
Symmetric polynomials

§1. Statement of the main theorem
Let R be a commutative ring, and let R[x1, . . . ,xn] be the polynomial ring over R in n variables x1, . . . ,xn.
The elementary symmetric polynomials in x1, . . . ,xn are defined by the equality

∑
i=0

(−1)isi T n−i = T n− s1 T n−1 + · · ·+(−1)n−1sn−1T +(−1)nsn =
n

∏
j=1

(T − x j)

in the polynomial ring R[x1, . . . ,xn][T ]. In other words s0 = 1 and

si = si(x) = si(x1, · · · ,xn) = ∑
I∈Sn·(1,...,i)⊂Nn

xI, 1≤ i≤ n

where Sn · (1, . . . , i) is the orbit in Nn of the standard action of the permutation group Sn on Nn and
xI := xi1

1 · · ·xin
n for all I = (i1, . . . , in) ∈ Nn.

The group Sn operates on R[x1, . . . ,xn] by permuting the variables. Polynomials in R[x1, . . . ,xn]
fixed by all elements of Sn are called symmetric polynomials (in variables x1, . . . ,xn with coefficients
in R.) Let S = R[x1, . . . ,xn]

Sn be the subring of R[x1, . . . ,xn] consisting of all symmetric polynomials.
Clearly S is the direct sum of all homogenous symmetric polynomials, and s1, . . . ,sn are elements of S.

The main theorem on symmetric polynomials asserts that S is a polynomial ring in s1, . . . ,sn, and
R[x1, . . . ,xn] is a free S-module of rank n!.

(1.1) THEOREM Let R be a commutative ring, and let S be the subring of R[x1, . . . ,xn] consisting of
all symmetric polynomials in R[x1, . . . ,xn].

(a) Let R[y1, . . . ,yn] be the polynomial ring in variables y1, . . . ,yn. The R-algebra homomorphism

α : R[y1, . . . ,yn]−→ S

which sends Yi to si is an isomorphism.

(b) The polynomial ring R[x1, . . . ,xn] is a free module of rank n! over S, and the set of monomials

xi1
1 xi2

2 · · ·x
in
n with 0≤ iν ≤ ν−1 ∀ν = 1, . . . ,n

form a set of free generators.

Recall that the lexicographic order on monomials in R[x1, . . . ,xn] is the linearly order on the set
of all monic monomials (or terms) such that xi1

1 xi2
2 · · ·xin

n ≺ x j1
1 x j2

2 · · ·x
jn
n if either iν = jν for all ν , or if

there exists an natural number ν0 with 1≤ ν0 ≤ n such that iν = jν for all ν < ν0. and iν0 < jν0 .

§2. Proof of the main theorem 1.1
The proof of 1.1 (a) is quite easy using the lexicographic order. We will prove 1.1 (b) by induction on
n. The key observation is that the R-subalgebra of R[x1, . . . ,xn] generated by s1, . . . ,sn and xn is equal
to the subring R[x1, . . . ,xn]

Sn−1 , consisting of all polynomials fixed under all permutations of the first
n−1 variables x1, . . . ,xn.
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(2.1) PROOF OF 1.1 (a). The largest term in a monomial s j1
1 · · ·s

jn
n with respect to the lexicographic

ordering is
x j1+ j2+···+ jn

1 x j2+···+ jn
2 x jn−1+ jn

n−1 x jn
n .

It follows that any two distinct monomials in the elementary symmetric polynomials s1, . . . ,sn have
distinct highest terms. Therefore the R-algebra homomorphism α is injective.

The surjectivity of α also follows from the above consideration: Given any non-zero symmetric
polynomial f (x1, . . . ,xn) ∈ S, there exists a unique monomial aJ · s j1

1 · · ·s
jn
n in s1, . . . ,sn with aJ ∈ R

and ( j1, . . . , jn) ∈ Nn such that the highest term in f (x1, . . . ,xn)− aJ · s j1
1 · · ·s

jn
n is strictly smaller than

the largest term in f (x1, . . . ,xn). The surjectivity of α follows from induction (on the lexicographic
ordering of the highest term of f (x1, . . . ,xn).)

(2.1.1) REMARK We could have used other linear orders of monic monomials, for instance the degree
lexicographic order: xi1

1 xi2
2 · · ·xin

n ≺ x j1
1 x j2

2 · · ·x
jn
n under the degree lexicographic order if either iν = jν

for all ν , or if ∑ν iν < ∑ν jν , or if ∑ν iν = ∑ν jν and there exists an natural number ν0 with 1≤ ν0 ≤ n
such that iν = jν for all ν < ν0. and iν0 < jν0 . Using the degree lexicographic order means that in the
above proof we assume that f (x1, . . . ,xn) is homogeneous of degree m.

