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Euclid 300 BC
Diophantus 300 AD
Fermat 1601-1665
Euler 1707-1783
Lagrange 1736-1836
Legendre 1752-1833
Fourier 1768 - 1830
Cauchy 1789 - 1857
Abel 1802 - 1829
Jacobi 1804-1851
Dirichlet 1805 - 1859
Liouville 1809-1882
Kummer 1810 - 1893
Galois 1811 - 1832
Hermite 1822-1901
Eisenstein 1823 - 1859
Riemann 1826 - 1866
Dedekind 1831 - 1916
Weber 1842 - 1913
Hurwitz 1859 - 1919
Minkowski 1869-1909
Hilbert 1863 - 1943
Takagi 1875 - 1960
Hecke 1887 - 1947
Artin 1898 - 1962
Hasse 1898 - 1979

The history of number theory is the history of mathematics.

Where’s Gauss? Gotta look it up.

Fermat looked at all sorts of things.

1. Quadratic equations. Here are some Fermatian assertions.

p = x2 + y2 ⇐⇒ p ≡ 1 mod 4

p = x2 + 2y2 ⇐⇒ p ≡ 1 or 3 mod 8

p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 mod 3

These are all binary quadratic forms.
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2. Consider

x3 + y3 = z3.

Or, for that matter,

x4 + y4 = z2.

The question is, figure out if there are [integer] solutions. Nowadays, we’d call these
elliptic curves. If you go to higher degree, you don’t have an elliptic curve. But it
turns out that Fermat usually just worried about curves of genus 1 or 2.

3.

1 +
1

2s
+

1

3s
+ · · · = ζ(s).

Euler had messed around with this, and found out [inter alia] that ζ(2) = π2

6 . Euler
also showed that ζ(2n) = π2n· rational, where the rational number is essentially a
Bernoulli number. We have the Euler product,

ζ(s) =
∏

p

1

1− p−s
.

Back to binary quadratic forms. Euler conjectured several things, like p = x2 + 5y2 ⇐⇒
p ≡ 1, 9 mod 20; and 2p = x2 + 5y2 ⇐⇒ p ≡ 3, 7 mod 20. There are similar things for
x2+7y2, etc. So Euler up and asks whether p divides x2+ny2 for suitable x and y not both

divisible by p [nontrivially]. And he sets χp(n) =

{
1 p|x2 − ny2

−1 p % |x2 − ny2
. In other words, 1

or -1 depending on whether or not n is a quadratic residue mod p. We now can see that
n &→ χp(n) is a character. Slightly more surprising is that p &→ χp(n) is a homomorphism as
well, in that it only depends on p ∈ ( /4n)× .

Let’s briefly treat with the other two themes.

27 January 1752 – Birthday of the theory of elliptic functions. Some dude named Fagnano
wrote a book, sent it to the Berlin Academy, and Euler got stuck with reading it. In this
two-volume book, Fagnano observes that

dx√
1− x4

=
dy√
1− y4
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has a general solution which looks algebraic. So Euler starts replacing the denominator with
an arbitrary quartic polynomial; and he can change dx to mdx, and dy to ndy.

Why can he do this? Well, for instance, u2 = 1 − x4 gives an elliptic curve. You wind
up thinking about the product of two elliptic curves, E × E. And the various sides of the
equation give invariant forms on E. Call this thing ω. Then we’re really asking for the zero
locus of the holomorphic 1-form p∗1ω−p∗2ω on E×E. This thing is translation invariant. The
diagonal gives the solution x = y. So the diagonal sits in as the solution; and any translate
must work. So all translates work, and that’s all the solutions.

After this, the theory of elliptic functions takes off. Moving right along....

∞∏

n=1

(1− qn) =
∞∑

−∞
(−1)nq

n(3n+1)
2 .

Euler decided to prove the four-square theorem by considering this identity; he’s using gen-
erating functions. For you wind up with

(
∑

qn
2
)4 =

∑

R(n)

qn.

If you have
∑∞

−∞ qn
2
and let q = eπiτ , you wind up with θ(τ). One reason we can handle

functions of this sort is that they are modular forms, which in turn are about elliptic curves.

On to the third theme, ζ and L-functions.

So Dirichlet’s hanging out, worrying about arithmetic progressions, and primes mod m.
He realizes that the write thing to do is consider functions of the sort

∑
(n,m)=1

χ(n)
ns , where

χ : ( /m )× → × . This is usually denoted L(χ, s). There are exactly φ(m) such L-
functions. Anyways, L(χ, s) =

∏
(p,m)=1

1
1−χ(p)p−s .

If you take χ = χ0 the trivial character, you get the ζ function except for some fudge factors
for the primes dividing m.
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It turns out that Gauss lived from 1777 to 1855.

Last time, we were sketching Dirichlet’s theorem on primes in arithmetic progression. We
define the L-function L(χ, s) where χ : /m → ∗ is a character. We set

L(χ, s) =
∑

(n,m)=1

χ(n)

n2
=
∏

p %|m
(1− χ(p)p−s)−1.

Each of the terms in the product is called an Euler factor; and here, it’s said to be of degree
one.1 We know [by Abel summation] that the series is conditionally convergent when +s > 1
if χ is nontrivial; and it’s absolutely convergent for +s ≥ 1. Something about dealing with
the spectrum of a number field of dimension one. The key step is that for every nontrivial
χ, L(χ, 1) %= 0.

Taking logarithms, we have [assume s ↓ 1]

logL(χ, s) =
∑

(p,m)=1;n≥1

χ(pn)

npns

=
∑

(p,m)=1

χ(p)

ps
+O(1)

1

φ(m)

∑

χ

χ(n−1
0 ) logL(χ, s) =

∑

p

1

φ(m)

∑

χ

χ(pn−1
0 )

ps
+O(1).

At this point, we use the fact that if A is a finite group, then
∑
χ∈Â χ(a) =

∑
χ χχ1(a) =

(
∑
χ∈Â χ(a))χ1(a) for all χ1. So the thing is either one or zero depending on whether χ is or

isn’t trivial. We thus get

=
∑

(p,m)=1;p≡n0modm

1

ps
+O(1).

Uh-oh, I blinked. We just got a contradiction.!

Moving along. Riemann had this paper in which he defined ζ(s) =
∑

n≥1
1
ns . It was natural

for him to consider this as a holomorphic function. This is absolutely convergent for +s > 1,
and it’s uniformly convergent on +s > c > 1. He derived a number of functional equations.
For instance,

1And that’s because we have an abelian representation of degree one.
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π−s/2Γ(
s

2
)ζ(s)

is invariant under s↔ 1− s. Of course, here

Γ(s) =
∫ ∞

0
e−tts−1dt.

In the functional equation above, π−s/2Γ(s/2) is often denoted Γ (s). It becomes clear that
this has a lot to do with the Jacobi theta function

θ(z) =
∞∑

−∞
eπ

√
−sn2z

where /z > 0. He showed that, more or less, there’s a relation between θ(z) and θ(−1
z ). It’s

the frac linear transformation defined by

(
0 −1
1 0

)

.

Riemann also studied the number of primes less than a given number. He related the zeros of
ζ(s) to the distribution of primes. Here, we’re studying π(x) =

∑
p≤x 1. The prime number

theorem says that

π(x) ∼ x

log x
.

The prime number theorem says that there are no zeros on the critical line, +s = 1; and
actually, there are no zeros in some small neighborhood [but this neighborhood isn’t rectan-
gular!]. This brings us to Riemann’s hypothesis, which says that Z = ζ−1(0) ⊆ +s = 1

2 .

Define Λ(n) =

{
log p n = pe

1
. Riemann’s hypothesis is equivalent to the statement

∑

n≤X

Λ(n) = X +O(X
1
2 (logX)2).

The prime number theorem says that ∃c > 0 so that

∑

n≤X

Λ(n) = X +O(Xe−c
√

logX).
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And it turns out that the function field analogue of this is true.

Okay, so let’s begin the course already. Consider K = (
√
−5). Its ring of integers is OK =

+
√
−5. Note that O×

K = {±1}. Let α = 1+2
√
−5, and α′ = 1−2

√
−5. And the norm is

αα′ = 21 = 3 · 7 = β · ρ. One can check that α,α′, β, ρ are all irreducible in OK , but they are
not associates of each other. Compute α2 = −19 + 4

√
−5 and β2 = 0. Both are divisible by

λ = 2+
√
−5. So then α2 = (2+

√
−5)(−2+3

√
−5), and β2 = (2+

√
−5)(2−

√
−5). Thus,

α2

λ and β2

λ are both integral. Now, α√
λ
isn’t in K, but it’s certainly integral [i.e., an algebraic

integer]. Ditto for β/
√
λ. If you conjugate everything, you get α′2 = (−2+

√
−5)(2+3

√
−5),

and ρ2 = (2− 3
√
−5)(2 + 3

√
−5). Let χ = 2 + 3

√
−5. Then α′/

√
χ and ρ/

√
χ are integers.

We now have

αα′ = βρ√
λ
√
−χ
√
λ′
√
−χ =

√
λ
√
λ′
√
χ
√
χ.

This should start to explain the problem of nonunique factorization. Now,
√
λ = gcd(α, β).

We think of ideal numbers as adjoining the gcd’s of numbers. This is the sort of thing
Kummer did. Note the connection with αOK + βOK.
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Dedekind domains and discrete valuations This is going to be review; don’t be sur-
prised by the lack of proofs.

Definition A is a discrete valuation ring ⇐⇒ , well, hold on. It’s a valuation ring if
there’s a map A−{0}→ . As always, let K be the fraction field of A. Then this valuation
extends to v : K× → . It has to satisfy a number of properties. In particular, we insist
that

1. v(xy) = v(x) + v(y).

2. v(x+ y) ≥ min(v(x), v(y)).

You can get an absolute value from a valuation, as follows. Fix some a > 1, and set
‖x‖ = a−v(x). We get ‖x+ y‖ ≤ max(‖x‖ , ‖y‖). The units have valuation zero; A× = v−1(0).

Anyways, A is a discrete valuation ring ⇐⇒ A is a noetherian local ring with maximal
ideal m principal. π is a uniformizer if v(π) = 1; for all x ∈ K×, x = πv(x)u for u ∈ A×. The
definition of DVR is equivalent to A is noetherian integrally closed (normal) of dimension
≤ 1.

Definition A is a Dedekind domain ⇐⇒ A is noetherian, normal of dim ≤ 1 ⇐⇒ for
all prime ideal p %= (0), then the localization Ap is a discrete valuation ring.

“Geometry is too easy.” Shubin wants an example of a noetherian local ring with m not
principal. It’s suggested that we look at [

√
5].

Proposition [Unique factorization of ideals] A fractional ideal is a nonzero finitely gener-
ated A-submodule of K. Every fractional ideal J ⊆ K [nonzero] has a unique factorization

J =
∏

i

peii

where the pi are distinct primes.

Example

1. Let K be an algebraic number field, OK the ring of integers of K; all elements of K
integral over . This is a Dedekind domain.

2. (p) , p .

3. k a field, C a smooth curve over k. Set Z C closed and nonempty. Then Γ(C−Z,OC)
is a Dedekind domain.
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Approximation / Chinese remainder Let A be a Dedekind domain, p1, · · · , pm distinct
non-zero primes, a1, · · · , am ∈ A, n1, · · · , nm ∈ . Then there’s an x ∈ A so that vpi

(x−ai) ≥
ni for all i = 1, · · · , m. And once you’ve proven this, you see that you can replace A by K.

Extensions From now on, A a Dedekind domain, K its fraction field, L a finite extension
of K. Let B be the integral closure of A in L. Assume B is a finite A-module.2 We can look
at Ap and Bp. The latter is finite over the former, since finitude is a local property. Then

1. B is a Dedekind domain.

2. Bp is a free Ap-module of rank [L : K].

Definition Let P lie over p, that is, P ∩ A = p. Then eP = vP(πp), where πp is a
uniformizer downstairs. In other words, πp = π

eP
P ·(unit). This number eP is called the

ramification index. Let κP and κp be the associated residue fields. There’s a uniquely
defined map between them, Ap/pAp→ BP/PBP. Anyways, fP/p = [κP : κp].

There’s a map of the groups of fractional ideals, ι : IA → IB. It need only be defined on
primes; and we say that p &→ ∏

Pi|pP
ei
i = pB. We can also make one that goes backwards,

NL,K : IB → IA. This one is given by P &→ pfP.

Let M be an A-module of finite length, i.e., M has a composition series M = Mm ⊇Mm−1 ⊇
· · · ⊇ M1 ⊇ M0 = (0), where Mi/Mi−1

∼= A/pi. We define a character by χA(M) =
∏

i pi.
This is a sort of Euler characteristic. And it turns out that χ(κP) = N(P).

One last thing. If you have an element x ∈ B, then N(xB) = NL,K(x)A.

2Crucial assumption; see problem 14.
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Let A be a Dedekind domain, K its field of fractions, L a finite extension of K. Let B be
the integral closure of A in L. We make the assumption (∗) that B is a finite A-module.3

Lemma (∗) is satisfied when L is separable over K.

Proof trL,k : L×L→ K is nondegenerate. We need to show that tr(B) ⊆ A. So this tells
us that B ⊇ B∨ with respect to trace. So this says that it’s {y ∈ L : tr(xy) ∈ A∀x ∈ B}.
And this is a finite A-module. Nondegeneracy was crucial in saying that B∨ is a finite
A-module.!

Definition If p ⊆ A, and P ⊆ B lies over it,4 last time we defined eP and fP. B is
unramified at P if eP = 1 and κP/κp is separable.

Proposition
∑

eifi = [L : K].

Proof We have B an A-module of finite type. And there’s no torsion, so B is a free A-
module of rank n = [L : K]. Consider A/p and B/pB. The latter is still a free A/p = κp
module of rank n. Write pB =

∏
i P

ei , and ∩iPei
i = pB. There’s a map

B/pB →
∏

i

B/Pei
i .

The surjectivity follows immediately from the approximation theorem; an element on the
right is represented by some finite number of elements, and we know we can pick an element
from B to approximate arbitrarily well. So now we know that it’s an isomorphism, and we
win; for dimκp(B/Pei

i ) =
∑

0≤j≤ei−1 dimκpP
j/Pj+1 = eifi, since the thing you’re summing

up is a copy of κP.

Examples

1. Unramified extensions. Assume we have an extension of local rings, BP over Ap. This
gives an extension of residue fields, λP over κp, of degree n. Assume that Bp = BP

3Apparently life is hellish without this assumption.

4
P ⊆ B
| |
p ⊆ A

Jeff Achter 9 Ching-Li Chai



MA 620 17 September 1993

is local. Let x ∈ λP be a generator of λ/κ. Get x ∈ Bp, a lift of x. Let f(T ) be the
minimal polynomial of x over κ, of degree n. Let f(T ) be the minimal polynomial of
x over K. We want to show that f(T ) = f(T ). And one can see that f(T )|f(T ). On
the other hand, we know that deg f(T ) ≤ n. Together, this implies the equality we
were after.

By Nakayama’s lemma, BP = Ap[x]; since both sides are equal if reduced mod p, and
thus must be the same.

Conversely, assuming that f(T ) is an irreducible monic separable polynomial over κ,
let f(T ) ∈ Ap[T ] be a monic lifting of f(T ). Then let x be a root of f(T ). Consider the
ring A[x] ⊆ K(x) its field of fractions, a finite extension of K. Furthermore, we know
that [K(x) : K] = deg f = n. Let B be the integral closure of A in K(x). Clearly, we
have A[x] ⊆ B; let’s prove the other inclusion, and conclude that they’re equal. Well,
we certainly have

0→ A[x]→ B → (B/A[x])→ 0.

Tensor with A/p, and get

κ[x]→ (B ⊗ A/p)→ (B/A[x])⊗ (A/p)→ 0.

One can see that the first arrow is an isomorphism, so the last thing is zero. By
Nakayama’s lemma, B/A[x] = 0.

Thus, we’ve seen that unramified extensions come from residue field extensions. More-
over, the ring of integers is generated by a single element.

2. Totally ramified extension. As before, we have Bp over Ap, everthing is local. BP = Bp.
Assume that e = n; the ramification index is equal to the degree. Take a uniformizer
π ∈ BP. Look at f(T ), the minimal polynomial of π. Its degree is n, we hope. Consider
1, π, π2, · · · , πn−1. Look at the A-submodule generated by ’em. We can’t have any
nontrivial relation among them; look at A + Aπ + Aπ2 + · · ·Aπn−1 ⊆ B. All of them
have different valuations modn, so they can’t all cancel out. Claim that Ap[π] = Bp

(the maximal ideal is principal). Furthermore, f(T ) = T nan−1TN−1 + · · ·+ a1T + a0.
We know that f(π) = 0 = πn + an−1πn−1 + · · ·+ a1π + a0 with ai ∈ A. Now, look at
all the terms ai in the middle. All of their valuations are different modn. The ones on
the end have valuations ≡ 0 mod n. So in order to have some sort of linear relation,
πn and a0 must have the same valuation; vB(πn) = vB(a) = n. Therefore, vA(a0) = 1.
So a0 is a uniformizer in A. And all the other ai ∈ mA. We call f(T ) an Eisenstein
polynomial. In contrast to the unramified case, a totally ramified extension has to
come from an Eisenstein polynomial.
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Conversely, let f(T ) be an Eisenstein polynomial. By the usual Eisenstein criterion,
f is irreducible. Consider A[T ]/(f(T )). Claim that this is local. Well, any maximal
ideal must lie over a maximal ideal downstairs. So tensor, and get

A[T ]/(f(T ))⊗ (A/mA) = κ[T ]/(f(T ))

= κ[T ]/T n.

And in fact, we see that A[T ]/(f(T )) is a discrete valuation ring. And v(T
n
) = v(a0).
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As always, we have A a Dedekind domain, K = Frac(A), L/K a finite extension, and B the
integral closure of A in L. Assume (∗) B is a finite A-module. We further assume that L/K
is Galois, and let G = Gal(L,K). Fix p ⊆ A prime, and Pi lie over it. G takes B to itself,
fixing A. G permutes the Pi lying over p.

Proposition G operates transitively on {Pi}.

Proof Follows from approximation. Fix, say, P1. Assume there’s a P2 so that σ(P1) %= P2

for all σ ∈ G. We get [at least] two distinct orbits. Take x ∈ P1 so that x %∈ Pi if i %= 1.
Then N(x) ∈ A ∩P1 = p. But N(x) =

∏
σ∈G σ(x) %∈ P2, a contradiction.!

We’ll look at the decomposition group DP = {σ ∈ G|σ(P) = P}. Inside this, there’s the
inertia group IP = {σ ∈ DP : σ|P ≡ idP}. This is an automorphism of the residue field λP.
There’s an exact sequence,

1→ IP→ DP→ Gal(λP, κp).

We have no idea if λP/κp is separable. All we know is that it’s a finite extension. Now, for
every such finite extension, we know that there’s a subextension κp ⊆ λsP ⊆ λP, so that λsP
is separable, and λP/λsP is purely inseparable. The degree of the inseparable extension is p
to some power s, ps. Let fs = [λsP : κp]; so [λP : κp] = f = fsps.

λP/κp is a normal extension. For all x ∈ λP, let x be a lift of x to BP. Let

f(T ) =
∏

σ∈G/stabx

(T − σ(x)) ∈ A[T ].

Then f(T ) ∈ κ[T ] has x as a root.

Now, we want to claim that the sequence given above is surjective, i.e., we really have

1→ IP→ DP→ Gal(λP, κp)→ 1.

But the proof is pretty much the same. Take x to be a generator of λsP over κp.

Uh-oh. It’s diagram time.

Pi ⊆ B ⊆ L
| | |
p ⊆ A ⊆ K
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Suppose there are r ideals lying over p. Well, G acts transitively. So

efr = [L : K] = #(DP) · r
= #(IP) · r · fs

But #(IP) = eps. Now, we can also get a tower

K
r
⊆ LDP

fs
⊆ LIP

eps

⊆ L.

This finishes our elementary discussion of extensions. Next, we want to discuss

Completions The standard example is . Take all absolute values, up to equivalence.
There’s the usual one, ∞. Additionally, there are the p-adic valuations vp. What’s nice is
that this is all of them. If you complete at one of these absolute values, you get either
or p , depending. The main difference is that p has a natural lattice inside, p . So it’s a
discrete valuation ring.

We can play a similar game with any number field. The only difference is that you might
get instead of . If A is a discrete valuation ring, then you can complete it. You can do
this algebraically; let

Â = lim
←
n

A/mn.

The field of fractions is K̂. If you know a little commutative algebra, you realize that there’s
a little problem; elements in the completion may not be algebraic over K. Philosophically,
the right thing to do is use Henselizations of A. You more or less get the same thing. One
reason is that A ↪→ Â is faithfully flat; and the Artin approximation theorem is another
reason.

So what does flatness mean? Hold on, you’ll find out. If you have an exact sequence

0→M ′ →M → M ′′ → 0

of finitely generated A-modules, and you tensor over Â, then
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0→ M̂ ′ → M̂ → M̂ ′′ → 0

remains exact. You can prove this directly as an exercise. Just use the fundamental theorem
of abelian groups, generalized to principal ideal domains; you can put everything into a
standard position.

Recall the standard picture with A, B, Pi, etc. Before, we used localizations to explore
Ap ⊆ BPi

. There’s also a localization Bp. If we take completions, then B̂p is a finite Âp

module. And we get

B̂p =
∏

i

B̂Pi
.

That’s because

B/pn =
∏

i

BPi
/Pein

i .

Of course, this uses the usual factorization of pB. Thus,

L̂p =
∏

L̂Pi
.
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For today, A is a complete discrete valuation ring, and K is Frac(A).

For example, κ = A/m is finite. Then A is either q ((t)) or a finite extension of p . This
corresponds to the topological situation where K is a locally compact, totally disconnected
topological field.

Fact If K is a locally compact topological field, then either K ∼= or , or K is the
fraction field of a complete discrete valuation ring with finite residue field. In each case we
have a Haar measure on K. It’s unique up to >0 . Call it µ. Then we have a canonical
absolute value, namely,

µ(xE) = ‖x‖µ(E)

where E is any measurable set. Let q = #κ the number of elements in the residue field.
Then ‖x‖ = q−v(x). To verify this, just look at what happens when x is a uniformizer. Well,

µ(A) =
∑

ai∈A/m

µ(ai +m)

= qµ(m).

We now return to the general situation, K is the fraction field of a complete DVR, L a finite
extension of K. As always, B is the integral closure of A inside L. We’ll see that B is a
discrete valuation ring, and that it’s a finite A-module. This is real nice; it’s part of why we
work with complete DVR’s.5

So let’s prove this stuff. We start off with a tower

L
| pure insep
Ls

| sep
K

.

Case 1: L/K is separable; show B finite over A. We have
Pi ⊆ B
| |
m ⊆ A

. We want to show that

r = 1. Well, L is a finite dimensional vector space over K. Each Pi gives some absolute value
‖·‖i. For each i, ‖·‖i gives L a topology Ti; so L becomes a finite dimensional topological
vector space over K. We now invoke the following

5This is a consequence of the fact that a complete DVR is an excellent ring.
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Fact If K is complete, then every finite dimensional vector space over K has a unique
structure as a topological vector space over K.6

So now we know that all the topologies coincide. ⇒ all the prime ideals are the same. So
r = 1.

