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We’ll be meeting Monday and Wednesday, 11:30-12:45.

Let’s see. Before break, we defined the following. For G a group, and a G-module A1 we
defined cohomology of groups,

H•(G,A) = Ext• [G]( , A)

H•(G,A) = Tor [G]
• ( , A)

We had explicit resolution via standard complexes; there were homogeneous and inhomoge-
neous versions, canonically isomorphic to each other. In topology, this is the bar resolution.

En passant, geometrically we can think of this as, umm, take the category of one object with
lots of isomorphisms, and all the morphisms are invertible. And once you have such, there’s
a standard way of making a simplicial complex out of it. And that’s exactly what we wrote
down. If you don’t get it, don’t worry.

We also defined, for H ⊆ G a subgroup, restriction maps. And if H is normal in G, we get
an inflation map. Restriction is via H•(G,A)→ H•(H,A), and inflation is H•(G/H,AH)→
H•(G,A). And similarly for homology.

We also had Shapiro’s lemma. Given a subgroup H , we can take the induced module (H,A),
and define IndG

H(A). Shapiro’s lemma says that H•(H,A) ∼= H•(G, IndG
H A) canonically.

There’s something called the inflation-restriction sequence. We’ve got H G, and A a
G-module. There’s a sequence

0 ! H1(G/H,AH)
Inf! H1(G,A)

Res! H1(H,A)

which is actually exact.

Proof of this is left as an exercise. Well, last time we gave explicit definitions of these reso-
lutions, and in particular what H1 means. It’s the collection of elements {as}s∈G satisfying
certain conditions, namely, the cocycle condition; that differentiating gives you zero. But
the derivative is a 2-chain; ∂a(s, t) = sat − a(st) + as. So the condition is that this thing is
zero; sat − ast + as = 0 for all s and t. And you divide out that set by the coboundaries of
zero co-chains. This, in turn is (∂b)s = sb − b; these form a group. Anyways, that quotient
is H1(G,A).

1That is, a [G]-module.
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The content of this exercise is just to use this definition to grind it through.

So, wonderful. We can prove it. Why might one suspect it would be true in the first place?
Here’s a good way to think about it. It turns out to be a small part of the Hoschild-Serre
spectral sequence.

Ep,q
2 = Hp(G/H,Hq(H,A)).

In our case,

E0,1
2 = H0(G/H,H1(H,A))

= H1(H,A)G

And one winds up with

0→ E1,0
2 → H1(G,A)→ ker d0,12 → 0

So where does this thing come from, anyway? Our cohomology comes from the functor
A AG, the fixed part. But this is a composition of two functors; A AH , a G/H-
module. And then use AH (AH)G/H . And the composition is all elements fixed under G.
And this composition functor gives you the Hoschild-Serre spectral sequence.

Suppose we have H ⊆ G a subgroup of finite index, not necessarily normal. There’s a natural
map H•(G,A) → H•(H,A) for A a G-module, and the map here is restriction. This has
nothing to do with the finiteness assumption; it’s a subgroup thing. Under the assumption
that this subgroup has finite index, we’ll get an arrow in the other direction. In topology, this
is usually referred to as transfer, though perhaps it’s more modern to call it corestriction.

What about homology? There’s a natural map H•(H,A) → H•(G,A). And you can get
an arrow in the reverse direction here, too. But in the context of homology, we’ll call the
natural arrow corestriction; and the unnatural arrow will be restriction. This may not be
completely standard, but there you are.

Let’s talk about cohomological corestriction corG,H. At the very least we should know how
to define these before taking derivations; we should understand what it says for • = 0. For
H0, what’s the corestriction? Well, H0(H,A) = AH , etc. To get an invariant, we’ll just
average over coset representatives.

Jeff Achter 2 Ching-Li Chai



MA 620 12 January 1994

H0(G,A) " H0(H,A)

AG AH

∑

s∈G/H

sa "
NG/H

a

We don’t divide, since we don’t necessarily know how to. We just fiat that this is what we
do.

How do we define this map in general? Just dimension shift. As long as you’re allowed to
use different coefficient modules, there’s no such thing as, say, an intrinsinic dimension three
thing; you can just as easily put it in dimension four or two, just by changing the coefficients.

0 ! A ! I ! I/A ! 0

Embed A in an injective I. Then

H i(G,A) ∼= H i−1(G, I/A)

via the long exact sequence. Hmm. This is certainly true for i ≥ 2. Should go slowly when
i = 1.

Well, when i = 1, we have

0 ! AG ! IG ! (I/A)G ! H1(G,A) ! 0

The point now is that, if I is injective as a G-module, it’s still injective as an H-module.
Gotta show that HomH(?, I) is exact. Compute:

HomH(?, I) = HomG( [G]⊗ [H]?, I)

So that’s fine. Still working with i = 1. We still have
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0 ! AG ! IG ! (I/A)G ! H1(G,A) ! 0

0 ! AH

corG/H

#

! IH

corG/H

#

! (I/A)H

corG/H

#

! H1(H,A)

corG/H

#

! 0

The dashed arrow comes from the induced map on the quotient. And it’s even easier for
i ≥ 2;

H i(G,A) "
∼=

H i−1(G, I/A)

H i(H,A)

#

"
∼=

H i−1(H, I/A)

#

Well, we now know that it exists, but computing it’s a bear; for you have to chase the
diagram all the way back to zero. Fortunately, one can give an explicit formula.

Use the standard resolution of, say, the inhomogeneous complex, for G. Call the resolution
C. Observe that this is also a free resolution of by free [H ]-modules; C• → . We can
use this complex to compute the cohomology of the group H .

H•(HomH(C•, A)) = H•(H,A).

So if we can define a map HomH(C•, A) → HomG(C•, A) then we’re in business. Use f '→
(c '→ ∑

s∈G/H sf(s−1c)). For that’s exactly how G operates on HomH This gives a map on
the level of cochains, which induces everything.
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Last time we talked about corestriction. Now we want to discuss homologies. Let H ⊆ G
be of finite index, with A a G-module. Then there’s a natural map Hi(H,A) → Hi(G,A).
How so? There’s the classifying space of H , BH running around; an the universal cover EH .
And we can think of A as a sheaf of coefficients.2

EH EG

BH
! BG

And the EH and EG are contractible; topologically equivalent to a point.

After some prompting, we’re going to work out an example. Take a cyclic group G = /n =
〈s〉. Want its homology; we’ll try to give an explicit resolution of it, substituting for the
standard one.

So, G is generated by s. Let D = s− 1; N = NG =
∑n−1

i=0 si.

[G]
N

! [G]
D

! [G] !

It’s an exercise to show that this is exact. Can think of this as an infinite dimensional chain
complex attached to a simplicial complex, and at each level there are n elements. And that
complex is what we denoted by EG.

F’rinstance, take n = 2. Then BG = ∞ . EG = S∞; and S∞ ⇀ ∞ .

So much for the examples. The map Hi(H,A) → Hi(G,A) is corG/H . And there’s a map
Hi(G,A) → Hi(H,A). But in a sense this really isn’t the natural map. We’ll call it the
restriction map resG/H .

We’ll define it first on H0, and then get to Hi with dimension shifting.

res : H0(G,A) → H0(H,A)

AG → AH

a '→
∑

s∈H\G

sa

2Refs: Siegel, < 10 pages, IHES. Given a group you get a category with one object, lots of arrows, and
run with that. Otherwise, could look at Eilenberg-Maclane. Probably in Hussemoller’s book.
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Let σ ∈ G, b ∈ A. Make sure the stuff you modded out by in AG dies in AH . So look at
(σ − 1)b '→ ∑

s∈H\G s(σ − 1)b. Exercise to verify this.

For the other i’s, use a dimensionshift. Given 0 → A′ → P → A. Then Hi(
G
H

,A)
∂→

Hi−1(
G
H

,A′).

Proposition H i(G,A)↔res
cor Hi(H,A). Then corG/H ◦ resG/H = [G : H ] on H i(G,A).

Proof It suffices to prove this for i = 0; but this is obvious.

Exercise: do the same statement for homology; res ◦ cor.

Keep applying functors, and when the music stops see if your arrows point in the same way.

As a special case, suppose H ⊆ G of finite index. We’ve said that H1(G, ) → H1(H, ).

Ver : H1(G, ) ! H1(H, )

Gab =
G

G′
Hab =

H

H ′

Here, Ver is essentially German for transfer. Let’s compute this puppy explicitly; just group
theory and using nothing else. Well, according to the definition we need a free resolution.

0 !IG ! [G] ! ! 0

Recall that IG is the elements of the group ring whose coefficients add up to zero. Take the
long exact sequence of this guy.

0 ! H1(G, )
∂! H0(G, IG) = IG/I

2
G

! 0

Remember that H1(G, [G]) = 0, since it’s a free abelian thing. And similarly for H . But
maybe we should use [G] to resolve H . And of course we have
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0 ! IG ! [G] ! ! 0

=

0 ! IH

#

! [H ]

#

! ! 0

So maybe what we want is

H0(H, IG)
!

H1(H, )
∼=
∂
! H0(H, IH)

∪

#

Well, dammit, we define things so that everything commutes:

H1(G, )
∂
∼=
! H0(G, IG) = IG/I

2
G

H0(H, IG)

NG/H

$
= I/G/IHIG

$

∂

!

H1(H, )
$ ∂

∼=
! Hi(H, IH)

∪

#

= IH/I
2
H

$

Moving on, somewhat.
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H1(G, )
∼=! IG/I

2
G⊂

!

IG/IHIG

⊂

!

H1(H, )
$

Ver

∼=! IH/I
2
H

G - s ! s− 1H1(G, )
∼=! IG/I

2
G⊂

!

IG/IHIG

⊂

!

H1(H, )
$

Ver

∼= ! IH/I
2
H

Let H\G = {ti}; consider
∑

ti t(s− 1), I think. Well, tis = hitj(i), hi ∈ H . So

∑

t∈H\G

t(s− 1) =
∑

i

hitj(i) − tj(i)

=
∑

i

(hi − 1)tj(i)

=
∑

i

(hi − 1)(tj(i) − 1) +
∑

i

(hi − 1)

∑

i

(hi − 1)(tj(i) − 1) ∈ IHIG

∑

i

(hi − 1) ∈ IH

We summarize the conclusions of this computation.
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Proposition The map Ver : Gab → Hab is given by the following recipe. For s ∈ G, choose
a set of representatives {ti} of H\G. Then tis = hitj(i); then Ver(s) =

∏
i hi.

What would have happened if we’d used G/H instead? Well, s−1t−1
i = t−1

j(i)h
−1
i . Then

s−1 '→
∏

i h
−1
i . So using either side gives you the same transfer map.

Exercise. Using only the definition of the group, show directly that the choice is independent
of the choice of coset representatives for H\G.

Galois theoretic reinterpretation[?] We’ve got H\G, s ∈ G. Want to look at the subgroup
generated by s, 〈s〉; and then look atH\G/〈s〉. Let {wj} be a set of representatives, certainly
finite. This is the set of orbits of 〈s〉 acting on the set H\G. And clearly each orbit is finite.
Let fj be the cardinality of the orbit of Hwj under 〈s〉. Then

wjs
fj = hjwj

A perfectly reasonable set of representatives forH\Gwould be {w1, w1s, w1s2, · · · , w1sf1−1, w2, · · · , wjsfj−1}.
Then Ver(s) =

∏
j hj.

Let L/K be a finite Galois extension of global field. Want to interpret what we just did as a
formula for the transfer map. We’ll use Frobenii to describe elements of the abelianization.
Let G = Gal(L,K), and L ⊃ M ⊃ K; H = Gal(L,M). Then there’s a map VerL/M :
Gab → Hab. Let’s try to describe it as explicitly as possible. For a prime p of K we get
an element – up to conjugation – of G, namely the Frobenius p (p, L/K).3 Anyways,
p (p, L/K) ∈ Gab. Since all reps are conjugate, this is well-defined. We apply VerL,M to
it. What do we get?

Try and use the stuff we did just above. It’s not difficult to see that we already have
something. If you think about this wjsfj = hjwj, well, what does it mean? H is exactly
those elements of the Galois group which fix M . And the fj turn out to be the degree of
residue field extensions. If qj ∈ M lie above it, then these guys correspond to such things.
Anyways, the map winds up to be (p, L/K) '→ (p, L/M). For p =

∏
j qj, etc.

3In general, L/K, p ⊆ OK unramified. Then p decomposes into Pi’s. We’ve got the decomposition
group GPi/p; and it maps to Gal(λPi

,κ). And this is an isomorphism. There’s a Frobenius element in the

galois group of finite fields, and we identify it with some element of Gal(L,K).

Jeff Achter 9 Ching-Li Chai



MA 620 17 January 1994

We’ve got L ⊃ M ⊃ K, with G = Gal(L,K), H = Gal(L,M). Let a ⊆ OK unramified. We
want to show that Ver(a, L/K) = (aOM , L/M) in Hab. We may assume a = p. Suppose
it splits into qj in M , and Pi in L. Let s = Fr(P, p); fix some prime ideal upstairs. Then
〈s〉 = DP,p the decomposition group. Consider

H\G/〈s〉 = {wj}

where wjsf
j
= hjwj. So then we know that

(
∏

j

hj) = Ver(s)

Claim that these double cosets are in 1-1 correspondence with the prime ideal qj. Well,
G operates on {Pi}. And 〈s〉 = DP,p the stabilizer of P. So we see that if we fix our
choice, then G/〈s〉 {Pi}. Now, last semester we proved that for each qj there’s a bunch
of Pi’s lying above it. And since L/K is Galois, we know that the Galois group operates
transitively on the Pi above a fixed qj. So in our context, it means that the orbit of H on
this set corresponds to qj.

Thus, fj = [mj , κ], the residue field extension degree.

Now,

hj = wjs
fjw−1

j

= FrPi,qj

(
∏

j

hj) =
∏

j

Frqj

= Ver(
∏

qj, L/M)

= Ver(pOM , L/M)

!

We’ll now discuss cohomology of finite groups. So let G be a finite group. The following is
basically said to be Tate’s fault; Tate cohomology groups. Recall how we defined homology
and cohomology. They’re defined by, well, let P• → → 0 be a standard resolution of .
Take the dual of everything in sight, I guess.

Jeff Achter 10 Ching-Li Chai



MA 620 17 January 1994

0→ → P ∗
• = Hom (P•, )

Explicitly we have 0 → → P ∗
0 → P ∗

1 → · · ·. This is still a resolution of . And P ∗
0 is a

free [G]-module, and thus injective. We’ve got

· · · ! P1
! P0

! P ∗
0

! P ∗
1

! · · ·

!

