier 43 (1993) 1387–1405. An exposition of the ef-
fective version of Matsusaka’s big theorem is given in 10.2 of the book Positivity
in Algebraic Geometry. II: Positivity for Vector Bundles and Multiplier Ideals
by R. Lazarsfeld, Springer-Verlag, 2004.

2. Page 529 (343), line 7: Insert “by” between “parametrized” and “a suitable
countably infinite set”.
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[76a] Hilbert’s fourteenth problem—the finite generation of sub-
rings such as rings of invariants.

1. Page 438 (359): In the displayed formula in line −8, “1, f1, . . . , fk−1 ” should
read

1, L (bH + aE), L (2bH + 2aH), . . . , L ((k−1)bH +(k−1)aE) .

2. Page 443 (364): The paper by E. Formanek and C. Procesi mentioned in Added
in proof was published in Advances in Math. 19 (1976) 292–305.

3. Page 444 (365): Entry [25] of REFERENCES: W.J. Haboush, Reductive groups
are geometrically reductive, was published in Ann. Math. 102 (1975) 67–83.

[76b] The projectivity of the moduli space of stable curves I: Pre-
liminaries on “det” and “Div”.

1. Page 20 (367), line −14: This display formula should be

ψ(l⊗m) = (−1)α(x)β (x) (m⊗ l) .

[78a] An algebro-geometric construction of commuting operators
and of solutions to the Toda lattice equation, Korteweg de Vries
equation and related nonlinear equations.

1. Page 116 (404), line 12: “[a1,a2], [b1,b2]” should be “[−a1,a2], [−b1,b2]”. In
§1, it is also assumed that a1, a2, b1, b2 > 0.

2. Page 116 (404), line −9: “Tx,p” should be “TX ,P”.
3. Page 119 (407), 1st line of Proposition: “{X ,P,Q,R}” should be “(X ,P,Q,F )”.
4. Page 120 (408), lines 5–8: “|xn+1| ≥C|xn|” (line 8) should read “|xn−1| ≥C|xn|”.

For conditions “|xn| ≥C|xn−1|” or “|xn−1| ≥C|xn|” to define neighborhoods of
the two points at infinity, we should assume Σ ∩Θ = /0 as in p. 127 (415), and
take a suitably normalized R among the equivalent rings, e.g., one for which A
satisfies Ai,i+a2 = 1.

5. Page 120 (408), line −8: “BC = CA” should be “BC = CB”.

6. Page 121 (409), line −13 [4th displayed formula]: “
a2−1

a1
≥ λ
μ
≥ b2

b1−1
”

should be “
a2

a1
>
λ
μ

>
b2

b1
” as in the first displayed formula in the page, and

subsequent arguments in p. 122 (410) should be changed appropriately, e.g.,
in line 5: “Rλ (a2+b1−1)∩Rμ(a2+b1−1)” should read “Rλ (a2+b1)−1∩Rμ(a2+b1)−1”,
etc. (Otherwise we need to also assume (a2−1)/a1 ≥ b2/(b1−1); this can be
achieved, e.g., by replacing A and B by suitable powers of them.)

7. Page 121 (409), line −7: “Aλ ∈Ra1” should read “Aλ ∈Ra2”.
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8. Page 127 (415), line 6: “(n,a1) = (n,a2) = 0” should be “(n,a1) = (n,a2) = 1”.
This may be regarded as a special case of the condition (a1,b1) = (a2,b2) = 1
in Data B. When we consider [A,Sn] = 0 without the restriction on (n,a1) and
(n,a2), the resulting picture looks simpler than the general Data A′–Data B′
correspondence: see [79b].

9. Page 133 (421), line 2 of Proof of Lemma: “degA =α ” should be “degA = a”,
and “a + n + 1” should be “a + n−1”.

10. Page 136 (424), line −6 and Page 137 (425), line 1:
r−1⊕

i=1
should be

r−1⊕

i=0
.