Case 2, L is purely inseparable over K. Then for all x, xpi ∈ K for i; 0. We can choose i0
so that xi0 ∈ K for all x ∈ L, since the extension is finite. There’s a map

L → K
‖·‖→ →

x &→ pi0 t &→ tp
−i0

So now we’ve got this absolute value extending the one on K; ‖x‖L =
∥∥∥xpi0

∥∥∥
p−i0

L
=
∥∥∥xpi0

∥∥∥
p−i0

K
.

So now we look at B/πB. This is a module over A/πA = κ. Couple of claims.

First, x1, · · · , xm ∈ B/πB linearly independent over κ, then if we take [arbitrary] lifts xi, the
lifts are linearly independent over K. ⇒ dimκB/πB ≤ [L : K].

How to do this? Assume
∑

aixi = 0. We may assume that that ai ∈ A, by clearing
denominators. We can also assume that ai aren’t all zero; divide out by uniformizer, if
necessary. Then induction gives you a contradiction.

Now take x1, · · · , xm a κ basis of B/πB. Claim that B = Ax1 + · · · + Axm. Well, choose
ai so that b − ∑

ai,0xi ∈ πB.7 Then, take 1
π of that and subtract

∑
ai,1xi ∈ πB. So

b−∑(ai,0+ ai,1π)xi ∈ π2B. Let a(0)i = ai,0+ ai,1π, etc. Then by completeness, the a(r)i go to
a limit; call these ai ∈ A. So b =

∑
aixi.!

With the usual picture upstairs and downstairs, we have

B ⊗ Âp =
∏

i

B̂Pi

and

L̂p = L⊗K K̂p =
∏

i

K̂Pi
.

Hensel’s Lemma Here’s the setup; f(T ) ∈ A[T ], f(T ) ∈ κ[T ], x ∈ κ, f(x) = 0. Suppose
f
′
(x) %= 0. Then there’s a unique x ∈ A so that x ≡ x mod π, and f(x) = 0.

6See Bourbaki, Topological Vector Spaces, chapter 1.
7This is a first approximation of B.
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Proof Successive approximation; Newton’s method; Taylor expansion.

Suppose we have two unramified extensions Li of K. Then Homalg
K (L1, L2)→ Homalg

κ (λ1,λ2);
and actually, this is a bijection.

In particular, if we take Gal(Kunr, K)→ Gal(κsep, κ), then this is an isomorphism. In a sense,
the unramified extensions of a local field are easy, as long as you understand the Galois group
of the residue field. For instance, if κ = q , then Gal(κsep, κ) ∼= ̂ = lim←

n
/n ∼=

∏
p p .
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Today, K is a local field, L1 and L2 unramified finite extensions.8 Then Homalg
K (L1, L2) →

Homalg
κ (λ1,λ2) is a bijection. This implies that Gal(Kunr, K) ∼= Gal(κsep, κ). And actually,

we need not assume L2 unramified.

Lemma There’s an x ∈ OL1 so that A[x] = OL1 .

Proof Take x ∈ λ1, so that λ1 = κ(x), and take any lift x ∈ OL1 of x. Why does this
work? Well, adjoin x, and use Nakayama’s lemma. For the maximal ideal of A[x] is certainly
given by π; it’s a local ring. Want to show both sides equal. By Nak, all you have to show
is that by tensoring with A/πA = κ, you get the same thing. But that’s the whole point of
a lift. Note that this doesn’t require that A be complete.

Proposition L/K both complete, B over A, assume that λ/κ is separable, L/K finite
separable. Then there’s an x ∈ B so that A[x] = B.

Proof Take Lunr the maximal unramified subextension; correspondingly, you have Aunr.
You have x ∈ λ so that κ(x) = λ. Let x1 be any lifting of x in B. Now let f(T ) be the
minimal polynomial of x over κ. Then take f(T ) ∈ A[T ] a lifting of f(T ). Let f = [Lunr : K].
We know that 1, x1, · · · , xf−1

1 is basis of the residue field over κ. Now multiply each of these
by suitable powers of the uniformizer π̃ = πB; then

{π̃axb
1}0≤a≤e−1,0≤b≤f−1

is a set of generators of B as an A-module.9

Try this again. You have

B ⊇ π̃B ⊇ π̃2B ⊇ · · · ⊇ π̃e−1B ⊇ π̃eB = πB ⊇ · · ·

The quotient at the end can be generated by π̃e−1, π̃e−1x1, · · · , π̃e−1xf−1
1 .

8They are separable by virtue of being unramified.
9Nakayama: B ⊗A (A/π)B/πAB. Let π̃ be the uniformizer in B. Anyways, πB = π̃eB. So there’s a

filtration

B/πB ⊇ B/π̃e−1B ⊇ · · ·

If you look at this, it corresponds to the quotient π̃e−1B/π̃eB. And the set given above gives you generators
for that quotient.
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At the beginning, we can use 1, x1, · · · , xf−1
1 to generate the first quotient B/π̃B. And all

this is Nakayama’s lemma.

⇒ Look at f(x1). If this is a uniformizer in B, we win. Otherwise, change x1 &→ x1 + π̃y. If
f(x1 + π̃y) is a uniformizer, then we’re okay. Otherwise, take Taylor expansion

f(x1 + π̃y) = f(x1) + π̃yf ′(x1) + π̃2(∗)

We’re assuming that f(x1) ≡ 0 mod π̃2. But f ′(x1) %= 0, since x1 is separable. So take
y ∈ B×, some unit.

We’re going back to the claim at the beginning of class. Take x ∈ OL1 so that A[x] = OL1.
Let f(T ) ∈ A[T ] be the minimal polynomial of x over K. Then we know that f is separable,
as well, and is the minimal polynomial of x, which generates λ1 over κ. Let’s think about
Homalg

K (L1, L2). Well, L1 = K[T ]/(f(T )). So Homalg
K (L1, L2) is just the set of roots of f(T )

in L2. Equivalently, this is the set of roots of f(T ) in λ2. Why is this last thing a bijection?
Hensel’s lemma!!

Newton polygons K a complete local field. We have f(T ) ∈ K[T ]. Write it as
∑n aiT i.

What can you say about the roots? Well, Newton’s polygon will tell you about the valuations
of the roots.

Consider the collections {(i, v(ai))}0 ≤ i ≤ n ⊆ 2 . Take the convex hull of these points. It
consists of a bunch of segments, with length mi so that

∑
mi = n. Anyway, there are mi

roots with valuation −si, where si is the slope of the ith segment.

Can remember this by looking at the polynomial T − a.

Proof Well, a hint of the proof, anyway. Let x1, · · · , xr1; · · · be the roots in order of
decreasing values. Then v(x1) = · · · = v(xr1) > v(xr1+1) = · · · = v(xr1+r2) > · · ·. We may
assume that an = 1, by dividing out by the uniformizer. Then f(T ) =

∏
i(T − xi). Then see

what you can say about the v(xi).
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Ramification We’ll be talking about the difference and discriminant. What we’re trying
to do is get a measure of how bad the ramification is.

For the time being, take A to be a Dedekind domain; K its field of fractions; L a finite
separable extension;10 B the integral closure of A in L.

Heuristic discussion follows. B/A is ramified means that this is not locally trivial. Local
triviality means they’re the same when you reduce mod the prime ideal. For B/πB is a ring
over the field κ = A/πA. We’ll try to interpret not being locally trivial. We know that

B/πB =
∏

i

B/Pei
i B.

This is the Wederburn factorization of this finite algebra extension. B/πB separable over κ
means that each B/Pei

i is a separable field extension of κ; i.e., B is unramified over A.

Now, the trace is a way of measuring [non]separability. Specifically, tr(B/πB),κ measures
whether B/πB is separable over κ. The trace is given by tr(b) where we view b as a linear
operator. Then tr(b) ∈ κ. From elementary field theory we know that if we have a field
extension of finite degree, then the trace gives a nondegenerate pairing ⇐⇒ the extension
is separable.11

Consider the [nondegenerate] pairing trL,K : L × L → K. This restricts to B × B → A.
The trace here induces the trace on residue fields. For this trace map to be nondegenerate,
well, it’s ⇐⇒ tr(B/πB),κ : (B/πB) × (B/πB) → κ is nondegenerate. ⇐⇒ B/A is
unramified. And actually, the determinant will have to be a unit. If {ei} is a basis at p, then
det(tr(eiej)) ∈ A×

p .

Let B∨ = {x ∈ L| trL,K(xy) ∈ A∀y ∈ B}. Clearly, B ⊆ B∨. And B/A unramified ⇐⇒
B∨ = B. B∨ is a fractional ideal in L.

Hopefully this is enough to motivate the following

Definition

1. (B∨)−1 def
= DB,A = DL,K , the difference.

2. The discriminant is discB,A = NL,K(DB,A) = χA(B/DB,A). 12

Reminder about the Euler characteristic. If you take M an A-module of finite length, then
take a composition series M = M0 ⊃M1 ⊃ · · · ⊃ Mm = (0) so that Mi/Mi+1

∼= A/Pi. Then
we define χA(M) =

∏
i Pi. If M is a B-module of finite length, then χA(M) = NB,A(χB(M)).

If there’s a short exact sequence 0→M ′ →M →M ′′ → 0, then χA(M) = χA(M ′) ·χA(M ′′).

10From now on, the extension of fraction fields will be separable.
11This is true for finite field extensions, and Pi/P

ei
i = rad(B/Pei

i ).
12Recall that N(P) = pfP. And χB(B/DB,A) = DB,A.
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Proposition B/A is unramified ⇐⇒ DL,K = B ⇐⇒ discB,A = A. χB(B/DB,A) =
DB,A = χB(D−1

B,A/B).

Well, that’s basically what we just did.

Proposition D and disc commute with localization and completion.

Proof Really, it’s enough to show that the trace commutes.13

So how do you compute this stuff?

Lemma Assume that A is a discrete valuation ring. Let (bi) be an A-basis for B. Look
at tr(bibj) ∈Mn×n(A). Observe that det(tr(bibj)) ∈ A. Well, we claim that det(tr(bibj))A =
discB,A.

It comes down to thinking about the length of B∨/B. But you can throw B into B∨ in
a standard way. Let x1, · · · , xn be an A-basis for B∨; (aixi) is an A-basis for B. Well,
det(tr(bibj)) = (

∏
ai)·unit. It’s given by

∑
vA(

∏
i ai).

Let’s try this again. Pick a basis, and look at B ⊆ B∨. Think about the bilinear pairing
B × B →. We can choose basis ui for one copy of B, and vi for the other one. Then
det(tr(uivj))A× ∈ A/A×. So we can choose a basis appropriately, and compute in this
fashion. Another way to compute is put B ⊆ B∨. B∨/B ∼= ⊕iA/aiA.

When all is said and done, discB,A = pv(
∏

ai).

13It’s because these two operations are flat.
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As always, we have A a discrete valuation ring, B a finite extension. Choose an A-basis
e1, · · · , en of B. Consider the matrix tr(eiej); and then take its determinant. This will be
the discriminant. If e′i is another basis, then det(tr(eiej)) ·A× = det(tr(eie′j)) ·A×. This ideal
is the discriminant ideal.

Recall that B∨ ⊃ B. Can choose an A-basis x1, · · · , xn so that there are ai with {xi} an
A-basis for B∨, and {aixi} is an A-basis for B.14 Then as A-modules, we have

B∨/B ∼= ⊕iA/aiA.

This gives us χA(B∨/B) = (
∏

i ai) · A. Let {x∗
j} be the dual of the {xj}15 and compute

det tr(aixi · x∗
j ) =

∏

i

ai.

Now assume A not necessarily local, with field of fractions K; L an extension of K. If B is
a free A-module, {e1, · · · , en} a basis, then discB,A = det(tr(eiej)).

Observation: If {ei} an A-basis for B, let σi : L → K be the n embeddings of L into the
algebraic closure of K. Then

(det(σi(ej)))
2 = det(tr(eiej)).

Let X be the matrix (σi(ej)). Then tX · X = (tr(eiej)); for the trace of eiej is the sum of
all its conjugates.

When K = , A = , then the assumption that B is a free A-module is always satisfied.
So for every L a number field, let e1, · · · , en be a -basis for OL = B. We can define the
absolute discriminant as

discL,Q = det(tr(eiej)).

This is well-defined, since the only units in are ±1, and (±1)2 = 1. This number is the
discriminant.

14Fundamental theorem for finitely generated modules over a principal ideal domain.
15with respect to the trace
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Lemma

1. discL, ≡ 0 or 1 mod 4. This is the information from the prime 2.

2. sgn(discL, ) = (−1)r2 where r2 is the number of complex embeddings. In other words,

r2 = #{σ : L→ |σ(L) %⊂ }.

Alternately, one could say it’s the σ so that σ %= ι ◦ σ, where ι is complex conjugation.
This is the information from the prime at ∞.

Proof

1. Write detX as P −N where P is the sum of terms with + signs, and N is the terms
with − signs. One can see that P + N,PN ∈ . So the discriminant is (P − N)2 =
(P +N)2 − 4PN .

2. How do we get a hold of the sign? Think of L as sitting inside . Hmmm. We know
that det(X)2 = discL,Q. Look at what complex conjugation does: ι(det(X)). Well,

ι(det(X)) = det(ι(X))

= (−1)r2 detX.

The last follows since ι will interchange r2 pairs of rows of X .

How do we compute a discriminant? A and B as before:

L
!

B

K

"

!

A

"
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Let L = K[x], x ∈ B, B ⊇ A[x]. Let f(T ) be the monic minimal polynomial of x in A[T ].
Write A[x] = C. We want to determine the dual of C, C∨, with respect to the trace. Well,
C ∼= A[T ]/(f(T )), and so

C = A⊕Ax⊕ · · ·⊕ Axn−1.

Out of our butt, we pull the following:

1

f(T )
=

n∑

i=1

1

f ′(xi)(T − xi)

where xi are the roots of f , that is, the conjugates of X .

Expand everything as a power series in 1
T .

1

f(T )
=

1

T n
+O(

1

T n+1
)

1

f ′(xi)(T − xi)
=

1

f ′(xi)

1

T (1− xi

T )
∑

i

1

f ′(xi)(T − xi)
=

∑

i

1

f ′(xi)

1

T (1− xi

T )

=
∑

i

∞∑

m=0

1

f ′(xi)

xm
i

Tm+1

=
∑

m

(
∑

i

xm
i

f ′(xi)
)

1

Tm+1

=
∞∑

m=0

tr(
xm

f ′(x)
)

1

Tm+1
.

The conclusion from all this is that

tr(
xm

f ′(x)
) =

{
0 m = 0, · · · , n− 2
1 m = n− 1

.

And so
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C∨ = {y ∈ L| trL,K(yz) ∈ A∀z ∈ C}

=
1

f ′(x)
· C.

To prove this last bit, we have to work with the matrix tr(xi xj

f ′(x))0≤i,j≤n−1. It looks like




0 · · · 1
... · · · 1 · · ·
1 ∗



. From this, we know that it’s determinant is ±1; it’s really (−1)
n(n+1)

2 .

Proposition

1. DB,A ⊆ f ′(x) · B.

2. If B = A[x], then DB,A = f ′(x)B.

3. The conductor cond(A[x] : B)
def
= {y ∈ L : yB ⊆ A[x]} is given by f ′(x) · D−1

B,A.

Proof Let z ∈ (C : B); that is, zB ⊆ C. This is the same as zf ′(x)−1B ⊆ C∨. ⇐⇒
tr(f ′(x)−1BC) ⊆ A; but BC = B. By definition, zf ′(x)−1 ∈ D−1

B,A. So z ∈ f ′(x)D−1
B,A.
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We’ve decided that problem sessions will be Mondays at 10:00.

We’re now trying to measure how much A[x] differs from the whole ring of integers. Or at
least, that’s what we were doing.

Tamely ramified extensions

Proposition A a [complete] discrete valuation ring, K its field of fractions, L/K a finite
separable extension, B the integral closure of A in L, p is the residue characteristic. Then
v(DB,A) ≥ e− 1, and the following are equivalent.

1. DB,A = Pe−1.

2. trB,A(B) = A.

3. p % |e, λ/κ separable.

Proof Well, tr(P) ⊆ p. ⇒ tr(p−1P) = trP1−e ⊆ A. For the trace is a linear map over A.
This proves the first statement.

On to the second part. Say that DB,A = Pe−1. Then the inverse different cannot possibly
be bigger than P1−e. If it is bigger, then tr(P−e) %⊆ A; tr(P−e) = p−1 tr(B). Therefore,
DB,A = Pe−1 ⇐⇒ tr(B) = A.

Look at the third [last] condition. Nakayama’s lemma tells us that this is equivalent to
tr(B/pB),κ(B/pB) = κ. Think about B/pB. There’s a filtration

B/pB = B/PeB ⊇ P/Pe ⊇ P2/Pe ⊇ · · · ⊇ Pe−1/Pe.

This is a filtration by B-submodules. Take any b ∈ B/pB. Think about its trace. This
means, take the characteristic polynomial of multiplication by b, and look at the coefficient
of the term whose degree is one less than the top. This tells us that, given such a filtration,

trB/pB(b) =
e∑

i=0

trPi/Pi+1(b)

where we have b &→ b ∈ λ. But these successive quotients are all isomorphic as B-modules;
all the traces are the same. So

trB/pB(b) = e · trλ,κ(b).

The trace is surjective ⇐⇒ p % |e; for otherwise the trace would be zero;and trλ,κ : λ→ κ is
surjective. That last thing is just a fancy way of saying that λ is separable.
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Remark Assume λ/κ is a separable extension.16 Then we know that B = A[x] ∼=
A[T ]/(f(T )), where f(T ) is the minimal polynomial of x over K. ⇒

Ω1
B,A

∼=
B · dT

f ′(T )BdT
∼= B/(f ′(T )).

∼=
B

DB,A

∼=
D−1

B,A

B
.

Now the question is, what happens if λ/κ is inseparable? Unfortunately, we don’t have an
elementary proof at hand...

Well, the answer is

χB(Ω
1
B,A) = χB(D−1

B,A/B).

Try to figure this out?

Moving on to higher ramification groups. We’ve got A a complete DVR, K = Frac(A), L a
finite Galois extension with group G. And as usual, B ⊆ L, etc. Define subgroups Gi ⊆ G
by

Gi = {σ ∈ G : σ|(B/Pi+1) = id}.

Here, @ i ≥ −1; G−1 = G. And

L (1)

Kunr

e

G0

K

f

G
16The standard number theory setup.

Jeff Achter 27 Ching-Li Chai



MA 620 1 October 1993

So #G0 = e. It should be clear that these areally are subgroups. If B = A[x], then we know
that σ ∈ Gi ⇐⇒ σ(x) ≡ x mod Pi+1.

Now define iG(σ) ∈ by iG(σ) ≥ i+1 ⇐⇒ σ ∈ Gi. In other words, σ operates trivially on
B/Pi, but not on B/Pi−1.

So we see that iG(σ) = vL(σ(x)− x). So iG(σ) = miny∈B vL(σ(y)− y).

There’s another thing in the literature called jG(σ). We set jG(σ) = iG(σ)−1. This is useful
because jG(σ) ≥ i ⇐⇒ σ ∈ Gi.

L (1)

K1 G1

Kunr G0

K

f

G

Clearly, G0 is the inertia group IL,K . We’ve got a filtration

G ⊇ G0 ⊇ G1 ⊇ · · ·

We’ll se that G0 and G1 give the tame ramification. For now, simply note that if we take a
uniformizer π, and σ ∈ G0, then σ(π) is, well, all we know is that it’s a uniformizer. Try to
get a handle on σ(π)

π . It’s a unit. So consider

σ &→ σ(π)

π
mod P ∈ λ =

B

P
.

Check that this is a well-defined map G0 → B/P, that is, it’s independent of the choice of
π. The kernel of this map, θ0, is G1.
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For today, A a complete DVR, K = Frac(A), L a finite Galois extension, G = Gal(L,K),
B ⊂ L the integers. We defined a filtration

G = G−1 ⊇ G0 ⊇ · · · ⊇ GN = {1}

where

Gi = {σ ∈ G : σ|B/Pi+1 = id}.

We had a numerical measure iG(σ) = jG(σ) + 1, given by σ ∈ Gi ⇐⇒ jG(σ) ≥ i.

At the end of last time we were thinking about G0 the inertia group. And there’s a map
G0/G1 → λ. How? Well, we choose a uniformizer π, and send σ &→ σ(π)

π mod π. If u ∈ B×,

we should show that using uπ is the same. Well, we get σ(u)σ(π)
uπ . But σ(u) ≡ u mod π.

So the thing is well-defined. Moreover, σ(π)
π ≡ 1 mod π, ⇐⇒ σ(π) ≡ π mod π2. ⇒

σ(uπ) ≡ uπ mod π2 for all u ∈ B. [That’s because σ(u) ≡ u mod π.] This shows that
G0/G1 ↪→ λ×. We can thus conclude that G0/G1 is cyclic, and of order prime to p.17 So
G0 over G1 is the tame part of the extension. And shortly, we’ll see that this really is the
maximal tame extension.

We have the following picture:

G−1

unram
⊇ G0

tame
⊇ G2 ⊇ · · · ⊃ GN = {1}.

Claim that the last part, G1/GN , is a p-group. Consider Gi/Gi+1 →?. Well, choose a
uniformizer π. For σ ∈ Gi, send it to σ(π)

π . We know that σ(π) ≡ π mod πi+1. So σ(π)
π ≡

1 mod πi. So the map is σ &→ σ(π)
π ∈ (1 + πiB)/(1 + πi+1B). Gotta check that we could

use uπ instead of π. But σ(uπ)
uπ = σ(u)

u
σ(π)
π . But u ∈ B×, and σ(u) ≡ u mod πi+1. So

σ(u)
u ≡ 1 mod 1 + πi+1B.

Again, if σ(π)
π ≡ 1 mod πi+1, then σ(uπ)

uπ ≡ 1 mod πi+1 for all u ∈ B, that is, σ(uπ) ≡
uπ mod πi+2; and thus σ ∈ Gi+1.

Let’s look at the target of the embedding. We’re looking at the (1 + πiB) as multiplicative
groups. And

(1 + πiB)×

(1 + πi+1B)×
∼=→ Pi

Pi+1
.

17Since the Frobenius map is injective over in λ×.
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The backwards map is x &→ 1 + x. The map

θi :
Gi

Gi+1
↪→ (1 + πiB)×

(1 + πi+1B)×

is Galois invariant. On the left, it’s conjugation; on the right, it’s the natural action. So this
map is a G-map.

Now, Pi/Pi+1 has the additional structure of a 1-dimensional vector space over λ. So we
get a Galois representation; it’s a λ-vector space and an action of κ[G]. So pi/Pi+1 ∼= λ⊗i.18

Anyways, we have a natural embedding Gi/Gi+1 ↪→ Pi/Pi+1.

From this we can deduce several things. Among others, we note that Gi/Gi+1 is a p-group;
and it’s actually an abelian p-group, ∼= ( /p)⊕m . [If the characteristic is p = 0, then Gi = {1}
for all i; the extension is automatically tame.]