!

It’s exact up to P0, and past P ∗
0 . Call P ∗

0 P−1, P ∗
1 = P−2. One would also write P1 = P−1,

P0 = P 0, etc; you can put a subscript into a superscript [and vice-versa], provided you switch
a sign. It’s eventually possible to get this nonsenses straight.

Let’s break down the middle a bit. Well, P0 = [G]. And the map there is the only
one possible;

∑
nσσ '→

∑
nσ. That’s ε; feels a little like the degree map. And P ∗

0 =
Hom ( [G], ). So we’ve got → P ∗

0 , via 1 '→ (σ '→ 1); 1 '→
∑
σ∗.

Of course, P ∗
0 = Hom( [G], ). A dual basis is all σ∗, where σ∗(t) = δσ,t.

P0
! P ∗

0

[G] [G]

If g ∈ G then

(gσ∗)(t) def= σ∗(g−1t)

= δσ,g−1t

=

{
1 t = gσ
0

.

We’re trying to put a G action on P ∗
0 .

At the end of the day, we conclude that
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P0
NG ! P ∗

0 = Hom ( [G], ) ∼= [G]

!

!

The composite mp is the norm; and ker(NG) = ker(ε), im(NG) = im(ε∗). Therefore, the
whole infinite sequence is exact.

Definition For a G-module A,

Ĥ•(G,A) def= H•(Hom [G](Q•, A))

4

If i ≥ 1, then Ĥ i(G,A) = H i(G,A). That should be obvious.

And the same thing applies further to the right, more or less.

If i ≥ 2, then Ĥ−i(G,A) = Hi−1(G,A).

What about Ĥ0(G,A) and Ĥ−1(G < A)? Well, we’ve got [G]
NG→ [G]. Take Hom(·, A) to

get A← A. And actually, we’ve got

"ker = AG

A " NG
A "coker = AG

"

"
AG

So now we can take homology of the sequence. Ĥ0 is the cohmology at the A on the left.
That’s AG

NGA . And Ĥ−1(G,A) = kerNG

IGA . This is a little different from the usual cohomology.
It’s now a subquotient of A, instead of a subthing of A.

4Recall that Q• is the name of that infinite complex we just made. And apparently, while I was gone it
was decided that Pn can be thought of as [G]⊗n .
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Basic Properties

• Given 0→ A′ → A→ A′′′ → 0 an exact sequence fo G-modules, well, each of the Q•’s
is free, so tensoring with ’em is exact. Thus,

0→ HomG(Q•, A
′)→ HomG(Q•, A)→ HomG(Q•, A

′′)→ 0

is an exact sequence of complexes, so we get a long exact sequence of cohomology.

→ Ĥ i(G,A′)→ Ĥ i(G,A)→ Ĥ i(G,A′′)
δ→ Ĥ i+1(G,A′)→ · · ·

This should be obvious.

• Functoriality of res and cor. This is less than obvious. At some point restriction and
corestriction collide. One thing to check is that our definitions were really the right
thing to do, in term s of co- versus regular stuff. Something commutes with boundary
operators?

Let’s verify it. We had a formula for [co]restriction, but I think we’ll just do it directly.

Let H ⊆ G; remember everything is finite. Suppose we’ve got 0→ A′ → A→ A′′ → 0.
Then we’ve got

Ĥ−1(G,A′′)
δ! Ĥ0(G,A′)

Ĥ−1(H,A′′)

res

$

#

cor

δ! Ĥ0(H,A′)

cor

$

#

res

The assertion is that these commute.5

Hold on. We need to know the following. Just stare at this and build the only map
you could possibly do.

Ĥ−1(G,A′′)
δ! Ĥ0(G,A′)

kerNG

IGA′′

A′G

NGA′

5“This isn’t going to be hard. If it’s really hard, you can’t do it.”
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Go for the proof.

!HomG(Q−1, A
′′) ! HomG(Q0, A

′′) ! HomG(Q1, A
′′) !

!HomG(Q−1, A)

#

! HomG(Q0, A)

#

! HomG(Q1, A)

#

!

!HomG(Q−1, A
′)

#

! HomG(Q0, A
′)

#

! HomG(Q1, A
′)

#

!

Do the usual diagram chase to get from HomG(−1, A′′) to HomG(Q0, A′). But we know
what some of these objects are.

! A′′ ! HomG(Q0, A
′′) ! HomG(Q1, A

′′) !

!HomG(Q−1, A)

#

NG ! A

#

! HomG(Q1, A)

#

!

!HomG(Q−1, A
′)

#

! HomG(Q0, A
′)

#

! HomG(Q1, A
′)

#

!

So the map we were worrying about before is, essentially, given by the norm NG; the

map Ĥ−1(G,A′′)
δ→ Ĥ0(G,A′) works like this. For a′′ ∈ A′′ so that NG(a′′) = 0, choose

a ∈ A lifting a′′. Then NG(a) =
∑
σ∈G σa ∈ AG. And actually, since it dies in A′′, we

really know that NG(a) ∈ AG ∩A′ = A′G.

So it’s an exercise now to show that the restriction and corestriction things give com-
mutative diagrams.
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The advantage of cohomology is that we have a cup-product.

A remark on the origins of this nonsense. Geometrically, the cup product is induced from a
diagonal map, ∆ : X → X×X . The Künneth formula says, more or less, H•(X×X,A⊗B) =

H•(X,A) ⊗ H•(X,B). Actually, you need a derived functor somewhere; H•(X × X,A ⊗
B) = H•(X,A) ⊗ H•(X,B). Composing with ∆∗ gives you a map H•(X,A)⊗H•(X,B)→
H•(X,A⊗ B).

That’s the sort of thing you want to do with group cohomology. But somewhere you need
to do some homotopy.

G ! G×G

BG
! GG×G 2 BG × BG

A relevant buzzphrase is, “homotopy approximation of the diagonal map.”

We’re expecting [hoping?] to get a map Hp(G,A)⊗Hq(G,B)→ Hp+q(G,A⊗ B). It’ll be
(a, b) '→ a∪b. Especially, if you hae a bilinear map A⊗ B → C which is G-equivariant, then
you get a cup product with image in Hp+q(G,C) using the ring structure on the coefficients.

If G is finite, we put hats on the H ’s and wind up with Tate cohomology.

Algebraic characterization From now on assume everything’s finite, so that we can take
Tate cohomology. Then for p, q ∈ ,

Ĥp(G,A)⊗ Ĥq(G,B)→ Ĥp+q(G,A⊗ B)

is bilinear, functorial. In other words, given A→ A′ and B → B′, then everything commutes
in the expected way.

Let’s see what we know, or at least what we want.

1. p = q = 0. Then Ĥ0(G,A)⊗ Ĥ0(G,B)→ Ĥ0(G,A⊗ B). Well, Ĥ0(G,A) = AG

NGA , and

Ĥ0(G,B) BG

NGB . And the image space is (A⊗B)G

NG(A⊗B) . So just do the obvious thing; take a
tensor product. So the product is

AG

NGA
⊗

BG

NGB
→

(A⊗B)G

NG(A⊗ B)
.
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2. Suppose we have an exact sequence 0 → A′ → A → A′′ → 0, all maps equivariant;
and further suppose that tensoring with B [on the right] preserves exactness of this
sequence, e.g., B flat. Then we have

Ĥp(G,A′′)⊗ Ĥq(G,B)
∪ ! Ĥp+q(G,A′′ ⊗ B)

!Ĥp+q+1(G,A′ ⊗ B)δ ⊗ id$ δ $̂Hp+1(G,A′)⊗ Ĥq(G,B)

We insist that this commutes. So δ(a′′ ∪ b) = δa′′ ∪ b.

3. 0→ B′ → B → B′′ → 0; suppose tensoring with A [on the left] is exact, too.

Ĥp(G,A)⊗ Ĥq(G,B′′)
∪! Ĥp+q(G,A⊗ B′′)

Ĥp(G,A)⊗ Ĥq+1(G,B′)

(−1)p id⊗δ
$ ∪! Ĥp+q+1(G,A⊗ B′)

δ

$

Where’s the sign from? Analogously, d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)deg ω1ω1 ∧ dω2.

Actually, the sign is what makes compatibility possible; you can dimension shift in
various ways, and it all comes out the same.

Lemma Suppose we have a commutative diagram, all rows exact.
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0 0 0

0 ! A
$

! A′
$

! A′′
$

! 0

0 ! B
$

! B′
$

! B′′
$

! 0

0 ! C
$

! C ′
$

! C ′′
$

! 0

0
$

0
$

0
$

Then

Ĥp+1(G,A′′)
δ! Ĥp+2(G,A)

Ĥp(G,C ′′)

−δ
#

δ
! Ĥp+1(G,C)

δ

#

commutes.

Exercise Use this lemma to show that the existence of the cup product.

Proof [of lemma] “I know if I try it for a while, I’ll get there.”
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Define a kernel K via

0

C ′

#

= ! C ′

0 ! K

#

! B′′ ⊗ C ′

#

! C ′′ ! 0

0 ! A′′

#

! B′′

#

! C ′′

#

! 0

0

#

0

#

At the same time, we have
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0 0

0 ! C

#

! C ′

#

! C ′′

0 ! K

#

! B′′ ⊕ C

#

! C ′′

=

#

B′′

#

= ! B′′

#

0

#

0

#

Shit. I’ve lost the thread entirely.

We’ve got δc′′ ∈ Ĥp+1(G,K), and its image is either in A′′ or C.

In the original diagram, call the horizontal maps α1,α2; β1, β2; and γ1, γ2. Similarly, denote
the the vertical maps by fi, gi, and hi.

There’s a map B′ → K given by B′ '→ (β2b′,−g2b′). And actually, there’s an exact sequence
0→ A→ B′ → K → 0.

Let’s see. The next diagram he’s draing is

A ! A′ ! A′′ ! 0

0 ! A
$

! B′
$

! K
$

! 0

b′ ! (β2b
′,−g2b′)
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Strategy should be; produce a couple of commutative diagrams, and then by naturality show
that they’re really the same thing.
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We’re going back to the diagram chase:

0 0 0

0 ! A
$ α1 ! A′

$ α2 ! A′′
$

! 0

0 ! B
$

f1

! B′

g1

$
! B′′

$
! 0

0 ! C
$

! C ′
$

! C ′′
$

! 0

0
$

0
$

0
$

Then we get

0 ! A′′ ! B′ ! C ′′

0 ! K
$

(h1, 0)

! B′′ ⊕ C ′
$

! C ′′
$

=

! 0

0 ! C

#

(0, γ1)

! C ′

#

! C ′′

#

=

! 0

as well as
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0 ! A
α1 ! A′ α2 ! A′′ ! 0

0 ! A
$

id

! B
$

g1

(β2,−g2)
! K

(h1, 0)

$
! 0

0 ! A

− id

#

f1
! B

−β1

#

f2
! C

#

(0, γ1)

! 0

And the minus signs are necessary for everything to commute.

Suppose c′′ ∈ H i(G,C ′′). Then H i+1(G,K) - δmid(c′′) = γ1(δl(c′′)) = h1(δ − u(c′′)). And
H i+2(G,A) - δm(δm(c′′)) = −δl(δl(c′′)) = δuδ−u(c′′) from the upper part of the commutative
diagram. So we’re done.

Exercise Give another proof using 0 → K1 → B′ → C ′′ → 0, and 0 → A → A′ ⊕ B →
K1 → 0. This gives a sort of dual proof of the same theorem; just need something connecting
these two.

Let’s relate this back to cup-products. Recall that, in the appropriate setting, δ(a ∪ b) =
δa ∪ b = (−1)deg aa ∪ δ(b). These two conditions are compatible, precisely because of what
we just proved. Using the relation δhδv = −δvδh [horizontal and vertical], we can define the
cup-product by dimension shift. This is [still] an exercise; to convince yourself that this is
exactly the compatibility necessary.

• Given H ⊆ G a subgroup, then the restriction resG/H(a ∪ b) = res(a) ∪ res(b), the
restriction is a ring homomorphism. Geometrically this is clear; in algebraic topology,
a map induced by a geometric map gives a ring homomorphism on cohomology, i.e.,
respects the cup product. That’s an exercise; and of course, the proof is through
dimension shifting.

• If, again,H ⊆ G, then cor(res(a)∪b) = a∪cor(b). This makes sense; for if a ∈ H i(G,A),
and b ∈ Hj(H,B), then everything winds up in H i+j(G,A ⊗ B). Again, the proof of
this is through dimension shifting. And then you just have to check in dimension zero.
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These are given as exercises. Of course, they can be found in any book on group cohomology,
but it’s better to do it on your own.

We can write down a formula for the cup-product on the level of cocycles, or even cochains.
Recall that Q• is the homogeneous standard resolution. We want φp,q giving a homotopy
approximation to G→ G×G.

φp,q : Qp+q
! Qp ⊗Qq

How do we define the map?

• If p, q ≥ 0, then

φp,q : σ0 ⊗ · · ·σp+q '→ (σ0 ⊗ · · ·⊗ σp)⊗ (σp ⊗ · · ·⊗ σp+).

• If p ≥ 1, q ≥ 1, then

φ−p,−q : σ
∗
1 ⊗ · · ·⊗ σ∗

p+q '→ (σ∗
1 ⊗ · · ·⊗ σ∗

p)⊗ (σ∗
p+1 ⊗ · · ·⊗ σ∗

p+q).

• p ≥ 0, q ≥ 1. Then

φp,−p−q(σ
∗
1 ⊗ · · ·⊗ σ∗

q ) '→
∑

s1,···,sp∈G

(σ1 ⊗ s1 ⊗ · · ·⊗ sp)⊗ (s∗p ⊗ · · ·⊗ s∗1 ⊗ σ∗
1 ⊗ · · ·⊗ σ∗

q )

φ−p−q,p(σ
∗
1 ⊗ · · ·⊗ σ∗

q ) '→
∑

s1,···,sp∈G

(σ∗
1 ⊗ · · ·⊗ σ∗

q ⊗ s∗1 ⊗ · · ·⊗ s∗p)⊗ (sp ⊗ · · ·⊗ s1 ⊗ σ1)

φpq,−q(σ0 ⊗ · · ·⊗ σp) '→
∑

s1,···,sq∈G

(σ0 ⊗ · · ·⊗ σp ⊗ s1 ⊗ · · ·⊗ sq)⊗ (s∗q ⊗ · · ·⊗ s∗1)

φ−q,p+q : σ0 ⊗ · · ·⊗ σp '→
∑

s1,···,sq∈G

(s∗1 ⊗ · · ·⊗ s∗q)⊗ (sq ⊗ · · ·⊗ s1 ⊗ σ0 ⊗ · · ·⊗ σp)

Given all this, one should check that δ(a ∪ b) = δa ∪ b+ (−1)deg aa ∪ δb.

