Symmetric polynomials

§1. Statement of the main theorem

Let R be a commutative ring, and let R[x1, ..., x,] be the polynomial ring over R in n variables x1, ..., x,.
The elementary symmetric polynomials in x1, ... ,x, are defined by the equality

Z(—l)isi T =T sy T" e (1) sy T (=), = [ (T —x))

i=0 j=1
in the polynomial ring R[x1,...,x,][T]. In other words so = 1 and

si=si(x) =si(x,x)= Y, X, 1<i<n
1€S,-(1,...,i)CN"

where S, - (1,...,i) is the orbit in N of the standard action of the permutation group S, on N" and
= forall 1= (iy,...,i,) € N,

The group S, operates on R[xj,...,x,] by permuting the variables. Polynomials in R[xi,...,X,]
fixed by all elements of S, are called symmetric polynomials (in variables xy,...,x, with coefficients
in R.) Let S = R[xy,...,x,]>" be the subring of R[xy,...,x,] consisting of all symmetric polynomials.
Clearly S is the direct sum of all homogenous symmetric polynomials, and sy, ...,s, are elements of S.

The main theorem on symmetric polynomials asserts that S is a polynomial ring in s1,...,sy,, and
Rx1,...,x,] is a free S-module of rank n!.

(1.1) THEOREM Let R be a commutative ring, and let S be the subring of R[xi,...,x,| consisting of
all symmetric polynomials in R[xy, ..., x,].

(a) Let R[y1,...,yn| be the polynomial ring in variables y,...,y,. The R-algebra homomorphism
o: R[y1,...,yn) — S
which sends Y; to s; is an isomorphism.

(b) The polynomial ring R|x1,...,x,] is a free module of rank n! over S, and the set of monomials

x’i‘xéz---xﬁf with 0<iy, <v—-1 Vv=1,....n

form a set of free generators.

Recall that the lexicographic order on monomials in R[xy,...,x,] is the linearly order on the set
of all monic monomials (or ferms) such that x| x5 - - - xn < x{'x)* - x;" if either i, = j, for all v, or if

there exists an natural number vy with 1 < vy < n such that i, = jy for all v < vy. and iy, < jy,.

§2. Proof of the main theorem 1.1

The proof of 1.1 (a) is quite easy using the lexicographic order. We will prove 1.1 (b) by induction on

n. The key observation is that the R-subalgebra of R|[xj,...,x,| generated by sy,...,s, and x, is equal
to the subring R[xy,...,x,]> !, consisting of all polynomials fixed under all permutations of the first
n— 1 variables x1,...,x,.



(2.1) PROOF OF 1.1 (a). The largest term in a monomial s{‘ ---sﬁ" with respect to the lexicographic
ordering is o o o ‘
x.{l +Jz+~-~+jnxé2+~'+1nxlj;j +]nx£n )

It follows that any two distinct monomials in the elementary symmetric polynomials s, ...,s, have

distinct highest terms. Therefore the R-algebra homomorphism « is injective.

The surjectivity of ¢ also follows from the above consideration: Given any non-zero symmetric
polynomial f(xj,...,x,) € S, there exists a unique monomial a, -s{‘ s in Siy.-.,8, with ay € R
and (j1,...,jn) € N" such that the highest term in f(x1,...,x,) —ay -s{’ .5l is strictly smaller than
the largest term in f(x,...,x,). The surjectivity of a follows from induction (on the lexicographic

ordering of the highest term of f(xi,...,x,).)

(2.1.1) REMARK We could have used other linear orders of monic monomials, for instance the degree
lexicographic order: x|'x3 ---xin < x{'x)* ---x;" under the degree lexicographic order if either iy, = jy
forall v,orif ), iy <Y, jy,orif Y, iy =Y, jy and there exists an natural number vy with 1 < vy <n
such that iy, = j, for all v < vy. and iy, < jy,. Using the degree lexicographic order means that in the

above proof we assume that f(xj,...,x,) is homogeneous of degree m.