Lemma For every i, j ≥ 1, s ∈ Gi, t ∈ Gj , look a the commutator; sts−1t−1 ∈ Gi+j . For

the filtration, we’ll se that grFil(G•) = ⊕i≥0Gi/Gi+1
θ
↪→ ⊕i≥0P

i/Pi+1. This gives a “Lie
bracket” on ⊕i≥1Gi/Gi+1. Anyways,

θ(sts−1t−1) = (j − i)θi(s)θj(t).

Proof Pray that it’s a straight computation.

s(π) = π(1 + a) a ∈ Pi

t(π) = π(1 + b)b ∈ Pj

sts−1t−1(tsπ) = st(π)

= s(π)(1 + s(b))

= π(1 + a)(1 + s(b))

tsπ = t(π)(1 + t(a))

= π(1 = b)(1 + t(a))

θ(sts−1t−1) ≡ 1 + a)(1 + s(b))

(1 + b)(1 + t(a))

a = πiu

b = πjv
18Somehow. Twisted tensor product?
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s(b) = s(π)js(v)

= πj(1 + a)js(v)

= πj(1 + ja) (mod πi+j+1)

t(a) = πi(1 + πb) (mod πi+j+1).

Then multiply and hope it all works out.!

Proposition i, j ≥ 1, Gi Gi+1, Gj Gj+1. Then i ≡ j mod p.

Proof Let Gi0 Gi0+1 = {1}, the last break. Want to show that i, j ≡ i0 mod p. Let’s
work with i; clearly, it doesn’t matter which we pick. Look at the result from the lemma,
and jump up and down.!

Proposition If i, j ≥ 1, (s, t) = sts−1t−1 ∈ Gi+j+1; so the usual Lie bracket structure on
the associated graded structure is actually zero.

Proof Look at the same formula in the lemma. If θi(s) or θj(t) is zero, we’re done. So
assume that they’re nonzero; then i an j are both breaks; i and j are ≡ 0 mod p. So their
image is (j − i) · blah, and j − i ≡ 0 mod p; so the answer is zero, and the result actually
lives in Gi+j+1.

So if the first break is at Ga, the next one can’t be until Ga+p+1.
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We’re still thinking about higher ramification groups. The assumptions are the usual. Specif-
ically, A a complete DVR, K = Frac(A), L a finite Galois extension, B the integral closure
of A in L. We’ve got the filtration

G = G−1 ⊇ G0 ⊇ G1 ⊇ · · · ⊇ GN = {1}.

We think of these indices i as being in Γ, the value group of L. Recall that the value group
is Γ = ΓL = K×/A× ∼= ; the isomorphism is given by the valuation. We have

ΓL ⊆ ΓL ⊗ .

We’re going to define another sort of filtration, the upper-numbering filtration. It looks like
this:

G−1 ⊇ G0 ⊇ · · · ⊇ Gu

where the u are, in general, rational numbers [not necessarily integral]. We think of them as
u ∈ ΓK ⊗ ⊆ ΓK ⊗ . Define a function

φL,K : →

u &→
∫ u

0

dt

[G0 : Gt]
.

This is basically extending the lower-numbering filtration. {Gt}t∈ is a decreasing filtration,
continuous on the left; Gt− = Gt. Here, if i− 1 < t ≤ i, we let Gt = Gi.

This is a step function whose values are groups. So φL,K is a piecewise linear function,
strictly increasing. But we think of φL,K as really being

φL,K : ΓL ⊗ → ΓK ⊗ .

Let ψL,K = φ−1
L,K . Then set

Gw def
= GψL,K(w)

so that Gφ(u) = Gu. There’s a formula for ψ, namely,
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ψL,K(w) =
∫ w

0
[G0 : Gs]ds

by the implicit function theorem; for if w = φ(u), then

ψ′
L,K(w) = φ′(u)−1

= φ′
L,K(ψ(w)).

From now on, we assume that λ/κ is separable.19

Proposition Let L ⊃ M ⊃ K be a tower of Galois extensions corresponding to 1 ⊂ H ⊂
G;

L B 1
| |
M C H
| |
K A G

H is normal in G. For all σ ∈ Gal(L,M),

iG,H(σ) =
1

e(L,M)

∑

s 1→σ

iG(s)

=
1

e(L,M)

∑

G03s 1→σ

iG(s)

=
1

e(L,M)

∑

G3s 1→σ

jG(s)

[since #H0 = #(G0 ∩H) = #e(L,M).]

19Nobody knows exactly what happens if this isn’t true; but it certainly ain’t pretty!
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Proof We’ll use the proof of Tate. Take x and y with A[x] = B, A[y] = C. We know that
iG,H(σ) = vM(σy − y). So the assertion is equivalent to

σy − y ≡
∏

s 1→σ

(sx− x) mod ×B×.

Let f(T ) ∈ C[T ] be the minimal polynomial of x over M . So f(T ) =
∏
τ∈H(T − τ(x)). If we

hit f with any s0 &→ σ, then f s0(T ) =
∏

s 1→σ(T − s(x)).

f(T ) =
∏

τ∈H
(T − τ(x))

fσ(T ) =
∏

s 1→σ

(T − s(x))

fσ − fx = (fσ(T )− f(T ))(x)

The coefficients of the thing on the right are all divisible by σ(y)− y; for the coefficients are
all polynomials in y. From this, we conclude that the right-hand side divides the left-hand
side. Thus, σ(y)− y divides

∏
s 1→σ(s(x)− x).

So there’s a g(T ) ∈ A[T ] so that g(x) = y; as y generates B over A. Then g(T )− y ∈ C[T ],
and thus f(T )|g(T )− y. And so fσ(T )|gσ(T )− σ(y). But gσ(T ) = g(T ). So

fσ(x) | g(x)− σ(y)
= y − σ(y).

!

Lemma

φL,K(u) = (
1

[G0 : 1]

∑

s∈G
inf(iG(s), u+ 1))− 1

=
1

[G0 : 1]

∑

s∈G0

inf(iG(s), u+ 1))− 1

=
1

[G0 : 1]

∑

s∈G0

inf(jG(s), u).
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Proof Think about their derivatives. They have the same derivative, and the same value
at zero. [Details left as exercise.]20

Proposition For all σ ∈ G/H , let ĩ(σ) = sup{iG(s)}s 1→σ, j̃(σ) = ĩ(σ)− 1. Then

jG/H(σ) = φL,K(j̃(σ)).

Proof

jG/H(σ) =
1

#H0

∑

H03s 1→σ

jG(s)

ĩ(σ) = iG(s0) for some s0 &→ σ

jG/H(σ) =
1

#H0

∑

t∈H0

jG(s0t)

=
1

#H0

∑

t∈H0

inf(jG(t), jG(s0))

= φL,M(jG(s0))

= j̃(σ).

20Recall that iG(s) =
∑

i≥0 δGi
(s). iG(s) = i ⇐⇒ s ∈ G0, · · · , Gi−1 but s %∈ Gi.
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Recall that L/K a finite Galois extension with separable residue fields, G = Gal(L,K),
B ⊆ L and A ⊆ K. We’ve got the filtration

G = G−1 = G0 ⊇ G1 ⊇ · · · ⊇ GN = {1}.

The function φ converts the lower numbering filtration into the upper numbering filtration.
We think of φL,K : ΓL ⊗ → ΓK ⊗ . The definition is

φL,K(u) =
∫ u

0

dt

[G0 : Gt]
.

And σ ∈ Gt ⇐⇒ jG(σ) ≥ t. By computing derivatives, we verified that

φL,K(u) =
1

#G0

∫ u

0

∑

s∈Gt

∑

s∈G
δGt(s)dt

=
1

#G0

∑

s∈G

∫ u

0
δGt(s)dt.

Now, if jG(s) = i, then s ∈ Gi but s %∈ Gi+1. Then 0 ≤ t ≤ i ⇒ δGt(s) = 1; and if i < t,
then it’s zero. So keep working; get

∫ u

0
δGt(s)dt =

{
u i ≥ u
i i ≤ u

.

So,

φL,K(u) =
1

#G0

∑

s∈G
inf(u, jG(s)).

We can compute the value of the different. Suppose B = A[x], F (T ) the irreducible polyno-
mial of x with respect to K. So

v(DL,K) = vL(
∏

1%=s∈G
(x− s(x)))

=
∑

1%=s∈G
iG(s)

=
∑

1%=s∈G

∑

i≥0

δGi
(s)

=
∑

i≥0

(#Gi − 1).
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Last time, we proved that in the situation of last time – L ⊃ M ⊃ K with tower of groups
1 ⊂ H ⊂ G with H normal. H = Gal(L,M), G/H = Gal(M,K). We found out that

jG,H = φL,M(j̃G(σ))

j̃G(σ) = sup
s 1→σ

jG(s).

Of course, we already know that how to relate jG,H to the ramification index:

jG,H(σ)e(L,M) =
∑

G03s 1→σ

jG(s).

Let’s lean on this.

GuH/H = (G/H)φL,M (u).

How do you remember this? Think about it like this. We’ve said before that the lower index
filtration is indexed by the valuation upstairs. So think of the u in Gu as something in the
value group of L. But here, when we index (G/H)’s filtration, we’re using the value group
of M . And if you believe the structure, then the way to convert from one to the other is via
φ; and in this case, obviously the right one to use is φL,M . That’s how you convert value
groups.

So let’s see what this means. Suppose σ ∈ GuH/H . Then ∃s &→ σ so that jG(s) ≥ u. If
σ ∈ (G/H)φL,M(u), then jG,H(σ) ≥ φL,M(u). Now use the j̃G(σ) thing to see that these two
conditions are equivalent.

Proposition φM,K ◦ φL,M = φL,K . Inversely, ψL,M ◦ ψM,K = ψL,K .

Proof Gotta check that φ′
M,K(φL,M(u))φ′

L,M(u)
?
= φ′

L,K(u). But

φ′
L,K(u) =

1

[G0 : Gu]

φ′
M,K(φL,M(u))φ′

L,M(u) =
1

[(G/H)0 : (G/H)φL,M (u)]

1

[H0 : Hu]

[H0 : Hu][(G/H)0 : (G/H)φL,M(u)] = [H0 : Hu][G0H/H : GuH/H ]

= [H0 : Hu][G0/H0 : Gu/Hu].

!
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Proposition GwH/H = (G/H)w.

Conclusion: We don’t have to think only about finite Galois extensions. Look at Ksep;
assume κ perfect. We’ve got a decreasing filtration of G = Gal(Ksep, K); call it (Gw). Of
course

G = lim
←

Lfinite galois extension

Gal(L,K).

In general, we don’t understand much about this [huge!] Galois group. But we’ve calibrated
it by (Gw), some decreasing sequence of subgroups. Their intersection is zero, and so it’s a
genuine calibration. We think of w as being in ΓK ⊗ .

In general, the w’s are positive rational numbers; not necessarily integral. We can make an
integrality statement that, when you measure the ramification of certain finite dimensional
representations, then because of the multiplicity you actually get integers.[?]

Fact [Hasse-Arf] If L/K abelian, then if Gw Gw+ε, then w ∈ . So the breaks only
occur at integers.

Combine this with Brauer’s theorem that any finite-dimensional representation is induced
from an abelian extension[?].

When we do class field theory we’ll come back to these ramification groups. Once you have
local class field theory, there’s another way to calibrate this group.

We’ll now begin to do the global part of algebraic number theory. We’re gonna do it adelically.

Let K be either an algebraic number field or a function field of a [smooth] geometrically
connected algebraic curve over q . The second case means that K is a finite separable
extension of p [T ].21 Either way, K is called a global field.

You’ve got K, and a number of places v. If K ⊇ , then we think about all possible discrete
valuations v. Suppose we have a set of nonequivalent discrete valuations or archimedean
places ‖·‖∞. This gives you a collection of local fields Kv. We have a normalized absolute
value on each local field Kv, ‖·‖v. We normalize so that for any x ∈ K×,

∏

v

‖x‖v = 1.

If π is a uniformizer at v, then ‖πv‖v = # v for v non-archimedean.

The adèles are K =
∏′

v Kv = {(xv) : xv ∈ Kv and xv ∈ Ov for almost all v}.
21“The dumbest polynomial ring with positive characteristic.”

Jeff Achter 38 Ching-Li Chai



MA 620 11 October 1993

Adeles and Ideles K is a global field. The adeles are a restricted product

K =
′∏

v

(Kv, Ov).

An element looks like (xv) ∈
∏

v Kv so that xv ∈ Ov for almost all v.

The ideles are the invertible elements ×
K ⊆ K . One can also write m( K ).

We put a topology on it; but the product topology actually turns out to be too fine. Define
it by writing down a fundamental system of neighborhoods of 0 in K . For some finite set
S containing all the infinite places (S ⊇ S∞), take

(
∏

v %∈S
Ov)×

∏

v∈S
Wv

where Wv is an open neighborhood of 0 in Kv. We might also insist that Wv is compact.

This makes K a locally compact topological ring. One verifies that this structure is com-
patible with multiplication and addition. Open sets are pretty big.

If you think about it, we have ×
K → K × K x &→ (x, x−1) a closed embedding. We can

then give the ideles the induced topology. Explicitly, a fundamental system of neighborhoods
of 1 in ×

K is

(
∏

v %∈S
O×

v )× (
∏

v

W ′
v)

where W ′
v is an open neighborhood of 1 in K×

v . Do not use the topology given by ×
K ↪→ K .

Now, K is embedded in K diagonally. So K ↪→ K ⇀ K/K; and similarly K× ↪→ ×
K ⇀

×
K/K×. This last thing is called the idele class group for K. Oh, yeah. For an idele x, we

set ‖x‖ = ∏
v ‖xv‖v.

Theorem K ↪→ K is discrete and cocompact, that is, the quotient is compact.

Theorem K× ↪→ ×
K,1 ⊆ ×

K , where ×
K,1 is the elements of norm 1. There’s no way this

can be cocompact in the whole thing, but K× ↪→ ×
K,1 is discrete and cocompact.

This will imply, for instance, finiteness of class number and the Dirichlet unit theorem. This
is the adelic remix of those classical finiteness theorems.

We can define the volume of a fundamental domain, following Minkowski.
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Haar measures And Fourier inversion, Poisson summation, etc. Really, this’ll just be
some elementary harmonic analysis.

Recall that if G is a locally compact [Hausdorff] group, then you get Haar measures. There
are two of them, µl

G and µr
G, the left and right invariant Haar measures. Each up them is

unique up to ×
>0 .

22

Then there’s Weil’s formula for manifolds. If you have a fibration F ⊂ X over B, you can
integrate over the fibers and then over the base in order to integrate over X . So the formula
looks like this. If H G is a closed, normal subgroup, then 23

∫

G/H
dµG/H(x)

∫

H
f(xξ)dµH(ξ) =

∫

G
f(x)dµG(x).

So we can just write

dµG = dµG/HdµH .

Check out Weil’s Integration on locally compact groups. And there’s a Bourbaki course on
it, too.

On to normalization of measures.

1. If G is compact, set µG(G) = 1.

2. If G is discrete, set µG({P}) = 1.

Suppose we have

G = H0 ⊇ H1 ⊇ · · · ⊇ HN = {1}

where each Hi/Hi+1 is either compact or discrete. [Assume everthing is abelian.] Then we
normalize dµG by this sequence.

Unfortunately, normalizing with respect to different filtrations can give you different mea-
sures.

22Actually, we’ll probably be dealing just with abelian groups for some time to come.
23Assume everything in sight is nice and integrable, measurable, whatever.
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Lemma G ⊇ H ⊇ {1}, G ⊇ H ′ ⊇ {1} corresponding to µ and µ′. Then

1. If H , H ′ compact, G/H , G/H ′ discrete, then µ′
G = [H : H ′]µG. [Since HH ′ ⊃ H and

H ⊃ H ∩H ′ are discrete and compact, the index is finite. We set [H : H ′] = [H:H∩H′]
H′:H∩H′] .

2. H , H ′ discrete and G/H , G/H ′ compact, then µ′
G = [H : H ′]−1µG.

3. H , G/H ′ compact; then the others are discrete, and µ′
G = [H∩H′:1]

[G:HH′]−1µG.

For instance, to prove the first we’d write

µ′
G(H) = [H : H ∩H ′] · µ′

G(H ∩H ′)

µ′
G(H ∩H ′) = [H ′ : H ∩H ′]−1µ′

G(H
′)

µ′
G(H) = [H : H ′].

The others are left as exercises, but they’re pretty much the same.

Fourier inversion [For locally compact abelian groups.] We’ve got a group G and a dual
group Ĝ of continuous homomorphisms G→ ×

1 . Suppose there’s a map e〈x,x̂〉 : G×Ĝ→ ×
1 .

So if f ∈ L1(G), then we can take its Fourier transform

f̂(x) =
∫

f(x)e−2πi〈x,x̂〉dµG(x).

We can invert the Fourier transform via

f(x) =
∫

Ĝ
f̂(x̂)e2πi〈x,x̂〉dµĜ(x̂).
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We’re working with the Poisson summation formula. Let G be locally compact (Hausdorff)
abelian group, and H ⊆ G a closed subgroup. Define the dual as the set of [unitary]

characters Ĝ = Homcont(G, ×
1 ); then there’s an isomorphism G

∼=→ ̂̂
G. Pontryagin duality

gives G× Ĝ→ ×
1 . The inclusion H ↪→ G induces a map of characters Ĝ → Ĥ .24 What is

ker Ĝ→ Ĥ? It’s just H⊥. And the duality statement says that

Ĝ/H⊥ ∼=→ Ĥ.

Here, H⊥ is the unitary characters trivial on H . And we can induce to the quotient;

H⊥ ∼=→ Ĝ/H.

G compact ⇐⇒ Ĝ discrete. How do you see that? For instance, if G is discrete, what’s
the topology of Ĝ? Need to know the natural topology on the homomorphisms. It’s the
compact-open; an open subset of one consists of all those unitary characters mapping a
fixed neighborhood into a fixed open neighborhood of ×

1 . More precisely, if U ⊆ G, a
neighborhood of 1 would be {χ : |χ(U)− 1| < ε}.
By duality, G discrete ⇐⇒ Ĝ is compact. Of course, Ĝ ↪→ ∏

g∈G{z : |z| = 1}; and by
Tychonoff’s theorem, it’s compact.

This isn’t a completely self-contained exposition; the curious student is invited to look at
Weil, Integration on locally compact abelian groups.

Hmm. Correction of statement made last time. ×
K ↪→ K × K is closed. If you look at the

first projection onto K , you get an immersion ×
K ↪→ K which is neither closed nor open.

But the induced topology on ×
K is still the right one. When you want to look at topological

properties of the ideles, it’s still better to use this closed immersion; don’t bother projecting
back down.

We define a Fourier transform

f̂(x̂) =
∫

G
f(x)〈x, x̂〉dx.

A function on G becomes a function on Ĝ. Classically, you have a duality × → ×
1 ,

(x, y) &→ e−2πixy.

Duality tells us that n̂ = n , n̂ = ( / )n .

24There’s a little bit of confusion in notation. We’ll say our characters are unitary; continuous maps
G→ ×

1 . We’ll reserve the term quasicharacters for G→ × .
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Let’s ponder the classical Poisson summation formula. It says that if f ∈ S( ), a Schwarz25

function on , then

∑

a∈
f(a) =

∑

a∈
f̂(a).

How do we generalize this? We’ve got a subgroup of . The copy of on the left is just
coincidentally the same thing; think of it as a subgroup of ̂ . So the Poisson summation
formula, properly generalized, is

∫

H
f(ξ)dµH(ξ) =

∫

H⊥
f̂(η̂)dµH⊥(η̂).

This makes sense if f ∈ L1(G) ∩ C(G) a continuous integrable function; and we want
f̂ ∈ L1(Ĝ) ∩ C(Ĝ). We also want f |H ∈ L1(H), and f̂ |H⊥ ∈ L1(H⊥).

In proving classical case, you lean on
∑

a∈ f(x + a). So here, the right thing to do is
F (x) =

∫
H f(xξ)dµH(ξ), F ∈ L1(G/H)∩C(G?H). We apply harmonic analysis, or whatever.

So then [remember η̂ ∈ H⊥]

F̂ (η̂) =
∫

G/H
F (x)〈x, η̂〉dµG/H(x)

=
∫

G/H
dµG/H(x)

∫

H
f(xξ)〈x, η̂〉dµH(ξ) Fubini!

=
∫

G
f(x)〈x, η̂〉dµG(x).

= f̂(η̂).

Normalize so that dµG = dµG/HdµH .

Fourier inverison for G/H works like this. Want dµH⊥
dual↔ dµG/H . In the situation above,

we know that

̂̂
F (x) = F (x−1).

Actually, just need
̂̂
F (1) = F (1), and that’s the Poisson summation formula.

25Nice!
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Normalize; dµĜ = dµĜ/H⊥dµH⊥. But Ĝ/H⊥ = Ĥ; and so pick dµĜ/H⊥
dual

dµH.

With this normalization we can run the Poisson summation formula backwards; and get

∫

H⊥
f̂(η̂)dµH⊥(η̂) =

∫

H

̂̂
f(ξ)dµH(ξ)

∫

G
f(x)dµG(x).

Conclusion: if dµH⊥ is dual to dµG/H , and dµH is dual to dµĜ/H⊥, then dµG/HdµH is dual
to dµ

Ĝ/H⊥dµH⊥; and these are dµG and dµ
Ĝ
, respectively.

We’ll apply this sort of thing to the following situation. There’s a diagonal embedding
K ↪→ K . Let these be H and G, respectively, and apply Poisson summation. Then it’ll
turn out that the dual of K is [canonically] K, and you get a Poisson summation formula.
You get some function on the adelic space, take its Fourier transform, and if you sum over
K values of f , that’s the same as

∑
a∈K f̂(a). That’s a crucial part of Tate’s thesis.
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Incidentally, our goal in all of this is to understand Tate’s method for ζ and L-functions,
and functional equations. The idea is to analyze everything locally. He defines local zeta
functions, and local functional equation. That’ll be pretty elementary analysis. No surprises.
But we do it in such a way as to extract local L-factors and local ε-factors. [Some people
would call the ε-factor the local root number.] And then the global functional equation
follows. Possibly nobody completely understands the global equation; it’s magic. In some
sense, the key is the Poisson summation formula. This is sort of like the Riemann-Roch
theorem for number fields.

What is automorphicity? It means that it comes from, well, anything automorphic will be
fine. This comes from some motive, in this case abelian motive, and that’s why it satisfies
it. But we don’t really understand why the functional equation holds.

Enough philosophy. Let’s do some math.

Normalization of measures This should be in quotes, I guess, since technically it’s
not absolutely necessary. But it’s sort of nice to have around. We have K a local field.
Assume it’s a finite extension of p . There are two possibilities; it’s archimedean or it ain’t,
depending on whether p is finite or ∞. . We’ll define a pairing Λ : K ×K → ×

1 so that K
is identified with its Pontryagin dual. It’s given by

± exp(±2π
√
−1 trK, p )

{
+ p finite
− p =∞ .

If K is archimedean, then it’s or , and we’re not doing anything. Then Λ(x) = −x if
K ∼= , and Λ(z) = −(z + z) if K = .

K ×K ! /

Λ
!

×
1

#

exp(2π
√
−1·)

If K is nonarchimedean, then we have trK, p (x) ∈ p ; and we can write it as x1 + x2 with
x1 ∈ [ 1p ], and x2 ∈ p . This is a sort of partial fraction decomposition; the fractional part
and the integral part. This is nonunique; both are determined up to rational integers. So
anyways, the trace is exp(2π

√
−1x1); the indeterminacy is in .