It’s comforting to know that these exist, though using them might be a bit unwieldly.
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Exercises Formula for cup-product in low dimensions.

• a ∈ Ĥ1(G,A), b ∈ Ĥ−1(G,B). Recall that a class in Ĥ−1 has an interpretation as an
element of B. Show that a ∪ b = x0 where

x0 =
∑

τ∈G

a(τ)⊗ τb

Hint: Use the two exact sequences

0 ! A ! [G] ⊗ A ! A′′ ! 0

0 ! A⊗ B ! [G] ⊗ A⊗ B ! A′′ ⊗ B ! 0

• a ∈ Ĥ−1(G,A), σ ∈ Ĥ−2(G, ). The latter thing is the first homology group with
coefficients in , i.e., the abelianization of G Gab. Then a ∪ σ = s(σ) ∈ Ĥ−1(G,A).

• a ∈ Ĥ2(G,A), σ ∈ Ĥ−2(G, ) = Gab. Then a ∪ σ =
∑
τ∈G a(τ, σ) ∈ Ĥ0(G,A).

Cohomology of cyclic groups So let G = /n = 〈s〉. We can resolve it as

0 1 2

[G]
N ! [G]

s− 1! [G]
N ! [G]

Tensor; ⊗ [G]A, and then dualize, to get

H•(→ A
N→ A

s−1→ A
N→ · · ·) = H•(G,A)

So Ĥ i(G,A) ∼= Ĥ i+2(G,A) for all i ∈ .
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Exercise This isomorphism depends on the choice of a generator s of G.

For example, when A = , then Ĥodd(G, ) = 0. And Ĥeven(G, ) ∼= /n . What about
Ĥ2(G, )/ Look at

0→ → → / → 0

Now, has no cohomology whatsoever.6 For it’s a torsion -vector space. So Ĥ(G, / )
δ→∼=

Ĥ2(G, ). But Ĥ1(G, / ) = Hom (G, / ). Thus, s χs ∈ Hom (G, / ) − Ĥ2(G, ),
and χs(s) =

1
n mod .

Exercise Show that in Ĥ i(G,A) ∼= Ĥ i+2(G,A), the isomorphism is χs ∪ ·.

Here’s the trick to doing it. If you can do it with a universal case, you win. That reduces
you to A = . When you do it with coeffs in , well, you want to represent all these maps
explicitly, and if you want you can use the formulas, though it shouldn’t be necessary; just
use proprties. Then ame up with explicit way of writing down this two cocycle χs. And
after that, it’s not too bad.

Herbrand quotient In general, it’s harder to deal with individual cohomology groups
than with Euler characterstics.

Okay, we still have G a finite cyclic group. We define the Euler characteristic by

h(G,A) =
#(Ĥeven(G,A))

Ĥodd(G,A))
,

provided that both are finite. And the long exact sequence tells us that, given 0 → A →
B → C → 0 an exact sequence of [G]-modules, and h(G, ·) defined for two of the three
modules, then h is defined for all of them, and

h(B) = h(A)h(C).

6If G is a finite group, then Ĥi(G,A) is always a torsion, abelian group. And in fact, it’s always killed

by #G. For you can take Ĥi(G,A)
resG,{e}→ Ĥi(e, A)

cor→ Ĥi(G,A); the thing in the middle is zero, while the
composition is multiplication by #G.
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Herbrand’s quotient As before, G = /n = 〈s〉, A a G-module. h(A) def= heven(A)
hodd(A) .

Lemma If A is finite, then h(A) = 1.

Proof A is a cyclic group. Look at Ĥ0(A) = AG

NGA ; Ĥ
1(A) = ker(NG|A)

IGA . We’ve got

0 ! AG ! A
s− 1 ! A ! AG

! 0

Since A is finite, Card(AG) = Card(AG). And

0 ! Ĥ1(A) ! AG
NG ! AG Ĥ0(G,A) ! 0

!

The lemma tells you that h(A) depends only on A⊗ , if A is finitely generated.

We’ll state the following, but defer proof as long as possible.

Definition htriv(A) = h(A with trivial G-action ), if defined.

Proposition G = /p , htriv(A) defined. Then

h(A)p−1 =
htriv(AG)p

htriv(A)
=

htriv(AG)p

htriv(A)

and every term is defined.

Theorem [Tate] G a finite group, A a G-module [G-representation]. G is cohomologically
trivial, in the sense that Ĥ i(H,A) = 0 for all i ∈ and subgroups H ⊂ G, ⇐⇒ ∃i0 ∈ so
that Ĥ i0(H,A) = 0 = Ĥ i0+1(H,A) for all H ⊂ G.
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Proof (⇐) By induction on the cardinality of G. If Card(G) is not a prime power, then for
every p-Sylow subgroup Gp G, by induction Ĥ i(Gp, A) = 0 for all i ∈ . So Ĥ i(G,A) = 0.7

So now we may assume that G is a p-group. G is supersolvable, so there’s H G so that
G/H ∼= /p .

Recall that, in general, givenH G there’s a spectral sequence given byEi,j
2 = H i(G/H,Hj(H,A)).

This comes from a composition of spectral sequences; (?)G = ((?)H)G/H . If j > 0, then
Hj(H,A) = Ĥj(H,A) = 0; so the spectral sequence collapses, and converges to H i+j(G,A).
Thus, H i(G,A) = H i(G/H,AH) for every i.

In the case at hand, G/H = /p ; so if it vanishes for two it vanishes for all. For if i ≥ i0,

Ĥ i(G/H,AH) = 0.

And by shifting, can assume that i0 = 3, i0 + 1 = 4. Then

Ĥ i(G/H,AH) = H i(G,A)

So in particular, H i(G,A) = 0 for i = 2, 5. In other words, universal vanishing at i0 and
i0 + 1 gives the same at i0 − 1 and i0 + 2.!

We can seemingly strengthen this statement.

⇐⇒ for every p|Card(G) there’s an ip ∈ so that, for all p-subgrouops Hp ⊆ G,
Ĥ ip(Hp, A) = 0 = Ĥ ip+1(Hp, A).

This looks stronger, but it really doesn’t do anything.

Exercise i > 0, H G, A, a G-module, Ĥj(H,A) = 0 for 0 < j < i. Then

0 ! H i(G/H,A)
inf! H i(G,A)

res! H i(H,A)

is exact. Convince yourself that this is an immediate consequence of the spectral sequence,
and then go back and prove it directly. Then use this to avoid the argument above using
Hoschild-Serre.

7

1. Ĥi(Gp, A) is well-defined up to canonical isomorphism.

2. Ĥi(G,A)
res
↪→ ⊕p|#AĤ

i(Gp, A) is injective. Well, the kernel is killed by [G : Gp] for every p. But every
element of the source is torsion, whereas the gcd = 1: so the kernel is killed by one, and it’s trivial.
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Theorem A a G-module, G finite, for every subgroup H ⊆ G we have

1. Ĥ−1(H,A) = 0.

2. Ĥ0(H,A) is cyclic of order #H .

Then for any generator a ∈ Ĥ0(G,A), the cup product gives an isomorphism Ĥ i(G, )
a∪·→

Ĥ i(G,A) for every i.

Proof We form a mapping cone, á la algebraic topology. First, make a deformation so
that the map becomes a deformation.

0 ! (a, ι)! A⊕ [G] ! C ! 0

Write down the long exact sequence from this. Get

Ĥ−1(H, ) ! Ĥ−1(H,A) ! Ĥ−1(H,C) ! Ĥ0(H, ) ! Ĥ0(H,A)Ĥ0(H,C) ! Ĥ1(H, )

But the first two and the last one are zero; and there’s an isomorphism Ĥ0(H, )
∼=→

Ĥ0(H,A). So then Ĥ i(H,C) = 0 for all i ∈ .!

Theorem G finite, A a G-module. Assume for all H ⊆ G

1. Ĥ1(G,A) = 0.

2. Ĥ2(H,A) is cyclic of order Card(H).

Then for every generator a ∈ Ĥ2(G,A), a ∪ · : Ĥ i(G, )
∼=→ Ĥ i+2(G,A) is an isomorphism.

Proof Dimension shift from previous theorem.

Exercise For all H ⊆ G, res a is a generator of Ĥ2(H,A).
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Local class field theory Let K be a complete discrete valuation ring, with residue field

κ def= OK/mK is finite.8 We’ll try to understand Kab, the maximal abelian extension of K.
Now, Galois theory says that if we know this Galois group, then to understand fields in
betwen, all we have to do is take finite quotients of this group. The main theorem in local
class field theory is this: there’s a map

recK K× ! Gal(Kab, k) = Gal(Ksep, K)ab

Note that the right-hand side is compact, but the left isn’t. So there’s no way this is going
to be an isomorphism. But, the image of the map is dense; and it’s actually an injection.

1 ! O×
K

! K× ! ! 1

1 ! I
$

∼=

! Gal(Kab, K)
$

recK

! ̂
$

! 1

So then for every subgroup of finite index U ⊆ K×, a finite abelian extension L/K. L is
the fixed field of the image of U . This gives us a complete understanding; we know all the
abelian extensions. For K× is something we have a pretty good grip on. And if this holds,
then U = NL,K(L×).

For every abelian extension L of K, there’s a map

K×

NL,K(L×)

∼=! Gal(L,K)

Furthermore, there’s an existence theorem. Every subgroup of finite index is actually of type
U = NL,K(L×).

Our goal in local class field theory is to demonstrate this.

8As a generalization, one can do almost everything we’ll do here if we just assume that κ is perfect, and

Gal(κ,κ) = ̂ a free cyclic group. One usually says that κ is a quasifinite field.
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Brauer groups of local fields We start off with a “review” of Brauer groups.

• Semisimple algebras over a field. Such a beast decomposes into a product of simple
things.

• A simple algebra over a field k is a finite dimensional algebra over k with unity, with
no two-sided ideals; the only ones are (0) or the whole thing, A. Every simple algebra
has a center, Z(A). And since A is simple, it’s a field, certainly containing k. Actually,
we usually assume k really is the center; Z(A) = k, and A is a central simple algebra.

• Theorem A ∼= Mn×n(D), where D is a central division algebra; Z(D) = k = Z(A).

The Brauer group of k is the set of equivalence classes of central simple algebras over k,
where Ai = Mni×ni(Di) are equivalent ⇐⇒ D1

∼= D2 over k. We can put a group law
on this by [A1] · [A2] = [A1 ⊗k A2]. It’s clearly associative. And [A]−1 = [Aopp]. For
D ⊗k Dopp ∼= Endk(D).9

Cohomological Interpretation Let k be a field. Then we can identify, in a functorial
way, Br(k) ∼= H2(Gal(ksep, k), (ksep)×). The right-hand side is lim→

L
H2(Gal(L,K), L×). If

K ⊂M ⊂ K, then H2(Gal(M, k),M×)
inf
↪→ H2(Gal(L,K), L×), by Hilbert 90.

Let Br(L, k) be the elements in Br(k) which are split by L; A⊗k L = 0 in Br(L).

Br(k) ∼=H2(Gal(ksep, k), (ksep)×)

Br(L, k)
∪

#

∼= H2(Gal(L, k), k×)
∪

#

0 ! H2(Gal(M sep, k),M×) ! H2(Gal(ksep, k), (ksep)×) ! H2(Gal(ksep,M), (ksep)×)

Can take limits, since direct limit is an exact functor.

A ∈ Br(K, k) is a central simple algebra over k which is split by M . Then A ⊗k K
∼=→

Mn×n(K). Fix an isomorphism f . Then for every σ ∈ Gal(K, k), fσf−1 ∈ AutK(Mn×n(K)).

9Check this.
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But the automorphism group is PGLn(K). Thus, every σ gives an element in PGLn(K).
This is an example of descent.[?]

So we get an element in H1(Gal(K, k), PGLn(K)).

1 ! K× ! GLn(K) ! PGLn(K) ! 1

By Hilbert 90, H1(Gal(K, k), GLn(K)) = 0.

1 ! K× ! GLn(K) ! PGLn(K) ! 1

0 ! H1(Gal(K, k), PGLn(K))
∼=! H2(Gal(K, k), K×)

Now, take L/K a cyclic extension of order n. Insist that K is a complete discrete valuation
ring, with finite residue field. Let G = Gal(L,K). Then Ĥ•(G,L×) = Ĥ•+2(G,L×); cyclic
of order 2. And Ĥodd(G,L×) = 0, by Hilbert 90. So the only thing to worry about is the
Brauer group.

Brief aside, in fact an essential idea. Let L/K be a finite Galois extension. Look at
Ĥ•(Gal(L,K), L). The normal basis theorem says that L = K[G]. So this cohomology
of this is zero.

1 ! O×
L

! L× ! ! 1

Want to compute the Herbrand quotient. We know that h(L×) = h( ) · h(O×
L ). h( ) = n.

What about the other? Take Λ ⊆ O×
L stable under the Galois group. We then get h(L×) =

n · h(Λ). With some work, perhaps we’ll show that h(Λ) = 1.
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Situation is this. We have L/K a cyclic Galois extension of order n. Want to show

h(G,L×) = n.

In other words, Card(H2(G,L×)) = n.

The valuation map gives us

1 ! O×
L

! L× ! ! 1

h(G, ) = n

Proposition L/K finite Galois, K a complete discretely valued field. Then there’s a
subgroup U so that 1+PN

LOL ⊆ U ⊆ 1+PLOL
10 and U has trivial cohomology; Hi(G,U) =

0 for all i ≥ 1.

Proof By the normal basis theorem, there’s x ∈ L so that as a K[G]-module, L = K[G] ·x.
We may assume OK [G]x ⊆ PM

L for some M : 0. Let Λ = OK [G]x; think of it as a lattice.
We may further assume that Λ · Λ ⊆ Λ.11 So 1 + Λ is a subgroup of the principal units
1 +PL ⊆ O×

L . This is good, since we have a filtration fili(1 + Λ) = 1 + πi
KΛ. Clearly,

fili

fili+1
∼= Λ⊗OK

κ

where the isomorphism is as a κ[G]-module. But

Λ⊗OK
κ ∼= κ[G]

From this, we know thatH i(G, fili / fili+m) = 0 for all i,m ≥ 1, which implies the proposition.!