(2.2) PROOF OF 1.1 (b). Letty,...,t,—1 be the elementary symmetric polynomials of xy,...,x,—1. We
know from part (a) that R[xy,...,x,]>' = R[t1,...,t,_1,X,], a polynomial ring over R in n variables.
By induction on n, we may and do assume that R[xy,...,x,] is a free module over R[ty,...,t,_1,%,] of
rank (n—1)! with generators

{xilxg...xin—ll c0<iy,<v—1 Vv:l,...,n—l},

n—

so it suffices to show that R[ti,...,t,_1,X,] is a free module over R[sy,...,s,| of rank n with free gen-
erators {xﬁ 0<j<n— 1}. We will produce an automorphism f3 of the R-algebra R[ty,...,ty—1,%p)
such that

(t) B(xy)=x4, PB(si)=t for i=1,....n—1
and B(sy) is a polynomial of degree n in x, and the coefficient of x! is £1. The desired conclusion
follows immediately from the existence of such an automorphism f3.

Clearly we have
si=ti+ti1x, V1<i<n—1 and s,="t_1%,.

An easy induction gives

k—1
(*) =DA%+ Y (1) s_jx) for k=1,2,....n—1.
j=0
(If follows immediately that the R-subalgebra of R[xi,...,x,] generated by s1,...,s,—1 and x, is equal
to R[ty,...,t,—1,X,), but we will not use this in the rest of the proof.)

How do we construct ? Suppose we have an R-algebra homomorphism 3 which satisfies condi-
tion (T). Apply B to the last displayed equations would than give

(%) ﬁ(tk):(—l)kx];—kki’l(—l)jtk_jxi; for k=1,2,....n—1.
j=0
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So we define 3 to be the unique R|x,]-algebra homomorphism from R|[t|,...,t,—1,x,] to itself which
satisfies (f). An easy calculation shows that indeed 3 satisfies the equations (), and

Blsw)= (1" + ¥ (~1) .

1<k<n—1

We have proved 1.1 (b).

(2.2.1) REMARK (a) It is quite easy to show that R[fy,...,t,—1,X,] = R[s1,...,Sn—1,%,] iS generated
by 1,%,,x2,...,x2 ! as an Rs1,...,s,]-module, simply because x" + ¥ <;<,(—1)'s;x~' = 0. Proving
that there is no non-trivial linear relation between l,xn,x,%, . ,x,’j‘l over R[s1,...,8,—1,%,] is requires
more effort.

(b) We sketch an alternative proof of 1.1 (b). First prove it when R = Z; the general case follows
immediately, by taking the tensor product with R over Z. It suffices to show that there is no non-
trivial linear relation between l,xn,xﬁ, . ,xﬁfl over Q[sy,...,s,|. There are at least two ways: one
can either use the fact that 7" + Y ;< ,(— 1)is; "~ is an irreducible polynomial in th polynomial ring

QI[s1,--.,84,T], or invoke Galois theory noting that [S, : S,—1] = n.

(2.2.2) REMARK When R is a field, the phenomenon describe in 1.1 is the following. Starting with
the monic polynomial f(T) = T" 4+ ¥ j<;<,(—1)'s; T"~' over the fraction field K = R(s1,...,s,) of
the polynomial ring R[sy,...,s,], which is irreducible over K. Adjoint a root x,, of f(T) to K, the
polynomial f(T) factors into a product f(T) = (T —x,)- (T""! +Z’};%(—1)jtj T"=1=J) over K :=

R(s1,...,8n, %) = R(x,)(t1,...,tn_1). Moreover {1,x,,x2,...,x*" '} is a basis of K| over K. Now we
can do the same thing for the polynomial f(7) := 7" ' + Z;?;%(—l)jtj T"='=J over the field K;.
Iterating this procedure n — 1 times gives us a field K,,_; = R(xy,...,x,), of degree n! over K. The

basis of K over K obtained from this inductive procedure is the one described in theorem 1.1 (b).