Oops. We’ve been writing Λ as a function of just one thing. Well, the pairing is K ×K →
K → ×

1 via (a, b) &→ ab &→ Λ(ab).
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Why do we bother with this + and − nonsense? Well, you want to use the local formula to
define a global formula; and this is the only way it will work. For this gives you a pairing

K × K → ×
1 . If x = (xp), then we set Λ(x) =

∏
p Λ(xp).26 So why the ± stuff? Well, for

all x ∈ K, Λ(x) = 1.

Λ(x) =
∏

p finite

exp(2π
√
−1 trK, (x))[K: ] ·

∏

p=∞
exp(−2π

√
−1 trK, (x))[K: ]

= 1.

Well, trK, (x)p is a rational number. Write r =
∑

rp + n for some integer n and rp ∈ [1p ].

When all’s said and done, you get exp(2π
√
−1r).

Uh-oh. Notes are going to be a bit garbled for today; sorry.

We’re using

∑

v|p
trKv, p (x) = trK, (x).

So then we can compute

ΛK(x) =
∏

v

ΛK(xv).

So Λ(x) = 1, since ΛK(x) = Λ (trK, (x)).

Moving right along...

K × K → ×
1

(x, y) &→ Λ(xy).

Now, if x is a global element, and y is another one, then (x, y) &→ 1. So we know that
K⊥ ⊇ K. We’ll see that equality holds.

Now consider K/ p , p finite. We’ve got O ⊆ K. O is compact, and K/O is discrete. We
know a way to put a Haar measure on it; µ′

K , with µ′
K(O) = 1. We know that

26Can do this, since Λ(xp) = 1 except for finitely many of them.
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O⊥ = {x ∈ K : Λ(xy) = 1∀y ∈ O}
= {x ∈ K : trK, p (xy) ∈ p∀y ∈ OK}
= D−1

K, p
.

What is the dual measure of µ′
K? It has the property that µdual

K (D−1
K, p

) = 1. Well, we know
that

µ′
K(D−1

K, p
) = DK, p

In a finite residue field situation, we say that (P) = #(O/P). Anyways, we’re not yet self
dual; gotta normalize. Set

µK = ( DK, p )
− 1

2 · µ′
K .

And this is indeed self-dual with respect to Λ. And very often people prefer to use this
measure. We know that the naive measure is self-dual ⇐⇒ K is unramified over p .

Theorem K/K is compact.

Proof K = ⊗ K. That’s since K⊗ p =
∏

v|p Kv; simply pick a -basis x1, · · · , xn

for K. This condition holds locally; want to see if it holds globally.

Now, OK ⊗ p =
∏

v|p OKv for p finite. Pick a basis x1, · · · , xn of K. Then for x = (xp) ∈
, we see that x⊗xi ∈ K . But this should be clear from our discussion; for all but finitely

many v’s, all these global elements are in OKv .

Similarly for the other inclusion. We now know that K = ⊗K.

So now we look at K/K. Well, K = ⊗K.27 So

K /K ∼= ( / )[K: ]

since ⊗ is right exact. As commutative locally compact groups, these two are isomorphic.
Therefore, it suffices to prove that / is compact.

27All tensors are over .
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Theorem K a numberfield ⇒ K/K is compact.

Proof We’ve reduced to K = , since K/K is homeomorphic to ( / )⊕[K: ] as topo-
logical groups. We know that there’s a surjection ⇀ / . We write down a compact
subset V ⊆ which surjects onto / . Set

V = {(xp) : 0 ≤ x∞ ≤ 1, xp ∈ p}.

This is certainly compact. Now, for any x = (xp) ∈ , we want to show that we can
translate by an element of so that the thing winds up in V . For (xp), there’s a finite set
S so that for every p %∈ S, xp ∈ p . We may assume ∞ ∈ S. Let S = {p1, · · · , pn = ∞}.
We want an element y ∈ so that ‖xpi − y‖ ≤ 1, and y ∈ p for all p %∈ S. But this is no
problem. Each xpi has a partial fraction decomposition. Write xpi = ui + vi, with vi ∈ p

and ui ∈ [1p ]. First, let’s try y1 =
∑n−1

i=1 ui. Then xp − y1 ∈ p for every p %= ∞. So
x − y1 ∈ (

∏
p p) × . There’s an integer m ∈ so that 0 < x∞ − y1 − m < 1. So take

y = y1 +m; this works.!

Remark We’ve shown that V = {x = (xp) : 0 ≤ x∞ < 1, ‖xp‖ ≤ 1} is in fact a fundamen-
tal domain for / . [We’ve seen that V + = . And V ∩ = {0}.]

Exercises

1. Prove that K/K is compact if K is a global function field.

2. As before, we define µv the self-dual Haar measure on Kv with respect to the trace

trKv, p . If v is finite, then µv(Ov) = ( Dv )−
1
2 . If∞|v, then µv =

{
dx
|dz ∧ dz| = 2dxdy

.

Take µ =
∏

v µv. This gives you a Haar measure on K . The exercise is, compute
µ( K /K), the volume of the fundamental domain.

3. Do (2) for global function field. What you’re actually computing here is, essentially,
the genus.

Recall that ×
K,1 is the ideles of norm 1; and ×

K,1 ⊇ K×, by the product formula.

Theorem ×
K,1/K

× is compact.

Corollary Finiteness of class number.
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Proof [cor] Look at IK = ⊕v finite , the group of invertible ideals ofOK . Look at IK/(principal
ideals); this is finite. That’s what we want to show. Well, look at

α : ×
K → IK

x = (xv) &→
∏

p

pord(xp).

This is clearly surjective. What’s the kernel? It’s the product of the local kernels; so it’s
(
∏

pO×
v )×

∏
v|∞ K×

v . Thus, IK/(principal ideals), or the ideal class group of K, is isomorphic
to ×

K/(ker(α) ·K×). The top sequence is exact in

1 1 1

1 ! K×
#

! ×
K,1

#
! ×

K,1/K
×

#
! 1

1 ! K×

∼=

#
! ×

K

#
! ×

K/K×
#

! 1

×
>0

‖·‖

# = ! ×
>0

‖·‖

#

1
#

1
#

So we actually get

×
K,1

K×((
∏

v|∞ K×
v )1 ×

∏
v O×

v )

∼=→
×
K

K× ·∏v|∞K×
v

∏
v O×

v

.

Now,
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(
∏

v|∞
K×

v )1 ×
∏

v finite

O×
v ⊆ ×

K,1

is actually an open subgroup. kerα is open. So α is continuous, if you regard the target as
a disrete group. Now, the thing just written above is that open subgroup intersected with
the unit ideles. The thing on the right, two lines above, is the ideal class group. And we’ve
realized this as the quotient of the unit idele class group by some open subgroup of it. But
what do we know about this? We know that the unit idele class group is compact. So it’s a
compact group mod an open subgroup. So the result is a discrete group. So it’s finite, and
this proves the finitude of the class number.

Next time, we’ll prove the theorem and deduce the Dirichlet unit theorem.

We’ll also do local functional equations. That’ll require a little bit of analysis, some of which
we hint at here.

Let K = Kv, a completion of a number field. Let f be a nice function. We’ll integrate it
against a quasicharacter of K, f(x)χ(x). A quasicharacter is a map χ : K× → × . We
think of them as variables; they correspond to a complex variable s. For we can think of it
as a real, live unitary charcter χ1(x) ·‖·‖s; as you vary s, you get a family of quasicharacters,
and that’s your variable. We’ll look at

∫

K×
f(x)χ(x)d×x.

We’ll take a Fourier transform and relate it so something else, dividing by local L-factors

∫
K× f̂ψ(x)(‖·‖χ)−1(x)d×x

L(‖·‖χ−1)
= ε(χ,ψ, dx)

∫
K× f(x)χ(x)d

×x

L(χ)
.

Here, ψ : (K,+)→ ×
1 , and

L(χ) =





v nonarchimedean

{
(1− χ(π))−1 χ unramified
1 χ ramified

v archimedean Γ (χ) or Γ (χ)
.
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Theorem ×
K,1/K

× is compact.

Remember that we have ×
K ↪→ K × K .

Lemma [Minkowski] V1
def
= {x = (xv) ∈ K : ‖xv‖ ≤ 1}.28 Let µ be a Haar measure on

K , say, the normalized one. There’s a constant c > 0 so that for all x ∈ ×
K with ‖x‖ ≥ c,

theres an a ∈ K× ∩ xV1.

Proof Let y = (yv) be such that

yv =

{
1 v finite
1
2 v|∞ .

Think about yV1. Ask whether yxV1+a, a ∈ K, are disjoint. If so, then µ(yxV1) < µ( K /K);
the volume is less than that of the fundamental domain. So if ‖x‖ ·2−[K: ]µ(V1) ≥ µ( K /K),
then you can find a1, a2 ∈ K so that (yxV1+a1)∩(yxV1+a2) %= ∅. So yxV1−yxV1∩K× %= ∅.
But yxV1 − yxV1 ⊆ xV1. So take c = 2[K: ] µ( K/K)

µ(V1)
.!

This is the crucial result about finding global elements.

Proof [of theorem] We want to find a compact set X ⊆ ×
K,1 so that ι : X ↪→ ×

K,1/K
×

is surjective. Well, what does it mean to say that X is compact? Well, we know that
×
K ↪→ K × K via x &→ (x, x−1). So we have to show that X is in a compact set of K ,

and if you invert every element it is again contained in a compact set.

Start with any x ∈ ×
K,1 . Fix an element z0 ∈ ×

K whose norm is large; ‖z0‖ > c, where
the c is the constant from the lemma. Then there’s an a ∈ K× ∩ z0xV1. There’s also a
b ∈ K× ∩ z0x−1V1.29 So we know that ab ∈ z20V1.30 So a and b−1 really aren’t very far away
from each other. Actually, ab ∈ z20V1 ∩K, the intersection of a compact set with a discrete
one. So z20V1 ∩K = {c1, · · · , cn}.

We know that ax−1 ∈ z0V1. And (ax−1)−1 = a−1x. We’ll translate x by a−1; want to show
that a−1x and its inverse both lie in some fixed compact set. If we can do that then we’ll
win. Well, a−1x = (ab)−1bx ∈ ∪ni=1c

−1
i z0V1.

So now we’ve shown that for all x ∈ ×
K,1 , there’s an a ∈ K× so that a−1x ∈ ι−1((∪ni=1c

−1
i z0V1)×

(z0V1)) = X compact.

28Clearly this is compact, as the product of compact sets.
29z0x takes the role of x in the lemma’s notation.
30Using the fact that the product of a pair of elements in V1 is in V1.
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Corollary Let S be a finite set of primes containing all infinite places. Let ×
K,S = {x =

(xv) ∈ ×
K : ‖xv‖ = 1∀v %∈ S}. The S-units are O×

K,S = K× ∩ ×
K,S .

31 This is a finitely
generated abelian group of rank #S − 1. When S = S∞, this is the classical Dirichlet unit
theorem.

Proof

×
K,1 ∩K×

K,1

K× ×
K,∅

×
K,1 ∩ ×

K,S

K× O×
K,S

×
K,∅

O×
K,S

×
K,∅

µK .

Let r1 be the number of real embeddings, r2 the number of complex embeddings, r = r1+r2 =
#S∞. Note that ×

K,S/ K,∅ = ×
>0

r1+r2 s−r1−r2 .

Similarly,
×
K,1∩

×
K,S

K,∅
= ×

>0
r1+r2−1 s−r1−r2 .

So O×
K,S/µK

∼= a cocompact discrete subgroup in that thing. And we know its rank; it’s
isomorphic to s−1 ; it has to take out the discrete part, and give you a discrete cocompact
subgroup of ×

>0
r1+r2−1

.

31OK,S = {x = (xv) ∈ K : ‖xv‖ ≤ 1∀v %∈ S}.
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Tate’s thesis We start by defining local L-factors. K = Kv a finite extension of p .32

For every quasicharacter χ : K× → × , well, there’s a special one ωs : Ks → × by
x &→ ‖x‖s. We can break the characters into equivalence classes, translates by ωs.33 Define
L(χ) in the following way.

1. x : K
∼=→ . Every quasicharacter can be written as x−Nωs for N ∈ {0, 1}. Set

L(x−Nωs) = Γ (s)
def= π

s
2Γ(

s

2
).

34

32Ongoing exercise; verify everything we do for function fields as well.
33χ1 and χ2 are equivalent if there’s an s ∈ so that χ1 = χ2 · ωs; {χ0ωs} is one equivalence clas.
34Quick review of Gamma functions. Well,

Γ(s) =

∫ ∞

0
e−tts−1dt

=

∫

×

>0

e−ttsd×t

Absolutely convergent for +(s) > 0. Otherwise, you analytically continue with the functional equation.
Some basic properties:

Γ(s+ 1) = sΓ(s) (1)

Γ(s)Γ(1 − s) =
s

sinπs
(2)

22s−1Γ(s)Γ(s+
1

2
) =

√
πΓ(2s) (3)

(4)

There are some variants of it:

Γ (s) = π− s
2Γ(

s

2
)

Γ (s) = 2(2π)−sΓ(s)
(3)
= Γ (s)Γ (s+ 1).
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2. K ∼= . We have z : K ↪→ canonical mod . Then we write χ = z−Nωs with N ≥ 0.
Then set

L(χ) = L(z−Nωs) = Γ (s).

Note that L(z−Nωs) = L(z−Nωs), so it doesn’t matter which embedding we pick.

3. K nonarchimedean. A character’s unramified if it’s trivial on units. Then set

L(χ) =

{
(1− χ(π))−1 χ unramified
1 χ ramified

.

The ramified 1 is since we have a 1-dimensional abelian thing. (1−χ(s))−1 is essentially
(1− p−s)−1.

Let dx be a Haar measure on (K,+). Then set d×x to be a Haar measure on K×, e.g., dx
‖x‖ .

Suppose we have ψ : (K,+) → ×
1 a nontrivial additive character. Then we can identify

K with its Pontryagin dual; there’s an isomorphism K → Hom(K, ×
1 ). We have a Fourier

transform running around,

f̂ψ,dx(y)
def
=
∫

f(x)ψ(xy)dx.

Proposition f, g functions on K, satisfying some nice properties. Like maybe they have
compact support or something. Let χ be a quasi-character, and think of χ̂ = ωχ−1, where
ω = ω1.

∫

K×
f(x)χ(x)d×x

∫

K×
ĝ(x)χ̂(x)d×x =

∫

K×
f̂(x)χ̂(x)d×x

∫

K×
g(x)χ(x)d×x.

Here, all the Fourier transforms are respect to some ψ and Haar measure dx. Doesn’t matter
what they are, but you better keep ’em the same all the way.

Typically, we define

ζ(f,χ) =
∫

K×
f(x)χ(x)d×x.

Then the proposition says that

ζ(f,χ)ζ(ĝ, χ̂) = ζ(f̂ , χ̂)ζ(g,χ).

Remember that χ is, so to speak, a variable; that’s why it’s a zeta function.
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Proof
∫

K×
f(x)χ(x)d×x ·

∫

K×
ĝ(y) ‖y‖ · χ(y)−1d×y = Blah.

ĝ(y) =
∫

K
g(z)ψ(zy)dz

∫

K×
f(x)χ(x)d×x ·

∫

K×
ĝ(y) ‖y‖ · χ(y)−1d×y =

∫

K

∫

K××K×

∫
ψ(zy)f(x)g(z) ‖y‖χ(x)χ(y−1)d×xd×ydz

zy = w

dw = ‖y‖ dz

Blah =
∫

K
ψ(w)dw

∫ ∫

K××K×
f(x)g(wy−1)χ(x)χ(y−1)d×xd×y

u = wy−1

Blah =
∫

K
ψ(w)χ(w)−1dw

∫ ∫

K×××
f(x)g(u)χ(x)χ(u)d×xd×u

And this might prove it; and it’s certainly as much as any of us feels like doing right now.

Anyways, this equality for local zeta functions holds whenever it makes sense, i.e., things
are integrable, etc. It tells us that ζ(f,χ)/ζ(f̂ , χ̂) depends only on χ. Anyways, we[?] now
know that

ζ(f̂ψ, χ̂)

L(χ̂)
= ε(χ,ψ, dx)

ζ(f,χ)

L(χ)

the local functional equation.
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Local functional equation We have dx a Haar measure on (K,+); ψ : (K,+) → ×
1

a nontrivial character. We also have d×x a Haar measure on K×.35 We compute Fourier
transforms with this character and measure, and get

∫
K× f̂ψ · ωχ−1(x)d×x

L(ωχ−1)
= ε(χ,ψ, dx)

∫
K× f(x)χ(x)d

×x

L(χ)
.

Here, the ε is a sort of harmless constant. And experience tells us36 that the definition of
the L-factors is crucial.

There are some formal proprties of ε(χ,ψ, dx):

1. For a > 0, ε(χ,ψ, adx) = aε(χ,ψ, dx).

2. ψ is what we use to identify K with its dual. Note that x &→ ψ(c · x) is another
character; and actually, every character must have that form. So

ε(χ,ψ(c·)) = χ(c) ‖c‖−1 ε(χ,ψ, dx).

To prove this, just look at the only place where ψ enters the computation; compute

f̂ψ(c·)(x) =
∫

K
f(y)ψ(cxy)dy

= f̂ψ(cx)∫

K×
f̂ψ(cx)(ωχ

−1)(x)d×x =
∫

K×
f̂ψ(z)(ωχ

−1)(c−1z)d×z

(ωχ−1)(c−1z) = χ(c) ‖c‖−1 · ωχ−1(z).

Computation of ε(χ,ψ, dx) There are three cases to worry about.

1. K ∼= . Then ψ(x) = e2π
√
−1x. χ(x) = x−N ‖x‖s with N = 0 or 1. For the Haar

measure, let dx be the Lebesgue measure on . Then L(χ) = Γ (s).

If N = 0, then χ−1 = ω−s; ωχ−1 = ω1−s. Then L(χ̂) = Γ (1− s).37

35It looks like K is a local field.
36Well, Ching-Li, anyway
37Recall that Γ (s) = π− s

2Γ( s2 ).
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f(x) = e−πx
2

f̂(x) =
∫

e−πy
2
e2π

√
−1yxdy

=
∫

e−π(y−
√
−1x)2e−πx

2
dy

= e−πx
2
∫

e−πy
2
dy by Cauchy’s formula.

(
∫

e−πy
2
dy)2 =

∫ ∫
e−π(x

2+y2)dxdy

=
∫ ∫

e−πr
2
rdrdθ

= 2π(2π)−1
∫ ∞

0
e−πr

2
d(πr2)

= 1.

f̂(x) = e−πx
2

= f(x).

We have to compute two more serious integrals;

∫

×
e−πx

2 |x|s d×x = 2
∫ ∞

0
e−πx

2
xs−1dx

Choose d×x =
dx

|x|
Set t = x2

2
∫ ∞

0
e−πx

2
xs−1dx =

∫ ∞

0
e−πtt

s
2−1dt set πt = u

=
∫ ∞

0
e−u(π− s

2u
s
2−1du

= π− s
2Γ(

s

2
)

= Γ (s).

So much for that. We now lean on

∫

×
f̂(x)χ̂(x)d×x =

∫

×
e−πx

2
ω1−s(x)d

×x

= Γ (1− s).
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So in this case, with N = 0, we conclude that ε(χ,ψ, dx) = 1.

What about when N = 1? Need to integrate against an odd Schwarz function. A
natural choice is g(x) = xe−πx

2
. Can compute the Fourier transform with a trick,

based on what we know about f .

∂

∂x
f̂(x) = 2π

√
−1

∫
ye−πy

2
e2π

√
−1yxdy

ĝ(x) =
1

2π
√
−1
− 2πxe−πx

2

=
√
−1g(x).

Also,

∫

×
xe−πx

2
x−1 |x|s d×x =

∫

×
e−πx

2 |x|s d×x

= Γ (s)

χ̂ = ωχ−1(x)

= x |x|1−s

= x−1 |x|3−s

L(χ̂) = Γ (3− s)
∫

×

√
−1g(x) =

∫

×

√
−1xe−πx2

x−1 |x|3−s d×x

=
√
−1Γ (3− s).

The conclusion is that, for N = 1, ε(χ,ψ, dx) =
√
−1. Note that this i came in when

we computed the Fourier transform; so it comes from the
√
−1 in e2π

√
−1x.

2. z : K ↪→ . We fix an embedding z : K ↪→ . Set ψ(z) = e2π
√
−1·29(z). Then

χ(z) = z−Nωs for some N ≥ 0. For n ∈ define fn(z) = zne−2π(zz). Choose as the
Haar measure µ = |dz ∧ dz| = 2dxdy. So compute the Fourier transform

f̂0(z) =
∫ ∫

e−2π(ww)e2π
√
−1(zw+zw) |dw ∧ dw| .

Left as exercise; it’s a horrible mess. Gotta separate into real and imaginary parts,
and just chunk it out. The answer is
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f̂0(z) = f0(z).

To compute the Fourier transform of fn, use the standard trick, that is, take partial
derivatives. So apply ∂

∂z to get

−2πze−2π(zz) = 2π
√
−1f̂1(zz)

f̂1(z) =
√
−1zf0(z).
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We have the local functional equation

∫
K× f̂ψ(x)ωχ

−1(x)d×x

L(ωχ−1)
= ε(χ,ψ, dx)

∫
K× f(x)χ(x)d

×x

L(χ)
.

Last time we were trying to compute when K = . We have χ = z−Nωs for some N ≥ 0.
Then ωχ−1 = zNω1−s = z−Nω1+N−s. So the L factors are

L(χ) = Γ (s)

L(ωχ−1) = Γ (1 +N − s).

Here, as always,

Γ (s) = 2(2π)−sΓ(s) = Γ (s)Γ (s+ 1).

Beware; some earlier papers won’t have that factor of 2.

We have a definition, possibly modified from last time:

f0(z) = e−2πzz

fn(z) = zne−2πzz for n ≥ 0

f−n(z) = zne−2πzz.

Recall that

ψ = e2π
√
1◦tr ,

dx = |dz ∧ dz|

d×x =
|dz ∧ dz|

zz
f̂0(z) = f0(z)

=
∫

f0(w)e
2π

√
−1(w+w) |dw ∧ dw| .

Apply 1
2π

∂
∂z to get
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−zf0(z) =
√
−1f̂1

f̂1 = −
√
−1f−1

...

f̂n = (
√
−1)nf−n.

If instead we apply 1
2π

∂
∂z , we get

−zf0(z) =
√
−1f̂−1(z)

...

f̂−n(z) = (
√
−1)nfn(z).

Let’s try and compute the damned integrals, using fN .

∫

×
fN(z)χ(z)

|dz ∧ dz|
zz

=
∫

f0(z)(zz)
s−1 |dz ∧ dz|

z=reiθ=
∫ ∫

0<r<∞,0≤θ≤2π
e−2πr2r2(s−1)2rdrdθ

= 2π
∫ ∫

e−2πr2(
2πr2

2π
)2(s−1)d(2πr

2)

2π
= (2π)−(s−1)Γ(s)

=
1

π
Γ (s).

Also,

f̂ψ = (
√
−1)N

∫
f−N(z)z

−N(zz)1+N−s |dz ∧ dz|
zz

= (
√
−1)N

∫
f0(z)(zz)

1+N−s |dz ∧ dz|
zz

= (
√
−1)Nπ−1Γ (1 +N − s).