10If the residue field is finite, this just means U is of finite index.
11In general, you ask whether (πn

LΛ)(π
nΛ) ⊆ πnΛ. If n large eonugh, then you’re okay.
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Summary We’ve proved a substantial part of local classfield theory. Specifically, for every
L/K finite Galois, H2(Gal(L,K), L×) ∼= n−1 / cyclic of order n. And using the Frobenius
element and the valuation, this isomorphism is canonical. Fundamentally, UL,K '→ 1

n . The
limit version is to consider H2(Gal(Ksep, K), (Ksep)×) ∼= / . Using the finite version, by
Tate’s theorem we see that

Ĥ i(Gal(L,K), )
UL,K∪
∼=

! Ĥ i+2(Gal(L,K), L×)

Take i = −2. This then says that

Gal(L,K)ab
∼=!"

recL,K

K×

NL,K(L×)

Notice that the norm group is an open subgroup of finite index. The arrow going right is
often called the norm residue map, or norm residue symbol, some such nonsense. Ultimately,
you get

Gal(Ksep, K)ab " lim
←

K×

norm subgroups

In particular, every open subgroup U of finite index in K× which contains a norm subgroup
corresponds to an abelian extension of K.

Lubin-Tate formal groups We’ll construct a commutative one-dimensional formal group
F overOK withOK ↪→ EndOK

(F ). Let πK ∈ OK . Anyways, we can ask for F [πn
K ] = ker(πn

K).
Can look at the points in the generic fiber, F [πn

K ](K) = F [πn
K ](K

sep) a finite set; and the
group law gives you a group structure.

Can think of the inductive limit lim→ F [πn
K ](K), an OK-module. And it will turn out that

this is ∼= K/OK , again as an OK-module. And EndOK
(K/OK) = OK .

The Galois group Gal(Ksep, K) operates on F [πn
K ](K

sep). Each element of the Galois group
thus works on lim→ F [πn

K ](K) as an automorphism, and this gives us a representation
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Gal(Ksep, K)
ρF ! O×

K
!

Gal(Kab, K)
$

The factorization means that it’s an abelian representation. And in fact, it factors even more

Gal(Ksep, K)

ρ
F

!

Gal(Kab, K)
$

! O×
K

⊂

∼=

!

Gal(K · F [π∞
K ](Ksep), K)
$

[Later on we’ll see why this is an isomorphism.]

Let Kn = F [πn
K ](k). The big picture is this.
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Kab

KunrK∞

=

O
×
K

̂

Kunr ∪nKn

̂ O
×
K

to
ta
lly
ra
m
ifi
ed

K

If we’re lucky, we’ll prove that fili(OK) = 1 + πi
KOK corresponds to the upper numbering

filtration under the reciprocity law recK .

So much for the big picture. Let’s get down to specifics.

Formal group laws What we say will be for one-dimensional formal groups; but they can
be generalized to higher dimensions. Let’s work over a ring R. Then basically we want the
formal spectrum Spf R[[x]] ×SpecR Spf R[[x]] → Spf R[[x]]. The left-hand side is, essentially,
Spf R[[x, y]]. So we have

Spf R[[x]] ×SpecR Spf R[[x]] ! Spf R[[x]]

Spf R[[x, y]]

R[[x, y]] - F (x, y) " x

Definition A one-dimensional commutative formal group law over R is a power series
F (x, y) ∈ R[[x, y]] satisfying

unit F (0, y) = y, F (x, 0) = x.
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commutative F (x, y) = F (y, x).

associative F (x, F (y, z)) = F (F (x, y), z).

inverse There’s a [unique] g(x) so that F (x, g(x)) = F (g(x), x) = 0.

smooth F (x, y) ≡ x+ y mod deg 2.12

We’re not claiming that these are all independent axioms. For example, property 4 essentially
comes from the implicit function theorem and the other properties.

What’s an endomorphism? Given a group law F and another one, G, well, it should certainly
be some F

α→ G. This means that G(α(x),α(y)) = α(F (x, y)). So α itself is a power series;
α ∈ R[[x]]. Any power series satisfing this condition is said to be an endomorphism.

Idea of constructing Lubin-Tate formal groups is as follows. Let Fπ = {f(x) ∈ OK [[x]] :
f(x) ≡ πKx mod deg 2, f(x) ≡ xq mod πK}, where q = pf is the cardinality of the residue
field κ. Take f(x) ∈ Fπ. To first order, it looks like multiplication by π. Want f(x) to be
an endomorphism of a 1-dimensional commutative formal group law Ff .

12Looks like this comes from property one.
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Still on Lubin-Tate groups and formal complex multiplication.13 We’ve got OK a complete
discrete valuation ring, with finite residue field κ = OK/πKOK

∼= q . Set Fπ = {f ∈ OK [[x]] :
f(x) ≡ πx mod deg 2; f(x) ≡ xq mod π}. Then pick f ∈ Fπ. The idea is that we’ll construct
a one-parameter formal group [law] form this, together with endomorphisms by OK in such
a way that the polynomial f gives the endomorphism by π.

Proposition Let f, g ∈ Fπ. Let φ1(x1, · · · , xn) be a linear form with coefficients in
OK . Then there’s a unique formal composiiton law φ(x1, · · · , xn) ∈ OK [[x1, · · · , xn]] with
φ(x1, · · · , x− n) ≡ φ1(x1, · · · , xn) mod deg 2, and f(φ(x1, · · · , xn)) = φ(g(x1), · · · , g(xn)).

Proof Since this is just a formal power series, we construct φ by successive approximation.
Suppose we have already φr(x1, · · · , xn) so that

• φr(x1, · · · , xn) ≡ φ1(x1, · · · , x− n) mod deg 2.

• f(φr(x1, · · · , xn)) ≡ φr(g(x1), · · · , g(xn)).

Let φr+1(x1, · · · , xn) = φr(x1, · · · , xn) + Er+1(x1, · · · , xn). Then

f(φr+1(x1, · · · , xn)) = φr+1(g(x1), · · · , g(xn)) ≡ f(φr(x1, · · · , xn)) + πEr+1(x)− φr(g(x1), · · · , g(xn))−E

≡ f(φr(x1, · · · , xn))− φr(g(x1), · · · , g(xn)) + πEr+1(x1, · · · ,
≡ f(φr(x1, · · · , xn))− φr(g(x1), · · · , g(xn)) + π(1− πr)Er+1

Now, 1 − πr ∈ O×
K . What we have left to show is that π divides f(φr(x1, · · · , xn)) −

πr(g(x1), · · · , g(xn)). So consider it mod π = πK .

f(φr(x1, · · · , xn)− φr(g(x1), · · · , g(xn)) ≡ φr(x
q
1, · · · , xq

n)− φr(x
q
1, · · · , xq

n) mod π

≡ 0 mod π

!

Given f ∈ Fπ, we can apply the proposition to get some properties.

13This is from a seven page paper they wrote in 1965 or so, in Annals of Mathematics.
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• There’s a unique F (x, y) ∈ OK [[x, y]] so that F (f(x), f(y)) = f(F (x, y)), and F (x, y) ≡
x+ y mod deg 2.

Let’s check that this is a formal group law.

– F (x, 0) = x, F (−, y) = y; F (f(x), 0) = f(F (x, 0)). In other words, the polyno-
mial h(x) = F (x, 0) satisfies h(f(x)) = f(h(x)), h(x) ≡ mod deg 2, and the same
holds for h′(x) = x.

– F (x, y) = F (y, x), since F (y, x) satisfies the defining conditions for F (x, y).

– Associativity; F (x, F (y, z)) = F (F (x, y), z). Well, let G1 be the left-hand side,
and G2 the right. Then we know f(Gi(x, y, z)) = Gi(f(x), f(y), f(z)). And
Gi(x, y, z) ≡ x+ y + z mod deg 2. So they must be equal.

– Existence of inverse. This comes from the implicit function theorem.

• For every a ∈ OK there’s a unique [a]f (x) ∈ OK [[x]] so that f([a]f(x)) = [a]f (f(x)) and
[a]f (x) ≡ ax mod deg 2. Note that f(x) = [π]f(x).

Chekkitout.

– Ff ([a]f (x), [a]f (y)) = [a]f(Ff (x, y)) Again, left-hand side is G1, right-hand side
is G2. Then f(Gi(x, y)) = Gi(f(x), f(y)) for i = 1,. Then Gi(x, y) = ax +
ay mod deg 2, and we’re done.

• Given f, g ∈ Fπ, we want to construct an isomorphism intertwining the formal group
laws given by f and g, and show the choice didn’t really matter. Want ψf,g(x) so that
ψf,g(x) ≡ x mod deg 2, and ψf,g(Fg(x, y)) = Ff(ψf,g(x),ψf,g(y)). Furthermore, this
isomorphism ψf,g should carry over the endomorphisms; ψf,g([a]g(x)) = [a]f(ψf,g(x))

So Fg and Ff both have endomorpisms b OK , and we want Fg
ψf,g→ Ff .

From the proposition, there’s a unique ψf,g(x) so that

– ψf,g(x) ≡ x mod deg 2.

– ψf,g(g(x)) = f(ψf,g(x)).

Gotta verify that ψf,g(Fg(x, y)) = Ff (ψf,g(x),ψf,g(y)). LHS is G1, G2 is RHS. Then
f(Gi(x, y)) = Gi(g(x), g(y)), and Gi(x, y) ≡ x+ y mod deg 2.

Now check the thing for [a]•.

• [a1]f([a2]f(x)) = [a1a2]f (x) for a1, a2 ∈ OK .
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Let’s try and use this stuff, I guess. Pick an Ff . The Lubin-Tate formal group is defined
over OK . We have endomorphisms; OK ↪→ End(Ff). Let a ∈ OK . Then ker([a]f ) =

Spec O[[x]]
[a]f (x)O[[x]]), a finite flat group scheme. Define K([a]f ) = K(ker([a]f )(K)), K adjoined

with the roots of [a]f in some algebraic closure of K. If a = uπn, then the kernel is the
same as that of [πn]f ; the units are automorphisms and have trivial kernel. And all of this
depends only on π, not f , because of the isomorphism ψf,g. So it makes sense to define
Kπ,n = K(ker[πn]f(K)) for any f ∈ Fπ. Now, ker[πn](K) is a finite group with action b
O = OK .

Choose f(x) = πx+ xq.14 Then [πn]f (x) = f ◦ · · · ◦ f(x) = fn(x). And

fn(x) = f(fn−1(x))

= fn−1(x) · (π + fn−1(x)
q−1)

ker[πn]−ker[πn−1] are roots of fn which aren’t roots of fn−1, i.e., roots of π+fn−1(x)q−1. And
π+fn−1(x)q−1 is irreducible by the Eisenstein criterion; the polynomial is ≡ xqn−1(q−1) mod π.

Thus, we know that Kπ,n has degree [Kπ,n : K] = (q − 1)qn−1.[?]

And all these polynomials are actually separable.

14That’s the simplest possible choice; might as well use it.
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Still working with Lubin-Tate groups. We have K ⊇ OK ⊇ mK - π, and κ = OK/mK
∼= q .

Let f ∈ Fπ. Then we can construct a Lubin-Tate formal group Ff , where f is an endo-
morphism of this formal group, and in fact every element of OK extends to an endomor-
phism on the formal group; the correspondence is that a ∈ OK specifies the linear term
of the endomorphism; OK ↪→ End(Ff). We then considered ker([πn]f ) ⊆ Ff , a finite flat
group scheme over OK . Set Kπ,n to be the field extension obtained by adjoining the ker-
nel; K(ker[πn](K)). Then Gal(Kπ,n, K) will turn out to be an abelian extension, so that
Gal(Ksep, K)⇀ Gal(Kπ,n, K)→ Aut(ker[πn]f(K)). In the limit version, one has

Gal(Ksep, K) !! Gal(∪Kı,n, K) ! Aut(lim ker[πn]f(K))

Oddly enough, the limit can be direct or inverse.

Let’s analyze Kπ,n over K. Well, ker[πn] comes from the equation f(n) = f ◦ · · · ◦ f n-times;
and ker[πn]−ker[πn−1] f(n)/f(n−1). Choosef(x) = πx+xq, the simplest one we have any
hope of analyzing. We saw that f(n)/f(n−1) = f q−1

(n−1) + π, an Eisenstein polynomial and thus

irreducible over K. Its degree is qn−1(q − 1), and so [Kπ,n : K] = qn−1(q − 1). Furthermore,
Kπ,n/K is automagically Galois; it’s the splitting field of f(n).15 The Galois action commutes
with the OK-action.

Let’s verify separability. Clearly ker[π] has all distinct roots, as f(x) = πx+ xq. We go up
inductively then; take the [πn] points, divide by the action of [π], and then you’re done The
key thing to show is that if a ∈ m(OK), then xq+πx+a is separable, and all roots are again
in m(OK). Proof is omitted here, though it was sort of amusing.

Anyways, Card(ker[πn]) = qn; that’s no surprise. And we’ve proved that there’s a surjection

0 ! ker[π](K) ! ker[πn+1]f(K)
[π]f!! ker[πn]f(K)

The conclusion is that lim→ ker[πn+1]f is π-divisible. And ker[π]f(K) is a module under
OK/mK , and thus is a 1-dimensional vector space over κ. From some sort of structure
theorem, ker[πn](K) ∼= π−nOK/OK . Thus, as an OK-module,

lim
→
n

ker[πn] ∼=
K

OK
.

Furthermore,

15In doing this stuff we make use of the following; if A an abelian group, and B A, then A−B generates
the whole thing.
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lim
←
n

ker[πn] ∼= OK .

Gal(Kπ,n, K) ⊂
∼=! AutOK

(ker[πn](K))

∼=

Gal(Ksep, K)

##

( OK

πnOK

)×

The top thing is an isomorphism just from counting cardinalities. So everything is isomor-
phic.

We thus have the following diagram of fields and Galois groups.

Kπ,n

K

(OK/m
n+1
K )×

∪Kπ,n

Gal(∪Kπ,n, K)
∼=! Aut(lim

→
n
[πn]f ) = O×

K

K Gal(Ksep, K)

##

We’ve explicitly constructed this nice, abelian extension.

Uh-oh. The diagram’s getting even more complicated.
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Kab = Kunr ·Kπ

∪Kπ,n = Kπ

Kunr Gal(∪Kπ,n, K)
∼= ! Kunr Aut(lim

→
n
[πn]f) = O×

K

̂

K Gal(Ksep, K)

##

So Gal(Kunr, K) = ̂×O×
K
∼= ̂(K×), the profinite completion of K×. And we’ve constructed

the maximal abelian extension.