11. Page 153 (441), line 13: H. McKean’s article appeared in Partial differential
equations and geometry (Proc. Conf., Park City, Utah, 1977), Lecture Notes in
Pure and Appl. Math., 48, Dekker, New York, 1979, pp. 237–254.

12. Page 153 (441), line 16: Airault et al.’s article appeared in Comm. Pure Appl.
Math. 30 (1977), no. 1, 95–148. For further development in this direction, see
I. Krichever, Elliptic solutions of Kadomtsev-Petviashvili equations and inte-
grable systems of particles, Funct. Anal. Appl., 14 (1980), no. 1, 45–54 (In Rus-
sian), 282–290 (Translation), A. Treibich and J.-L. Verdier, Solitons elliptique,
in The Grothendieck Festschrift, Vol. III, Progr. Math. 88, Birkhäuser, 1990,
pp. 437–480, and the literature cited therein.

[78c] Some footnotes to the work of C.P. Ramanujam.

1. Page 249 (447), line 3 of the footnote: “yt” should read “Yt”.
2. Page 250 (448), bottom of the page: The displayed statement (1) is part of the

Theorem on page 121 of C.P. Ramanujam, Supplement to the article “Remarks
on the Kodaira vanishing theorem”, J. Indian Math. Soc. 38 (1974), 121–124.

3. Page 251 (449), line 8: The paper by D. Gieseker is On a theorem of Bogomolov
on Chern classes of stable bundles, Amer. J. Math. 101 (1979) 77–85.

4. Page 251 (449): Mumford’s proof of Kodaira vanishing theorem (the proof
(2)=⇒(1), starting on line 9) also appeared in Reid’s article [13] as an appendix.

5. Page 254 (452), line 5: The morphism “resp” is p|E , the restriction to E of the
morphism p : F →C.

6. Page 254 (452): The displayed formula before “Q.E.D.” should read

H1(F0,O(−H)) 	= (0).

7. Page 255 (453), line 3 of Theorem: “π : X∗ → SpecO” should read “π : X →
SpecÕ”.

8. Page 257 (455), line−4: The result of H. Matsumura referred to is in the article
Geometric structure of the cohomology rings in abstract algebraic geometry,
Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 32 (1959) 33–84.

9. Page 258 (456): The beginning of the two displayed lines in the statement of
the Lemma should be “Hi

{x},int(O)”.
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10. Page 258 (456): The local cohomology groups in the displayed lines −8 and
−6 should be Hi

π−1x
(F ) and Hi

π−1x
(OX ), respectively.

Line −2: “Riπ∗(Ω n
X )” should read “Riπ∗(Ω n

X )”.
11. Page 261 (459), line 11: The referenced Corollary of Proposition 2.6 in Chapter

V of article [17] appeared on page 144 of LNM 632, Springer-Verlag, 1978.
12. Article [2] by F. Bogomolov appeared as Holomorphic tensors and vector bun-

dles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978) 1227–
1287, 1439.

13. Article [3] by D. Buchsbaum and D. Eisenbud appeared in Amer. J. Math. 99
(1977) 447–485.

14. Article [13] by M. Reid appeared in Proceedings of the International Sympo-
sium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo,
1978, pp. 623–642.

15. Article [17] by J.-F. Boutot appeared as LNM 632, Springer-Verlag, 1978.

[82] On the Kodaira dimension of the moduli space of curves.

1. A gap in the proof of Theorem 4 on p. 58 (vol. I, p. 206) was found by
S. Mochizuki; see the Remarks on p. 372 and p. 392 of The geometry of the
compactification of the Hurwitz scheme, Publ. RIMS Kyoto Univ. 31 (1995)
355–441. In §3 loc. cit., one finds an exposition of the notion of log admissible
covering and a proof of the existence of an algebraic stack with a log structure
which classifies log admissible coverings; see Thm. 3.22 on p. 389 loc. cit. This
supplies a proof of Theorem 4 on p. 58 (vol. I, p. 206); see §3.1 and the Remark
on p. 377 loc. cit.
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