Now just compare, and find out that
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ε(χ,ψ, dx) = (
√
−1)N .

Everything is stable under a choice of embedding. And this
√
−1 is the same

√
−1 we used

to define ψ = e2π
√
−1◦tr , . So any choice of

√
−1 will work.

Now we work with K nonarchimedean. There’s really no particularly good way to enumerate
all good characters χ, the way we did for and . In the more general case we don’t really
understand them. Let ψ : (K,+)→ ×

1 an additive character, and χ : K× → × . Choose a
Haar measure dx on (K,+). There are two invariants. The first is the conductor of χ, a(χ).
Well, χ is a quasicharacter. × is a Lie group, and as such doesn’t have small subgroups. By
continuity, χ is trivial on some pretty small open subgroup. It’s measured by this integer,
the conductor. We set

a(χ) =

{
0 χ(O×) = 1(⇐⇒ χ unramified)
minn st χ(1 + pn) = 1 χ ramified

.

We also have a conductor for ψ, n(ψ), which is the integer n so that ψ(p−n) = 1 and
ψ(p−n−1) %= 1. Results are as follows.

1. If χ is unramified, then

ε(χ,ψ, dx) =
χ(πn(ψ))

‖π‖n(ψ)
∫

O
dx = χω−1(π−n(ψ))

∫

O
dx.

2. If χ is ramified, then

ε(χ,ψ, dx) =
∫

K×
χ−1(x)ψ(x)dx,

whatever that is. In representation theory, this is usually called a Gaussian integral.
Superficially, this looks divergent. It’s the infinite analogue of a Gaussian sum.

In the classical case, we have an abelian group – say, q . Let ψ : q → ×
1 be a

character, say, e2π
√
−1 tr q, p . There’s a multiplicative character χ : ×

q → ×
1 . From

these two you cook up a Gaussian sum,
∑

x %=0 χ(x)ψ(x).

Two more minutes to go. What are we going to do? Define characteristic functions
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gm(x) =

{
1 x ≡ 1 mod pm

0 otherwise
.

Then we take the Fourier transform, and hopefully find out that, essentially, ĝm(x) is essen-
tially another characteristic function.

BTW, interpret that Gaussian integral as
∑
πnO× of that integral; and find that the integrals

are zero for all but on of the n; so the integral vanishes unless n = −a(χ)− n(ψ).
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The goal today is to show that you can compute ε factors without peeking. Recall that we
had

L(χ̂)−1
∫

K×
f̂ψ(x)χ̂(x)d

×x = ε(χ,ψ, dx)L(χ)−1
∫

K×
f(x)χ(x)d×x.

We have K non-archimedean, χ : K× → × , ψ : (K,+) → ×
1 nontrivial, and a(χ) and

n(ψ) are the conductors of these [quasi]characters. Let gm be the characteristic function of
1 + pm. F’rintance, g0 is the characteristic function of O. Let’s compute

ĝm(x) =
∫

K
gm(y)ψ(xy)dy

(∗) =
∫

1+pm
gm(y)ψ(xy)dy

Let y = 1 + z

(∗) = ψ(x)
∫

pm
ψ(xz)dz.

Now, if v(x) +m ≥ −n(ψ), then ψ(xz) ≡ 1 for z ∈ pm. But if v(z) +m < −n(ψ), then ψ(x)
is not identically 1 on z ∈ pm, and we get that the integral is either ψ(x) ‖π‖m

∫
O dx if it’s

trivial there, and zero otherwise. So

ĝm = ‖π‖m
∫

O
dx · ψ · (char fcn of p−m−n(ψ)).

Now we’ll try and compute the ε factor. And to do that, we’ll have to do some integrals.
Suppose χ is unramified. Then

∫

K×
g0(x)χ(x)d

×x =
∫

O
χ(x)

dx

‖x‖

=
∑

n;0

χ(πn)
∫

pnO×

dx

‖x‖

=
∑

n≥0

χ(π)n
∫

O×

dx

‖x‖
∫

O×

dx

‖x‖
=

∫

O
dx

= (1− ‖π‖)
∫

O
dx

∫

K×
g0(x)χ(x)d

×x = (1− ‖π‖)
∫

O
dx(

1

1− χ(π)
)

= (1− ‖π‖)
∫

O
dxL(χ).
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Also,

ĝ0(x) =

{ ∫
O dxψ(x) x ∈ p−n(ψ)

0 otherwise
.

∫

K×
ĝ0(x)ωχ

−1(x)d×x =
∫

p−n(ψ)
ωχ−1(x)d×x

Use x = π−n(ψ)y

If x ∈ p−n(ψ), then this is

(ωχ−1)(π−n(ψ))
∫

O
ωχ−1(y)d×x

and otherwise it’s

(χω−1)(πn(ψ))(1− ‖π‖)
∫

O
dxL(ωχ−1).

The last few things should have been multiplied by
∫
O dx; ask Seon-in for exactly what. The

conclusion is that

ε(χ,ψ, dx) =
χ(π)n(ψ)

‖π‖n(ψ)
∫

O
dx.

For the ramified case, we first want to do something about Gaussian integrals. We’re worrying
about things which look like

I :
∫

K×
χ−1(x)ψ(x)dx

On the face of it, this may be a divergent integral. We’ll think of it as

I =
∑

n≥0

∫

πnO×
χ−1(x)ψ(x)dx.

So we want to compute
∫
πnO× χ

−1(x)ψ(x)dx. Lok at πnO×/Ua(χ), where Ua(χ) = O× if
a(χ) = 0, and is 1pa(χ) if χ is ramified, that is, a(χ) ≥ 1. Well,
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∫
πnO×χ−1(x)ψ(x)dx =

∑

xi∈πnO×/Ua(χ)

‖π‖n χ−1(xi)
∫

U(a(χ))

ψ(xiu)du.

Assume that a(χ) ≥ 1. Then this is

In =
∑

Blah
∫

1+pa(χ)
ψ(xiu)du

∫

1+pa(χ)
ψ(xiu)du = ψ(xi)

∫

pa(χ)
ψ(xiy)dy

= ψ(xi) ‖π‖a(χ)
∫

O
dx.

This is zero, unless, n + a(χ) ≥ −n(ψ). So In ≡ 0 if n < −a(χ) − n(ψ); and if n is strictly
greater, it’s zero as well. So assume that n > −a(χ)− n(ψ). Well, we get

In =
∑

xi∈πnO×/(1+pa(χ))

‖π‖n+a(χ) χ−1(xi)ψ(xi)

= ‖π‖n+a(χ)∑ψ(xi)
∑

χ−1(xi)

Strategy: there’s a proper subgroup in O×, probably (1+pn+a(χ)+n(ψ)) so that ψ(xi) = ψ(xj)
if xix

−1
j ∈ it. What we’re trying to say [although we haven’t written it down] is that, if

you look at
∑
χ−1ψ, this value depends only on something small inside the quotient group

πnO×/Blah. And those xi having the same value can be grouped under a coset, a proper
subcoset of O×/Blah.
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We start with a Gaussian integral

I =
∫

K×
χ−1(x)ψ(x)dx.

We assume that χ ramified with a(χ) ≥ 1; there’s also the conductor n(ψ) running around.
We saw that this integral is

I =
∑

n∈

∫

πnO×
χ−1(x)ψ(x)dx.

And if n < −a(χ) − n(ψ), then
∫
πnO× χ

−1(x)ψ(x)dx = 0; you wind up with a nontrivial
character on a compact group, and when you integrate it dies.

Now, if n > −a(χ) − n(ψ), we want the integral to die then, as well. Let x = πnu in the
following development, where u is a unit. We know that n is big. Look at

In =
∫

πnO×
χ−1(x)ψ(x)dx.

We know that χ−1(x) depends only on u mod ×1 + pa(χ). And ψ(x) = ψ(πnu) depends only
on u mod 1 + p−n−n(ψ) < a(χ). Let H = 1 + p−n−n(ψ) ⊆ O×. Then

In = χ−1(πn) ‖π‖n
∫

O×
χ−1(u)ψ(πnu)du

Let {zα} be a set of representatives of O×/H . Then

In = χ−1(πn) ‖π‖n
∑

α

∫

H
χ−1(zα)v)ψ(π

nzαv)d
×v.

But ψ(πnzαv) is constant, and χ−1(zαv) isn’t, since χ−1|H is not trivial. So it’s the sum of
zeros, and as such is zero.

When all is said and done, we see that

I =
∫

π−a(χ)−n(ψ)O×
χ−1(x)ψ(x)dx.

Let’s briefly treat again with the calculation of ε factors. We’ll try to figure out ε(χ,ψ, dx)
when χ is ramified.
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Aside; let A be a finite ring, e.g., O/(πn) or q . Let χ : A× → ×
1 , ψ : (A,+) → ×

1 , and
then compute the Gaussian sum

∑
x∈A× χ(x)ψ(x).

Moving on to χ ramified for ε factors. What we want to compute is

L(χ̂)−1
∫

K×
f̂ψ(x)χ̂(x)d

×x = ε(χ,ψ, dx)L(χ)
∫ ∫

K×
f(x)χ(x)d×x.

We’re assuming χ is ramified, so the two L-factors are just 1. Take f = ga(χ), the character-
istic function of 1 + pa(χ). Then

∫

K×
ga(χ)χ(x)d

×x =
∫

1+pa(χ)
d×x

= ‖π‖a(χ)
∫

O
dx

ĝa(χ) = ‖π‖a(χ)
∫

O
dx · ψ · (char fcn of p−a(χ)−n(ψ))

=

(∫

p−a(χ)−n(ψ)
‖x‖χ−1(x)ψ(x)

dx

‖x‖

)

·
∫

O
dx · ‖π‖a(χ)

=
(∫

p−a(χ)−n(ψ)
χ−1(x)ψ(x)dx)

)
· ‖π‖a(χ)

∫

O
dx

=
(∫

π−a(χ)−n(ψ)
χ−1(x)ψ(x)dx

)
‖π‖a(χ)

∫

O
dx

=
(∫

K×
χ−1(x)ψ(x)dx

)
‖π‖a(χ)

∫

O
dx.

The conclusion is that, for χ ramified,

ε(χ,ψ, dx) =
∫

K×
χ−1(x)ψ(x)dx.

Let’s write down the local functional equation once more:

∫
K× f̂ψ(x)χ̂(x)d

×x

L(χ̂)
= ε(χ,ψ, dx)

∫
K× f(x)χ(x)d

×x

L(χ)
.

How do we get something global out of this. Let χ : ×
K/K× → × a global quasicharacter,

sometimes called a Hecke character or idele class [quasi]character. For every local place, we
have the local functional equation. Remember that, in the L-function, we think of χ as being
a variable. Define
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L(χ) =
∏

v finite

L(χv).

If

χ :
K×

v
×
K /K× → ×

and we restrict, |χ| |O×v , well, we know that |χ| (O×
v ) is a compact subgroup of ×

>0 , and as
such must be {1}.
In the local case K = K×

v , we know that |χ| = ωs for some s. Can define a real part via
+(χ) = +(s). Can also think of χ as a unitary character times some ωs; then set +(χ) = +(s).
Anyways, if +(χ) > 1, then the global L-function is absolutely convergent and thus well-
defined. The simplest example is when χ is trivial, in which case you get nothing but the
classical ζ function, which converges when s > 1. It’s useful to complete this infinite product
with some Γ factors; then the resulting thing is invariant under s &→ 1− s. So set

Λ(χ) = L(χ)
∏

v|∞
L(χv).

Take f to be some nice global function, say a Schwartz function f ∈ S( K ).38 Take f =
∏

v fv
where fv is a local Schwartz function. That works fine. And for almost all v, we let fv be
the characteristic function of O×

v .

Let ψ : K/K → ×
1 be a global character. And we’ve got a Haar measure dx. Choose dx

to be self-dual for the Fourier transform defined by ψ. Then we can think about

∫
×
K
f̂ψ(x)χ̂(x)d×x

Λ(χ̂)
= ε(χ,ψ, dx)

∫
×
K
f(x)χ(x)d×x

Λ(χ)
.

And the global ε factor is just the product of the local ones, and as such is a finite product.

There’s a main theorem of Tate which says that these two integrals are equal; it’s a conse-
quence of the Poisson summation formula. So we get

Λ(χ) = ε(χ)Λ(χ̂).

And that’s the functional equation.

38Schwartz functions decrease rapidly at ∞ and are very smooth. Over nonarchimdedean fields, it’s a
locally constant function with compact support.
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As usual, we’re fighting with

∫

K×
χ−1(x)ψ(x)d×x

If χ is ramified with a(χ) ≥ 1, we defined this as
∫
π(−a(χ)−n(ψ)) χ−1(x)ψ(x)d×x. This is like a

Gaussian sum. Let n = a(χ) + n(ψ). Then we have the integral I is

I =
∫

O×
χ−1(π−nu)ψ(π−nu)d×u

= χ(πn)
∫

O×
χ−1(u)ψ(π−nu)d×u

= χ(πn)
∑

(O/πa(χ)O)×3u
χ−1(u).

Now, we can get an additive character ψ(π−n·?) : O/πnO → ×
1 . Hmm. Not sure what he’s

doing, but he’s saying that this defines some character ψ, and it’ll be of the form e2π
√
−1 tr(b?).

Hmm. We’ve got ψ : (K,+)→ ×
1 . We know that ∃!c ∈ K so that ψ(x) = e2π

√
−1 tr(cx). The

conductor of this is, well, what could it be? If c = 1, then we look at all those u so that,
umm, hold on. We define

p−n(ψ) = {x ∈ K : e2π
√
−1 tr(cx·u) = 1∀u ∈ O}.

And this holds ⇐⇒ cx ∈ D−1. So x ∈ c−1D−1. So the valuation −n(ψ) = −v(c) − v(D),
or n(ψ) = v(c) + v(D). Once we know this, we see that ψ(π−nx) = e2π

√
−1 tr(π−nc·x), where

π−n · c ∈, well, π−nc = π−a(χ)−n(ψ)c with c ∈ pn(ψ)D−1
v . So the thing is in π−a(χ)D−1

v . So then
b = π−nc, if we return to that b? above. So we write

I = χ(πn)
∑

u∈(O/πa(χ)O)×

χ−1(u)e2π
√
−1(bu).

We know that b ∈ (O/πa(χ)O)×. Note that this expression for I really does make sense for
every b ∈ O/πa(χ)O.39 And if it’s zero, then b ∈ p/pa(χ).

We can look at that sum as a classical Gaussian sum; extend χ to the nonunits by setting it
to zero there. Call this sum τ(χ−1, b). So we write this thing as

39To some people.
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τ(χ−1, b) =
∑

u∈(O/πa(χ)O)×

χ(b)χ−1(bu)e2π
√
−1(bu)

= χ(b)τ(χ−1, 1).

This is some nice, simple algebraic integer sitting inside a cyclotomic field.

Gotta make sure that this is nonzero.40

Kate says he’s saying that the ε factors don’t depend on ψ.

Oh.

Anyways, we’ve got

τ(χ−1, b) · τ(χ−1, b) = τ(χ−1, 1) · τ(χ−1, 1)

Sum over c ∈ (O/pa(χ))×, and get41

#(O/pa(χ))×
∣∣∣τ(χ−1, b)

∣∣∣
2

=
∑

χ(u−1)e2π
√
−1(bu−bv)

=

I locally give up.

We’re trying to sum over all additive characters ψ.

Let x ∈ (O/paχ))×. Look at
∑

x e
2π

√
−1b(u−v). This is zero if u %= v, and is (p)a(χ) . The only

thing which contributes is when u = v. How many are there? That’s #(O/pa(χ). So the
whole answer is

#((O/pa(χ))×) (pa(χ) .

So when all is said and done,
∣∣∣τ(χ−1, b)

∣∣∣ = p
a(χ)

2 .

40If it’s zero, the functional equation would utterly go down and flames.
41Provided we keep in mind τ(χ−1, b) =

∑
χ(v)e−2π

√
−1(bv) =

∑
χ(v)e−2π

√
−1(bv).
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Tate’s main theorem 42 Look at ×
K . On the other hand, we have the group of adeles

K . We want to take a nice f ∈ S( K ), Schwartz functions on K . For us, such a beast is a
linear combination of functions of the sort (

∏
v|∞ fv) · (

∏
v∈S fv) · (

∏
v %∈S fv,0) with fv ∈ S(Kv)

and S a finite set of primes, and fv0 is the characteristic function of Ov.

If f ∈ S( K ) we’ll build a zeta function. Let χ : ×
K /K× → × . Choose a nontrivial

additive character ψ : K/K → ×
1 . Then we define

ζ(f,χ) =
∫

K

f(x)χ(x)d×x

where d×x is a Haar measure on ×
K . Before we go on further, let’s clarify a couple of points.

There are certain subtleties.

The point is the following. Naively you’d think that, f being a product, the integral should
be ζ(f,χ) =

∏
ζ(fv,χv). This is true, but not for the reason you’re thinking of. For f ,

although it’s a product, is a Schwartz function with respect to the additive structure. So
if you integrated over K , you’d be cool. But we’re working over the ideles ×

K ; and the
product there is different. Recall that an idele is not, well,

×
K %=

∏
K×

v .

×
K is really an inductive [direct] limit.

42This’ll work out to be the Poisson summation formula.
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The goal today is to prove Tate’s theorem. The most important part of Tate’s theorem is
that if f ∈ S( K ), and we choose χ : ×

K /K× → × , ψ : K/K → ×
1 , then in analogy to

the local case we have two quantities:

∫

×
K

f̂ψχ̂d
×x =

∫

×
K

f(x)χ(x)d×x.

These make sense in the sense that we can analytically continue both sides as holomorphic
functions of s, where χ is ωs, more or less, I think. We’ll also see how to holomorphically
continue these functions; and when and where each side can have a pole. Furthermore, each
pole is simple, and we’ll compute the residue.

Recall that if f ∈ S( K ) the Schwartz functions, then, remember that as a space, ×
K is

quite different from K . We can write

×
K = lim

→
S

×
K,S

where

×
K,S =

∏

v %∈S
O×

v ×
∏

v∈S
K×

v .

Let’s figure out the meaning of the integral
∫
×
K
f(x)χ(x)d×x. This converges absolutely if

+(χ) > 1. Let f = fS0
1 f0,S0 where f0,S0 is the characteristic function of

∏
v %∈S0

Ov, and fS0
1

is a Schwartz function on
∏

v %∈S0
Kv. First, notice that the Haar measure may be taken as

d×x =
∏′ d×xv, the restricted product. For all but a finite number of places, this has the

property that
∫
O×v d×xv = 1 for v %∈ S1.

Let’s think about
∫

×
K

f(x)χ(x)d×x = lim
→
S

∫
∏

v∈S
K×v ×

∏
v )∈S

O×v
f(x)χ(x)d×x.

For S sufficiently large, we can assume that S ⊇ S0, and χ is unramified outside S. For
v ∈ S − S0,

∫
O×v d×xv = 1. Then

∫
O×v f(x)χ(x)d×x =

∫
1 · 1 · · ·d×xx = 1. Then

∫

×
K

f(x)χ(x)d×x = lim
→
S

∫
∏

v∈S
K×v ×

∏
v )∈S

O×v
f(x)χ(x)d×x

= lim
→
S

∫
∏

v∈S0
K×v

f(x)χ(x)(
∏

v∈S0

d×xv) ·
∏

v∈S−S0

∫

Ov

χ(x)d×x
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We may assume that χ is unramified outside for v %∈ S0. In that case,

∏

v∈S−S0

∫

Ov

χ(x)d×x =
∏

v∈S−S0

(
∫

Ov

dx)(1− χ(π))−1

May assume
∫

Ov

dxv = 1 and d×xv =
dxv

‖xv‖
∀v %∈ S0,+(χ) > 0

So at this point, the question is when does
∏

v %∈S0
(1− χ(π))−1 converge?

If +(χ) = σ, then

∏

v %∈S0

(1− χ(π))−1 ∼
∏

v %∈S0

(1− p−σv )−1.

But this is bounded by 1 and
∏

p≥p0(1− p−σ)−n where n = [K : ].

So it turns out that the original integral is the product of the local integrals. This is what
you’d näıvely guess, but it takes some work to show that it’s true over ideles, not adeles.

So much for that. There are now a couple of things we’d like to do. First, holomorphic
continuation. Second, Λ(χ) = ε(χ)Λ(ωχ−1), where Λ(χ) =

∏
v L(χv). Usually, we write

L(χ) =
∏

v finite L(χv); and ε(χ) =
∏

v ε(χv, dψv, dxv).

Let’s get on with the business of the proof. It’s essentially an application of Poisson sum-
mation formula.

ζ(f,χ) def=
∫

×
K

f(x)χ(x)d×x

=
∫

×
>0

dt

t

∫

×
K,1

f(tu)χ(tu)d×u

where d×x = d×u
dt

t
measures on ×

K,1 K / K,1

ζ(f,χ) =
∫

×
>0

dt

t
ζt(f,χ) by Fubini

Now we want to apply the Poisson summation formula. The point is that we have the
unitary ideles K,1 ⊇ K× a discrete subgroup; and the quotient is compact. On the other
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hand, we have K not differing very much from K×, and K ⊇ K; again, the quotient is
compact. We know a Poisson summation formula for the latter pair, that is, well, K ↪→ k .
We have ψ : ( K ,+) → ×

1 coming from [or inducing] (kv,+) → ×
1 ; and we multiply all

the local ones together to get a global character. We can identify the dual of K with itself
via ψ : K

∼=→ K̂ , although this isn’t canonical. Under this duality we can take K sitting
inside K . What do we know about K⊥? ψ|K is trivial. Since the quotient is cocompact,
K is of finite index inside K⊥. But K⊥ is a K-vector space, and.... a miracle occurs and
K = K⊥. Poisson summation says that

∑

x∈K
f(x) =

∑

x∈K
f̂(x)

ζt(f,χ) =
∫

×
K,1/K

×
(
∑

a∈K×
f(tua)χ(tua))d×u

But χ(tua) = χ(tu), since χ is an idele class character. So

ζt(f,χ) =
∫

×
K,1/K

×
χ(tu)(

∑

a∈K×
f(tau))d×u.
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Still working with Tate’s theorem. We have

ζ(f,χ) =
∫

×
K

f(x)χ(x)d×x

=
∫

×
>0

dt

t

∫

×
K,1

f(tu)χ(tu)d×u

=
∫

×
>0

ζt(f,χ)
dt

t

ζt(f,χ) =
∫

×
K,1

f(tu)χ(tu)d×u

=
∫

u∈ ×
K,1/K

×
(
∑

ξ∈K×
f(ξtu))χ(tu)d×u

=
∫

E
χ(tu)(

∑

ξ∈K×
f(ξtu))fd×u.

Here, E is a fundamental domain for ×
K,1/K

×. On K , choose ψ via trK, , and dx a
self-dual Haar measure with respect to this global trace. Then for every Schwartz function
g ∈ S( K ), we have

∑

ξ∈K
g(ξ) =

∑

ξ∈K
ĝ(ξ)

Apply this to g = f(ξtu). Let g(x) = f(tux). Then

ĝ(y) =
∫

K

f(tux)ψ(xy)dx

=
1

‖tu‖

∫
f(z)ψ(

z

tu
y)dz

=
1

‖tu‖ f̂(
y

tu
).