Since the f(n)’s are Eisenstein polynomials, Kπ is totally ramified, and as such is disjoint
from Kunr. I think.

Write

f(n)/f(n−1) =
∏

i

(x− ai)

where ai ∈ ker[πn](K) − ker[πn− 1](K). So the norm is NKπ,n,K(ai) = π, for all i; so π is
always the norm.

Inside the tower, we have the reciprocity law. Try it at a finite level. recKπ,n,K(π) = idKπ,n.
Out of our hat, we pull recKunr

qn
(πm ·O×

K) = Frmq . That’s actually something we’ll prove later.

lim
←

K×norm subgroups
recKunrKπ,K! Gal(KunrKπ, K) = K̂×

∼=
!

!!

Gal(Kab, K)
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The conclusion is that the reciprocity map is an isomorphism. The point is, every subgroup
of finite index in K× is a norm subgroup. And when all is said and done,

Kab = Kunr ·Kπ.

This is an explicit construction of the maximal abelian extension.

Let’s backrack a bit. We picked π, a uniformizer. Suppose 3 is another uniformizer. Kπ

and K) are different, and there’s not a hell of a lot you can do about it.

Example time? Consider p . Want to understand the Lubin-Tate formal group associated
to this local field. The Lubin-Tate group will turn out to be the multiplicative group, m .
We wan (1+x)(1+y) = 1+x+y+xy. The formal group law is x+y+xy. As a uniformizer

we have p. Choose f to be (1 + x)p − 1 = px +
(
p
2

)
x2 + · · ·+ pxp−1 + xp. Choosing this f

fixes the group. Every formal group is entitled to multiplication by p .16

Anyways, ker[pn]( p) = {ζ ipn − 1 : i ∈ /pn }. We’re looking at

p(ζpn)

p

Let’s compute the reciprocity law. Think of the global situation (ζpn ) over . This Galois
group is ( /pn )× ; and ditto for the local case, actually. The reciprocity law is, take an
element of p× and have it operate on the extension.[?] Let a ∈ ×

p . Want to find its
reciprocity law image. Well, write a = pmu, u ∈ ×

p . Now, u ≡ c
d mod pN for some really

big N , with c, d relatively prime and prime to c. Then recp(a) = reca(pm
c
d). Now a leap of

faith; local and global reciprocity laws are compatible. And if we take a global element in
, lok at its reciprocity law map at every p, it’ll be trivial at almost all places; and they all

multiply together to give a trivial image under the reciprocity law map; the product is 1. So

recp(a) = recp(p
m c

d
)

= (
∏

l *=p

recl(p
m c

d
))−1

16Remember that, in the multiplicative group, the usual coordinate for blah is 1 + blah .
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For finite l, what do you get? In general, the l-adic valuation, times l; some power of
Frobenius. At infinity, you pick up a sign. So the product, at the end, becomes ( cd)

−1.

The conclusion is that recp(a) = u−1 ∈ ( /pn )× .
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No class on Wednesday.[!]

We’ve got OK a complete DVR, and κ = OK/mK
∼= q . We choose f ∈ Fπ, as usual.

From this we construct Ff a Lubin-Tate formal group. By considering its division points
ker[πn]f (K), well, the coordinates are separable; adjoin them to K, and this gives us a
separable field extension Kπ,n. And actually, Kπ,n/K is totally ramified. On the other hand,
it’s a finite abelian extension, with group (OK/πnOK)×. Let Kπ = ∪nKπ,n. Then Kπ/K is
abelian, with group O×

K . On the other hand, we know that we can construct the maximal
unramified extension Kunr, with group ̂. And then KπKunr is an abelian extension, whose
Galois group is the profinite completion of O×

K . We’ll shortly identify this with the maximal
abelian extension of K.

Remember we had a reciprocity law isomorphism, inverse to the following. Suppose we have
L over K, with Gal(L,K) = G. We’ll try to understand it via the dual.

H−2(G, )

uL,K ∪ ·
∼=

!

"
rec

H0(G,L×)

Gab K×/NL,K(L
×)

recL,K(a) " a

And for all χ ∈ Homgp(Gab, / ), χ(recL,K(a)) =?. We’ve got the long exact sequence

Hom(Gab, / ) = H1(G, / )
δ! H2(G, )

coming from 0→ → → / → 0. Let’s just compute χ(recL,K(a)) and get it over with.
Let sa = recL,K(a). Then uL,K ∪ sa = a. Recall / comes from the Brauer group. Well,

uL,K ∪ sa ∪ δχ = a ∪ δχ
sa ∪ δχ = δ(sa ∪ χ)

And δ(sa ∪ χ) is what we want to compute. Let n = CardG. Then sa ∪ χ ∈ H−1(G, ) ∼=
n−1 / . Mercifully this is one of the cases where we have a formula. Specifically, sa ∪ χ =
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χ(sa) =
i
n mod ; I mean, what else could it be? Now we have to take δ of that, to wind up

in H0(G, ) ∼= /n . Then δ(sa ∪ χ) = i mod n. So far we have

uL,K ∪ (i mod n) = a ∪ δχ

where δχ ∈ H2(G,L×).

Proposition χ(recL,K(a)) = invK(a ∪ δχ).

This shows you that the reciprocity law is tied to the Brauer invariant. Furthermore, we’ll
use it to see how reciprocity operates on maximal unramified extensions.

Let L/K be unramified; L is the unique unramified extension with [L : K] = n. We want
to understand a little better how the reciprocity law operates. So let a ∈ K×; want to get a
hold of sa. We’ll see that sa = FrK raised to some power, namely, the valuation of sa.

Well, Gab ∈ /n . Let χ ∈ Homgp(Gab, / ). Let χ(FrK) =
1
n mod . Want to see that

χ(sa) = invK(δχ ∪ a)

?=
vK(a)

n
mod .

Well, certainly the invariant is in H2(G,L×), and G is cyclic. We’ve got

H2(G,L×)
vL ! H2(G, ) "

∼=
H1(G, / )

H2(G, ) ×H0(G,L×)
id×vL

! H2(G, ) ×H0(G, )

δχ ∪ a ! vK(a)δχ " vk(a)χ

Use δχ ∈ H2(G, ), etc. Now specialize to our χ, and get the desired result;

χ(a) = invK(δχ ∪ a) =
vK(a)

n
mod .
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Goal At this point, our goal is to identify Kab with Kπ · Kunr, and recK : K× →
Gal(Kab/K), and K× = πK · O×

K .

Now, π operates trivially on Kπ. More precisely, recK(π) does. Essentially, this is because
π ∈ NKπ,n,K(K

×
π,n) for all n. And it operates as Frobenius on Kunr.

So it remains to understand what O×
K does to Kπ; this is the only thing which isn’t immedi-

atley clear. Want to understand O×
K → Gal(Kπ, K). But the map is u '→ u−1, where we’ve

identified Gal(Kπ, K) with O×
K .

This shows that Kab ∼= KπKunr, as soon as we know that the map is really just u '→ u−1.

We’ll show:

Gal(Kab, K) !! Gal(Kπ, K)×Gal(Kunr, K)

O×
K × ̂

πn · u ! (u−1, n)

And this will follow from:

1. Kunr ·Kπ is independent of π.

2. Let r = rπ : K× → Gal(Kπ, K) × Gal(Kunr, K) be πnu '→ ([u−1]f , n), where we’d
chosen f starting with πx, and is congruent to xq mod π. The statement is that rπ is
independent of the choice of π.

Admit this. Then for r = rπ, r and the reciprocity law map r, recK : K× → Gal(Kunr ·Kπ, K)
coincide on all uniformizers.

So let’s go prove that stuff.

Lemma Choose π,3 two uniformizers, f ∈ Fπ, g ∈ F). These correspond to formal laws
Ff and Fg. Let A = ÔKunr.

1. There’s a polynomial θ ∈ A[[x]] so that Fg(θ(x), θ(y)) = θ(Ff(x, y)).

2. This isomorphism is compatible with formal multiplication; θ([a]f (x)) = [a]g(θ(x)) for
all a ∈ OK .

3. θ−1θσ(x) = [u]f(x) where 3 = uπ, and σ = Frq. In other words, θσ(x) = θ([u]f (x)).
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K ⊇ OK a complete discrete vauation ring, with residue field κ = OK/mK
∼= q . Supose

π = u3 are uniformizers, u ∈ O×
K . Suppose f ∈ Fπ Ff , and g ∈ F) Fg. They’re not

isomorphisc [necessarily] over OK .

Let A be the Witt vectors A = W (κ)OK , and B = FracA = B(κ)K = K̂unr. Take the
maximal unramified extension of K: complete it with respect to the topology given by the
uniformizer. Since there’s no ramification, the old uniformizer is still a uniformizer.

B

B(κ)

?

Lemma There is a θ : Ff
∼=→A Fg so that

• θFf (x, y) = Fg(θ(x), θ(y)).

• For every a ∈ OK , θ([a]f (x)) = [a]g(θ(x)).

• θ(x) ≡ εx mod deg 2 for some ε ∈ A×.

• There’s a technical condition we want, too:

θσ(x) = θ([u]f (x))

where σ is the Frobenius element.

Suppose we know the lemma. Let’s see what we get out of it. Well, there’s a canonical
ismorphism and then we actually get

KunrKf
θ
∼=
! KunrKg
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Now, before we had

K× rπ! Gal(KunrKf , K)

K×

r)
! Gal(KunrKg, K)

∼=

$

θ

What we want is to show rπ = r). Well, rπ(3) = rπ(u) = rπ(π). And r)(3) is trivial on
Kg, and Frq on Kunr.

On Kg, well, let’s see what we have. For x ∈ Ff [πn], θ(x) ∈ Fg[3n]. And

rπ(3)θ(x) = θσ(rπ(3)x)

= θσ(rπ(u)rπ(π)x)

= θσ(rπ(u)x)

= θσ([u−1]f (x))

= θ([u]f [u
−1]fx)

= θ(x).

Thus, rπ(3) operates trivially on Kg. So now we know rπ(3) = r)(3).

For v ∈ O×
K ,

rπ(v)θ(x)
?
= r)(v)θ(x)

rπ(v)θ(x) = θ(rπ(v)x)

= θ([v−1]f(x))

r)(v)θ(x) = [v−1]g(θ(x)).

But θ commute with formal multiplication, so rπ(v) = r)(v) for every v ∈ O×
K and we’re

done.
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Remark Why would we expect θσ(x) = θ([u]f(x))? Want to figure out a relation between
θ−1θσ(x) and [u]f(x). Consider θ−1θσf(x). We want θ−1θσf = [3]f(x) = θ−1gθ(x).

And θσ should give an isomorphism θσ : F σ
f

∼=→ F σ
g . But all coefficients are in OK , so it’s

actually θσ : Ff
∼=→ Fg And θ−1 ◦ θσ ∈ End(Ff ).

θ−1 ◦ θσ ◦ f ∈ End(Ff)

θ−1gθ ∈ End(Ff)

Look at them modulo π. The second one is

θ−1gθ(x) ≡ θ−1(θ(x))q mod π

≡ θ−1θσ(xq)

≡ θ−1θσf(x).

By the uniqueness of lifting of endomorphisms [to characteristic zero] θ−1θσf = θ−1gθ, and
so θσ = θ ◦ [u]f .

Proof of Lemma We’ll construct θ coefficient by coefficient, satisfying θ(x) ≡ εx mod
deg 2 and θσ = θ ◦ [u]f . There’s a condition on ε. Well, θσ(x) ≡ εσx mod deg 2; and
θ ◦ [u]f(x) ≡ εux. Need ε ∈ A× so that εσε−1 = u. But all we know is that u is a unit.

Exercise Interpret this condition εσε−1 = u as a statement on Galois cohomology.17

Okay. Suppose we’ve constructed θr−1(x) ∈ A[[x]]/xr . Want θr(x) = θr−1(x) + brxr mod
deg r + 1 so that θσr (x) ≡ θr ◦ [u]f mod deg r + 1. Well,

θσr (x) ≡ θσr−1(x) + bσrx
r mod deg r + 1

θr ◦ [u]f(x) = θr−1 ◦ [u]f(x) + br(uf(x))
r

= θr−1 ◦ [u]f(x) + bru
rxr

θσr−1(x)− θr−1 ◦ [u]f(x) = crx
r

bσr + cr = bru
r

17Hint: σ is the topological generator of Kunr. So we’re looking at the cohomology of this profinite gorup
with cofficients in A× or B×.
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Now, u = εσε−1. So

bσr + cr = brε
rσε−r.

We need

(brε
r)σ − (brε

r) = −
crεrσ

εr
.

And this is another cohomological statement.
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Last time we used two facts. Let κ = OK/mK
∼= q , A = OK̂unr, F = σ = FrK = Frq. Then

A× F − 1!! A× - u

A
F − 1!! A - b

In other words, there’s ε ∈ A× with u = εσε−1, and a ∈ A so that b = aσ − a.

Trying to formulate this in Galois cohomology. The first sally didn’t quite work out, but
we’ll try it again. Think about A× as A× = lim←

n
(A/πnA)×, and A = lim←

n
(A/πnA). It

suffices to show that, on each associated graded level, this is surjective. Hmm. The ground
level of the filtration is κ×

σ−1→ κ×. In general, filn = (1 + πnA)×, and filn / filn+1 ∼= κ, and
this behaves nicely with respect to the Galois group. So on each graded piece we get either
κ×

σ−1→ κ× or κ
σ−1→ κ. We have to show that these are surjective.18

Now, these things are discrete Gal(K̂unr, K)-modules.

H i(Gal(K̂unr, K), κ×) = lim
→

U open normal

H i(G/U, κ×
U
)

In our case, G is ̂; take U = n̂. Then the quotient is G/u ∼= /n , cyclic. Which is good,
since we know something about them. In general, H1( /n , ) = kerN

im(σ−1) . Something about

transition maps. When all’s said and done, we get H1 = κ×/ im(σ − 1), and for the other
open H1 = κ(im(σ − 1). By Hilbert 90, these are dead.

18I think the graded thing is just fili / fili+1.
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We’re declaring ourselves done with local class field theory, and moving on to

Global Class Field Theory What is class field theory, anyway? It has a few goals.

• Understand/describe abelian extensions, possibly in terms of the arithmetic of the base
field, K. F’rinstance, stuff involving K× or ×

K/K×.

• Understand ramifications of [abelian] Galois extensions. F’rinstance, let K be a global
field, and L a [finite] Galois extension. Chebotarev sez, inter alia, the following. Let v
be an unramified place; then there’s a frobenius element, or conjugacy class, anyway,
Frv ∈ G* - 〈g〉, the conjugacy clases of G. Then density of {v : Frv ∈ 〈g〉} is 1

Card(G")
.