(2.2) PROOF OF 1.1 (b). Let t1, . . . , tn−1 be the elementary symmetric polynomials of x1, . . . ,xn−1. We
know from part (a) that R[x1, . . . ,xn]

Sn−1 = R[t1, . . . , tn−1,xn], a polynomial ring over R in n variables.
By induction on n, we may and do assume that R[x1, . . . ,xn] is a free module over R[t1, . . . , tn−1,xn] of
rank (n−1)! with generators{

xi1
1 xi2

2 · · ·x
in−1
n−1 : 0≤ iν ≤ ν−1 ∀ν = 1, . . . ,n−1

}
,

so it suffices to show that R[t1, . . . , tn−1,xn] is a free module over R[s1, . . . ,sn] of rank n with free gen-
erators

{
x j

n : 0≤ j ≤ n−1
}

. We will produce an automorphism β of the R-algebra R[t1, . . . , tn−1,xn]

such that
(†) β (xn) = xn, β (si) = ti for i = 1, . . . ,n−1

and β (sn) is a polynomial of degree n in xn and the coefficient of xn
n is ±1. The desired conclusion

follows immediately from the existence of such an automorphism β .

Clearly we have

si = ti + ti−1 xn ∀ 1≤ i≤ n−1 and sn = tn−1xn.

An easy induction gives

(∗) tk = (−1)k xk
n +

k−1

∑
j=0

(−1) j sk− j x j
n for k = 1,2, . . . ,n−1.

(If follows immediately that the R-subalgebra of R[x1, . . . ,xn] generated by s1, . . . ,sn−1 and xn is equal
to R[t1, . . . , tn−1,xn], but we will not use this in the rest of the proof.)

How do we construct β? Suppose we have an R-algebra homomorphism β which satisfies condi-
tion (†). Apply β to the last displayed equations would than give

(‡) β (tk) = (−1)k xk
n +

k−1

∑
j=0

(−1) j tk− j x j
n for k = 1,2, . . . ,n−1.
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So we define β to be the unique R[xn]-algebra homomorphism from R[t1, . . . , tn−1,xn] to itself which
satisfies (‡). An easy calculation shows that indeed β satisfies the equations (†), and

β (sn) = (−1)n−1xn
n + ∑

1≤k≤n−1
(−1)k−1tn−k xk

n .

We have proved 1.1 (b).

(2.2.1) REMARK (a) It is quite easy to show that R[t1, . . . , tn−1,xn] = R[s1, . . . ,sn−1,xn] is generated
by 1,xn,x2

n, . . . ,x
n−1
n as an R[s1, . . . ,sn]-module, simply because xn

n +∑1≤i≤n(−1)isi xn−i
n = 0. Proving

that there is no non-trivial linear relation between 1,xn,x2
n, . . . ,x

n−1
n over R[s1, . . . ,sn−1,xn] is requires

more effort.
(b) We sketch an alternative proof of 1.1 (b). First prove it when R = Z; the general case follows
immediately, by taking the tensor product with R over Z. It suffices to show that there is no non-
trivial linear relation between 1,xn,x2

n, . . . ,x
n−1
n over Q[s1, . . . ,sn]. There are at least two ways: one

can either use the fact that T n+∑1≤i≤n(−1)isi T n−i is an irreducible polynomial in th polynomial ring
Q[s1, . . . ,sn,T ], or invoke Galois theory noting that [Sn : Sn−1] = n.

(2.2.2) REMARK When R is a field, the phenomenon describe in 1.1 is the following. Starting with
the monic polynomial f (T ) = T n +∑1≤i≤n(−1)isi T n−i over the fraction field K = R(s1, . . . ,sn) of
the polynomial ring R[s1, . . . ,sn], which is irreducible over K. Adjoint a root xn of f (T ) to K, the
polynomial f (T ) factors into a product f (T ) = (T − xn) · (T n−1 +∑

n−1
j=1(−1) j t j T n−1− j) over K1 :=

R(s1, . . . ,sn,xn) = R(xn)(t1, . . . , tn−1). Moreover {1,xn,x2
n, . . . ,x

n−1
n } is a basis of K1 over K. Now we

can do the same thing for the polynomial f1(T ) := T n−1 +∑
n−1
j=1(−1) j t j T n−1− j over the field K1.

Iterating this procedure n− 1 times gives us a field Kn−1 = R(x1, . . . ,xn), of degree n! over K. The
basis of K1 over K obtained from this inductive procedure is the one described in theorem 1.1 (b).
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