Apply this result to the thing above. We had
∑
ξ∈K× f(ξtu). We can add in the missing

term ξ = 0 so that the sum is over all ξ ∈ K. The result is

∑

ξ∈K×
f(ξtu) = −f(0) + 1

‖tu‖ f̂(0)
∑

ξ∈K×

1

‖tu‖ f̂(
ξ

tu
)
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ζt(f,χ) =
∫

E
χtu)

1

‖tu‖
∑

ξ∈K×
f̂(

ξ

tu
)d×u−

f(0)
∫

E
χ(tu)d×u+ f̂(0)

∫

E
χω−1(tu)d×u

ζ(f,χ) =
∫ ∞

1
ζt(f,χ)

dt

t
+
∫ 1

0
ζt(f,χ)

dt

t

=
∫ ∞

1
ζt(f,χ)

dt

t
+

∫ 1

0

dt

t

∫

E
χω−1(tu)(

∑

ξ∈K×
f̂(ξtu))d×

−f(0)κ
∫ 1

0

dt

t
ts + f̂(0)κ

∫ 1

0
ts−1dt

t
Use t, u &→ t−1, u−1

ζ(f,χ) =
∫ ∞

1
ζt(f,χ)

dt

t
+

∫ ∞

1

dt

t

∫

×
K,1/K

×
χ̂(tu)(

∑

ξ∈K×
f̂(tuξ))d×u+ f̂(0)κ

1

s− 1
− κf

Note that
∫

×
K,1/K

×
χ̂(tu)(

∑

ξ∈K×
f̂(tuξ))d×u = ζt(f̂ , χ̂)

43

So the possible poles are at χ = ω or χ trivial. Otherwise, it’s holomorphic.

The grand conclusion is that

ζ(f,χ) = ζ(f̂ , χ̂)

43Remember that E = ×
K,1/K

×. And χ : ×
K /K× → × ; and χ is nontrivial unless its just a power of

ω; so we get ×
K / ×

K,1
ω∼=→ ×

>0 . So the integral over E dies unless χ = ωs. And in the case that χ = ωs,∫
×

K,1
/K× χ(tu)d×u = ts vol(E). And

∫

×

K,1
/K×

χω−1(tu)d×u =

{
0 χ %= ωs

vol( ×
K /K×)ts−1 χ = ωs

.

Define

κ =

{
0 χ %= ωs∀s∫

×

K,1
/K× d×u χ = ωs

.
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by symmetry. And we see that
∫∞
1 ζt(f,χ)

dt
t is holomorphic in χ; ζt(f̂ , χ̂) is holomorphic in

χ, as well.

That’s a great big theorem. This essentially tells us everything we know about abelian
L-functions. From this, we’ll deduce all sorts of functional equations for abelian L- and ζ
functions.

Exercise When d×xv is normalized so that
∫
O×v d×xv = 1, and at the archimedean places

d×xv =

{ dx
|x| Kv

∼=
|dz∧dz|

zz Kv
∼=

, this gives us a multiplicative Haar measure on the restricted

product ×
K . Then the fundamental domain has volume

∫

×
K,1/K

×
d×x = 2r1(2π)r2hR/(#µ(K)).

The denominator is w, the number of roots of unity; µ(K) is the torsion subgroup of the units.
The regulator R is a certain determinant, defined as follows. We know that the units ofK are
finitely generated as an abelian group; O×

K
∼= µ(K)× r1+r2−1. Let the free part have genera-

tors ε1, · · · , εr1+r2−1. For such an εi we can look at44 ‖εi‖v1 , · · ·, ‖εi‖vr1 , ‖εi‖vr1+1
, · · · , ‖ε‖r1+r2

.

Actually, take logs of these norms. This gives us an (r1+ r2−1)× (r1+ r2) matrix. This will
have a relation in it. So take the absolute value of the determinant of any maximal minor
of this matrix. By the product formula, this is well-defined. In general, this is a pretty
transcendental number, and we don’t know very much about it.

Whenever you want to prove anything like this, in fact what you have to find is some sort
of explicit fundamental domain. In this case, because of the roots of unity, it’s tough to
write it down. But you can find some domain so that every point is represented exactly w
times.45 So we’ve got this w-fold fundamental domain. The class number comes in because
it’s natural to consider the product of all units; and then you want to take away or mod
out by K×, where K× corresponds to principal ideals. Elements in the product of the units
correspond to the trivial ideal. So basically, you know that ×

K/(
∏

v|∞ K×
v ·K× ·∏v O×

v ) is the
class group. The K× doesn’t do anything, and we know what to do with the nonarchimedean
places. So you compute the unit part of the denominator divided by K× . And that, pretty
much, is the class number. When you compute this you’ll see that the units naturally come
in. So find a fundamental domain for (

∏
v|∞ K×

v ·K× ·∏v O×
v )1/K

×.

44Let the vj be the archimedean places.
45Otherwise you have to take something smaller which isn’t easy to write down.
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Today we’ll play with zeta functions. As usual, we define

ζK =
∑

a⊂OK

1

( a)s

=
∏

p

1

1−Np−s
.

When K = , then ζ (s) is the Riemann zeta function. This is the prototype of all these
zeta and L-functions. L(χωs) = L(χ, s). We saw that for every quasicharacter χ you have
an L function, and L(χ, s) will be holomorphic on the whole complex numbers, with possible
poles only when χ is a power of ω. If χ isn’t a power of ω, then this is entire; holomorphic
on the coplex plane. When χ is a power of s, you pick up the poles exactly when χωs is the
trivial character of χ itself.

Today, we’re going to write down what this implies for the classical zeta function of a
number field. These functions are analytic gadgets. From experience, everybody knows that
the zeta function of a global field encodes everything about it; if you really understand the
zeta function, you understand everything about the number field. In ways we don’t fully
understand, it encodes all the information you’d want.

We’ll see that the classical thing has a simple pole at s = 1, and there’s a functional equation.
The residue at s = 1 gives the class number.

The way to get started is to identify this zeta function as a special case of the L(χωs)
things we did before, since if you take χ the trivial quasicharacter, then that’s the zeta
function. ζK(s) = L(ωs). Immediately we know it has a functional equation. We know that
Λ(ωs) = ε(ωs)Λ(ω1−s). Here, ε(ωs) is what? It’s a product of local factors;

ε(ωs) =
∏

v

ε(ωs,ψv, dxv).

Choose ψv = e−2π
√
−1 tr if v|∞, and e2π

√
−1 tr if v is finite. Let dxv be the self-dual measure

with respect to ψ. We know that it’s |dz ∧ dz| for v complex; dx if x is real; and
∫
Ov

dxv =

(NDv)−
1
2 . Immediately we know that if v is unramified over then it’s one. So if v is

infinite, then ε(ωs,ψv, dxv) = 1. If v is finite and unramified, then ε(ωs,ψv, dxv) = 1 again.
Finally, what about Dv nontrivial, that is, v is ramified, while χ trivial. Then we see that

ε(ωs,ψv, dxv) =
ωs(π

dv
v )

‖πv‖dv
∫
Ov

dxv = ‖πv‖sdv−dv+
dv
2 = ‖πv‖sdv−

dv
2 .46 Putting it all together, we

have
46We’re thinking of DK, =

∏
pdv
v .
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ε(ωs) =
∏

v

ε(ωs,ψv, dxv)

= D−s+ 1
2

K

Λ(ωs) = (discK)
1
2−sΛ(ω1−s).

We can write this in terms of gamma factors.

ζK(s)Γ (s)r1Γ (s)r2 = (discK)
1
2−sΓ (1− s)r1Γ (1− s)r2ζK(1− s).

As an exercise, take a Dirichlet character, a character of ( /n )×
χ→ × . You can write this

as an idele class character for . Then the Dirichlet L-function becomes one of our L(χ)’s.
You can get a functional equation. See if this corresponds to the functional equation in any
number theory book.

Let’s go for the analytic class number formula. The way we want to do this is the following.
In general, from this product formula [for L-series], you can do some Hecke theory, but
it doesn’t tell you anything about the zeros or poles. In order to do tis, you’ll need to
do a global calculation. The information we have about the residues comes from a global
calculation, and that occurs in the proof of Tate’s theorem. So, if we can identify either
ζK(s) or the Λ(ωs) as a global zeta function in the sense of Tate, then we win.

But we’re almost there, for if you remember, when we computed the local epsilon factors,
we actually computed a lot of the local zeta functions, by which we mean

∫
K×v

f(x)χ(x)d×x.

Recall that if Kv
∼= , then

∫
× e−πx

2
ωsd×x = Γ (s).; if Kv

∼= , then
∫
× e−2πzzωsd×xv =

πΓ (s).

If v is nonarchimedean, let f0 be the characteristic function of Ov. Then

∫

Ov

f0(x)ωs(x)d
×x =

∑

n≥0

∫

πnO×v
‖π‖ns d×xv

=
1

1−Np−s
v

·
∫

O×v
d×xv

Take d×xv so that
∫

O×v
d×xv = ( Dv )

− 1
2 .

= ( Dv )
− 1

2
1

1−Np−s
v

.
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Now take f0 =
∏

v f0,v. Then use the Euler product. Then

ζ(f0,ωs) = ( D)−
1
2πr2Γ (s)r1Γ (s)r2ζK(s).

But the left-hand side has a simple pole at ωs = ω or ωs is trivial, i.e., at s = 0 and s = 1.
Furthermore, at s = 1, the residue is f0(0)

∫
×
K/K× d×x; some constant times the volume of

the fundamental domain. This is everything.

Now, we have to remember that last time we had a formula for the volume of the fundamental
domain. But now the normalization of the Haar measure is different from that one. Cause
the other one is normalized in such a way that

∫
O×v is always one. If we use the formula, we

get that at s = 1 the residue is

f0(0)2
r1(2π)r2hR/W.

But this measure differs by a factor of the discriminant. So actually the residue [using this
measure] is

f0(0)
2r1(2π)r2hR

|discK |
1
2 W

.

But Γ(12) =
√
π.

The final answer is that

ress=1 ζK(s) =
2r1(2π)r2hR

|discK |
1
2 w

.

This is the analytic class formula. Now, there are cases when this is easy to use. For
example, if K is a cyclotomic field, then we know that the zeta function is related to the
Riemann zeta function by a product formula. Let K = ( n

√
1). We’ll see shortly that

ζK(s) = ζ (s)
∏
χ %=1 L(χ, s), where χ : ( /n )× → × .
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We want to find fundamental domains for

• K/K for function fields.

• ×
K/K× for number fields and function fields.

Find their measures with respect to the self-dual Haar measure, for the adelic case. And for
ideles, define

xv =






∫
O×v d×xv = 1 v finite
|dz∧d|

z Kv
∼=

dx
|x| Kv

∼=
.

There’s another problem, namely, K a function field. We had the Poisson summation formula
for K ⊆ K ; and that, essentially, gave Tate’s theorem. For the function field case, the
question is to show that this exactly corresponds to Riemann-Roch47 and Serre duality.

Today’s lecture is about Artin L-functions. We saw before that we have one kind of L
function. Namely, given an idele class quasicharacter χ : ×

K/K× → × , we have an L
function L(χ, s). And if we add the Γ factors at ∞, we get Λ(χ, s). Recall that

L(χ, s) =
∏

v finite

L(χvωs)

and

Λ(χ, s) =
∏

v

L(χvωs).

Note that these correspond to 1-dimensional [abelian] representations. Automorphic L func-
tions come from m/K. This is sort of like abelian harmonic analysis. And we saw that it
has an analytic continuation and satisfies functional equations, etc. We know it has [possi-
bly] simple poles for certain χ’s, specifically, exactly those of the form ωs for certain s. And
we even know what the s’s are, and how to compute the residues at those poles.

Artin L-functions arise as follows. Take a finite Galois extension L over K, with group G.
Take a finite dimensional complex representation of G; call this ρ : G → Aut(V ) with V a

vector space. Then we can define an Artin L-function as follows.

47For a smooth curve over a finite field.
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L(ρ, s) def=
∏

v finite

L(ρv, s).

Okay, fine. Gotta define the local factors. They are given by

L(ρv, s) = det(id−ρ(Frv)q−s
v |V ρ(Iv))−1.

You take the inertia group at V . It’s a subgroup of G, defined up to conjugation; fix a
place upstairs, and look at its inertia group. If w is a place over v, then Dw ⊇ Iw , and
Dw/Iw ∼= Gal(κw, κv). So there’s a frobenius element, and we can use it. And qv = #κv.

Let’s think about id−ρ(Frv)q−s
v |V ρ(Iv).

Aside; ρ(Frv) operates on the inertia invariants V (ρ(Iv). So it has eigenvalues λ1, · · · ,λmv .
And here, we’re taking

∏mv
i=1(1 − λiq−s

v )−1. For example, if ρ is the trivial representation,
well, everything is inertia invariant, and so we get

∏
v(1− q−s

v )−1 = ζK(s).

As another example, let L be the cyclotomic field (ζn), and K = . Then χ : ( /n )× →
× is a 1-dimensional character of the Galois group. Then L(χ, s) is the classical Dirichlet

L-function attached to χ.

Artin sez, when ρ is a 1-dimensional representation, then (ρ, s) should come be L(χ, s) for
some χ : ×

K /K× → an idele class [quasi]character. And therefore, this Artin L-function is
identified with an automorphic L-function. In this way, well, the true reason of course is that
there’s a map ×

K/K× → G, where G = Gal(L,K) for some L; and there’s a ρ : G → ×

which, when composed with that map, gives χ. And that map to G is the Artin reciprocity
law.

Let’s try to understand this operator ρ(Frv)|V ρ(Iv) as a linear operator. You have a finite
dimensional representation of a finite group. How do you get the invariants? Representation
theory tells us the answer.

Recall that, for G a compact group and ρ : G → Aut(V ) V a -vector space how do you
get the invariants? Well, you compute

∫
G ρ(g)dg ∈ End (V ). This is a projection onto the

invariants V G.

Apply this to our situation. We know that

1

#Iv

∑

g∈Iv
ρ(g)

is a projection operator onto V . Then
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det((idv −ρ(Frv)T )
1

#Iv

∑

g∈Iv
ρ(g))−1 = det(id−ρ(Frv)T |V ρ(Iv))−1

and set T = q−s
v . Take logarithms of everything in sight. Let χ = χρ, i.e., χ(g) = tr(ρ(g)).

log(1− aT )−1 =
∑

m≥1

amTm

m

In general log det(idW −A · T )−1 =
∑

m≥1

tr(Am)

m
Tm

[Here, we assumed A is diagonal, and then
∑

i a
m
i = tr(Am).]

And that determinant above is

det(idV −Tρ(Frv)(
1

#Iv

∑

g∈Iv
ρ(g)))−1

since this thing operates as the identity on V/V ρ(Ig). For this is really idv - something times
some projection operator. So we can compute 0→ V Iv → V → V/V Iv → 0. And therefore
the determinant of any automorhpism is the product of the determinant induced on the
invariants and the quotient thing. Both sides [in the determinant equation] are the same on
the invariants and the quotient space, so they’re the same. That sum operates as zero on
the quotient.

Then

log det(idV −Tρ(Frv)(
1

#Iv

∑

g∈Iv
ρ(g)))−1 =

∑

m≥1

χρ(Fr
m
v (

1
#Iv

∑
g∈Iv ρ(g)))T

m

m

logL(ρ, s) =
∑

m≥1

χ(Frmv
1

#Iv

∑
g∈Iv ρ(g))

m
q−ms
v

One usually writes this as
∑ χ(Frmv )

m q−ms
v .

Facts of life:

• L(ρ1 ⊕ ρ2, s) = L(ρ1, s)L(ρ2, s).
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• If L ⊃ M ⊃ K, everything Galois, H = Gal(L,M), G/H = Gal(M,K), and ρ a
representation of G/H , then L(ρG/H , s) = L(ρG, s).

• 48 Assume H ⊆ G is just any old subgroup of G, not necessarily normal. Assume
ρ : H → Aut(V ). Then we can induce, and L(IndGH(ρ), s) = L(ρ, s). In other words,
the Artin L-function is inductive.

48The only nonobvious property
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Working on Artin L-functions.

If there’s a finite Galois extension L/K of global fields, G = Gal(L,K), we suppose a finite
representation ρ : G→ GL(V ) with V a -vector space. Then we define the Artin L-function

L(ρ, s) =
∏

v finite

det(id−Frv q
−s
v |V Iv )−1.

Fact If ρ is abelian, then L(ρ, s) has a meromorphic continuation. This isn’t obvious at
all; all we can tell for sure is that it’s absolutely convergent for +(s) > 1. Additionally, when
ρ is abelian, there’s a functional equation relating L(ρ, s) and L(ρ̌, 1 − s). Equality holds
when you add in the Gamma factors properly. This fact, in essence, is class field theory in
toto.

This tells us that, in general, L(ρ, s) has a meromorphic contintation to and a functional
equation. This is an easy consequence of a theorem of Brauer, say, for any finite dimensional
representation ρ of a group G, we can find subgroups Hi ⊂ G, one-dimensional representa-
tions τi of Hi, and ni ∈ so that χρ =

∑
i ni Ind

G
Hi
(χτi).

Brief review of induced representations. Suppose H ⊂ G, and τ : H → GL(V ) a finite
dimensional representation. Then you can define an induced representation IndG

H(τ) : G →
GL( [G] ⊗ [H] V ). Recall that χρ(g) = tr(ρ(g)).

Anyways,

L(IndG
H(τ), s) = L(τ, s).

Then L(ρ, s) =
∏

i L(τi, s)
ni.

But there’s a problem. In general, we know that if we take a 1-dimensional representation,
then it’s automatically irreducible. Assume it’s nontrivial. From Tate’s theorem, a nontrivial
1-dimensional representation then the Artin L-function corresponding to it is entire in s.49

In particular, if χ is nontrivial, dimχ = 1, then L(χ, s) is entire.

There’s a conjecture of Artin: ρ nontrivial irreducible. Then L(ρ, s) is entire. Thus far, the
only known results are that it’s known if ρ is 2-dimensional. The method is base change of
automorphic representations to get down to the abelian case; there are only finitely many
finite subgroups of SL2( ). Good reference is Michael Artin’s textbook in algebra.

We’re now going to prove that the Artin L-function is inductive. The situation is this:

49Linguistic note: a grössen characer is an idele class character.
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L

M

H

#

"

K#

"

G

Claim is that L(L/M, ρ, s) = L(L/K, IndG
H(ρ), s). This is a local question; we’ll prove place

by place that the Euler factors coincide.50

So assume that L, M , K are local fields. Just go to work and pray that everything works
out. So, look at IndG

H(V ). Let v be a place of K, v′ ∈ M , v′′ in L all lying over/under each
other. Well, maybe we’ll just call them all v. We have to look at the inertia invariants.
What’s IndG

H(V )Iv?

IndG
H(V )Iv = HomIv(1Iv , Ind

G
H V |Iv)

= MorG(G/Iv, Ind
G
H(V ))

= MorH(H/(Iv ∩H), V )

= IndGal(l,k)
Gal(l,m) V

Iv′ .

Hmm. We’re using the diagram

1 ! Iv ! G ! Gal(l, κ) ! 1

1 ! Iv′
∪

"

! H
∪

"

! Gal(l,m)
∪

"

! 1

and Frobenius reciprocity, which says that

50Why? That’s an exercise. The reason, essentially, is M ⊗K Kv =
∏

w|v Mw.
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HomG(W, IndG
H V ) = HomH(W,V ).

Anyways, it’s alleged that the identity

IndG
H(V )Iv = IndGal(l,k)

Gal(l,m) V
Iv′ .

Let’s go compute the local Euler factor.

det(id−Frv q
−s|

IndGal(l,k)
Gal(l,m)

V I
v′
)−1

We’re in a simple linear algebra situation. Let W be the induced Galois thing; and T acts
on W , it’s Gal of something. There’s an exact sequence

1 ! G1 = ⊂
n! G2 = ! /n ! 1

T n ! T

And T operates on W ; it’s IndG2
G1

W . Then what we really have is

det(id−T ·X|
Ind

G2
G1

W
) = det(id−T nXn|W ).
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Example time today, hurray!

Start with quadratic fields. K = (
√
d) with d square free. The ring of integers is

OK =

{
[
√
d] d ≡ 2, 3 mod 4

[1+
√
d

2 ] d ≡ 1 mod 4
.

51

So in the first case, the matrix is

(
1
√
d

1 −
√
d

)

, whence dK = discK = 4d, and d otherwise.

So we typically write

OK = [

√
dK +

√
dK

2
].

We know p ramified ⇐⇒ p|dK. For p unramified, there are two cases. Either the rational
prime p stays prime; the inert case; and otherwise it splits into two primes, which is called
split. For p % |dK , if p %= 2, then

(
dK
p

)
= 1 ⇐⇒ p splits. What about p = 2? In that

case ou have to do the same thing. Or, if 2 is unramified, then d ≡ 1mod, and dK = d. So
look at [dK+

√
dK

2 ]. For α = dK+
√
dK

2 , what is its minimal polynomial? It’s x2 − tr(α)x− ,

i.e., x2 − dKX + dK(dK−1)
4 . This splits mod 2 ⇐⇒ the constant term is zero mod 2. The

condition is precisely that dK ≡ 1 mod 8.

Now let’s talk about units O×
K .

O×
K =

{
{±1}× K real
{±1}, µ4, µ6 K imaginary

.

If you have an nth root of unity, then the degree of the whole extension is at least φ(n). That
constrains what sort of units you can get.

Now, if K is real, we can try to get a generator for the free part of O×
K . For all η ∈ O×

K ,
η %= ±1, we can get four other units pretty much like it; η, η−1,−η,−η−1. If η %= ±1, then
these four numbers each lie in a unique interval out of (0, 1), (1,∞), (−1, 0), (−∞,−1).
In other words, for a fixed embedding K ↪→ , and we look at a fixed unit η under that
embedding, the four values move around these four intervals. Fix some embedding ι. Then
we say η is a normalized fundamental unit with respect to this embedding if ιη > 1 and η is
a fundamental unit.

51Can compute these by writing down the norm and trace, and finding necessary and sufficient conditions
for them to be [rational] integers.
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Remark: ηητ = ±1; it’s the norm of a unit, and thus must be a unit in . So the conjugate
of η is one of the four numbers.

And now, an easy characterization of normalized fundamental units. Let’s go slow; and at
the end we’ll answer the original question. Suppose v is a normalized fundamental unit with
respect to a fixed embedding ι. We know that, for every unit η with ιη > 1, η has the
form vn for some n ≥ 1. Write v = x + y

√
d; suppose ι is such that ι(

√
d) > 0. Anyways,

v = x+ y
√
d with x, y ∈ >0 .

For n ≥ 1, write vn = xn + yn
√
d. Then

(xn + yn
√
d)(x+ y

√
d) = xxn + yynd+ (xyn + xny)

√
d

xn+1 = xxn + yynd

yn+1 = xyn + xny.