Furthermore, {v ∈ ΣK : Frv = e}, which is just the set of [totally] split primes,
completely determines L.

• Ultimately, we’re interested in Gal(Ksep, K). And apparently, these days one dualizes
the problem and attempts to describe the representations Gal(Ksep, K)→ GLn( l).

Main theorem of global class field theory:

Let K be a global field, L/K a finite abelian extension.

1. There’s a map

×
K

K×NL,K(
×
L )

recL,K
∼=

! Gal(L,K)
!

Frv

K

#

!

πv

for v an unramified prime, v ∈ ΣK ; and this gives a map from the group of unramified
ideals Iunr to Gal(L,K).

Existence Any open normal subgroup of finite index in ×
K/K× corresponds to a [unique] abelian

extension of K, as a norm subgroup.
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Remark K× is dense in
∏m

i=1K
×
vi , by weak approximation or independence of valuations.

This tells us that recL,K , if it exists, must be unique. [Exercise.]

Existence of the reciprocity law used to be written like this: There’s a finite set of primes S
containing all ramified primes and all archimedean primes and, for v ∈ S an av ∈ , so that
for x ∈ K× with |x− 1|v ≤ av,

∏
v *∈S Fr

v(x)
v = e ∈ Gal(L,K). Exercise to verify that this is

really equivalent.

×
K/K×

!
×
K,S

#

naive reciprocity
! Gal(L,K)

Recall ×
K,S =

∏′
v *∈S K

×
v . Anyways, this factorization of the bottom map is equivalent to the

classical formulation.

Here’s the strategy of the proof. Three main steps.

• First inequality.

• Second inequality.

• Existence of abelian extensions. [Kummer theory in numberfield case; Artin-Schreier
in function field case, which we’ll probably blow off anyway. The function field case is
better handled in Serre, Algebraic Groups and Class Fields, using algebraic geometry.]

Classically, that is, before Chevalley, second was first; first, second.

Let L/K a cyclic Galois extension of degree n. [This’ll work for any abelian extension,
actually.] The first inequality is

Card(
×
K

K×NL,K(
×
L )

) ≥ n.

And you can guess what the other one says; and these combine to give equality.

Maybe we’ll go and prove something now. Let L/K be cyclic of order n; Gal(L,K) ∼= /n .
Want to say something about Ĥ0(G, ×

L /L
×). Well,
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Ĥ0(G, ×
L /L

×) = ( ×
L /L

×)G/NL,K(
×
L /L

×)

= ×
K /K×NL,K(

×
L )

In the second line, we used Hilbert 90 to get

( ×
L )

G/(L×)G∼= ( ×
L /L

×)G

(L×)G = K×

×
L = lim

→

Σ∞K⊆S⊆ΣK

(
∏

w|v *∈S

O×
w )× (

∏

w|v∈S

L×
v )

( ×
L )

G = lim
→

Σ∞K⊆S⊆ΣK

((
∏

w|v *∈S

O×
w )× (

∏

w|v∈S

L×
v ))

G

= lim
→
(
∏

v *∈S

O×
v )×

∏

∈S

K×
v

= ×
K

[Since G is finite, cohomology commutes with direct limits, etc.]

Now, you’d expect to get a map Ĥ0(G, ×
L /L

×) ← Ĥ−2(G, ), cup product with some
element in H2 with coefficients in the idele class gorup; and we’ll produce that element.

We’ll actually prove that the Herbrand quotient is h(G, ×
L /L

×) = n.
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We’ve got L/K a cyclic extension of number fields, G = Gal(L,K) = /n . Then h(G, ×
L /L

×) =
n, so

Theorem [First inequality]

Card(
×
K

K×NL,K(
×
L )

) ≥ n.

Now, there’s some ΣK,∞ ⊆ S ⊆ ΣK , S finite containing infinite primes and ramified primes,
so that ×

L,SL
× = ×

L .
19 This is from finiteness of class number, or whatever. From this, we

can represent idele classes by S-ideles:

×
L /L

× "
∼= ×

L,S/L
×
S

where L×
S = L× ∩ ×

L,S . We’ll try to compute cohomologies with these.

H0(
∏

w|v

L×
w) = K×

v

H0(
∏

w|v

O×
w ) = O×

v

Ĥ0(
∏

w|v

O×
w ) = 0 for v >∈ S

Ĥ0(G, ×
L,S ) =

∏

v∈S

Ĥ0(Gw, L
×
w)

=
∏ K×

v

Nw,v(L×
w)

for v >∈ S,

H1(G,
∏

w|v

O×
w ) = H1(Gw,O×

w ) Shapiro’s lemma

= 0

since it’s complete, and you have a filtration; on the bottom step is the residue class field
with cohomology zero, by Hilbert 90, and then successive quotients are still the residue fields,
again zero. This being complete, everything is zero.

19Recall that this is ×
L,S = (

∏
w|v∈S L×

w)×
∏

w|v $∈S O×
w , since S contains all archimedean places.
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Conclusion of all this is that h(G, ×
L,S ) =

∏
v∈S h(Gw, L×

w) =
∏

v∈S [Lw : Kv].20

Now, what about h(G,LS)×? We need the log map:

1 ! µL
! L×

S

log! (
∏

w|v∈S

w )
1 ! real torus ! 1

l ! (log ‖l‖w)w|v∈S

Notice that the image lies in the hyperplane where the sum of the coordinates is zero; that’s
what the superscript 1 means. However, it is cocompact; it goes to a torus. Anyways, elet
Γ =∈ (L×

S ) ⊆ (
∏

v∈S v )1. It’s a lattice, essentially because of the Dirichlet unit theorem.

Hmm. Γ′ def
= (

∏
w|v∈S w )1 ⊆ (

∏
w|v∈S w ). Actually,

0 ! (
∏

w|v∈S

w )
1 ! (

∏

w|v∈S

w ) ! ! 0

where has the trivial action. As such, its Herbrand quotient is h(G, ) = n. By Shapiro’s
lemma,

h(G,
∏

w|v∈S

w ) =
∏

v∈S

h(Gw, )

=
∏

v∈S

[Lw : Kv]

h((
∏

w|v∈S

w )
1) =

∏
v∈S [Lw : Kv]

n
.

Now, h(G,L×
S ) = h(G,Γ), since the Herbrand quotient doesn’t see finite differences. SO it

suffices to compute for the lattice Γ.

We know that Γ⊗ ∼= Γ′⊗ G-equivariantly. Then we can thus conclude that Γ⊗ ∼=
Γ′ ⊗ , G-equivariantly as well. That’s an easy algebra fact; figure it out if you don’t
see it.21 But once these two representations are isomorphic over , we ca n produce a map
beween them with finite kernel and cokernel, which h(·) ignores. So h(G,Γ) = h(G,Γ′) which
we just computed.

Putting everything together, h(G, ×
L /L

×) = n.!

20By the way, a lot of times I’m just picking some w lying over v; it doesn’t really matter which one.
21Briefly, G-equivariant homomorphisms are a findim vector space. Tensoring with gives you the

earlier thing. That’s a general statement.
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Consequences If L/K is an abelian extension split almost everywhere, then K = L. For
take some cyclic subextension, L′.

Claim that K×NL′,K(
×
L′ ) =

×
K . That’s essentially weak approximation plus our hypoth-

esis; use weak approximation to take care of the nonsplit primes. Then [L′ : K] = 1, a
contradiction.

Review of Kummer theory K a field of characteristic p, possibly 0, and n prime to the
characteristic; n ∈ K×. Assume K contains nth roots of unity. Kummer theory looks at the
part of the abelianized Galois group killed by n.

Well, let’s try it. We look at the Kummer sequence

1 ! µn(K) ! Ksep× n! Ksep× 1

Our assumption is that µn(K) is a trivial Galois module. So we get, upon taking cohomology,
letting G = Gal(Ksep, K) and µn = µn(K),

1 ! K×/(K×)n ! Hom(G, µn) ! 1

Hom(Gab/(Gab)n, µn)

[exact on right from Hilbert 90.] In some sense, Hom(Gab/(Gab)n, µn) is the dual ofGab/(Gab)n.
Anyways, how do we write down this isomorphism? It comes down to the connecting δ thing.
Let k ∈ K× = H0(G,Ksep×). Pick n

√
k ∈ Ksep×; we’ve lifted back the cochain. Take the

derivative; G - σ '→ n
√
kσ−1 ∈ µn. And this is independent of our choice of an nth root.

Let K(n) = Gal(Ksep, K)ab/Gal(Ksep, K)n. For next time – Friday, actually – think about
K(n) ⊇ L ⊇ K. Figure out which things kill L. Let H = Gal(K(n), L). Consider all
characters of G killing H . That’s a subgroup of Hom(G, µn), , and therefore corresponds to
a subgroup of K×/K×n. How do we explicitly relate this to L?
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We’ve got a tower of fields and Galois groups

Ln G

L H

K (e)

Here, we have

G = Gal(Ln, K)

=
Gal(Ksep, K)ab

Gal(Ksep, K)n

= Hom(K×/(K×)n, µn)

H = {σ ∈ G : σ|L = id}

= Hom(
K×

(K×)n·?
, µn)

? = {a ∈ K× : ∀σ ∈ Gal(Ln, L)k
n
√
aσ−1 = 1}

= {a ∈ K× : n
√
a ∈ L}

= K× ∩ (L×)n

H = Hom(
K×

(L×)n ∩K×
, µn)

So,

G/H ∼= Hom((L×)n ∩K×/(K×)n, µn).

In particular,

[L : K] = [(L×)n ∩K× : (K×)n].
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Move it on.

Suppose we have L/K a Galois extension of number fields with Galois group G. Want

[ ×
K : K×NL,K

×
L ] ≤ [L : K].

By a previous lemma, more or less, we may [and do!] assume that n = [L : K] is prime.

We will see shortly that we can further assume that all nth roots of unity are in K; µn(K) ⊂
K.

L(µn)

m
H

L K(µn)

G′ n

m
|(n
−
1)

K

nG

G
×
K

K×N( ×
L )

G′
×
K(µn )

K(µn)× ·N( ×
L(µn ))

$
res

G
×
K

K×N( ×
L )

$
cor

$

m

In this case, corestriction is essentially just the norm; and the composition is multiplication
by m.

Try this over again, as what we did certainly isn’t right.
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abort
Let G̃ = Gal(L(µn), K), and G and H as above. Then we have

Ĥ(G̃, ×
L /L

×) =
×
K

K×NL,K(
×
L(µn ))

Ĥ0(G′, ×
L(µn )/L(µn)

×)
$

res

Ĥ0(G, ×
L /L

×)
$

cor

The composition might be multiplication by m.

abort
the second map of groups induces the first one.

Ĥ(G̃, ×
L(µn )/L

×) !!
×
K

K×N( ×
L )

Ĥ0(G′, ×
L(µn )/L(µn)

×)
$

res

!!
×
K(µn )

K(µn)× ·N( ×
L(µn ))

$
res

Ĥ0(G̃, ×
L(µn )/L

×)
$

cor

!!
×
K

K×N( ×
L )

$
cor

Now, the composite on the right is multiplication by m, a surjection, since ×
K/K×N( ×

L )
is killed by n.

At this point, what we want to do is bound ×
K/(K×N( ×

L )). The only way to do that is
show that there are a lot of norms.
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Now, assume that Gal(L,K) = G ∼= ( /n )r , n prime, and n ∈ K×, µn(K) ⊆ K×. Fix S a
finite set of places containing the archimedean places, and larg enough so thatK× ×

K,S = ×
K .

Can do this, essentially, by the finitude of class numbers. Want n to be an S-unit, that is,
for all p|n, p ∈ S. Also, S should contain all ramified places. Anyways, that’s our S, for
now; we may have to expand it a bit, but who cares?

K×
S = K× ∩ ×

K,S .

Let M = K((K×
S )

1
n ); and Gal(M,L) = H ∼= ( /n )t . And [M : K] = [K×

S : (K×
S )

n]. But
K×

S
∼= #S−1 × µN for some n|N . Then [M : K] = n = Card(S).

So, M ⊃ L ⊃ K. There are w1, · · · , wt unramified places of L, disjoint from S, such that the
Frobenii Fwi generate Gal(M,L). Assume each wi lies over some vi of K. Then Owi ⊃ Ovi

is an unramified extension; so the decomposition group is cyclic. And actually, this is an
isomorphism; the extension is split here. Why? Because the Frobenius from L to M is
already cyclic of order n, and n is prime, or something like that. vi split in L. And the
Frobenii detect whether a global element of M is actually in L.

Let a ∈ KS. If a ∈ Ln
wi

for all i, then we conclude that the nth root of a is in L; a is globally
an nth power of L.

With a little bit of work, we argue that certainly there are local norms

N =
∏

v∈S

(K×
v )

n ×
∏

v∈T

K×
v ×

∏

v *∈S∪T

O×
v .

And it’ll turn out that these are enough. Specifically, [× ×
K,S : K×N ] ≤ n. But this index is

just

[ ×
K,S : N ]

[K× ∩ ×
K,S , K

× ∩N ]
.
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Notes from Kate. Thanks.

We want to show:

1. For all a ∈ K×,
∏

v recv(a) = 1.

2. We just explained that for all x ∈ Br(K), if we localize we get an element in Br(Kv),
namely, invv(x). We want to show

∑
v invv(x) = 0.

Here’s the connection between the two of them. We’ve sort of seen this already. That is, fix
an abelian extension. Lw/Kv local, so for all xv ∈ Hom(Gv, / ) ∼= H1(Gv, / ) [since the
action is trivial]. But by the coboundary map there’s an isomorphism

H1(Gv, / )
δ
∼=
! Hom(Gv, )

Then for all av ∈ K×
v , recv(av) ∈ Gv, so we can evaluate χv on it; χv(recv(av)) makes sense.

But this is also an element invv(·), where to get this we use:

av ∈ K×
v ¡ av ∈ K×

v / norms, and av ∈ H0(Gw, L×
w), then av ∪ δχ ∈ H2(Gv, L×

w), and
χv(recv(av)) = invv(av ∪ δχ).

So much for the explnation. We begin with showin g(1) for L/K a cyclotomic extension.

Just cmpute it; for cyclotomic fields we can compute this over ; and it suffices to check for
extensions (µln ) over .

Let’s show it in this case. Let (µln ) = (ln); G = ( /ln )× .

Check that
∏

v recv(
a
b ) = 1 for a, b ∈ . It suffices to check for primes and −1. So le tn be a

prime number.

• What’s
∏

v recv(−1)? A few cases to worry about.

v =∞ Then / depends on /N , ( ); −1 isn’t a norm because norms have to be
positive. Then recv(−1) = i = −1; the complex onjugate is its own inverse.

v = p >= l Then we have (ln)p over p . And p >= l means we’re unramified; −1 is a unit[?].
So recv(−1) = 1.

v = p = l Well, −1 is a unit. And recv(unit) = 1
unit , by the formal group law stuff. So

recv(−1) = −1.

Then
∏

v recv(−1) = −1 · 1 ·−1 = 1.
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•
∏

v recv(n) for n
not = l. As we’ll see shortly,

recv(n) =






1 v =∞
1 v = p >= l, n >= p
n v = p >= l, n = p
n−1 v = p = l, n >= p

.

Given this, it’s clear that
∏

v recv(n) = 1.

Let’s look at a few of the cases.

v = p >= l, n >= l Since p >= l, the thing is unramified. And n >= l means it’s a unit ⇒ recv(n)
operates trivially if n >= p, and Zrecv(n) = n if n = p.

v = p = l, n >= l Then (lm) over l is totally ramified. n >= p ⇒ n is a unit ⇒ recp(n) =
1
n .

• Look at n = l. Then

recv(n) =






1 v =∞
1 v = p >= l
1 v = p = l, l a norm

.

From all of this nonsense it follows that
∏

v recv(a) = 1; and so (1) holds for all cyclotomic
extensions.

Now let’s do (2) for cyclotomic / cyclic extensions L over K.

Proof Cyclic means that the cohomology groups are cyclic. So if x ∈ Br(L/K), then
x = a ∪ δχ for some a ∈ K×/N(L×) and χ ∈ H1(G, / ).

Thus we have δχ22 defining a map H0(·)→ H2(·). Want to show that
∑

invv(x) = 0. Well,

∑

v

invv(x) =
∑

v

invv(a ∪ δχ)

from above =
∑

v

χv(recv(a))

= χ(
∑

v

recv(a))

= χ(0)

= 0.

Now we want (2) for arbitrary x ∈ Br(K).

22Think of this as an element of H2(Gv, )
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Claim There’ some cyclotomic and cyclic extension L over K which splits x, and thus
x ∈ Br(L,K).

Proof Hasse principle, essentially. We know that xv ∈ Br(Kv), and xv is trivial for all
but a finite set v ∈ {v1, · · · , vN}. Take L/K a cylotomic cyclic extension so that Lw :
Kvi ]− invvi(x) ≡ 0 mod for all i. And next class, I guess, we’ll see how to do this.
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Stil working on the second inequality. As a general principle, observe that cohomology often
allows you to reduce to a very simple case; but once there, you may have to work sort of
hard anyway.

So suppose given a tower of fields

M K( n
√
K×

S )

L

G ∼= ( /n )r

K

Assume n a prime number, and µn(K) ⊆ K×, n ∈ K×. Let Σ∞
K ⊆ S ⊂ ΣK be a sufficiently

large finite set of primes. Then Gal(M,KJ) ∼= Hom(K×
S /K

×
S ∩(K×)n, µn). So [M+K] = ns,

since the group of homomorphisms is abstractly ( /n )s . Then w1, · · · , wt ∈ ΣL, unramified
so that {Frwi} generates Gal(M,L). Since the decomposition groups are always cyclic,
Gal(M,K) ∼= ( /n )s ; we know that wi is split over vi. In other words, all the vi are split.
Let T = {v1, · · · , vt}.

We wanted

[ ×
K : K×NL,K(

×
L )]|[L : K] = nr.

If we could show this, then we’d know the same thing for an arbitrary extension L.23

Now, we’d made up some norms,

23Combined with the first inequality; when L/K is cyclic, G = Gal(L,K) ∼= /n , then the Herbrand
quotient was h(G, ×

L /L×) = n. Thus, if L/K cyclic, and [L : K] = n prime, then the two inequalities yield

H1(G, ×
L /L×) = (0), and Ĥ1(G, ×

L /L×) is cyclic of order n. Then for L/K an arbitrary Galois extension,

H1(Gal(L,K), ×
L /L×) = (0). Also, the second inequality gives Card(Ĥ0(Gal(L,K), ×

L /L×))|[L : K].
And by inflation-restriction, etc., the same is true of H2.
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N =
∏

v∈S

(K×
v )

n ×
∏

v∈T

K×
v ×

∏

v *∈S∪T

O×
v ⊆ NL,K(

×
L ).

With luck, these’ll be enough to get the inequality. It suffices to prove [ ×
K : K×N ]|nr. We

know that

×
K = K× ×

K,S

= K× ×
K,S∪T

[ ×
K : K×N ] =

[ ×
K,S∪T : N ]

[KS∪T : K× ∩N ]

[ ×
K,S∪T : N ] =

∏

v∈S

[K×
v : (K×

v )
n]

So now we need to compute [K×
v : (K×

v )
n].

K×
v

(K×
v )

n
= Ĥ0

triv( /n ,K×
v )

Ĥ1
triv( /n ,K×

v ) = µn(Kv)

htriv( /n ,K×
v ) =

[K×
v : (K×

v )
n]

n

Now try to get at the Herbrand quotient.

1 ! O×
v

! K×
v

v ! ! 1

htriv( /n ,K×
v ) = htriv( /n ,O×

v ) · · ·htriv( /n , )

= htriv( /n ,O×
v ) · n

use exp = htriv( /n ,Ov ) · n

=
n

|n|v
· n

[K×
v : (K×

v )
n] =

n2

|n|v
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So much for finite places. What about the infinite ones? We’re either talking about [ × :
( ×)n ] or [ × : ( ×)n ]. The latter is just one; the former, 1 or 2 depending on n odd or
even. But we’ll actually only get , since the nth roots of unity are lying around.

[ ×
K,S∪T : N ] =

∏

v∈S

n2

|n|v
= n2s

Move on to the next part. We’ve got a global problem, namely,

[K×
S∪T : K× ∩N ] ?= ns+t = nr.

We know that

K×
S∪T ⊆ K× ∩N ⊆ (K×

S∪T )
n.

It suffices to prove K× ∩N = (K×
S∪T )

n.

Recall that if x ∈ K×
S , and x ∈ (L×

wi
)n for all i, then x ∈ (L×)n. For n

√
x is fixed by Frwi,

hence fixed by Gal(M,L), i.e., n
√
x ∈ L.

Hmm. Things seem a little rocky. Define N ′ =
∏

v∈S(K
×
v )

n × ∏
v *∈S O×

v . Want K×
S : K× ∩

N ′] = ns+t.
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Here’s the situation. We’ve got S, a large though finite set of places, and

M = K( n
√
K×

S )

H ∼= ( /n )t = {Frwi}i=1,···,t

wi L

G ∼= ( /n )r

vi K

Set T = {v1, · · · , vt}, and

N =
∏

v∈S

(K×
v )

n ×
∏

v∈T

K×
v ×

∏

v *∈S∪T

O×
v .

What we want is

K× ∩N = (K×
S∪T )

n.

We’re going to try a trick which usually doesn’t work, but will hopefully bail us out here. It
should be clear that K× ∩ N ⊇ (K×

S∪T )
n. And what we really need is K( n

√
K× ∩N) = K.

But we know that K× ∩ N ⊆ K×
S∪T which is finitely generated. By the first inequality, to

show that these two fields are the same it suffices to show that, setting F
def
= K( n

√
K× ∩N),

K× ·NF,K(
×
F ) =

×
K .

We certainly have

NF,K(
×
F ) ⊇

∏

v∈S

K×
v ×

∏

v∈T

(K×
v )

n ×
∏

v *∈S∪T

O×
v

It now suffices to show
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K× · (
∏

v∈S

K×
v ×

∏

v∈T

(O×
v )

n ×
∏

v *∈S∪T

O×
v ) =

×
K .

By our choice of S,

×
K = K×(

∏

v∈S

K×
v ×

∏

v *∈S

O×
v ).

So now it’s enough that K× gives the difference;

K×
S

!!
∏

v∈T

O×
v

(O×
v )

n

And you can’t use a general approximation argument to prove this. What we’ll try to show
is that the cardinality of the image, and that of the target set, are the same. Well, the kernel
is

ker = K×
S ∩

∏

v∈T

(O×
v )

n

= K×
S ∩ (L×)n.

By Kummer theory, L = K( n
√
K×

S ∩ (L×)n).

Card(K×
S / ker) = [M : L]

= nt

Card(O×
v /(O×

v )
n)

Hensel′s lemma
= Card(κ×v /(κ

×
v )

n)

κv ⊇ µn(κv)

n | qv − 1

Card(κ×v /(κ
×
v )

n) = n for all v ∈ T

[Remember n is prime to the characterstic of the residue field at v ∈ T .]

Then Card(
∏

v∈T O×
v /(O×

v )
n, proving the second inequality.!
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Remark Historically, the second inequality is proved by analytic methods using L-functions,
etc. Let L/K be a finite extension of number fields. We want to show that [ ×

K : K×NL,K(
×
L )] ≤

[L : K]. Now, N def= K×NL,K(
×
L )/K

× is an open subgroup of finite index in ×
K /K×. Fol-

lowing an idea of Dirichlet, we want to look at characters χ ∈ Hom( ×
K /(K× ·H), ×

1 ), and
the associated L-functions LS(χ, s), where S is a finite set of places including the infinite
and ramified places, and LS means ignore the places in S. We’ll look at it for real s close to
1, say, s ∈ >1 . Look at the analytic behavior there. If χ is a nontrivial idele class character,
then the function is holomorphic and nonzero; so it looks like LS(χ, s) ∼ 0 >= cχ +O(s− 1).
If χ is trivial, then we’re essentially talking about the Dedekind ζ function of K, and it looks
like 1

s−1 +O(1).

LS(χ, s) =
∏

v *∈S

(1− χ(πv)q−s
v )−1

log(1− x)−1 =
∑

m≥1

xm

m

logLS(χ, s) =
∑

v *∈S

∑

m≥1

χ(πv)mq−ms
v

m

d

ds
logLS(χ, s) = −

∑

v *∈S

∑

m≥1

(log qv)χ(πv)
mq−ms

v

∑

χ

logLS(χ, s) = −
∑

χ

∑

v *∈S

∑

m≥1

(log qv)χ(πv)
mq−ms

v

the rest is convergent, leaving ∼ −
∑

χ
∑

v *∈S

(log qv)χ(πv)q
−s
v

Let h = [ ×
K : K×NL,K(

×
L )]. Then we have

∼
∑

χ

∑

v *∈S

(log qv)χ(πv)q
−s
v

∼ h
∑

v *∈S,πv∈H

(log qv)q
−s
v

A miracle occurs and we’re done, sorry.!

We still need to prove the reciprocity law, and the existence theorem. The reciprocity law
will make essential use of cyclotomic extensions; the existence theorem relies on Kummer
extensions.
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Last time we proved the first inequality; we gave Chevalley’s algebraic proof, and sketched
a more classical one. If L/K is the Galois of group G, then we can bound the norm in-
dex as [ ×

K : K×NL,K
×
L ]|[L : K], the second inequality. When G is cyclic, we showed

h(G, ×
L /L

×) = n, and thus that n|[ ×
K : K×NL,K(

×
L )]; that’s the first inequality. Ulti-

mately, we’ll show that all of these are equalities. Move on to

Reciprocity law The reciprocity law is a map rec : ×
K/K× → G = Gal(L,K), where

L/K is assumed abelian. Inside this picture is recv : K×
v → Gv. For v unramified, units

must go to the trivial element. Put the local ones together to give ×
K → G; and the image

must be G itself. That’s a consequence of the first inequality; since if an extension is split
almost everywhere, it’s trivial.

Want sto show that for a ∈ K×,
∏

v recv(a) = 1. This implies that rec : ×
K /K×NL,K(

×
L )⇀

G. The second inequality shows that this is actually an isomorphism.

The proof, perhaps a bit unnaturally, uses cyclotomic fields.

We start wth 1 → L× → ×
L → ×

L /L
×. Recall that H1(G, ×

L /L
×) is trivial. This gives a

lon exact sequence involving brauer groups

0 ! H2(G,L×) ! H2(G, ×
L ) ! H2(G, ×

L /L
×)

Br(L,K) ⊕vH
2(Gw, L

×
w)

⊕v Br(Lw, Kv)

as always, w is a place lying over v. The fact that this is an injection is the Hasse principle.
Eventually, we’ll show that H2(G, ×

L /L
×) ∼= 1

[L:K] / , canonically. We’ll use this and Tate’s

theorem to show that Ĥr(G, )
?∪uL,K→ Ĥr+2(G, ×

L /L
×) When r = −2, we interpret this as

Gab = G
∼=→ ×

K /K×NL,K(
×
L ). Keep interpreting.

nv
def= [Lw : Kv]

⊕v Br(Lw, Kv) = ⊕v
1

nv
/
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Notes from Seon-In. Thanks.

Reciprocity law map We’ve proved it for cyclotomic field extensions. So for any x ∈
Br(L,K) with L/K cyclic and contained in a cylcotomic field, we know

(∗)
∑

v

invv(x) = 0 ∈ /

We want to show (∗) is true for any extension. Since for any x ∈ Br(K), x ∈ Br(L,K),
Br(K) ↪→ ∏

v Br(Kv).

Proof Given x ∈ Br(K), invv(x) = 0 for all v >= v1, · · · , vN . There’s an m so that
m invv(x) = 0 for v = v1, · · · , vN . Hence for all v, m invv(x) = 0. It suffices to find an
extension L/K cyclotomic and cyclic so that [Lw : Kvi ] ≡ 0 mod m.

We may assume m is a prime power, as m =
∏

j p
ej
j ; and if we can find Lj/K so that

[Lj,wi;Kvi] ≡ 0 mod p
ej
j , then we can just take L =

∏
j Lj .

So we may assume m = pe.

K ·M (µpN )

p−
1

K M(p,N)

p
N
−
1

Here, Gal( (µpN ),M(p,N)) is the order p− 1 subgroup of /pN1 (p− 1). Then [K ·M)wi : Ki]

is a multiple of
[Mpi : pi]
[Kvi : pi]

. The local degree at KM/K can be decreased only by the local

degree of K/ . We want the local degree of M/ big.