Observe that the xn are either integers of half integers. And if d ≡ 2, 3 mod 4, then xn ≥ 1
since everything’s integers. Then xn+1 > xn. If d ≡ 1 mod 4, if x ≥ 1, then xn+1 > xn.
So the only hangup is if x = 1

2 . Well, v is a unit. So NK, (v) = 1
4 − y2d. Take absolute

values;
∣∣∣14 − y2d

∣∣∣ = 1. Then y2d = 5
4 or −3

4 . The second is impossible, since we have a real

quadratic extension. Then y2d = 5
4 , and d = 5; y = 1

2 . And xn+1 = xn

2 + 5
2y. Hold on a

minute. v = 1
2 +

√
5
2 . Then every xn > 1

2 is n ≥ 2.

The conclusion is that v is a fundamental unit normalized with respect to ι ⇐⇒ ι(v) and
x < x′ for every unit η = x′ + y′

√
d such that ι(η) > 1.

You get uniqueness from this, too.

For example, (
√
2). The smallest possible thing would be 1 +

√
2; and this is a unit, so

we’re done.

Try (
√
3), it’s 2 +

√
3. (

√
5), get 1+

√
5

2 .

For real quadratic fields with small discriminant, this is pretty convenient. In general, there’s
an efficient algorithm which looks at the continued fraction expansion of

√
d. The problem

is to find some unit at all; and that comes from Pell’s equation, thus named in spite of its
irrelevance to Pell and vice-versa.

Move on. Let u be a fundamental unit; we know the other four. Then NK, (u) = ±1. It’s
interesting to know which one it is. There are easy criteria to detect when it’s one, namely:
if the discriminant dK has a divisor p ≡ −1 mod 4, then NK, (O×

K) = 1. Well, compute

NK, (a + b
dK +

√
dK

2
) = a2 + abdK +

1

4
b2d2K −

1

4
b2dK
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= a2 + dK(ab+ b2(
dK − 1)

4
)).

Suppose this is −1. Then a2 ≡ −1 mod dK ; and if p|dK, then −1 is a quadratic residue mod
p, and we’re done.

So the only case that leaves any doubt is when all the odd prime divisors of the discriminant
are congruent to 1 mod 4.
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Talk about Riemann-Roch ⇐⇒ Poisson summation.

Let K be a global function field i.e., q (C), where C is a smooth, proper geometrically
connected algebraic curve over q : q is the field of constants. Then Poisson summation is
equivalent to Riemman-Roch. Here’s why; well, a sketch, anyway.

Think about what Riemann Roch says. It says that, for every divisor D on C, you look at
sections H0(C,O(D)), and the dimension of that over q . Actually, take

dim q (H
0(C,O(D))− dim q H

1(C,O(D)) = 1− g(C) + degD.

Here, dim q H
1(C,O(D)) = dim q H

0(C,ΩC, q (−D)). That’s by Serre duality.

Well, you have to get a hold of dim q H
0(C,O(D)). This is in additive notation. We can

rewrite it as follows.

#H0(C,O(D)) · (#H1(C,O(D)))−1 = q1−g(C)+degD.

Poisson summation says that if f is a Schwartz function on adeles, f ∈ S( K ), then

∑

ξ∈K
f(ξ) = (const)

∑

η∈K
f̂(η).

In this case, we have no archimedean places. So a Schwartz function is a locally constant
function wihth compact support. So we can choose f to be the characteristic function of∏

v p
−nv
v , where D =

∑
nvv. This thing is compact, and so f is a Schwartz function. Apply

Riemann-Roch. Then the left hand side is

∑

ξ∈K
f(ξ) = #H0(C,O(D)).

How do we choose ψ? Pick some 1-form, and use residues; this gives you a pairing. This
gives you a nontrivial global additive character ψ, so you can take transforms. That’ll
more or less give you the right-hand side of the Poisson summation formula. Ω comes in
since you choose a 1-form, and the choice of ψ determines the Fourier transform locally.
So basically, the 1 − g(C) gives you essentially the volume of the fundamental domain, if
you make a good choice. Another way of saying this is that you know, well, why do you
se the inverse measure? Remember that if g(x) = f(ax), then ĝ(y) =

∫
f(ax)ψ(xy)dx =∫

f(x)ψ(a−1xy)dxa = ‖a‖−1 f̂(a−1y). The inverse inside there is the same as the −D in
Ω1

C, q
(−D).
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Quadratic Fields Let K = (
√
d) with d square free. Assume for the moment that K is

real. If u is a fundamental unit, then NK, (u) = ±1. But which? Can relate this to ideal
class groups versus strict ideal class groups. This’ll be essentially Galois cohomological, but
we’ll pretty much blow that off for now.

Now, the class group is a quotient, so we can write down an exact sequence.

0→ PK → IK → CK → 0.

We also define the strict ideal class group C+
K as the quotient of principal ideals generated

by totally positive elements.

0 ! PK,+
! IK ! C+

K
! 0

0 ! PK

#

∩

! IK
#

! CK

π

∨∨
! 0

0 ! O×
K,+

! K×
+

! PK,+
! 0

0 ! O×
K

#

∩

! K×
#

PK
!#

∩

0

By diagram chasing or the snake lemma or whatever, we get a long exact sequence. So

ker(C+
K → CK)

∼=! coker =
PK

PK,+

0 ! O×
K/O×

K,+
! K×/K×

+
! (PK/PK,+) ! 0

But we understand the bottom thing. By weak aproximation, there’s a surjection K×/K×
+

∼=→
( /2 )2 . Now, O×

K,+ ⊆ O×
K,+×{±1} ⊆ O×

K . The index of the first thing is 2, and the second
in the last is either 1 or 2. It’s one ⇐⇒ all units have norm 1; and if it’s two, then some
units have norm -1. Thus, NK, (u) of a fundamental unit u is 1 ⇐⇒ #PK/PK,+

∼= /2

⇐⇒ ker(C+
K → CK) ∼= /2 . And NK, (u) = −1 ⇐⇒ C+

K

∼=→ CK .
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Move on. Consider K over . We’ll try to understand the 2-torsion subgroup of the strict
ideal class group. In other words, the subgroup of the ideal class group killed by 2. Denote
this C+

K [2]. We’ll figure out a convenient way to undersand this in terms of ramification
K/ . Let R be the subgroup of IK generated by ramified primes; it’s r where r is the
number of prime divisors of the discriminant. There’s a map R → C+

K via p &→ [p]. And
the square dies, as p2 = p > 0. So R/R2 goes toC+

K through the 2-torsion C+
K [2]. Claim

that R/R2 → C+
K is actually a surjection. Take a a fractional ideal. We’re assuming that

a2 = (x), x ∈ K×
+ .

Let a =
∏
pnv
v . Assume that almost all of these are 1; for if there’s a 2, well, (p) is one of p2v¡

pv, or pvpv′ .

If τ is a nontrivial Galois element, then

aaτ = N(a) = (r) for some r ∈
[a] + [aτ ] = 0

[a2] = [a] + [a]

= 0

[a] = [aτ ]

a1−τ = (y) y ∈ K×
+

If p splits, then aτ−1 = (y) means that, well, we’ll see.

We want z ∈ K×
+ so that (az)τ = a, ie., a1−τ = (zτ−1). So take y1+τ . Well, (y)1+τ is the

trivial ideal.

Somehow, we’re going to get out of this muddle by applying Hilbert’s theorem ninety.
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Unfortunately, I missed the last class. But we were looking at biquadratic extensions, i.e.,
K an extension of , G = Gal(K, ) = ( /2)2 .

There are two cases to worry about; K imaginary and K totally real. We saw that

O×
K
∼= µK × r

where

r =

{
1 imag
3 real

.

We want a bound for µK , which is some cyclic group µn. Immediately we find lots of easy
bounds; for then we see that φ(n) ≤ 4. And since we have ±1, n must be even. So the
only possible primes dividing n are 2, 3 and 5. Consider 5 for a moment. If 5 is there, i.e.,
µ5 ⊆ µK , then (µ5) ⊆ K, and therefore Gal(K, ) ⇀ Gal( (µ5), ), impossible since one
is cyclic order 4 and the other is the Klein 4-group. So 5 is out, and n = 2a3b. For such an
n, φ(n) = 2a3b−1, and it must divide four. Well, a ≤ 3, and b ≤ 1. So n ∈ {2, 3, 4, 6, 8, 12}.
In the last two cases, φ(n) = 4, and so K = (µ8) or (µ12). And n must be even, so 3 is
out. If n = 4, then K ⊇ (i); and if n = 6, then K ⊇ (µ3).

Go back to the original cases, K imaginary and K totally real. In the first case, well, there’s

a unique complex conjugation, so there’s a real subfield of degree 2; we have K
〈σ〉
⊃ F

〈s〉
⊃ .

And in the second case,

K

σ 1
σ
3

k1 k2

σ2

k3

For the various cases, we have

1. O×
K ⊇ µKO×

F , and the smaller thing is of finite index.
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2. O×
K ⊇ µKO×

k1O
×
k2O

×
k3 , again of finite idnex. Sketch; let vi ∈ O×

ki . And vn1
1 vn2

2 vn3
3 ∈ µK .

Consider how the σi’s act. Then vn1
1 v−n2

2 v−n3
3 ∈ µK as well, etc; just take conjugates

by the σi. Ultimately one can conclude that vi ∈ µK .

From now on we’ll concentrate on the first case, an imaginary biquadratic extension. So we
have K totally imaginary over F , and K an imaginary biquadratic extension of . We want
to understand the index of these groups of units. Consider

O×
K → µK

y &→ y1−σ

52

Extend this to O×
K → µK/µ2

K. What is the kernel of this map? If y1−σ = ζ2 with ζ ∈ µK ,
then y1−σ = ζ2 = ζ1−σ. Thus, ζ−1y is invariant under σ; ζ−1y ∈ O×

F . Thus, the kernel is
µKO×

F . But we know what µK/µ2
K is; it’s isomorphic to {±1}. So the index [O×

K : µKO×
F ] is

one or two. Which happens when? If µK = {±1}, well, hold on.

If µK ⊇ µ6, then K = (ζ3 ,
√
d) with d > 0.

If µK ⊇ µ4, then K = (i,
√
d), d > 0.

If µK ⊇ µ8 or µ12, then K = (µ8) or (µ2).

Anyways, assume now that µK = {±1} and there exists an odd prime which ramifies in
K/F , the imaginary extension. Then the index [O×

K : µKO×
F ] = 1.

Proof Suppose not; suppose the index is really two. This means that you can find a unit
in K whose square is a fundamental unit of F times a root of unity. Symbolically, there’s
u ∈ O×

K , ζ ∈ µK with u2 = ζv1 = v′1 = ±v1. And also, u %∈ F . Then v′1 has a square root in

K, and therefore K = F (
√
v′1). But v

′
1 is a unit; think about its minimal polynomial, t2−v1.

So the only possible ramification is at 2, contradicting the assumption.

Now, assume that the norm is F, (v1) = −1. If this happens, something very bad will
happen. And the index will have to be one; [O×

K : µKO×
F ] = 1. Let’s see why this is the

case. If not, then there’s a unit u ∈ O×
K and ζ ∈ µK so that u2 = ζv1 = v′1. Now, (

√
ζ) is

a cyclotomic, and thus abelian, extension of . Then so is K(
√
ζ). In between K(

√
ζ) and

we have (
√
v1). Now, the big extension is abelian, and thus so is the subextension. But

there’s a problem. We know that v1’s norm is −1; under the two archimedean embeddings,
well, under one embedding v1 is real; and on the other it has an imaginary embedding;

52Think about why this lands us in the roots of unity.
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(
√
v1) has both real and imaginary places. Which is sewage, since the extension is abelian;

all of its archimedean places are conjugate, and the thing is either totally real or totally
imaginary.

Move on to a third case. Suppose we have p1, p2 distinct rational primes. Suppose pi ≡
−1 mod 4. Consider K( (

√
−p1,

√
−p2). The totally real subextension is (

√
p1p2) = F .

We’ll see that the index [O×
K : µKO×

F ] = 2. It’s not hard to see that only the pi ramify in
K/ ; but already (

√
p1p2) gives you that ramification. So K/F is unramified. So this

gives a piece of the Hilbert class field for F . Given v1 a fundamental unit of O×
F , we know

that F, (v1) = 1 purely by congruence considerations. Therefore, Hilbert’s theorem 90
says that there’s a ρ ∈ F× so that ρ1−s = v1.53

We may assume that ρ ∈ OF , by clearing denominators. Then the ideal (ρ) is equal to (ρ)s.
Assume that the divisor (ρ) involves only ramified primes to the first power; (ρ)|(√p1p2).
There are three cases.

1. ρ ∈ O×
F . That’s bad, for then F, (v1) gives us v1 = ρ2, although v1 is a fundamental

unit.

2. (ρ) = (
√
p1p2). Consider w = ρ√

p1p2
. Then w ∈ O×

F . So ρ
1−s = (w

√
p1p2)1−s = −w2 =

v1, again a contradiction.

3. (ρ)2 = (p1). Then v1 = ρ1−s. Write w = ρ√
−p1
∈ O×

K . Then v1 = (w
√
−p1)1−s ∈ w2µK .

Thus, the index is two.

Exercise Assume p1, p2 > 3. For then µK = {±1}. Show that hK the class number is odd.

53Recall that s = Gal(F, ), and σ = Gal(K,F ).
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Cyclotomic fields We saw, as an exercise, that (ζpm ) is totally ramified over (p) ⊂ ,
and is unramified outside p. It’s an extension of degree pm−1(p− 1) = ϕ(pm). Furthermore,
O (µpm) = [ζpm ]. You first prove the ramification stuff by a calculation of relative differents.
To show the integral basis, well, you check it everywhere locally; if true locally it’s true. By a
different calculation, you know equality holds everywhere outside p. And at p you essentially
show that 1−ζ is already a uniformizer. This being totally ramified, you’re done. You could
also do it with tricks, if you were so inclined.

Now let’s try it for general n =
∏
pmi
i . Well, you know that (ζn) is the compositum of

(ζpmi
i
). Hence, (µn) over is unramified outside the pi. We also know that its degree

is, well, hold on. There’s some small problem. The degree certainly divides ϕ(n), i.e.,
[ (µn) : ]|ϕ(n). We want to show equality, and ths means that the (µp

mi
i
)/ are linearly

disjoint over . There are many ways to do this. Well, we know that Gal( (µp
mi
i
), ) is

( /pmi
i )×. We know that Gal( (µn), ) ↪→ ( /n )× . For the action of a Galois element

depends only on its behavior on the roots of unity. Also, ( /n )× =
∏

i( /pmi
i )× . And the

big Galois group surjects on Gal( (µp
mi
i
), ). So we’ve got a composite surjection

Gal( (µn), ) ⊂ ! ( /n )×

Gal( (µp
mi
i
, )

∨∨ =! ( /pmi
i )×
#

Unfortunately, it turns out that this isn’t enough. But the linearly disjoint thing comes from
the fact that the discriminants are relatively prime to each other.

Let’s do it by overkill, using Dirichlet’s theorem on primes in arithmetic progressions.54 If
you look at any prime l prime to p, Gal( (ζpm ), ) is abelian, so there’s a unique Frobenius
element Frl ∈ Gal. Claim that, when you send the Galois group to ( /pmi

i ), Frl &→ l. This
means that the frobenius element applied to any root of unity ζ = ζpmi

i
is just Frl(ζ) = ζ l.

This has something to do with congruence modulo a prime lying over l. So anyways, now
we have a compositum. Take a prime different from all the pi’s. It maps to some element
there which is congruent to l mod each pmi

i . Therefore, it’s l in ( /n )× . But Dirichlet’s
theorem says that, for any element of ( /n )× , you can find some prime which is congruent
to it mod n. And that, pretty much, is the proof.

If you want to prove it honestly, use the following lemma.

54This has to do with the nonvanishing of L functions at s = 1.
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Lemma [Exercise] Let L1 and L2 be extensions of K, say everything’s a number field.55

Suppose disc(L1, K) and disc(L2, K) are relatively prime. Then L1 and L2 are linearly
disjoint.

Linearly disjoint says that [L1L2 : L1] = [L2 : K], and vice-versa.

Linearly disjoint does not mean that their intersection is K. F’rinstance. Consider ( 3
√
2)

and ( 3
√
2e2πi/3). Each is a cubic field over . Their intersection is . Their composition is

( 3
√
2, e2πi/3). Its degree is six, and not the nine you’d get if they were linearly disjoint.

Suppose L1 and L2 are both Galois over K. Does linearly disjoint mean that their interection
is K? Well, we’ve got a tower of groups

Gal(L1L2, K)

Gal(L1L2, L1) Gal(L1L2, L2)

(1)

Write this as

G

H1 H2

(1)

55The proof goes through for fraction fields of Dedekind domains, too.
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And H1 ∩ H2 = (1). This is all the information we have. G is the composition of the Hi.
This means that, well, G ↪→ G/H1×G/H2. Now, H1H2 is the smallest subgroup containing

both of them. Well, it seems to me we’re basically done; H1
∼=→ G/H2.

So we see that if both are Galois then there’s no problem. And actually, we only need L1

and L1L2/K to be Galois.

Back to cyclotomic fields. In the case at hand, you want to say that, suppose we have
the compositum of all the factors but one, and that last pi. We want to show that their
intersection is trivial. So you’ve got (ζN ) and (ζp), (p, n) = 1. Want to show their
intersection is . Well, the intersection is contained in (ζp), so only p’s may be ramified;
and similarly for N . So (ζN ) ∩ (ζp) is unramified over . But it sits inside a totally
ramified extension. So it must just be .

We can formulate a stronger version of the lemma. OL1L2 = OL1,K ⊗OK
OL2,K .

Proof Localize. We may assume that K is a local field. Moreover, Li may be assumed to
both be local, as well. At most one of the Li is ramified in the local picture. So now we have

L1
$ ⊃ OL1

K $ ⊃ OK

Uh-oh. The lemma we wrote down earlier isn’t exactly true. Here’s why. The problem is
that we’ve ignored the unramified extensions.

Let’s try an easy case. Suppose L1/K totally ramified, L2/K unramified. And everything’s
local. Then one can show tha tOL1L2 = OL1,K ⊗OK

OL2,K .

Proof Take L2/K.

L2 L1

K
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We know that L2 is obtained by a separable residue field extension. We can take some monic
polynomial f2[T ] so that f2[T ] mod πK is separable and irreducible, of degree [L2 : K].

We also know that L1 comes from some Eisenstein polynomial. Think of this as an Eisenstein
polynomial over L2. By the same damned criterion, it’s irreducible over L2. And this poly
gives the extension L1L2/L2.

Let’s show the stuff about integers. One knows that OL1 ⊗OL2 ⊆ OL1L2 . But now we have
a subring which contains the uniformizer, and which also gives every element in the residue
field extension, then it must be the whole works.

Wait. He’s writing it down now. In a local field situation you have L/K with rings of
integers B and A, respectively. Suppose B ⊇ C ⊇ A. Suppose πB ∈ C. Suppose that
the composition C → B → B/πB is surjective, then C = B. That’s how you use the
completeness; sort of slice it one layer at a time.

So in the lemma at hand, equality holds.

The reason the original lemma fails is that you might have two unramified extensions, and
you’ve got no idea if one is contained in the other.
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Now we’re trying to redo the lemma we somewhat botched last time. This’ll be phrased in
terms of number fields, but of course everything works over an arbitrary Dedekind domain.

Proposition Let L1, L2 be extensions of K, everything a number field. Suppsoe L1/K is
unramified at primes Pi/p, and L2/K is totally ramified over p. Then L1 and L2 are linearly
disjoint.

Proof It’s enough to look at the ramification of some Pi in L1L2 over L1. You conclude
that it must be totally ramified over each Pi, and so [L1L2 : L1] ≥ [L2 : K]. So they have to
be equal, and that’s what linearly disjoint means. Remember that we know the ramification
index is multiplicative.!

This gives us another proof of the fact that, if n
∏
pmi
i , pi’s distinct, then (µp

mi
i
)/ are

linearly disjoint. So we know that (µn) = ⊗ (µp
mi
i
). And because of what we proved

last time, O(µn) = ⊗ O (µ
p
mi
i

) .

Now let’s talk about units. We know that (µpm ) is totally ramified at p, and unramified
elsewhere; and the degree of the extension is pm−1(p− 1). One way to do this is to observe
that the cyclotomic polynomial is

Φpm(X) =
Xpm − 1

Xpm−1 − 1

= Xpm−1(p−1) +Xpm−1(p−2) + · · ·+ 1

= Φp(X
pm−1

).

And 1− ζpm is a uniformizer over p.

For a moment, let’s assume m = 1 so that Φp(X) = Xp−1 + · · ·+X + 1.

Want to say that 1 − ζpm is a uniformizer over p, and a unit elsewhere. We know that
Φp(Xpm−1

) =
∏

i∈( /pm )× (X − ζ ipm). So

p =
∏

i∈( /pm )×
(1− ζ ipm).

And the quotient
1−ζi

pm

1−ζpm
is a unit. These are the cyclotomic units; and we’ll see that they

form a subgroup of finite index in the group of all units.
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If n =
∏a

i=1 p
mi
i with mi ≥ 1¡ a ≥ 2. Then we have

Xn − 1

X − 1
=

∏

1%=m|n
Φm(X)

Φn(X) =
∏

i∈( /n )×
(X − ζ in)

Φn(1) =
∏

(1− ζ in)

Φn(1) | (Xn − 1)/(X − 1)
∏

i Φp
mi
i
(1)Φ

p
mi−1
i

(1) · · ·Φpi(1)
.

And from all this, we conclude that 1− ζn is a genuine, honest-to-god unit.

Hmm. We’ve got the abelian extension (µn)/ ; its Galois group is ( /n )× . It’s abelian
and totally imaginary, ramified precisely over primes dividing n. In particular, all the com-
plex conjugations are equal. They’re certainly conjugate to each other, but the extension is
abelian. Such a situation is called a field with complex multiplication

CM fields are central in classfield theory. Any proof of the main theorem uses cyclotomic
fields, and sooner or later you run into the following. You define a general reciprocity
morphism, and show it has a nice property. You do it like this. You know these properties
are satisfied for cyclotomic fields. Then the general theorem is forced to be true as it can’t
be otherwise.[?]

One thing we know is the following. For every l prime to n, we can talk about the Frobenius
element Frl ∈ Gal( (µn , ) ∼= ( /n )× , where the isomorphism is via the action on the roots
of unity. But, in a sense, Frl is just l, taken modn. For Frl(ζn) ≡ ζ ln mod l, where l is over
l.. From this characterization of the Frobenii we get the splitting behavior for unramified
primes.

F’rinstance, take l over l; we want to know the degree of the residue field extension, f(l, l).
But this is just the order of l mod n in ( /n )× . So l splits completely ⇐⇒ all the f ’s
have degree one ⇐⇒ l ≡ 1 mod n.

We can use this to define the Artin map:

rec :
′∏

(l,n)=1

×
l → ( /n )×

li &→ li mod n
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This is a restricted product, i.e., a subthing of the idele class.

If a = b
c ∈

× , b, c ∈ prime to n, a ≡ 1 mod ×n56 then rec(a) = 1 ∈ ( /n )× .

This is the existence of the conductor for the reciprocity law map.

There’s exactly one complex conjugation of (µn); call its fixed field (µn)+. Then (µn)+

is totally real, and (µn) is a CM field. [ (µn)+ : ] = ϕ(n)
2 . What are the Dirichlet ranks of

these fields? (µn) has
φ(n)
2 −1; but so is (µn)+. So we know that [O×

(µn)
: µn : O×

(µn)+
] <

∞, if you assume that 2|n so that nothing else happens. Let ι be the complex conjugation.
In the case of biquadratic fields, we showed that this index is at most 2. We did this via

O×
(µn)

→ µ×
n

u &→ u1−ι

We want to set the kernel so that we wind up computing the aforementioned index exactly.

O×
(µn)

µnO×
(µn)+

↪→ µn

µ×
n
2

u &→ u1−ι

And this is injective because if u1−ι = ζ2, then uζ ∈ O×
(µ)+ .

But the quotient thing on the right is, well, since 2|n, it’s ( /2 ). So the index is one or
two. Precisely,

[O×
(µn)

: µn : O×
(µn)+

] =

{
1 n = pm

2 otherwise
.

If n = pm, then there’s a u ∈ O×
(µ) so that u2 = vζ , where ζ ∈ µn and v a fundamental unit

of (µn)+. Hmm. Assume p %= 2. Can assume ζ = ±1 so that u2 = ±v, which is absurd.
For then (µpm ) = (µpm )+[

√
±v]. Remember, v is a unit. But the thing is unramified

outside 2, and we get a contradiction.

56meaning that b ≡ c mod n.
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We have the usual setup for cyclotomic fields. There’s (µn) ⊃ (µn)+ ⊃ . We saw that
there’s a map

O+
(µn)

/µ (µn)O×
(µn)+

↪→ µ (µn)/µ (µn)2
∼= ( /2 )

y &→ y1−ι

where ι is the complex conjugation. We saw that if n = pm, then O (µn)+ = µ (µn)O×
(µn)+

.

Now, assume that n has ≥ 2 prime divisors. Then we saw that 1 − ζn ∈ O×
(µn)

. And it
maps to

1− ζn &→ (1− ζn)1−ι

=
1− ζn
1− ζ−1

n

= −ζ−1
n .

So we conclude that the map given above is surjective, and thus the index is [O×
(µn)

:

µ (µn)O×
(µn)+

] = 2.

No course on algebraic number theory would be complete without a discussion of quadratic
reciprocity.

Let p > 2 be prime. Think about (µp). Gal( (µp)) ∼= ( /p )× is cyclic of order p−1 even,
and so it has a unique quotient of order 2.

(µp)

(?)

2

So the new field is a quadratic extension, totally ramified over p and unramified outside p.
So this says that the discriminant only has p as a divisor. And there’s a d so that the thing is
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√
d. Actually, d = ±1 depending on congruency conditions; d =

{
−1 p ≡ −1 mod 4
1 p ≡ 1 mod 4

}

p.

So we write this as (
√(

−1
p

)
p). we know the spliting behavior from the reciprocity law. For

every l %= p prime, Let K = (
√(

−1
p

)
p). Then Frl,K/ is the restriction of l ∈ ( /p )× =

Gal( (µp)/ ) to K. How do we recognize if this is the trivial element of Gal(k, ) = {±1}?
It depends exactly on whether l restricted there is trivial or not. But it’s the unique quotient
of order 2, so it depends precisely on whether l is a square; Frl,K/ =

(
l
p

)
.

So far we haven’t used our understanding of K. So on the other hand, l splits in K ⇐⇒(
(−1

p )p
l

)
= 1. So

(
l

p

)

=





(
−1
p

)
p

l





=
(
p

l

)



(
−1
p

)

l





=
(
p

l

)
(−1)

p−1
2

l−1
2 .

So much for examples.

Facts about homological algebra “Homological algebra is something you can mumble
about endlessly.”

References: Cartan-Eilenberg. Grothendieck, Sur quelques point de algébra homologique,
Tohoku 195?. Verdier, Catégorie Dérivé, Etat 0, SGA 41

2 .
57

Here’s the idea. The usual idea is this. You’ve got a functor F : A → B of abelian
categories.58 We usually insist that RF is left exact or right exact. Then you get derived
functors measuring the failure of exactness. The derived functors come from resolutions.

There are a couple sort of standard situations.

57“Every person should read the classics.”
58Ad hoc definition of abelian category; it’s a subcategory of the category of certain modules in which

every map betwen objects has a kernel, cokernel, image and coimage; and the natural map from the coimage
to the image is an isomorphism. So just think of it as, say, left-modules over a fixed ring. In algebraic
geometry you run into sheaves of modules over some sheaf of rings, possibly over some topos.
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1. F is left exact, A has sufficiently many injectives. In other words, for every A ∈ Ob(A),
there’s A→ I an injection, with I injective.59 We identify A as a complex concentrated
in degree zero; 0 → A→ 0. By using the existence of sufficiently many injectives, we
imbed A ↪→ I0; and then the quotient into an injective; and keep going. You get a
complex

0 ! A ! 0

0 ! I0

quasi − isomorphism

#
! I1 ! I2 ! ·

The quasi-isomorphism means that you get an isomorphism of cohomologies. You know
you can always find an injective resolution, and thus resolve A by injectives.

We define the derived functor as

RiF (A) def= H i(F (I•)).

This is well-defined; it doesn’t actually depend in the choice of resolution, since quasi-
isomorphism doesn’t change homology. It’s unique up to chain homotopy.

2. F is right exact. A has sufficiently any projectives. So for all A|inOb(A), there’s some
A← P with the map a surjection, P is projective, i.e., Hom(P, ·) is exact.
So all the arrows everywhere are revesed.

0 ! A ! 0

0 $ P 0

quasi − isomorphism

"

$ P−1 $ P−2 $ ·
59Recall that injective means that Hom(·, I) is exact. So if

0→M ′ →M →M ′′ → 0

is a short exact sequence in A, then

0→ Hom(M ′′, I)→ Hom(M, I)→ Hom(M ′, I)→ 0

is exact [even on the right!].
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The P i’s are projective, and we set Pi = P−i. Then define

LiF (A)
def
= Hi(F (P•)).

Then everything is still true, provided we reverse the arrows.

Example G a group. A the category of G-modules. That’s he same as the category of
[G]-modules. Sometimes, you want to fix the coefficient ring, so you could use G-modules

over a commutative ring k or whatever. That’s an abelian category. Automagically you
know a couple of things. First, A has enough projectives.60 These projectives are the ones
you understand, just the free things. By generality61, A has enough injectives. That’s a lot
harder to prove.6263

60That’s trivial, sine you have the free obects running around, and any submodule is the image of a free
modules; just pick the generator set, and mot out by whatever relations you have running around.

61?
62Actually, all of this is true for any associate ring R; can look at R[G]. And in that context, how do

ou construct an embedding intoan injective object? What you do is take lots of direct limits over families
indexed by, say, all possible embeddings. The effect of that is that you don’tknow what you’re talking about.
Can’t follow the construction enough to get the information you need. It’s a typical existence proof based
on the axiom of choice, completely unenlightening.

63But if your group isn’t too disgusting, you can say a lot more.
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We’re computing higher derived functors, etc.

Examples Let A be a ring, not necessarily commutative. Let A be the category of left
A-modules. And we’ll denote A′ the category of right A-modules. This is the same as
the categor of left Aopp-modules, where the opposite module is just the thing with the
multiplicative action switched. Then we can talk about the extension functors ExtiA(M,N).
These are right derived functors of HomA(·, N), which is a left-exact contravariant functor on
A to the category of abelian groups. Or, you can take the right-derived functor HomA(M, ·),
which is also a functor from A to the category of abelian groups, except that this time
it’s covariant. The equivalence of these two things means there’s a canonical isomorphism
between them.

How do you compute this? Take a projective resolution P• → M . Then what you want
is H i(Hom(P•, N)). How do you compute the other thing? Take an injective resolution
N → I•, and then use H i(HomA(M, I•)). Then show that each of these is equal to the ith

cohomology H i(HomA(P•, I•)). Everything in sight is canonical.

If M is a right A-module, N a left A-module, then you can form M ⊗A N an abelian group.
Take TorAi (M,N) is either the ith left-derived functor of · ⊗A N , or the left-derived functor
of M ⊗A ·.
Let’s talk about composition of functors. Suppose you have A F→ B G→ C. Assume that F
and G are both covariant left exact, and both A and B have sufficiently many injectives.
We make the extra assumption that F (injective) is acyclic with respect to G, i.e., has no
higher cohomology. It makes sense to look at R•(G ◦ F )(A). On the other hand, you can
take RiG(RjF (A)). There’s a spectral sequence whose Ei,j

2 term is is this latter thing, whose
limit is the former.

Spectral sequence? Wazzat. Look at Serre’s paper in Annals, his thesis. It’s in the collected
works, volume I.

We can look at a geometric situation, f : X → Y a map of topological spaces, F a sheaf
[of coefficients]. Then ΓY f∗ = ΓX . From this you get an E2 spectral sequence with i, j
term Ei,j

2 = H i(Y,Rj(f∗(F)); and this converges to H i+j(X,F). This is the Leray spectral
sequence.

Take a space X and basepoint ∗. Let E be the path space {x(t) : x(0) = ∗, 0 ≤ t ≤ 1}.
There’s a natural map x(t) &→ x(1). Then a fiber is the loop space with basepoint ∗. Then
the Rif∗(F) are essentially the fibers, but the fiber has a monodromy action. When X is an
Eilenberg Maclane space, then the fiber F is, too.

Now we can begin some [very simple] group cohomology.

For now, G a group [abstract]. The abelian category we have is A, the set of all left G-
modules. So it’s left [G]-modules. Immediately from what we said, we can specialize
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our discussion of Tor, etc. First of all, with trivial G-action is an object of A. From

our discussion, we have ExtiG( ,M) def= H i(G,M). On the other hand, we can look at

ToriG( ,M)
def
= Hi(G,M). Of course we have no idea what these are yet. But it’s clear

that H0 is just the functor itself, and so H0(G,M) = MG, the G-invariants of M . Sim-
ilarly, we can look at cohomology H0(G,M) = MG, the coinvariants. Concretely, this is
M/〈σm−m〉σ∈G,m∈M . This forces the action to be trivial.

Now, G has an involution x &→ x−1. This induces a map [G]
∼=→ [G]opp . Explicitly, a left

G-module M can be made into a right G-module as follows:

If m ∈M , g ∈ G, then set mg def= g−1 ·m where the multiplication on the right hand side is
according to the old rule.

So using this construction, M has both a left and right G-action. But you can’t expect that
these two actions commute, and indeed in general they’re not compatible. That is to say
that you don’t automagically get a G×G bimodule for free.

Unfortunately, to get this off the ground you need to know something about resolutions. So
I guess we’re about to construct a resolution. Because in computing group [co]homologies
we were talking about stuff, our resolution will be of the module . If you know anything
about algebraic topology, this is called the bar resolution. So if you’re so inclined, you can
think of things geometrically.

There are two forms of this bar resolution, the inhomogeneous complex and the homoge-
neous complex. The homogeneous one is the one you’ll see when you talk about the bar
resolution of some algebra; inhomogeneous is good for explicit formulas. So we’ll start with
inhomogeneous, as that’s how it crops up in Hilbert’s theorem 90, with the cocycle condition,
etc.

Jam with the inhomogeneous. We want a projective resolution C• → ; usually this is much
easier than injective resolutions. That’s cause we understand free resolutions [in the category
of modules] much better. Anyways, set

Ci
def
= [G] ⊗ · · ·⊗ [G] = [G]⊗ i+1.

The G-action is via the first factor. We want to find differentials among them, arrows
∂i : Ci → Ci−1, and ε : C0 → to be acyclic, i.e., exact. So the most convenient thing is to
say we have a chain homotopy hi : Ci → Ci+1 so that ∂i+1hi − hi−1∂i = id. We decree that
hi : Ci → Ci+1 is given by σ0 ⊗ · · · ⊗ σi &→ 1 ⊗ σ0 ⊗ · · · ⊗ σ − i. So we’ve fixed this. How
should we define the boundary map? You can inductively define the ∂i from the hi’s. For
the image of the hi contains a free basis of Ci+1, looked upon as a free module over the group
ring. And actually, the differential is uniquely determined precisely since imhi contains a
basis.
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So this gives an explicit resolution of .

Think of = Ci−1. Then hi−1(1) = e, the identity element of [G]; so ε(e) = 1. Thus,
ε(σ) = 1 for all σ, and that’s a unique definition.
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We’re trying to get a quasi-isomorphism C• → . Recall that Ci = [G]⊗ i+1. And we’ve
got

hi : Ci → Ci+1

σ0 ⊗ · · ·⊗ σi &→ e⊗ σ0 ⊗ · · ·⊗ σi.

Want to define the differentials ∂i : Ci → Ci−1 so that hi−1∂i + ∂i+1hi = id.64 We’ve
decided last time that ∂0 = ε the augmentation map, σ &→ 1. Let’s compute ∂1. Denote
σ0 ⊗ · · · tensorσi by σ0[σ1 ⊗ · · · ⊗ σi], so that the map hi is given by σ0[σ1 ⊗ · · · ⊗ σi] &→
[σ0 ⊗ · · ·⊗ σi]. Anyways, ∂1 is defined by the condition [remember i = 0] ∂1(1⊗ σ) + 1 = σ,
so that ∂1[σ] = σ − 1.65

Now, set i = 1. Then

∂2[σ0, σ1] + h0∂1(σ0[σ1]) = σ0[σ1]

h0∂1(σ0[σ1]) = h0(σ0(σ1 − 1))

= [σ0, σ1]− [σ0]

∂2[σ0, σ1] = σ0[σ1]− [σ0, σ1] + [σ0].

What the hell, let’s go for one more and pray we can find the next one – by the pattern, as
per Ching-Li’s daughter. Set i = 3.

∂3[σ0, σ1, σ2] + h1∂2(σ0[σ1, σ2]) = σ0[σ1, σ2]

h1∂1(σ0[σ1, σ2]) = h1(σ0σ1[σ2]− σ0[σ1σ2] + σ0[σ1])

∂3[σ0, σ1, σ2] = σ0[σ1, σ2]− [σ0σ1, σ2] + [σ0, σ1σ2]− [σ0, σ1].

So in general, we have

∂i[σ1, σ2, · · · , σi] = σ1[σ2, · · · , σi] +
i−1∑

j=1

(−1)j [σ1, · · · , σjσj+1, · · · , σi] + (−1)i[σ1, · · · , σi−1].

Using this formula, we’ve defined a resolution of the trivial G-module, .

64Changed a sign from last time, but that’s no problem. We’ll see if this is the right thing to do.
65Here, the 1 is the identity element of the group ring, 1 · e.
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Ching-Li is writing hC instead of Ch. We’ve defined the inhomogeneous complex. One can
also define the homogeneous complex Ch

• → , given by Ch
i = [G]⊗i+1 . Instead of having G

just act on the first term, we’ll have it work on all the ocmponents at once with the diagonal
G-action. So that

τ(σ0 ⊗ · · ·⊗ σi) = τσ0 ⊗ τσ1 ⊗ · · ·⊗ τσi.

Our task now is, well, you’ve got Ci and Ch
i . Want an isomorphism equivariant under G.

Ci
! Ch

i

σ0 ⊗ · · ·⊗ σi ! σ0 ⊗ σ0σ1 ⊗ σ0σ1σ2 ⊗ · · ·⊗ σ0σ1 · · ·σi

τ0 ⊗ τ − 0−1τ⊗τ
−1
1 τ2 ⊗ · · ·⊗ τ−1

i τi $ τ0 ⊗ τ1 · · ·⊗ τi

This clearly gives you a bijection of modules, and it’s clearly G-equivariant. Now,

∂i(σ0[σ1, · · · , σi]) = σ0σ1[σ2, · · · , σi] +
∑

(−1)jσ0[σ1, · · · , σjσj+1, · · · , σ − i] + (−1)iσ0[σ1, · · · , σi−1]

And this thing gets sent to or identified with or whatever

τ1 ⊗ · · ·⊗ τi +
i−1∑

j=1

(−1)jτ0 ⊗ τ1 ⊗ · · ·⊗ τj−1 ⊗ τ̆j ⊗ τj+1 ⊗ · · ·⊗ τi + (−1)iτ0 ⊗ τ1 ⊗ · · ·⊗ τi−1

which can be written as just

i∑

j=0

(−1)jτ − 0⊗ · · ·⊗ τ̆j ⊗ · · ·⊗ τi.

So the advantage is that, in the homogeneous formulation, the differential looks really nice.

“My daughter would certainly not be able to understand anything I’m talking about.”

Now, H0(G,M) = MG, and H0(G,M) = MG. What about H1(G,M)? You take the com-
plex C• → , and apply Hom(•,M) to it. You get HomG(C•,M), and take the homology via
H•(HomG(C•,M)). Now, the things we’re taking homology of are free modules. F’rinstance,
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C• is a free [G]-module with basis G×i = [σ1, · · · , σi]. So you can identify the homology as
H•(C•(G × · · · × G,M)). Here, the C for some reason means maps. In fact, I’m going to
write this as H•(Maps•(G× · · ·×G,M)). So a typical element looks like f(σ1, · · · , σi), it’s
an i-cochain. What’s its differential? It’s an i+ 1-cochain, given by

df(σ0, · · · , σi) = σ0f(σ1, · · · , σi) +
∑

(−1)jf(σ1, · · · , σj−1σj, · · · , σi) + (−1)if(σ0, σ1, · · · , σi−1).

So anyways, H1(G,M) = {f ∈ Maps(G,M) : σ0f(σ1) − f(σ0σ1) + f(σ0) = 0}. Some
would write this, given the notation (mσ0)σ1 = mσ1σ0 as, oh, never mind. It’s a crossed
homomorphism. Anyways, you have to mod out by those f so that f(σ) = σm−m fo some
m ∈M . This is nothing but coboundaries.

H1(G,M) =
{crossed homomorphisms}

{f : f(σ) = σm−m for some m ∈ M} .

Note that if G operates trivially on M , then H1(G,M) = Hom(G,M) = Hom(Gab,M).
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Still playing with group cohomology, of course. We’ve seen that H0(G,M) = MG, and
H0(G,M) = MG = M/IGM where IG is the augmentation ideal, which by definition is the
kernel in 0 → IG → [G]

ε→ → 0. So IG is the -span of all elements of the form σ − 1;
it’s the elements of the group ring whose coeffs add up to zero. We’ve seen that H1(G,M)
consists of all classes of crossed homomorphisms. And H1(G,M) = (Gab, ) = Homgp(G, ),
the characters of G. More generally, H1(G,M) = Hom(Gab,M) if G operates trivialy on
M . It’s also useful to know that what H1(G, ) is. We’ll see that this basically becomes the
abelianization of G. Could compute it from the standard resolution. Or, could use the exact
sequence

0→ IG → [G] → → 0.

Whenever you apply a derived functor to a short exact sequence, you get a long exact
sequence. In our case, the functor will be the one taking a module to its coinvariants. Now,
[G] is obviously a projective module. By definition, it doesn’t have higher cohomology. So

take the long exact sequence and get

0→ H1(G, [G]) → H1(G, 0 → H0(G, IG)→ H0(G, [G]) → H0(G, ) → 0.

Since G operates trivially, the coinvariants H0(G, ) = . And H0(G, [G]). So we can split
the original long exact sequence into the dumb one and

0→ H1(G, ) → H0(G, IG)→ 0.

From which we conclude that H1(G, ) = H0(G, IG) = IG/I2G. How do we understand this?
One way is, well, there’s a map

G → IG/I
2
G

σ &→ [σ − 1].

Try to define it on the quotient by the commutator subgroup, the derived group G/G′. So
gotta check that τστ−1 goes to the same element. But

σ &→ [σ − 1]

τ &→ [τ − 1]

στ &→ [στ − 1]

[τστ−1 − 1] =
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So since we’re modding out by the square, we ultimately get a map

G

G′ →
IG
I2G

.

Surjectivity should be obvious, since the image is just generated by elements of the form
[σ − 1]. How do we prove that it’s an injection? Try to define an inverse map

IG → G/G′
∑

nσ(σ − 1) &→
∏
σnσ

Since the LHS is a free abelian group, this is certainly well-defined. Gotta check that it’s
really defined on the quotient. But

(σ − 1)(τ − 1) &→ [στ ][σ]−1[τ ]−1 ≡ 1 mod G′

When all is said and done, we have an isomorphism

IG
I2G
∼=

G

G′ .

Change of groups Suppose there’s a homomorphism H → G, generalizing the situation
when H ⊆ G or G is a quotient of H . Let M be an H-module, N a G-module. There are a
couple of situations we might be worried about.

1. Suppose N →M is H-equivariant. We get H i(G,N)→ H i(H,M).

2. Suppose M → N is H-equivariant. Then there’s Hi(H,M)→ Hi(G,N).

We’ll see shortly how to define them.

1. Let f ∈ Z i(G,N), and ith cocycle with coefficients in N ; it’s a map on G×· · ·×G→ N
whose derivative is zero. We want to associate to it something in Z i(H,N). Just do
the obvious thing:

f ∈ Z i(G,N)→ Z i(H,N)→ Z i(H,M).
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This is defined on the level of cochains. Gotta make sure that coboundaries work. But
everything commutes with the differentials, so that works.

Can we express this in a more conceptual way? Maybe. Take the standard resolution
C•(G) → → 0. And C•(H) → → 0. These are the bar resolutions, defined in a
natural, functorial way. But there’s an idiot proof map C•(H)→ C•(G) that commutes
with the differentials. We’ve got

C•(G) ! ! 0

C•(H)

"

!

"

=

! 0

From this, get HomG(C•(G), N)→ HomH(•(G),M).

2. We can act similarly in this situation.

C•(H)⊗H M ! C•(G)⊗G N.

Generality of homological algebra says you can extend a map of H0 to a map on derived
functors.

The first map is called the restriction map, and the second one is the corestriction map;
Res and Cor. That’s cause we’re thinking of H ↪→ G. But we can also do it where H ⇀;
and then this is called inflation Inf. In general, these maps aren’t particularly injective or
surjective, although they’re certainly natural.

1. If H ↪→ G a subgroup, and N a G-module, we often take M to be the same module,
N , with the restricted action so we think of it as an H-module.

If H ⇀ G with kernel K. In this case take an H-module M , and for the G-module
take (G,MK) so that the quotient really acts on it.

2. In the homology case, well, it’ll be different from the cohomological story. Start with
a G-module (G,N), and restrict its action to get (H,N).
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Assume H ↪→ G, and M a left H-module. There are two ways to produce a G-module.
Both correspond to representation-theory inductions. Recall that a module is a represen-
tation. The question becomes, given a representation of a small group, how do you get a
representation for a bigger group? The answer, of course, is induction. Two ways to do this.

• [G] ⊗ [H] M . This is naturally a left G-module.

• Hom [H]( [G],M). This is naturally a left G-module.

These look like good things for quiet time.

The second thing is like the group ring for analysts; functions on the group. If you take H
trivial and M = , the second thing is much bigger than the first.

Lemma [Shapiro]

• H i(H,N) = H i(G,Hom [H]( [G], N)).

• Hi(H,N) = Hi(G, [G] ⊗ [H] N).

This is an easy exercise. The easiest way is probably this. Well, both identities are obvious
or i = 0. Then use dimension shifting to juice it up.

We used dimension shifting before when we used the long exact sequence associated to

Ig → [G] → → 0.

Since there are lots of projectives, you can build a sequence like this. And that changes the
ith homology to the (i− 1)th homology of something else. So that’s how you crank up.

Similarly for the cohomological statement, except that we resolve with injections.
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