So w may assume K = .
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For simplicity’s sake assume p >= 2 is a finite prime.24 Let l1, · · · , lk be rational primes;
consider the extension M(p,N)/ . If l = p, then [Mw : p ] = pN−1. If l >= p, then [ l(µpN ) :

l ] is the order of l in ( /pN )×. Make N big, then the order of l gets big.

So we want to show that for L/K abelian,
∏

v recv(x) = 1. This is ⇐⇒ for all χ ∈
Hom(G, / ),

∑
v χ(recv(x)) = 0 mod . But χ(recv(x)) = invv(x·δχ), where x·δχ ∈ Br(K).

Given

LK1

L K1

K

We get a commuting diagram

×
K,1/K

×
1

! ×
K/K×

Gal(LK1, K1)
$

! Gal(L,K)

#

This gives us

Gal(Kab
1 , K1) ! Gal(Kab, K)

corresponding to NK1,K . On the other hand, we have

24p =∞ is trivial to handle.
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×
K/K× ! ×

K1
/K×

1

x ! x

This corresponds to Gal(Kab, K)→ Gal(Kab
1 , K1) by transfer. So

lim
←

L

×
K

K×NL,K(
×
L )

∼=! Gal(Kab, K)

The existence theorem says that {N( ×
L )} is the same as the set of all open subgroups of

finite index. Then π0(
×
K /K×)

∼=→ Gal(Kab, K).
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Existence theorem Situation is this. We’ve got a number field K, and an open subgroup
H ⊂ ×

K/K× of finite index. We want to produce a finite abelian extension L of K so that
NL,K(

×
L /L

×) = H .

We’ve already made it past the crux move: suppose ×
K/K×H ∼= /p and K ⊇ (µp).

We did the following. Pick S a finite set of places containing all archimedean places. It
should be large, in the sense that K× ×

K,S = ×
K . Further assume that p ∈ K×

S , and
H ⊇

∏
v∈S

∏
v *∈S O×

v ×
∏

v∈S(K
×
v )

p; H is unramified outside S.

So we’re really ocnsidering K( p
√
K×

S ). In the course of the proof of the second inequality,
we actually produced something contained in the norm group, whose index is already that
required by the second inequality.

N def=
∏

v∈S

(K×
v )

p ×
∏

v *∈S

O×
v .

Then

[ ×
K : K× ·N ] = [K( p

√
K×

S ) : K].

Of course, at this point we also know that

[ ×
K : K× ·N

K( p
√

K×S ),K
( ×

K( p
√

K×S )
) = [K( p

√
K×

S ) : K].

The conclusion is that

K× ·N = N
K( p
√

K×S ),K
( ×

K( p
√

K×S )
)

⊆ H

So taking L to be K( p
√
K×

S ) produces the desired extension.

Next, we make a reduction step. There’s a nice norm map nm from the idele class group of
L down to that of K. Assme L/K cyclic of prime order [?], and nm−1(H) ⊆ ×

L /L. Want to
show that H is a norm, that is, contains the group of all norms from some abelian extension.
The reduction says that if we let H ′ = nm−1(H), it suffices to verify the statement for L and
H ′.

Whyizzat? Assume H ′ is a norm group, that is, that there’s an abelian extension M/L so
that H ′ = NM,L(

×
M /M×). Well, NM,K(

×
M /M×) ⊆ H ; but then we’re just about done. We

have a norm subgroup contained in H . The big question is, is M/K abelian? Yes, but it
requires a bit of argumentation.
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1. M is Galois over K. That’s because, for every σ ∈ Gal(L,K), σ(H ′) = H ′.

2. Now we want to show that Gal(M,L) ⊆ Z(Gal(M,K)).

1 ! Gal(M,L) ! Gal(M,K) ! Gal(L,K) ! 1

×
L /L

× ·H ′rec

#

∼=

There’s a general functoriality.25

Want to figure out how conjugation by σ ∈ Gal(L,K) operates.

×
L

L×NM,L(
×
M )

rec ! Gal(M,L)

×
L′

L′×NM ′,L′(
×
M ′ )

$
σ

rec ! Gal(M ′, L′)
$

via transport by σ

Check that if x ∈ ×
L /L

× ·H ′, then σx = x. Equivalently, is (σx)x−1 ∈ H ′? That’s the same
as NL,K(σ(x)x−1) ∈ H ; but NL,K(σ(x)x−1) = 1, which is clearly in H , so we’re fine.

So much for that. Let’s do the general case.

25

M
σ ! M ′

L

rec

σ ! L′

rec

K

What?
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Proof For H H̃ ×
K/K×. Proof is by induction on [ ×

K/K× : H ]. By the reduction
we just did, we can assume whatever roots of unity we want are in there; it just gives a cyclic
extension. Suppose p|[ ×

K/K× : H ]. The base case is trivial. Assume [ ×
K /K× : H̃] = p. We

may assume that K ⊇ (µp).

So there’s L/K cyclic isomorphic to /p , NL,K(
×
L ) = H̃. The crux move, using Kummer

theory, takes care of that.

×
L

NL,K!! H̃ ⊆ ×
K

N−1
L,K(H)
∪

#

!! H
∪

#

Induction sez that N−1
L,K(H) is a norm subgroup. So L/K cyclic means that H is a norm

subgroup.!

In case you blinked, or something, we just finished the main parts of class field theory.

Suppose L/K finite Galois, [L : K] = n, G = Gal(L,K). We’ve got

1 ! L× ! ×
L

! ×
L /L

× ! 1

H1(·) = 0 for these; something happens at H2. Get

0 ! H2(G,L×) ! H2(G, ×
L ) ! H2(G, ×

L /L
×)

⊕vH
2(Gv, L

×
w)

⊕v Br(Lw, Kv)

We assert that the right-hand map is actually a surjection, and that

H2(G, ×
L /L

×) ∼= n−1 / .

So the map ⊕Br(Lw, Kv)→ n−1 / is essentially summation.
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Cohomology of profinite groups What we usually use for coefficients are discrete mod-
ules. In that case, nothing much happens. Then

H•(G,M) = lim
→

U M open

H•(G/U,MU)

= H•(std cochain complex)

If M is not discrete, you can quickly get into trouble. But with any luck we’ll be able to
avoid that case, for the time being anyway.

Definition [Cohomological dimensions] The cohomological dimension of G is

cd(G) def= inf{i ∈ : Hj(G,M) = 0∀i > 0

and discrete torsion G-modules M}

scd(G)
def
= inf{i ∈ : Hj(G,M) = 0∀i > 0

and discrete G-modules M}

Here, scd is the strict cohomological dimension. It turns out that cd(G) ≤ scd(G) ≤ cd(G)+
1. That’s an easy exercise. Use a long exact sequence, no doubt.

There are local versions of these, cdp and scdp. You can define ’em as

cdp(G)
def
= inf{i ∈ : Hj(G,M)(p) = 0∀i > 0

and discrete torsion G-modules M}
scdp(G)

def
= inf{i ∈ : Hj(G,M) = 0∀i > 0

and discrete G-modules M}

Just look where the p-torsion is killed.

Exercise If G is a nontrivial finite group, then cd(G) =∞.26

26Idea: If you start with a cyclic group, it’s not going to have finite cohomological dimension, since it’s
periodic [of period 2], and so never stops. By Shapiro’s lemma, you can induce to bigger groups. Work it
out.
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Exercise Compute cd(ˆ) and scd(ˆ). Should turn out to have cd(ˆ) = 1.

Fact K a nonarchimedean locally compact local field.27 Let G = Gal(Ksep, K). Then
scdl(G) = cdl(G) = 2 if l >= char K.28 If l = char K, then scdl(G) = 2, cdl(G) = 1.29

For the rest of the year, we’ll be doing some sort of arithmetic duality.

Let’s think about local class field theory for a bit. The key was this. Let L/K be a
finite extension of local fields. Then H1(Gal(L,K), L×) = 0; that’s Hilbert 90. And
H2(Gal(L,K), L×) = n−1 / , where n = [L : K]. Now, Gal(L,K) is a finite quotient
Gal(Ksep,K)
Gal(Ksep,L) . And L× = (Ksep)×Gal(Ksep,L). Take limits. Then H2(Gal(Ksep, K), (Ksep)×) =

/ . And inflation corresponds to injection, restriction to multiplication by the degree of
the extension.

On the other hand, we have global class field theory. Let L/K be a finite extension of global
fields, [L : K] = n. Again, H1(Gal(L,K), ×

L /L
×) = 0.30 And H2(Gal(L,K), ×

L /L
×) =

n−1 / . If M ⊃ L ⊃ K, then ( ×
M /M×)Gal(M,L) = ×

L /L
×. Why is this? General trick to

verify it. Well, ×
L is the Galois invariants of ×

M ; and M× those of L×. Want to measure
whether the invariant of the quotient is the quotient of the invariant. So take cohomology of

1→ M× → ×
M →

×

M

M× → 1. And whether or not ths is everything is precisely H1(G,M×),
which is zero by Hilbert 90. BTW, H2(Gal(Ksep, K), ×

Ksep/Ksep×) = / .

In such situations, there’s a theorem of Tate – which we proved, actually – that Hr(G, )
∪·→

Hr+2(G, ·); take r = −2, and recover the inverse reciprocity law.

A class formation abstracts from these two examples.

Definition A class formation for a profinite group G is a discrete G-module C such that:

1. For every open normal subgroup U G, H1(G/U,CU) = 0.

2. There’s an isomorphism i : H2(G,C)
∼=→ / so that for every open normal U G,

we have
27This just means the residue field is finite.
28Serre, Cohomologie Galoisienne II.5., Prop 15.
29Serre, I.3.3, Cor 4, III.2.2 Prop 3.
30Not Hilbert 90, but the second fundamental inequality.
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H2(G,C)
i
∼=

!

H2(U,C)

#

i
∼=
! n−1 /

∪

#

where n = [G : U ]. This tells you that inflation maps are good. What about restriction?

If U V G are all open subgroups, then

Jeff Achter 81 Ching-Li Chai



MA 620 11 April 1994

Class formation G a profinite group, C a discrete G-module, subject to the following
axioms.

1. H1(G,C) = 0¿ More generally, for all U ⊆ G open, H1(U,C) = 0.

2. inv : H2(G,C)
∼=→ / . More generally, for all U ⊆ G open,

H2(U,C)
∼=

invU
! /

3. If U1 ⊆ U2 ⊆ G both open, then we have

H2(U2, C)
invU2 ! /

H2(U1, C)
$

resU2,U1

∼=
invU1

! /
$

[U2 : U1]

This isn’t quite the same formulation as Artin-Tate, but it’s pretty close.

Here’s a variant. Let P be a collection of prime numbers. Take the l-primary part everywhere
for all l ∈ P , in all diagrams and statements above.

Anyways, from this setup you can get some sort of reciprocity law[s]:

CG recG! Gab

And get a similar law for every open U ⊆ G. This is from Tate’s theorem, which says that
for all i we have

Ĥ i(G/U, )
∪uG/U

∼=
! Ĥ i+2(G/U,CU)

For I = −2, get
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(G/U)ab ! CG

NG,U(CU)

Gab

imU

Take limit over U ’s to get recG. The image of the reciprocity law is dense in the target space,
even though this isn’t an honest surjection. The kernel is the universal norms.

Here’s another example of a class formation. Suppose G ∼= ˆ the profinite completion of .
What should we take C to be? Exercise: make this make sense.

Duality theory We’ll start off with dimension 2. Want the target to be / = (ˆ)∨.31

So we use

/

H i(G,M)×H2−i(G,Hom (M,C)) ! H2(G,C)

invG

#

∼=

This isn’t what we’ll use in the end, but it’s close enough that maybe you can figure out
what we’re talking about. We got the Hom thing by a “what else could it be?” argument.
But this is basically just the extension group Ext2−i

G (M,C), since there’s a spectral sequence
at work here. In general, Ea,b

2 = Ha(G,Extb (M,C)) ⇒ Exta+b(M,C). Well, that’s the
motivation, hope you enjoyed it.

Let’s start in. There’s the Yoneda pairing

ExtiG(M,C)× ExtjG(N,M) ! Exti+j
G (N,C)

How do we think about this? Resolve M by M → M• an injective resolution. Then an
element of ExtjG(N,M) is represented by a G-equivariant homorphism h1 : N → M• of
degree j. In this case, it sends N to M j . What about ExtiG(M,C)? We’ve already chosen

31In the DeRham contex, we had Hi(M, )×Hn−i(M, ) → Hn(M, )
∼=→ , where the last isomorphism

is the trace map α '→
∫
M α.
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M →M•; now resolve C, C → C•. Then we represent an element of ExtiG(M,C) as a map
H2 : M• → C• of degree i. The obvious way to get in Exti+j

G (N,C) is to compose these two
homomorphisms; h2 × h1 '→ h2 ◦ h1.

Here’s another way to think about it; think of the equivalence classes of extensions 0→M →
• → · · ·→ •→ N → with j things between them; that’s ExtjG(N,M). And ExtiG(M,C) is
similar; then just concatenate them to get an Exti+j

G (N,C).

In our situation, we specialize to N = with the trivial action. But ExtjG( ,M) =

Hj(G,M), by definition; and Exti+j
G ( , C) = H i+j(G,C). Take j = 2− i. And H2(G,C)

invG→
/ ;

ExtiG(M,C) ! H2−i(G,M)∨=Hom (H2−i(G,M), / )

That’s the natural map. Let’s figure out what it is.

Special case. Take M = ; look at this map.

• i = 0 Then ExtiG(M,C) = CG; and it gets sent to H1(G, / )∨ = Gab. So it’s

CG ! Gab

That’s gotta be the reciprocity law.

• i = 1. Then ExtiG(M,C) = 0 by our axiom for class field formations. And the target
is H1(G, )∨ , which is also trivial:

0 ! 0

• i = 2. Left-hand is H2(G,C); and right-hand is H0(G, )∨ = / .

H2(G,C) ! /

And this really oughta be the invariant map invG.

• i > 2, then everything’s zero; remember the cohomological dimension.
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Let’s prove that last little bit. Assume i > 2. Let nU = [G : U ]; assume V ⊂ U open. Use
the inflation map:

H i−2(G/U, )
∼=

invU
! H i(G/U,CU)

∼=
invV

!H i(G/V, CV )
$
?

$
infU,V H

i−2(G/V, )

The left-hand side is multiplication by the index;

x ! x ∪ uG/U

H i−2(G/U, )
∼=

invU
! H i(G/U,CU)

H i−2(G/V, )
$

[U : V ] infU,V

∼=
invV

! H i(G/V, CV )
$

infU,V

inf(x) ∪ inf(uG/U)
$

inf(x) ∪ [U : V ]uG/V
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